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Abstract: The electro-fermentation is a novel process that consists in coupling a microbial fer-1

mentative metabolism with an electrochemical system. In such a process the electrodes act either2

as electron sinks or sources modifying the fermentation balance of a microbial fermentative3

metabolism and provide new options for the control of microbial activity. A theoretical framework4

for the analysis and control of fermentations using electro-fermentation is currently lacking. In5

this paper, we propose a simple electro-fermentation model in which a population of fermentative6

bacteria switch between two metabolic behaviors in response to different electrode potentials. We7

then mathematically analyze optimal strategies to maximize the production of one of the rising8

products in a batch fermentation using Pontryagin’s Maximum Principle. The obtained results9

show that, in some experimental configurations, a dynamic control of the electrode potential is10

required for the maximization of the desired product. Consequences of the obtained optimal strat-11

egy for driving electro-fermentation experiments are discussed through a realistic example. This12

analysis also highlights that the transition rates between fermentation and electro-fermentation13

behaviors are currently unknown and would be crucial to quantify in order to apply such a control14

approach.15

Keywords: Electro-fermentation; microbial electrochemical technologies; bioprocess models;16

batch culture; optimal control.17

1. Introduction18

The knowledge of electroactive microorganisms has rapidly grown over the last 2019

years with the development of microbial electrochemical technologies such as microbial20

fuel cells (MFC) and microbial electrolysis cells (MEC) for the production of electricity or21

hydrogen from organic matter [1]. The development of electromicrobiology has also led22

to several promising applications such as electro-fermentation (EF) in which reducing23

power provided by means of an electrode can redirect fermentation pathways [2]. In that24

case, the electrodes act as either electron sinks or sources modifying the fermentation25

balance of a microbial fermentative metabolism and providing new options for the26

control of microbial communities [3,4]. EF has been successfully applied on mixed culture27

fermentations and pure culture fermentations and has proven efficient for increasing28

yields in various products such as hydrogen, acetate, propionate, butyrate, lactate,29

3-hydroxypropanoic acid, ethanol, 1.3-propanediol, 2,3-butandiol, butanol or acetone [5–30

16]. For example, a metabolic shift occurred in Clostridium pasteurianum when taking up31

electrons from an electrode poised at +0.045 V vs. SHE (Standard Hydrogen Electrode)32

with an increased production of reduced products such as butanol from glucose and33

1.3-propanediol from glycerol [12]. From a biotechnological point of view, EF could lead34

to significant improvements of industrial fermentations using only a small amount of35
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electrical power. Moreover, the use of an electrode for the triggering of the EF effect in the36

fermentation system introduce the possibility of a dynamic control of the fermentation.37

However, mathematical models describing the EF effect are currently lacking. In EF,38

the voltage applied between electrodes is a variable that could be adjusted dynamically,39

typically with the objective of maximizing the total production over a time interval.40

We shall state and study such an optimization problem with the help of the theory of41

optimal control, for which several analytical and numerical tools are available. Optimal42

control has been successfully applied to various bioprocesses, providing practical control43

strategies, mostly in terms of feedback control (e.g. [17]), as we shall consider here.44

Metabolic 
pathway 1 

Active 
when V<V0

Metabolic 
pathway 2 

Active 
when V≥V0

Electrode

Fermentative 
bacteria

Product 2Product 1

VSubstrate

Figure 1. Scheme of the switching between the fer-
mentation behaviors of a fermentative bacteria de-
pending on the electrode potential V.

Here we consider a pure cul-45

ture of a fermentative microorgan-46

ism growing on a limiting resource47

in a batch culture. As described48

above, the application of an exter-49

nal potential through the imple-50

mentation of an electrode in the51

bioreactor leads to a switching of52

the metabolism between two differ-53

ent metabolic pathways. This EF ef-54

fect is modeled by considering two55

microbial subpopulations produc-56

ing different metabolites ( f1, f2)57

giving rise to two different prod-58

ucts (s1, s2). The switching be-59

tween the fermentation behaviors60

depends on the electrode potential61

V. The control parameter is simply chosen in such a way that its variation between two62

constants values (which correspond to two different values of V) leads to a transition63

between the two considered metabolic behaviors. The bioreactor equations in batch64

culture are simply used to establish the model [18]. Based on this model, an optimal65

control problem for the maximization of the production of s2 is formulated. The Pon-66

tryagin’s Maximum Principle [17,19] is applied for the design of the optimal control67

strategy. The obtained results show that the optimal strategy is not trivial, in the sens68

that the control is not always constant (equal to that which correspond to f2), where in69

some cases the metabolic behavior f1 should be visited by the fermentative bacteria. The70

present mathematical analysis of the optimal strategies will serve as an experimental71

guide to design relevant experiments for testing if these strategies are eventually better,72

and thus contribute to the validation of the model.73

The paper is organized as follows. In Section 2, we give the electro-fermentation74

model and introduce the optimization problem. A preliminary result analyzing the75

behavior of the optimal control in the case of proportional growth functions is given in76

Section 3. The main part of the paper is devoted to the synthesis of an optimal control77

strategy in two cases: case of identical growth functions in Section 4 and case of constant78

growth functions in Section 5. Finally, discussion and numerical simulations are given79

in Section 6.80

2. Model description and optimization problem81

In order to describe the switching between the two metabolic pathways described82

in the introduction, we suppose that the fermentative population is splitted into two83

sub-populations x1 and x2 in a commensal relationship to consume a substrate s. The84

sub-population x1 with microbial growth rate µ1 gives rise to a product s1 and the sub-85

population x2 with microbial growth rate µ2 gives rise to a product s2. We suppose that in86

the absence of polarized electrodes the fermentation is mainly guided by the population87

x1 and when the external voltage is sufficiently large the metabolic function switches to88
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a metabolism guided by x2. This electro-fermentation process can be described by the89

following system of ordinary differential equations:90

ṡ = − 1
Y1

µ1(s)x1 − 1
Y2

µ2(s)x2

ẋ1 = µ1(s)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(s)x2 + αr1x1 − (1− α)r2x2

(1)

where Y1, Y2 are the yields coefficients, r1, r2 > 0 are positive constants and α ∈ {0, 1} is91

a control variable which is directly related to the external potential V and satisfies the92

following property:93

α = 0 if V < V0, and α = 1 if V ≥ V0, (2)

where V0 > 0 is a threshold on the external potential over which the metabolic pathway94

is guided by x2. The value of the threshold potential V0 depends on the microorganisms95

x1 and x2. We shall assume that growths do not present inhibition, which amounts to96

consider the following hypothesis.97

Assumption 1. The growth functions µi are non decreasing with µi(s) > 0 for s > 0.98

A classical model for the growth rates kinetics µi is given by the following Monod type99

functions100

µi(s) =
kis

Ki + s
, i = 1, 2 (3)

for some positive real numbers ki, Ki, for i = 1, 2.101

102

Observe that, due to the migration phenomenon between the two sub-populations,103

the relation between x1 and x2 is not simply reduced to a competition phenomenon.104

105

We shall assume that the two sub-populations have the same conversion factor.106

Assumption 2. Y1 = Y2 = Y.107

Note that at the price of change of units of x1 and x2, one can without loss of108

generality assume that Y = 1; this is conventional when dealing with chemostat type109

systems [20]. Therefore, we shall consider the simpler model110

ṡ = −µ1(s)x1 − µ2(s)x2
ẋ1 = µ1(s)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(s)x2 + αr1x1 − (1− α)r2x2,

(4)

where (s(0), x1(0), x2(0)) = (s0, x10, x20) ∈ (R+ \ {0})3. Observe that one has s(t) +111

x1(t) + x2(t) = s(0) + x1(0) + x2(0) := c > 0 at any t ≥ 0. Therefore, we can consider112

the reduced dynamics in the plane113

ẋ1 = µ1(c− x1 − x2)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(c− x1 − x2)x2 + αr1x1 − (1− α)r2x2.

(5)

The objective is to maximize the total production of the sub-population x2 over an114

interval of time [0, T], among functions α(·) that are measurable time functions taking115

values in {0, 1}, which amounts to maximize the criterion116

J[α(·)] =
∫ T

0
µ2(s(t))x2(t)dt, (6)

where T > 0 is a fixed finite time horizon.117
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Remark 1. From the condition given by (2), the control variable α is constrained to take values118

in the non-convex set {0, 1}. In this case, one can not a priori guarantee the existence of optimal119

solutions for the problem (5)-(6). However, a technical approach consists into first considering120

the convexified problem, i.e., solve the problem with α taking values in the whole interval [0, 1],121

for which the existence of solutions is guaranteed (see for instance [21]). Then, the optimal122

solution can be approached with an arbitrary precision via chattering controls [22], which consist123

in commuting rapidly between the values 0 and 1 so that the averaged dynamics behave close124

from that one with α different from 0 and 1.125

We shall use the Maximum Principle of Pontryagin (PMP) [19] to obtain necessary126

optimality conditions. Defining the Hamiltonian127

H(x, p, α) = p1µ1(c− x1 − x2)x1 + (p2 + 1)µ2(c− x1 − x2)x2
+(p2 − p1)(αr1x1 − (1− α)r2x2),

(7)

where p = (p1, p2) is the adjoint vector, the Pontryagin Maximum Principle claims that128

for any optimal solution, there exists an absolutely continuous function p : [0, T]→ R2
129

solution of the adjoint equation130

ṗ(t) = −∂x H(x(t), p(t), α(t)), a.e. t ∈ [0, T] (8)

with the terminal condition131

p(T) = 0 (9)

and an optimal control α? that satisfy the maximization of the Hamiltonian132

H̄(x(t), p(t)) := max
α

H(x(t), p(t), α) = H(x(t), p(t), α∗(t)), a.e. t ∈ [0, T]. (10)

In addition, the map t 7→ H̄(x∗(t), p∗(t)) is constant. Let133

φ(t) = p2(t)− p1(t) (11)

be the switching function. From the maximization of the Hamiltonian, one gets the134

property for an optimal control135

α∗(t) =
{

1 if φ(t) > 0,
0 if φ(t) < 0,

a.e. t ≥ 0 such that φ(t) 6= 0. (12)

3. Sufficient condition for the absence of singular arc136

In this section we give a sufficient condition under which any optimal solution137

of problem (5)-(6) does not admit singular arc. Recall that a singular arc is a piece of138

an optimal trajectory for which the switching function φ given by (11) vanishes in an139

interval of time [t1, t2], for some t2 > t1 ≥ 0. In that case, the maximization of the140

Hamiltonian (7) over [t1, t2] becomes more difficult to study and additional techniques141

need to be involved in order to solve the problem on [t1, t2]. Accordingly to Remark 1,142

we can guarantee in absence of singular arc that the optimal solution is reached with143

α taking only values 0 and 1 (even though the number of switches might be large or144

infinite).145

146

Suppose that the growth rate functions satisfy the following assumption.147

Assumption 3. There exists a positive real a 6= 1 such that µ1(s) = aµ2(s), for s ≥ 0.148

Note that Assumption 3 is not unrealistic. Indeed, when the growth rates follow the149

Monod expression (3), the linear approximation150
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µi(s) '
ki
Ki

s (i = 1, 2)

is valid for relatively small values of s.151

152

One has the following proposition.153

Proposition 1. Suppose that Assumption 3 holds. An optimal solution of the problem (6)-(4)154

has no singular arc.155

Proof. The adjoint equations are156

ṗ1 = −p1µ1(s) + p1µ′1(s)x1 + (p2 + 1)µ′2(s)x2 − αr1(p2 − p1)
ṗ2 = −(p2 + 1)µ2(s) + p1µ′1(s)x1 + (p2 + 1)µ′2(s)x2 + (1− α)r2(p2 − p1)

(13)

with s = c− x1 − x2. If φ = 0 on a time interval, one has p1 = p2 and φ̇ = 0, which gives157

p1 = a(p2 + 1).

Therefore, p1, p2 have to be constant on this time interval, given by158

p1 = p2 =
a

1− a
.

Then, ṗ1 = ṗ2 = 0 gives the equations159

p1µ′1(s)x1 + (p2 + 1)µ′2(s)x2 = p1µ1(s)
p1µ′1(s)x1 + (p2 + 1)µ′2(s)x2 = (p2 + 1)µ2(s)

from which we obtain that p1µ1(s) = (p2 + 1)µ2(s). Replacing p1, p2 by their expression160

and using Assumption 3 we obtain that a = 1 and thus a contradiction.161

Thanks to Proposition 1, the optimal control of problem (5)-(6) is a sequence of162

commutation between α = 0 and α = 1.163

4. Optimal synthesis with identical growth functions164

We investigate here the simple case for which one can assume that the two sub-165

populations have exactly the same growth rate. Such an assumption might be considered166

quite unrealistic. However, it could happen that growth rates are indeed quite close167

to each other when the concentration s is not too large, which could then justify this168

assumption as a good approximation.169

Proposition 2. Consider the problem (6)-(5) and let T > 0. Assume that one has µ1(s) =170

µ2(s) := µ(s) for any s > 0. Then, the constant control α? ≡ 1 is optimal on [0, T].171

Proof. Let b = x1 + x2. Then b(·) is the solution of172

ḃ = µ(c− b)b, b(0) = x1(0) + x2(0) (14)

whatever is the control α(·). Then, the variable X2 = x2/b is solution of173

Ẋ2 = αr1(1− X2)− (1− α)r2X2, X2(0) = x2(0)/(x1(0) + x2(0)). (15)

Note that at any time t, Ẋ2 is maximal for α = 1, whatever is X2 ∈ [0, 1]. Let X̄2(·) be the174

solution for the control α identically equal to 1. From standard results of comparison of175

solutions of scalar ordinary equations, one has X2(t) ≤ X̄2(t) at any t, whatever is the176

control α(·). Therefore, one has177
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J[α(·)] =
∫ T

0
µ(c− b(t))b(t)X2(t) dt ≤

∫ T

0
µ(c− b(t))b(t)X̄2(t) dt = J[1]

and we conclude that the constant control α? = 1 is optimal.178

Proposition 2 shows that, in the case of identical growth functions, the optimal179

strategy in order to maximize (6) is by keeping α constantly equal to one, i.e., by keeping180

an external potential sufficiently larger than V0.181

5. Optimal synthesis with constant growth functions182

We consider here distinct growth rates, but that we assume to be constant for183

non-null concentration s.184

Assumption 4. One has µi(s) = ai > 0 for any s > 0 (i = 1, 2).185

Indeed, if one considers that population growths follows the classical Monod186

function (3) and that the concentration s(0) is quite large, having µi(s) = ai can be a187

good approximation on the finite time horizon [0, T] (provided T not to be too large).188

The following definition will be useful in the following.189

Definition 1. Denote L = a1
a2

and K = r1−a1
a2

and define190

φ̃(p2) =



K + L− K(L− 1)p2 − (L + K)(p2 + 1)−K

K(K + 1)
K /∈ {−1, 0}

(1− L)p2 + L log(p2 + 1) K = 0

−L + L(p2 + 1) + log(p2 + 1)(1− L) K = −1

(16)

Define also, when L > 1, the number191

τ̄ :=
log(inf{p2 > 0; φ̃(p2) < 0}+ 1)

a2
. (17)

Remark 2. One can straightforwardly check that when L > 1 (that is when a1 > a2) one has192

lim
p2→+∞

φ̃(p2) = −∞

whatever is K > −L (i.e. r1 > 0). We deduce that τ̄ is well-defined.193

On has the following result.194

Proposition 3. Suppose that Assumption 4 holds. Consider the problem (6)-(5) and let T > 0.195

One has the following two cases:196

• If a1 ≤ a2, then α? = 1 is optimal on [0, T].197

• If a1 > a2, then the control198

α?(t) =
{

1 if t ≥ min(0, T − τ̄)
0 otherwise

is optimal on [0, T].199

Proof. The adjoint equations are written200
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ṗ1 = −a1 p1 − αr1(p2 − p1)
ṗ2 = −a2(p2 + 1) + (1− α)r2(p2 − p1)

(18)

Note that system (18) is decoupled from the dynamics of x1, x2 and can be studied201

independently to the initial condition (x1(0), x2(0)). The switching function satisfies202

φ̇ = −a2 + a1 p1 − a2 p2 + φ
(
r2 + α(r1 − r2)

)
. (19)

At terminal time T, one has φ(T) = 0 with φ̇(T) = −a2 < 0. So we conclude about203

the existence of the number204

t̄1 := inf{t > 0; φ(τ) > 0, τ ∈ (t, T)}

and the optimality of α = 1 on the interval [t̄1, T]. On this interval, one has205

ṗ2 = −a2(p2 + 1)
φ̇ = −a2 + (a1 − a2)p2 + (r1 − a1)φ

(20)

Note that p2(T) = 0 implies that one has necessarily p2 > 0 on [t̄1, T).206

If a1 ≤ a2, φ cannot cross 0 from below because φ = 0 implies φ̇ < 0. We deduce207

from (20) that φ is negative on [t̄1, T), and thus t̄1 has to be equal to 0. We conclude that208

α? = 1 is optimal on [0, T].209

Consider now the case a1 > a2. Let us show that an optimal solution cannot210

present a singular arc, i.e. a time interval on which φ is identically null. If not, φ̇ = 0211

and φ = 0 implies from equation (19) that p2 has to be constant on such an interval212

with p2 = a2/(a1 − a2) > 0. But from equations (18) with ṗ2 = 0 and p2 = p1, one213

obtains p2 = −1 < 0, and thus a contradiction. We deduce that an optimal solution is a214

concatenation of arcs with α = 0 or α = 1. Note, from equation (19), that φ̇ is continuous215

at switching times (with φ̇ = −a2 + (a1 − a2)p2 = −a2 + (a1 − a2)p1). If t̄1 > 0, we216

consider the number217

t̄0 := inf{t > 0; φ(τ) < 0, τ ∈ (t, t̄1)}.

On the interval (t̄0, t̄1), α = 0 is optimal and one has218

ṗ1 = −a1 p1
φ̇ = −a2 + (a1 − a2)p1 + (r2 − a2)φ.

(21)

Note that one has p1(t̄1) = p2(t̄1) > 0, which implies p1(t) > p1(t̄1) for t ∈ [t̄0, t̄1). As φ219

changes its sign at t̄1 (from negative to positive values), one has necessarily φ̇(t̄1) ≥ 0220

(with φ(t̄1) = 0). If t̄0 > 0, one should have φ(t̄0) = 0 with φ̇(t̄0) = −a2 + (a1 −221

a2)p1(t̄0) > −a2 + (a1 − a2)p1(t̄1) = φ̇(t̄1) ≥ 0, which contradicts the change of sign222

of φ at t̄0. We conclude that one has necessarily t̄0 = 0 and thus the optimal solution223

consists in at most one switch from α = 0 to α = 1.224

Finally, let us consider the dynamics (20) in the backward time τ = T − t:225

dp2

dτ
= a2(p2 + 1), p2(0) = 0

dφ

dτ
= a2 − (a1 − a2)p2 − (r1 − a1)φ, φ(0) = 0.

(22)

Note that the map ϕ : τ 7→ p2(τ) defines a diffeomorphism from R+ to R+. The solution226

φ can then be parameterized by p2, as solution of the non-autonomous scalar differential227

equation228

dφ̃

dp2
= 1− L

p2

p2 + 1
− K

φ̃

p2 + 1
, φ̃(0) = 0, (23)
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where L and K are given by Definition 1. The solution of (23) can be made explicit as229

given by (16). As it is underlined by Remark 2, when L > 1 (that is when a1 > a2) the230

number τ̄ is well-defined. Then, we have that φ(τ̄) = 0 with φ(τ) > 0 for τ ∈ (0, τ̄).231

Therefore, one gets t̄1 = max(0, T − τ̄) and the control232

α?(t) =
{

1 if t ≥ min(0, T − τ̄)
0 otherwise

is optimal.233

Remark 3. Let us underline that when µi are constant functions, the optimal synthesis does234

not depend on the initial state. Also, it is worth noting that in this case the optimal control α?235

does not depend on r2, the migration rate constant from population x2 to population x1. This is236

clearly recognizable from the statement of Proposition 3 and Definition 1.237

6. Numerical simulations and discussions238

239

6.1. Constant growth rates240

Let us consider system (5) where the growth rate functions follow Assumption 4241

(constant values) with values given in table 1. In this case the switching time τ̄ introduced

a1 a2 r1 r2 Y1 Y2 T
2 1/2 1 0.1 – 0.5 1 1 2

Table 1: Numerical values of the different parameters: case of constant growth rates.

242

by equation (17) is given by τ̄ = log(4) and the optimal control is given by243

α?(t) =
{

1 if t ≥ min(0, 2− log(4))
0 otherwise.
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Figure 2. Exact optimal control (top) and optimal control computed with Bocop (top) for r2 = 0.1
(left) and r2 = 0.5 (right).
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As underlined in Remark 2, the optimal control α? does not depend on the migration244

rate constant r2. On Figure 2, we plot (with Matlab) the optimal control given by245

Proposition 3 together with the optimal trajectories in the two cases r2 = 0.1 (bottom-left)246

and r2 = 0.5 (bottom-right). As a verification, these plots are also compared with the247

ones obtained with Bocop [23], which is a numerical optimization software dedicated to248

optimal control problems (using direct method) on Figure 2 (top).249

250

6.2. Monod growth rates251

In this section, we consider system (5) with variable growth rate functions instead252

of constants ones, using the Monod expression (3).
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Figure 3. Kinetic growth rates of Monod type.
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Figure 4. Optimal control computed with Bocop for c = 100 (top-left), c = 30 (top-right), c = 20
(bottom-left), and c = 15 (bottom-right).

Using the numerical solver Bocop, we simulate the optimal control together with254

the optimal trajectories in similar conditions than before with model parameters given255

in Table 2, and for different values of initial control c = s(0) + x1(0) + x2(0). Observe256

that, in this example, the growth kinetic functions µ1 and µ2 satisfy Assumption 3. Thus,257
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k1 k2 Ks1 Ks2 r1 r2 Y1 Y2 T
2 1/2 1 1 1 0.1 1 1 2

Table 2: Numerical values of the different parameters: case of Monod type growth
rates (3).

thanks to Proposition 1, no singular arcs are present in this case. We observe in Figure 4258

that the optimal trajectories have the same structure than for constant growth rates given259

by Proposition 3, but here the optimal switching time depends on the initial condition.260

6.3. Consequences for the control of electro-fermentation experiments261

We have proposed a model describing the effect of electro-fermentation on the262

metabolic profile of a fermentative bacteria in a batch culture. Fermentation and electro-263

fermentation behaviors ( f1, f2), each gives rise to different products (s1, s2). The switch-264

ing between the fermentation behaviors depends on the electrode potential V. As265

shown in Proposition 2, the optimal control strategy is trivial in the case where the266

electro-fermentation f2 growth rate is higher or equal to the fermentation f1 growth rate267

(a2 ≥ a1). This indicates that in some experimental configurations a dynamic control268

is not necessary to optimize the system. For example, in the case of Clostridium au-269

toethanogenum electro-fermentation with [Co(trans-diammac)]3+ as mediator reported by270

Kracke et al. [13], the electro-fermentation led to a 35-fold increase in lactate production271

but the growth rate was not significantly impacted. In that case the optimization of lac-272

tate production is straightforward and requires a constant polarization of the electrode at273

the electro-fermentation potential (-603 mV vs. Standard Hydrogen Electrode). However,274

in other cases the electro-fermentation growth rate is lower than the fermentation growth275

rate (a2 < a1). In those cases, the dynamic control strategy proposed in Proposition276

3 would be required to optimize the production of the targeted product. This is the277

case, for example, for the electro-fermentation of glucose by Clostridium pasteurianum278

reported by Choi et al. [12]. In that case, they reported a 2.4-fold increase of butanol279

production associated with a 1.6-fold decrease in growth rate. Using values estimated280

in their experiments a1 = 0.41 h−1 and a2 = 0.25 h−1, and assuming a relatively high281

transition rate r1 = 1 h−1 the switching time τ̄ is then calculated using equation (17):282

τ̄ ≈ 5 h. This means that the optimal production of butanol would then be obtained with283

a first period of fermentation without polarization of the electrode followed by 5 h of284

electro-fermentation. In the experiment reported by Choi et al. [12], according to Figure 3,285

the fermentation starts after a 15 h lag phase and ends around 23 h. The optimal control286

would then correspond to polarizing the electrode at +45 mV vs. Standard Hydrogen287

Electrode after 18 h. This calculation also shows that the estimation of the true value of288

the transition rate r1 would be crucial for such a control approach.289

7. Conclusion and perspectives290

We propose a model describing the metabolic switching holding in an electro-291

fermentation process within a pure batch culture. Based on this model, an optimal292

control problem is formulated in order to maximize the production of one of the rising293

fermentation products. The Pontryagin’s Maximum Principle is applied for the analysis294

of the optimization problem. A preliminary result analyzing the behavior of the optimal295

control in the case of proportional growth functions is given. An optimal control is syn-296

thesised in two particular cases: similar and constant (but different) growth rate kinetics.297

The obtained results show that the optimal control strategy is far from being trivial, in the298

sense that undesirable metabolic pathways may be visited by the fermentative bacteria299

for the maximization of a desired fermentation product. Consequences of the obtained300

optimal strategy for driving electro-fermentation experiments are discussed through a301

realistic example. This study is elaborated under the hypothesis of identical yield factors.302

The optimality for the case of different yield factors with more general growth kinetics,303
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is an open problem, that will be explored in a near future. This theoretical approach304

also underscores the importance of evaluating biological parameters such as transition305

rates between fermentation mode and electro-fermentation mode for the application of306

the optimal control. The proposed model as well as the optimal control law need to be307

confronted with experimental data, and this will be the subject of future experimental308

investigation within the LBE laboratory.309
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