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ORIGINAL ARTICLE

Identification of an Elite Core Panel as a Key 
Breeding Resource to Accelerate the Rate 
of Genetic Improvement for Irrigated Rice
Roselyne U. Juma1,2, Jérôme Bartholomé1,3* , Parthiban Thathapalli Prakash1, Waseem Hussain1, 
John D. Platten1, Vitaliano Lopena1, Holden Verdeprado1, Rosemary Murori1,4, Alexis Ndayiragije1,5, 
Sanjay Kumar Katiyar1,6, Md Rafiqul Islam1,7, Partha S. Biswas1,8, Jessica E. Rutkoski1,9, Juan D. Arbelaez1,9, 
Felister N. Mbute10, Douglas W. Miano10 and Joshua N. Cobb1,11* 

Abstract 

Rice genetic improvement is a key component of achieving and maintaining food security in Asia and Africa in the 
face of growing populations and climate change. In this effort, the International Rice Research Institute (IRRI) con-
tinues to play a critical role in creating and disseminating rice varieties with higher productivity. Due to increasing 
demand for rice, especially in Africa, there is a strong need to accelerate the rate of genetic improvement for grain 
yield. In an effort to identify and characterize the elite breeding pool of IRRI’s irrigated rice breeding program, we 
analyzed 102 historical yield trials conducted in the Philippines during the period 2012–2016 and representing 15,286 
breeding lines (including released varieties). A mixed model approach based on the pedigree relationship matrix was 
used to estimate breeding values for grain yield, which ranged from 2.12 to 6.27 t·ha−1. The rate of genetic gain for 
grain yield was estimated at 8.75 kg·ha−1  year−1 (0.23%) for crosses made in the period from 1964 to 2014. Reducing 
the data to only IRRI released varieties, the rate doubled to 17.36 kg·ha−1  year−1 (0.46%). Regressed against breeding 
cycle the rate of gain for grain yield was 185 kg·ha−1  cycle−1 (4.95%). We selected 72 top performing lines based on 
breeding values for grain yield to create an elite core panel (ECP) representing the genetic diversity in the breeding 
program with the highest heritable yield values from which new products can be derived. The ECP closely aligns 
with the indica 1B sub-group of Oryza sativa that includes most modern varieties for irrigated systems. Agronomic 
performance of the ECP under multiple environments in Asia and Africa confirmed its high yield potential. We found 
that the rate of genetic gain for grain yield found in this study was limited primarily by long cycle times and the direct 
introduction of non-improved material into the elite pool. Consequently, the current breeding scheme for irrigated 
rice at IRRI is based on rapid recurrent selection among highly elite lines. In this context, the ECP constitutes an impor-
tant resource for IRRI and NAREs breeders to carefully characterize and manage that elite diversity.
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Introduction
Rice (Oryza sativa L.) is one of the world’s major sta-
ple crops feeding more than 3.5 billion people (Global 
Rice Science Partnership 2013). It is believed that by 
2050 the global population will be approximately 10 bil-
lion (United Nations 2019) and much of this population 
increase will occur in the regions of Africa and Southern 
Asia, which are highly dependent on rice. As such, rice 
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will be crucial to ensuring equitable food security for 
the foreseeable future (Peng et  al. 2004; Godfray 2014; 
Li et  al. 2018). Challenges posed by climate change as 
well as increasing consumer demand further highlight 
the importance of rice to global food security (Silvern 
and Young 2013). While agricultural intensification 
using modernized management practices (Garnett et  al. 
2013) can help boost productivity, the importance of rice 
genetic improvement in the context of these management 
systems is also an important driver of sustainable pro-
ductivity (Guimaraes 2009; Atlin et al. 2017). The rate at 
which this genetic improvement occurs is often referred 
to as genetic gain and in order to deliver improved varie-
ties to the farmers of the twenty-first century, the rate of 
genetic gain in rice must accelerate relative to twentieth 
century levels (Atlin et al. 2017).

With the acceleration of genotyping technologies 
through the early twenty-first century and the subse-
quent maturation of genomic selection-based breeding 
strategies, there has been a renewed interest in the appli-
cation of quantitative genetics to plant breeding pro-
grams (Cobb et al. 2019b; Bernardo 2020). To this end the 
irrigated rice breeding program at the International Rice 
Research Institute (IRRI) has spent significant effort to 
develop a modernized approach to rice breeding to sub-
stantially and sustainably increase response to selection 
(Collard et al. 2019). In addition to implementing acceler-
ated single seed descent strategies (Collard et  al. 2017), 
another major pillar of IRRI’s effort to transform rice 
breeding is the deep characterization of the elite genetic 
base from which new products are derived. While the 
characterization and dissection of rice genetic diversity 
in public germplasm collections has advanced consider-
ably (Li et al. 2014; McCouch et al. 2016; Sun et al. 2017), 
to be fully leveraged for varietal improvement, it needs 
to be paired with an equally in-depth characterization of 
the elite genetic diversity residing in breeding programs 
across the world.

The irrigated rice breeding program at IRRI has been 
a source of elite breeding germplasm for decades (Peng 
and Khush 2003; Mackill and Khush 2018; Collard 
et al. 2019). This genetic diversity has been utilized in 
combination with landraces and local varieties to con-
tribute substantially to the yield improvement achieved 
in Asia to date. The breeding strategies used to achieve 
this post-Green Revolution yield improvement how-
ever, frequently varied according to funding priorities, 
available technology, and evolution of scientific think-
ing (see Fig. 1). IRRI’s early breeding effort culminated 
in the development of IR8, the first widely-adopted 
semi-dwarf variety of the Green Revolution (Chandler 
1982; Peng et al. 1999; Peng and Khush 2003). Though 
this variety was high yielding, it lacked acceptable 

cooking and eating quality and therefore was quickly 
superseded by other varieties that excelled in both 
grain yield and marketability (Khush 2001). During this 
time, a focus on improved disease resistance and con-
tinued efforts to increase genetic variation led to many 
new varieties introgressed with genetics from wild 
species (Brar and Khush 2002, 2018) that were created 
using strategies such as backcrossing, top crossing, 
and pedigree breeding methods. IR 36, for instance, 
resulted from the combination of 13 landraces from 
six different countries (Khush 2005). This variety dis-
played good grain quality, early maturity, tolerance to 
abiotic stresses, and resistance to multiple pests and 
disease (Peng and Khush 2003). Further advances in 
grain quality (soft gel consistency, translucent and 
long slender grains, intermediate amylose content and 
intermediate gelatinization temperature) were made 
with the release of IR 64 which resulted from combin-
ing extant improved lines with 19 traditional varieties 
(Mackill and Khush 2018), but which was still heavily 
based on IR8. A renewed focus on yield improvement 
in the late 1980s and 1990s sparked the development 
of an ideotype breeding strategy known as the new 
plant type (NPT, Fig.  1) (Cassman 1994; Peng et  al. 
2004; Yadi et al. 2021). With the advent of the molecu-
lar marker technologies during the same period, this 
was quickly followed up by selection strategies based 
on marker-assisted backcrossing to introduce major 

•Semi-dwarf plant type
•Yield potential1960

•Early maturity
•Disease resistance 1970

•Grain quality
•Disease resistance
•Pedigree selection
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•New plant type (1)
•Pedigree selection 
for yield components
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•New plant type (2)
•QTL Mapping
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•Marker assisted
backcrossing

•RGA
•Bio-fortification
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•Rapid recurrent
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•Global MET
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IR 64

IRRI 123

IRRI 154 
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Fig. 1 Evolution of main techniques and breeding targets across 
decades for the irrigated breeding program at IRRI. Changes in 
breeding objectives in the decade are indicated in the boxes. 
Important IRRI rice varieties for each decade are shown in the ellipses
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genes for biotic or abiotic stress tolerance to produce 
enhanced versions of existing varieties. This effort 
was recently coupled with an enhanced focus on bio-
fortification in order to couple high yield with high 
nutritional value. However, post-Green Revolution 
breeding for quality and disease resistance, while suc-
cessful, has not brought about the realized genetic gain 
for yield that is needed to meet the projected demand. 
More recent approaches aim to integrate principles 
of quantitative genetics into the breeding strategy 
by focusing the molecular breeding strategy on well-
known high-value haplotypes and using a genomics-
enabled rapid recurrent selection strategy to improve 
quantitative traits mainly through accelerated breed-
ing cycles (Fig. 1).

The objective of this study was twofold: (i) estimate 
gains in breeding value for yield over the entire history 
of IRRI’s breeding program for irrigated systems, and 
(ii) identify and characterize a panel of elite lines from 
among the available germplasm that balances high 
breeding value for yield with sufficient genetic vari-
ance to preserve long term gain from selection. To this 
end, we gathered historical data from 102 yield trials in 
the IRRI phenotypic database (Breeding4Results 2021) 
spanning the years from 2012 to 2016 and combined it 
with pedigree data from the International Rice Infor-
mation System (McLaren et  al. 2005; Collard et  al. 
2019) to estimate breeding values for grain yield for all 
extant or recently extant lines. These trials included 
most of the existing advanced material of the breed-
ing program as well as many replicated observations 
of IRRI released varieties, allowing us to estimate the 
rate of genetic gain over five decades. The same data 
was then used to identify high yielding lines from the 
breeding program to form the IRRI irrigated elite core 
panel (ECP). Seventy-two lines were ultimately cho-
sen to comprise the elite panel and were subjected to 
extensive genetic and phenotypic characterization to 
assess suitability for short-cycle recurrent selection.

Results
Estimation of the Genetic Gain for Grain Yield
Genetic gain for grain yield was estimated as a func-
tion of change in breeding value over time. Breeding 
values for 15,286 lines evaluated in 102 trials conducted 
between 2012 and 2016 were estimated using a two-
stage mixed model analysis (Table  1, Additional file  1: 
Table S1). The majority of these lines were advanced lines 
from the breeding program that never achieved vari-
etal status and released varieties from different decades. 
Eighty percent of the lines originated from crosses that 
were made after 2009 (Fig. 2A). As expected, the reliabil-
ity of the breeding values of older lines (generated before 
2000) were higher compared to more recent material, 
with an average value of 0.43 (σ = 0.23) and 0.1 (σ = 0.17), 
respectively. Breeding values for grain yield ranged from 
2.12 to 6.27 t·ha−1. The genetic trend as measured by this 
analysis of the IRRI irrigated rice breeding program since 
its initiation in 1960 to 2014 is presented in Fig. 2B. Over 
this period the linearized genetic trend was estimated 
to be 8.75  kg·ha−1   year−1 (0.23%). Despite the smaller 
sample size for the earlier historical periods, an upward 
trend from 1960 to 1980 is apparent followed by a period 
of variability in the average breeding value which even-
tually plateaus around 4.38 t·ha−1 after 2008. In order to 
interrogate the drivers of this genetic trend further, the 
equivalent complete generation (EqG, see “Materials 
and Methods” section) for each line was calculated as an 
estimate of the number of effective breeding cycles that 
had taken place prior to the crossing event. EqG is a key 
indicator of the rate of introduction of new material and 
the extent at which improved material is recycled into the 
breeding program. A similar trend to breeding values was 
also observed for EqG for the same period. Values had 
exceeded two by the end of the sixties to reach its maxi-
mum average value of six in the eighties (Fig.  2C). This 
was followed by a marked decrease to an average value of 
four in the nineties the average maximal values after 2000 
never exceeded six equivalent generations. In addition, 

Table 1 Summary of yield trials used to estimate breeding values for grain yield

These trials were conducted during 2012–2016 for IRRI’s rice breeding program for irrigated systems

Experimental design used in the retrieved studies included—R = RCBD, AR = Augmented RCBD, AL = Alpha lattice, PR = P-Rep, RC = Row Column, AD = Augmented

Details Year

2012 2013 2014 2015 2016

Number of trials 1 8 11 49 33

Average harvest area (sqm) 4.84 4.49 4.34 4.34 4.58

Number of plots 192 5272 13,822 14,926 13,246

Number of tested lines 64 2487 12,505 10,065 9793

Experimental designs R AL, R, RC AR, R, AU, PR, RC R, AR, AL, PR, RC, AD AR, R, PR, RC
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a large variance in EqG was found across lines from the 
most recent decade with values ranging from 1 to 7.56 
highlighting the extensive use of non-improved material 
in combination with more elite lines.

Eighty-six released varieties included in the data-
set were analyzed separately to better characterize 
the long-term trend in breeding values for yield and 
its relationship with EqG (Fig. 3). This includes mate-
rial dating from the Green Revolution and post-Green 

revolution eras (IR8, IR36), mega-variety (IR64) and 
more recent high performing releases (IRRI 154, IRRI 
156). Altogether, these lines covered a large period 
from 1962 to 2006. In this period genetic gain for grain 
yield was estimated based on released varieties to be 
17.36 kg·ha−1  year−1 (0.46%; Fig. 3A). When regressing 
breeding values on EqG we observed significant corre-
lation and estimated the rate of genetic gain per cycle 
to be 185 kg·ha−1  cycle−1 (4.95%; Fig. 3B).
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Retrospective Analysis of Crosses
The pattern of parental selection among crosses made by 
IRRI’s irrigated breeding program was analyzed over a 
period of thirty years (1985–2014) to assess the evolution 
of the crossing strategy and its relationship to EqG. Dur-
ing this period, 13,190 crosses were made. The number 
of crosses and the proportion of the type of cross varied 
substantially from one year to the next (Fig.  4A). How-
ever, the total number of crosses has been on a down-
ward trend. During this period, most crosses were single 
crosses (71.9%) or three-way crosses (24.9%) and a small 
proportion were backcrosses (2.7%), complex crosses 
(0.4%) or double crosses (0.1%). The proportion of sin-
gle crosses varied from 42.9% in 2007 to a high of 99.6% 
in 1989. To further dissect the impact of parental selec-
tion and mating design on EqG, crosses from this period 
were classified as elite by elite (41.4%), elite by non-elite 
(34.2%) and non-elite by non-elite (24.4%) based on the 
EqG of the parents. Since an EqG of 4 represented lines 
from the most advanced available breeding cycle in 1985, 
any line with an EqG of four or greater was considered 

elite and any line with an EqG of less than four was con-
sidered non-elite. Similar to cross type, the three classes 
of cross varied substantially from one year to the next 
(Fig.  4B). Notably, from 1991 to 1997 the proportion of 
non-elite by non-elite crosses increased dramatically with 
up to 82% of the crosses falling in this category for that 
period. This corresponds to a decrease in EqG for the 
same period and is likely a function of the introduction 
of new material into the breeding program to achieve the 
objectives of the NPT initiative (Additional file  2: Fig. 
S1). During the period 1985–2014, 6,228 unique lines 
were used as parents and most of them were used only 
once (65.4%). On the other hand, a few lines were heav-
ily used as parents with 90 lines being used more than 
40 times each during the 29-year period. As expected, 
this list included well-known IRRI varieties such as 
IR36, IR64, IR72, IRRI 104, IRRI 105, IRRI 118 IRRI 123 
and IRRI 154 but also included traditional varieties like 
Kalimonch, Basmati 370, Shen Nung 89–366 and MD-2 
used as donors of alleles with particular value. Interest-
ingly, some of the most used parental lines were crossed 
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during several periods with sometimes more than 
20 years between their first and last use (IR64, IR72, IRRI 
104, and IRRI 105). This prominent reuse of old mate-
rial serves to lengthen effective breeding cycles despite 
advancing the pedigree and is likely one of the primary 
limitations on the historical rate of genetic gain for grain 
yield.

Defining the Elite Core Panel (ECP)
The best performing lines in terms of breeding value for 
yield were selected and filtered based on the reliability of 
the breeding value estimate and their relatedness to other 
lines in the dataset based on pedigree (see “Materials and 
Methods” section). The final ECP was composed of 72 
lines falling within the top 2% of breeding values, ranging 
between 4.93 and 6.01 t·ha−1 with a mean value of 5.27 
t·ha−1 (Fig. 5). Most of the selected lines were of medium 
duration with breeding values for flowering time (days 
to 50% heading) averaging at 90  days. The average EqG 
was 5.7 with 90% of the lines having an EqG greater than 
four. The majority of the lines were developed after 2000 

with 37.5% in 2010 and onward (Fig. 5). Interestingly one 
line (IR05N341) has a significantly lower EqG of 2.44, but 
has a breeding value of 5158 kg·ha−1 and ranks as 45/72 
among ECP breeding values. IR05N341 is an NPT inbred 
with a number of introduced lines in its pedigree, namely 
SHEN-NUNG 89–366, KETAN LUMBU, GUNDIL 
KUNING, and JHUM PADDY 7.

Genetic Characterization of the ECP
In order to quantify the genetic variation available to 
breeding in the ECP, the panel was genotyped with an 
amplicon panel of genome-wide markers specifically 
chosen to be informative among elite indica lines known 
as the 1k-RiCA (see “Materials and Methods” section). 
Using publicly available sequence data, the genome-
wide SNPs assayed on the ECP lines were compared 
to the Xian/indica (XI) subpopulation defined by the 
sequenced 3000 rice genomes (3K-RG) in order to assess 
the diversity of the elite germplasm relative to a relevant 
baseline. Principal component analysis revealed that all 
the ECP lines were mainly clustered in the XI-1B group 
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(Fig.  6A). Not surprisingly, this group includes modern 
rice varieties from diverse origins with a large represen-
tation of material generated by IRRI’s breeding program. 
Importantly, the selected ECP lines were spread across 
the entire ‘XI-1B’ group indicating that the selection of 
ECP lines based on yield performance was still able to 
capture a large range of diversity within this sub-group. 
Using linkage disequilibrium measurements from the 
1k-RiCA genotype data, the effective population size (Ne) 
was calculated to be 22, indicating a reasonable genetic 
diversity considering the census population size of 72. 
Cluster analysis based on genetic distance among ECP 
lines revealed two main clusters, which further branched 
into six sub clusters (Fig. 6B). These clusters varied in size 
(9 to 14 lines per cluster) but all clusters were similar in 
terms of breeding values for yield (averaging 5.03 to 5.36 
tons   ha−1) and also boasted similar EqG measurements 
(averaging 5.26 to 6.33) with no significant difference 
between clusters (p value > 0.05).

In addition to genome-wide genetic diversity, we also 
assessed the allele frequency of 33 high value genes con-
tributing to the resistance to major biotic stresses in rice 
(rice blast, bacterial leaf blight (BLB), brown plant hop-
per (BPH), gall midge (GM), rice stripe virus (RSV), rice 
tungro virus (RTV), rice yellow mottle virus (RYMV), 
and sheath rot (SR)). Genes assayed display a wide range 
of frequency, from absent to fixed for the favorable 
allele/haplotype (Fig.  7). For Blast, the frequency of the 

favorable allele was high or fixed for three genes (Pita—
74%, Pi25—100% and Pid2—100%), moderate to low for 
five genes (Bsr-d1—6.3%, Pi33—16.7%, Pi54—10%, Pii—
19.7% and Ptr—33.3%). For the remaining genes (includ-
ing Pi9, Pi35, Pi21) the favorable allele was absent from 
the ECP. For BLB, Xa4 (100%) and Xa26 (75%) presented 
high allele frequency but with some uncertainty due to 
missing data. Xa5 and sweet13 were also evidenced in the 
ECP with frequencies of 26.9% and 31.8%, respectively. 
Xa21 and Xa7 were also present but very low frequen-
cies (below 3%). Xa13, sweet14, Xa23 were absent in the 
ECP. Concerning BPH, only BPH17 (15%) and BPH3 
(65.5%) were found in the ECP. Finally, favorable alleles 
for STV11, TBV1, TSV1 and Chit1 were also present in 
the ECP.

Phenotypic Characterization of the ECP
Blast Disease Screening
The ECP lines were evaluated for their level of resistance 
against five isolates of Magnaporthe oryzae under con-
trolled conditions. Based on phenotypic measurement, 
the most virulent isolate was M64-1-3-9-1 and the least 
virulent was CA89. A wide variation in the resistance to 
the five blast isolates was found in the ECP with most of 
the genotypes displaying intermediate resistance to one 
or more isolates (Additional file 2: Fig. S2). Not surpris-
ingly, the most resistant genotypes to one isolate were 
usually not the most resistant for the others suggesting 
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specific isolate-host interactions (Additional file  2: Fig. 
S3). As the specific combination of favorable alleles at 
one or several genes associated with blast resistance are 
likely the primary drivers of phenotypic variation, the 
ECP lines were classified into groups according to their 
genetic profile at the surveyed blast genes (Table  2). 

Genes being either fixed positive (Pid2, Pid3) or absent 
(Pi9, pi21, Pi35, Pi36) were excluded from this analysis. 
No single allele or combination of alleles was found to 
perform consistently better across the five isolates. How-
ever, the presence of Pi-ta alone or in combination with 
Ptr, Pi5/Pii, Bsr-d1 or Pi2/Pizt tended to be associated 
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with more resistant phenotypes. For example, the geno-
type IR12A311 that carries Pi-ta, Ptr and Pi5 was found 
to be the most resistant across the five isolates. The com-
bination of Pi-ta and Pi2/Pizt was found in IR93346:1-
B-13-7-6-1RGA-2RGA-1-B, a line resistant to 4 isolates. 
Further, six genotypes (IR09N516, IR12A282, IRRI174, 
IR13N102, IRRI156, IR12A136) among the ten most 
resistant carried at least Pi-ta. IR11A341, which contains 
Pi33, was also highly resistant to three isolated and was 
part of the ten most resistant lines across the five isolates. 
Further characterization of Pik-h and Pik-m would be 
useful to refine the classification of the lines and under-
stand the pattern of resistance.

Bacterial Leaf Blight Disease Assessment
ECP lines were also screened for resistance to bacterial 
leaf blight infection against 14 known isolates. The two 
most virulent isolates were PXO 340 and 99 with an aver-
age lesion length of 21.9  cm and 21.3  cm, respectively 
(Additional file 2: Fig. S4). The least virulent isolate was 
PXO 61 with most of the lines displaying few symptoms 
(average lesion length of 2.4 cm). As expected, the ECP 
lines displayed a large phenotypic variability compared to 
the checks (IRBB lines or the susceptible check; IR 24). 
Resistant checks were found to display consistently lower 
symptoms than the majority of ECP lines (Additional 
file  2: Fig. S4). Unlike with blast, the response between 
isolates was significantly correlated with values rang-
ing from 0.26 to 0.77 (Additional file 2: Fig. S5). Similar 
to blast analysis, the presence of a favorable allele for 
one or several genes associated with BLB resistance was 
used to classify ECP lines into groups (Table 3). The Xa4 
allele was present in most of the ECP material. However, 
it (alone or in combination with sweet13 and/or Xa26) 
did not significantly reduce the symptoms compared to 
the susceptible check (IR 24) or the ECP lines without a 
known favorable allele for BLB genes (Table  3). Favora-
ble alleles for sweet13 or Xa26 alone did not reduce the 
severity of the symptoms compared to the check. The 
presence of xa5 alone or in combination with or other 
genes conferred a better resistance to most of the iso-
lates (except PXO 99 and to a lesser extent PXO 340). 
Xa7 (one genotype) and Xa21 were also found in more 
resistant genotypes across most of the isolates. The five 
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most resistant ECP genotypes across the 14 isolates, with 
similar values to the IRBB checks, were IR15A4029 (Xa4, 
xa5), IRRI154 (Xa4, xa5, Xa26), IR12N252 (Xa4, xa5) IR 
100,097-B-B RGA-B RGA-8 (Xa4, xa5, Xa26, sweet13) 
and IR12N249 (Xa4, xa5, sweet13).

Agronomic Performance in Target Environments
Phenotypic characterization of the ECP lines was con-
ducted in eight locations to evaluate the agronomic 
performance of each line in several of the target environ-
ments for the IRRI breeding program (Table 4, Fig. 8). To 
standardize the comparison, agronomic performance of 
the ECP lines in the field was compared with the three 
IRRI checks (IRRI 154, IR 64, and IR 72) as well as with a 
few local checks commonly grown in each region. In the 
Philippines, IRRI 154 is used as a local check with high 
yield potential, and an IRRI Check, and is part of the ECP. 
The repeatability of the trial was good with values ranging 
from 0.45 to 0.97 for days to flowering and from 0.29 to 
0.97 for grain yield. As expected, the performance of ECP 
lines compared to the local checks was influenced by the 
environment as genotype by environment interactions 
are relatively high for traits like grain yield (Additional 
file 2: Fig. S6). In four environments, ECP lines presented 
a better grain yield on average compared to local checks 
(p value < 0.05, Table 4). In the remaining environments, 
ECP lines did not perform significantly better than local 
checks on average. However, in all environments the 

variance among ECP lines included some genotypes that 
presented better grain yield than local checks. These 
results highlight that despite the Philippines-specific data 
used to select ECP lines, the material remains relevant 
to extra-Filipino environments and confirms the impor-
tance of this panel for the global breeding program.

Discussion
Leveraging Historical Data to Estimate Breeding Values
This paper presents a brief but systematic review of 
the six decades of rice breeding for irrigated environ-
ments conducted at IRRI since the green revolution. 
During this time, the drivers of genetic improvement 
strategy understandably changed as technology, sci-
entific advancement, and funding priorities evolved. 
While yield gain was the primary outcome of the Green 
Revolution breeding strategies, the post-Green Revolu-
tion era focused more keenly on changes in plant type, 
grain quality, biotic and abiotic stresses as well as grain 
yield using a variety of breeding methods (Fig. 1; Peng 
et  al. 1999, 2008; Khush 2001; Peng and Khush 2003). 
The historical pedigree information available through 
the International Crops Information System (ICIS) 
database (Bruskiewich et al. 2003; McLaren et al. 2005; 
Portugal et  al. 2007) permitted the tracking of crosses 
and the development of new breeding lines back to 
1960 and was a powerful resource for making a data 
driven and quantitative characterization of breeding 

Table 2 Response of the elite core panel to blast disease under controlled environment

The disease scores (from 0 (resistant) to 5 susceptible) are categorized by isolate and grouped by allele classes for known resistance genes. Five different isolates of 
Magnaporthe oryzae were used

Class Number of 
lines

Average infection score

1K81-25 BN111 CA89 M101-1-2-9-1 M64-1-3-9-1

Susceptible checks 2 4.9 3.8 3.8 4.5 4.8

ECP Only fixed favorable alleles 18 2.9 2.2 1.4 2.2 2.8

ECP Ptr 2 2.4 0.5 0.5 1.3 2.3

ECP Pi33 1 3.5 1.1 0.5 2.1 0.0

ECP Pi-ta 18 2.5 2.6 1.2 1.6 2.5

ECP Pii 2 1.6 2.4 1.1 2.4 4.3

ECP Pi-ta + Ptr 9 2.7 1.5 1.5 1.3 2.9

ECP Pi-ta + Pii 2 1.9 1.5 1.1 1.8 2.6

ECP Pi-ta + Pi9 2 1.9 1.4 1.6 1.3 2.4

ECP Pi-ta + Pi33 2 1.5 2.9 0.7 2.1 2.2

ECP Pi-ta + Bsr-d1 2 1.5 2.8 0.6 1.2 2.9

ECP Pi-ta + Ptr + Pii 3 2.0 1.8 0.9 1.1 2.7

ECP Pi-ta + Ptr + Pi33 1 3.0 1.8 0.6 2.3 1.7

ECP Pi-ta + Pi54 + Ptr 5 2.8 1.4 0.8 1.7 3.7

ECP Pi-ta + Pi33 + Pii 1 2.6 1.6 0.7 0.9 3.2

ECP Pi-ta + Pi33 + Bsr-d1 + Pii 2 2.5 2.2 1.4 1.3 2.4

ECP Pi-ta + Pi54 + Ptr + Pii 1 3.9 1.5 0.7 1.7 2.1
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methodologies. When utilized alongside newer data-
bases for phenotypic information (Collard et  al. 2019) 
the pedigree data allowed the determination of an indi-
vidual’s breeding value by integrating the correlated 
response of relatives harboring the same alleles into the 
analysis (Piepho et al. 2008). This allowed for a ranking 
of all the available germplasm using an additive met-
ric of genetic merit and generating a better criterion 
for parental selection than adjusted phenotypic means 
alone. While the phenotypic dataset used in the meta-
analysis was highly unbalanced (i.e. different lines were 

evaluated in different locations and years), the mixed 
model approach is generally robust to such assump-
tions (Damesa et  al. 2017) and creates estimates for 
fixed effects and predictors for random effects that are 
unbiased and minimize error variance. The two-stage 
modeling approach further allowed for the integra-
tion of varied experimental designs while the use of the 
relationship matrix in the second stage of the analysis 
allowed for the borrowing of information from relatives 
to further narrow the estimates of uncertainty around 
an individual’s performance.

Table 3 Response of the elite core panel to bacterial leaf blight under controlled environment

Class Number 
of lines

PXO 
112

PXO 
145

PXO 
280

PXO 
339

PXO 
340

PXO 
341

PXO 
347

PXO 
349

PXO 
363

PXO 
61

PXO 
71

PXO 
79

PXO 
86

PXO 
99

IR 24 1 12.5 32.8 17.8 11.4 28.3 18.0 8.7 - 19.9 17.1 22.1 21.9 17.6 14.5

IRBB 23 Xa23 + Sweet13 1 - 1.2 15.0 5.7 4.2 5.4 2.5 1.1 8.3 0.7 3.2 1.6 0.9 0.7

IRBB 60 Xa4 + xa5 + xa13 + Xa21 + 
Xa26

1 2.7 1.1 1.1 2.2 4.1 1.4 4.2 3.1 3.3 0.6 4.6 2.0 16.5 1.3

IRBB 62 Xa4 + Xa7 + Xa21 + Xa26 1 0.5 0.9 5.3 2.9 2.1 0.6 1.0 1.6 1.2 0.9 2.3 1.0 0.8 8.1

ECP No favorable allele iden�fied 3 14.7 21.5 11.5 8.1 29.7 12.2 14.0 17.5 16.4 3.8 21.1 17.9 14.2 22.4

ECP Not genotyped 4 7.6 6.8 7.1 7.9 21.1 11.8 9.1 15.1 16.8 1.7 19.9 18.2 9.1 21.6

ECP Sweet13 3 18.2 16.0 18.4 14.6 28.7 13.1 14.7 21.0 24.6 7.0 23.9 17.9 15.0 22.0

ECP Xa26 1 31.5 29.3 21.7 21.3 31.4 20.7 18.4 24.5 28.7 23.5 32.4 20.1 17.3 27.7

ECP Xa4 18 8.3 12.9 9.4 10.3 25.9 9.3 10.4 18.2 21.6 1.7 19.7 18.5 14.7 21.9

ECP Xa4 + Sweet13 6 8.0 14.9 11.2 12.2 25.8 11.2 11.6 15.8 19.2 1.9 20.7 18.0 9.3 23.9

ECP Xa4 + Xa21 2 6.0 9.3 8.3 1.5 18.3 12.7 6.9 14.8 13.5 0.9 6.1 11.0 3.4 18.2

ECP Xa4 + Xa26 9 6.9 11.4 9.8 3.9 25.7 8.4 10.2 16.3 21.3 1.8 16.3 17.9 16.0 23.1

ECP Xa4 + Xa26 + Sweet13 7 7.2 14.2 7.9 12.2 29.3 10.4 11.1 17.6 20.4 2.4 23.3 17.7 11.4 23.7

ECP Xa4 + xa5 6 2.4 5.6 5.5 4.8 14.6 4.7 5.2 2.2 5.9 2.5 8.3 13.5 6.5 12.6

ECP Xa4 + xa5 + Sweet13 2 1.1 3.4 2.4 3.5 8.6 3.4 3.3 3.5 12.8 1.0 7.9 7.2 2.5 18.5

ECP Xa4 + xa5 + Xa26 3 1.6 1.2 1.3 1.5 7.5 8.5 3.1 2.5 13.6 1.2 9.7 9.8 8.7 16.8

ECP Xa4 + xa5 + Xa26 + Sweet13 1 - 1.3 1.1 4.2 8.3 2.3 5.9 1.1 3.8 0.8 4.1 7.1 1.3 20.4

ECP Xa4 + Xa7 1 0.9 1.1 1.2 8.6 8.8 2.8 2.6 1.2 2.4 0.7 17.9 3.5 0.8 21.3

ECP xa5 4 3.7 6.3 3.8 4.4 5.9 4.5 3.2 3.2 8.8 1.3 18.7 5.4 3.9 21.0

ECP xa5 + Sweet13 2 9.8 12.7 10.4 3.0 10.4 7.8 3.2 2.2 12.5 2.3 22.7 9.7 3.9 24.7

The lines were categorized using alleles for known resistance genes. The average lesion length in response to 14 different isolates of Xanthomonas oryzae pv. oryzae 
are displayed. The color gradient depicts the level of resistance of the genotypes: green (short lesion) to red (long lesion)
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Table 4 Summary of agronomic trials conducted in target environments to evaluate the performance of the elite core panel

* or NS indicate if the p-value is significant (*) or not (NS) at 5%

Country Location Year Season Num of ECP 
lines tested

Num of local 
checks

Single Trial  H2 p value relative 
to local checks

Days to 
flowering

Grain yield

India Cuttack 2019 Wet 38 8 0.95 0.9 0.001*

India Hyderabad 2019 Dry 38 1 0.76 0.66 NA

India Maruteru 2019 Wet 38 2 0.74 0.87 0.282NS

India Raipur 2019 Wet 38 2 0.92 0.55 0.004*

Kenya Ahero 2019 Dry 67 2 0.45 0.29 0.187NS

Philippines Los Baños 2019 Wet 72 3 0.74 0.67 0.096NS

Philippines Los Baños 2019 Dry 72 3 0.87 0.76 0.008*

Tanzania Dakawa 2020 Wet 66 3 0.97 0.97 0.041*
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Fig. 8 Agronomic performance of the elite core panel in multi-location field evaluations. The panel A shows the distribution of the best linear 
unbiased predictor (BLUP) for grain yield and the panel B shows the distribution of BLUPs for days to flowering. The BLUP values are computed for 
all entries in each field trial using a linear mixed model (see “Materials and Methods” section). The lines composing the core panel are in grey, local 
and global checks are represented in blue and red, respectively. The name of global checks is displayed next to its BLUP value. The season (WS: wet 
season or DS: dry season) is also provided along with the location



Page 13 of 22Juma et al. Rice           (2021) 14:92  

The Drivers of the Genetic Gain for Grain Yield
The historical breeding values generated by this analy-
sis provided a convenient mechanism for estimating the 
historical genetic trend for grain yield in the program. 
Breeding programs often evaluate genetic gain in many 
different ways (Rutkoski 2018) and present the result in 
units that are not always easily interpreted. Most often, 
this takes the form of a percentage. Here, to aid interpre-
tation, we report genetic gain as kilograms per hectare 
per year or kilograms per hectare per cycle. The percent-
ages these levels of gain represent relative to the initial 
performance are given parenthetically for context.

The realized genetic gain for the irrigated program cal-
culated by regressing all 15,286 lines on the year of their 
origin (year the cross was made from which they were 
derived) was estimated to be 8.75 kg·ha−1  year−1 (0.23%) 
from 1960 to 2014. The estimated rate of genetic gain 
when the data set was restricted to only IRRI released 
varieties was estimated to be 17.36  kg·ha−1   year−1 
(0.46%) and 186.24  kg·ha−1   cycle−1 (4.95%). Previous 
reports of genetic gain in this program using an era study 
with a selection of 7 and 12 released varieties have shown 
gains of 81 and 75  kg·ha−1   year−1 (~ 1%), respectively 
(Peng et  al. 2000). Estimates of genetic gain for rainfed 
and drought stress environments in India have been esti-
mated at 34 kg·ha−1  year−1 (0.68%) and 25 kg·ha−1  year−1 
(0.87%) using 214–242 advanced breeding lines (Kumar 
et  al. 2021). The Brazilian rice breeding program for 
upland rice has also reported low gains for grain yield 
with mean gain of 19.1  kg·ha−1   year−1 (0.67%) over a 
26-year period using a meta-analysis of 376 advanced 
breeding lines (Breseghello et  al. 2011). However, in 
the last decade of their analysis (2002 to 2009), the 
trend showed an increase in the rate of genetic gain to 
45.0  kg·ha−1   year−1 (1.44%). Similar estimates for irri-
gated rice in Brazil were reported using rapid-cycle 
recurrent selection and data from 667 selection can-
didates that were progeny tested in different breed-
ing cycles (766  kg·ha−1   cycle−1; 1.98% per year; Morais 
Júnior et  al. 2017). Interpreting the drivers of genetic 
trend is not simple and speculation in the absence of a 
complete record of activities can often be misleading. As 
such, it is helpful to focus on long term patterns in the 
data. The steeper positive slope of the genetic trend for 
yield that emerges when only released varieties are con-
sidered is consistent with previous reports and can be 
considered a strong indicator of the positive impact the 
breeding program has had over time as it has identified 
and commercialized superior genotypes. The tenfold 
difference between the per year and the per cycle esti-
mates of genetic gain demonstrates that selection for 
improved yield has been highly effective on a per cycle 
basis. This selection response indicates that adequate 

levels of genetic variance for yield, adequate intensity of 
selection, and reasonable values for heritability have been 
maintained during the post-Green Revolution era. The 
high correlation between breeding values for yield among 
released varieties and the estimated equivalent genera-
tions indicates that cycle time (as measured by EqG) is 
an important driver of the observed genetic trend. This is 
consistent with the well-established relationship between 
generation interval and response to selection (Cobb 
et  al. 2019b). While informative, specific subsets of the 
breeding germplasm can bias and increase the uncer-
tainty around genetic trend estimates. Using all 15,286 
lines for which digitized phenotypic data exists provides 
a much stronger foundation for assessing base-line rates 
of genetic gain than potentially interpretable but arbi-
trary subsets of the data. As this metric incorporates all 
breeding material (including historical discards), it is 
not an effective measure of the genetic gain in commer-
cial releases but can be useful for evaluating the impact 
of breeding innovations on response to selection over 
cycles.

Importance of Developing the Elite Core Panel
The contemporary program has moved to a much more 
intensive recurrent selection strategy based on quantita-
tive genetics principles to drive genetic gain for yield in 
the context of a disease resistant and high grain quality 
genetic background. This approach is a natural progres-
sion building on previous eras where the focus was on 
the identification and integration of genetic variation 
for yield potential traits (Peng et  al. 2008). With that, it 
becomes necessary to systematically evaluate the existing 
genotypes in the program and select a number of high 
performing lines to form the basis of a gene pool upon 
which selection for high breeding value can, in combi-
nation with other innovations, drive improved rates of 
genetic gain (Xu et al. 2017). The 72 lines selected based 
on breeding value to be part of the ECP essentially rep-
resent the initial founders of the recurrent selection pro-
gram moving forward. While the phenotypic value of this 
panel should be quickly eclipsed by successive genera-
tions of breeding, every new cohort represents an admix-
ture of allelic variance of the panel. Thus, having clearly 
maintained seed sources for the original lines offers sev-
eral distinct advantages, including as an elite source of 
genetic variation to be evaluated alongside the contem-
porary cohorts for new traits of interest. Such a panel is 
also helpful for validating trait markers for high-value 
haplotypes which reduce the occurrence of type I and 
type II errors when genotyping the progeny (Platten et al. 
2019; Cobb et al. 2019a). Once sequenced, the panel also 
becomes a powerful resource for determining identity-
by-descent (IBD) information among progeny cohorts 
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and potentially reducing the need for routine use of high-
density markers through the development of a breeding 
program specific imputation framework (Browning and 
Browning 2012; Nyine et al. 2019; Wang et al. 2020).

Genetic Diversity Captured by the Elite Core Panel
A natural concern to limiting the breeding program 
to crosses among such a small number of lines is the 
reduction in genetic variation that may occur due both 
to selection and genetic drift. As the ECP lines were 
selected based on the pedigree-estimated breeding val-
ues, the genetic characterization of the panel is a neces-
sary next step to demonstrate its utility as a resource for 
breeding in a population improvement program (War-
burton et al. 2005; Wen et al. 2012). While the panel itself 
was selected based on breeding value for yield, the mean 
flowering time compared to the entire dataset has not 
changed. This is largely a function of including flowering 
time as a covariate in the model, which factored out con-
founding effects due to the positive correlation between 
yield and flowering in rice.

We used the 3K reference genome panel (Wang et  al. 
2018) to better understand how well the ECP sampled 
the genetic space within rice genetic diversity at large. 
Unsurprisingly, it falls within the Xian/indica 1B group 
which has been generated through breeding activities 
in Southeast Asia largely by IRRI (Xie et al. 2015; Wing 
et  al. 2018). Presence of sufficient genetic variation 
among the ECP lines is further supported by the esti-
mated effective population size (Ne) of 22. This value may 
be underestimated as the markers used for the analysis 
were specifically designed to be informative in the indica 
subpopulation and harbored high minor allele frequen-
cies on average (Arbelaez et al. 2019). This level of Ne is 
similar to what has been calculated in other rice breed-
ing programs. For example, Grenier et al. (2015) showed 
a Ne in the range of 23–57 in four breeding populations 
of rice derived through recurrent selection programs. 
Morais Júnior et al. (2017) observed slightly higher values 
(40–60) in an irrigated rice breeding population using 
pedigree data. Values of Ne associate positively with 
additive genetic variation and the ability of a population 
to respond to selection for the trait under consideration 
(Falconer and Mackay 1996). Depletion in variability in 
population is proportional to Ne, and the time required 
to deplete the variability or fix one or other alterna-
tive allele in a population is a function of Ne, allele fre-
quency (p) in the population, and the selection intensity 
(Walsh 2003). The theoretical limits of selection response 
as given by Robertson (1960) postulate that the total 
response to selection is equal to 2Ne times the initial 
gain in the first generation assuming genes with addi-
tive effects and relatively low selection intensity. This is 

to say that the Ne of any given generation is equal to the 
number of effective cycles before half the genetic vari-
ability is eroded by selection or drift. Therefore, holding 
the unlikely assumption that no new introductions were 
to be made into the program moving forward, the ECP 
could theoretically support at least 22 breeding cycles 
before half of the genetic variance is eroded. This could 
be further extended by the implementation of marker-
optimized mating designs such as optimum contribution 
selection (Akdemir and Sánchez 2016; Akdemir et  al. 
2019) and targeted pre-breeding activities.

Expected Performance of the ECP Across Target 
Environments
Many traits in rice are governed by a number of high 
value, large effect alleles that affect patterns of pheno-
typic variance across environments (Wei et  al. 2021). 
Some of these alleles (particularly disease and grain qual-
ity loci) are extremely valuable and deserve proactive 
management of their frequencies (Cobb et  al. 2019a). 
Understanding these allele frequencies among the ECP 
lines is therefore essential for setting breeding strategy. 
As might be expected, the ECP displayed a wide range of 
frequencies for major pathogens and pests related genes. 
A few were essentially fixed for the positive allele; many 
of these represent indica/japonica differences, where the 
indica allele is favorable, such as Pi25 or Pid2. The value 
of these genes has already been captured by the breed-
ing program, thus further improvement of these traits 
must rely on other genetic variation. Other genes are 
absent, such as xa13, Xa23, the rice yellow mottle virus 
resistance genes, among others. The lack of these genes 
in elite material necessitates some pre-breeding effort 
to introduce them to the elite pool before their value 
can be leveraged (Cobb et al. 2019a). Between these two 
extremes are the genes that can actually be selected in 
existing breeding material, and so are those contributing 
to variation in the elite pool. These include genes such 
as Xa7, Xa21 or TBV1 which although present are very 
rare and only available from particular lines, thus delay-
ing their full deployment as the program generally can-
not risk bottleneck a cohort through just a few lines. A 
few genes are at appreciable frequencies (but not fixed), 
and so represent diversity that is easily selectable in the 
existing breeding populations; these include Pita, Ptr, Pii, 
BPH32, sweet13, xa5 and TSV1.

Given the importance of bacterial blight and blast 
resistance specifically to germplasm exchange across 
Asia and Africa we decided to challenge the ECP lines 
against several common isolates of both pathogens to 
check the effectiveness of the gene combinations present 
in the ECP against blast and BLB disease in these spe-
cific genetic backgrounds. It has been reported by Shanti 
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et  al. (2010) that a four-gene combination (Xa4, xa5, 
xa13 and Xa21) is the most effective combination con-
ferring broad-spectrum resistance for bacterial blight. 
While 30% of the ECP lines contained one or more bacte-
rial blight resistance alleles, none of the ECP lines con-
tained this specific combination as xa13 in particular is 
at a frequency of zero. However, it is clear the gene com-
binations that are present offer resistance to all tested 
isolates except PXO 99. PXO 99 is a common Xantha-
monas isolate in the Philippines (Tu et al. 2000) indicat-
ing that while the ECP lines are directly useful in many 
geographies, a targeted backcrossing and MAS approach 
is needed to increase the frequency of high value alleles 
currently at low frequency among the breeding progeny 
of the ECP. Likewise, the blast resistance genes present in 
most of ECP lines also effectively controlled the manifes-
tation of disease among the ECP lines for the five strains 
tested, likely due to the high frequency and broad spec-
trum resistance offered by the Pi-ta locus (Jia et al. 2016).

It is not unexpected that a subset of the breeding germ-
plasm selected based on breeding value for yield would 
require pre-breeding/backcrossing and MAS to fully 
address the complexity of trait targets in the product 
concept. In order to avoid further erosion of the genetic 
variance (particularly in the form of selective sweeps 
around low frequency loci) some strategic cautions are 
warranted. Product development is the primary goal of 
a breeding program, however when product develop-
ment is strongly emphasized, it is tempting for breeders 
to overuse specific high-value lines in a crossing block, at 
the expense of gene pool management. While every cross 
may not bring together the complete package necessary 
for a product release, specific crosses generated with 
the intention of creating progressively improved allelic 
combinations (and slowly increase in frequency of major 
genes) can generate useful lines that can be recycled into 
the crossing block as parents. Likewise, the use of haplo-
type-matched backcrossing donors of key genes can be a 
powerful tool for introducing novel alleles that are at zero 
or low frequency into the elite gene pool while preserving 
the availability of genetic variance immediately around 
them for recombination and the improvement of quan-
titative traits.

Managing the deployment of single genes within the 
breeding program due to limitations imposed by their 
frequency within the ECP is not the only consideration 
future breeding efforts based on this germplasm resource 
must consider. Since quantitative traits are not governed 
by single genes, location main effects and genotype by 
environment interactions must be routinely accounted 
for in phenotypic analysis strategies to factor out their 
strong influence on phenotypic outcomes. Because the 
primary source of data for determining the breeding 

values for yield that were used to identify the ECP were 
trials conducted in the Philippines, an understanding of 
yield performance in other target environments was also 
necessary. In order to evaluate the performance of the 
ECP lines relative to local and IRRI checks in relevant 
geographies outside the Philippines, six breeding trials 
were conducted in India, Kenya, and Tanzania. BLUP 
values centered on the mean performance of each loca-
tion indicate strong performance of the ECP lines rela-
tive to the highest yielding local checks in each location. 
The performance relative to IRRI varieties and the local 
checks is a strong indication that the observed genetic 
variance is manifested as phenotypic variance within 
each location, indicating that crossing and selection 
among high performing lines within each breeding zone 
is likely to result in genetic gain for yield. Further analysis 
of genotype x environment interactions and the genetic 
correlations between target environments is warranted to 
help identify a global testing strategy that best leverages 
limited public resources available to the IRRI breeding 
program.

Conclusion
Achieving short- and medium-term genetic gains for 
yield is a key target for almost every breeding program. 
In the case of the IRRI’s breeding program for irrigated 
systems, the rate of genetic gain for grain yield was esti-
mated at 17.36 kg·ha−1  year−1 (0.46%) for released varie-
ties. This rate of gain appears to be largely limited by long 
cycle times and the re-introduction of old material or 
landraces into the elite pool. This observation highlights 
the need to optimize the breeding strategy for quantita-
tive traits by using quantitative genetics principles to 
get closer to the annual 1.5% gain in grain yield needed 
to cover the expected increase in rice consumption. The 
elite core panel identified and characterized in this study 
is a key component of this optimization. Indeed, recur-
rent selection with short cycles based on elite-by-elite 
crosses implemented at IRRI to deliver a higher rate of 
genetic gain for grain yield requires careful management 
of the genetic diversity, which starts with a comprehen-
sive characterization of the most elite germplasm.

Materials and Methods
Historical Yield Data
Experimental Studies and Pedigree Information
All the yield data from trials conducted by the irrigated 
breeding program during the period 2012–2016 across 
multiple locations were retrieved from the IRRI data-
base. From these trials, the following phenotypic infor-
mation was extracted: plant height, number of days to 
flowering, grain yield and number of hills per plot. The 
phenotypic information extracted were filtered based 
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on the following quality criterion: presence of a rand-
omized experimental design, percentage of missing data 
for grain yield and flowering time lower than 15%, and 
harvested area greater than 2  m2. We considered an envi-
ronment as the combination of location, year and season. 
The environments considered varied in experimental 
designs according to either a row-column, alpha-lattice, 
augmented randomized complete block, or ordinary ran-
domized complete block design (RCBD). A total of 102 
studies were conducted in 23 environments with a total 
of 17,216 lines from which 15,286 were sorted out as 
irrigated rice lines data after filtering (Additional file  1: 
Table  S1). All the studies were conducted in the Philip-
pines, 51 studies having been planted during the wet sea-
son and another 51 studies during the dry season. The 
pedigree information for the selected lines was extracted 
from the IRRI genealogy management system (McLaren 
et al. 2005) database using custom scripts. The date of the 
initial cross was also retrieved for all the breeding lines 
whose crossing year information was available in the 
database (16,317 lines). The pedigree information was 
also used to compute equivalent complete generations 
(EqG) (Boichard et al. 1997; Gutiérrez et al. 2008; Leroy 
et al. 2013) for each line. EqG for a given line was calcu-
lated as follow:

where  gi represents the number of generations between 
the line and its ancestor i (one for the parents, two for the 
grandparents, etc.).

Estimating Breeding Values for Lines
A two-stage mixed model analysis (Piepho et  al. 2008; 
Smith and Cullis 2018) using grain yield data as response 
variable was used to estimate the breeding values of each 
line. The two-stage mixed model analysis was adopted to 
account for specific experimental design layouts across 
the environments (Damesa et al. 2017). In the first stage, 
each trial or environment (combination of location, year 
and season) was analyzed separately and best linear unbi-
ased predictors (BLUPs) were extracted per environment 
using the following baseline mixed-model:

where  yij represents grain yield for ith observation, μ is 
the overall mean,  gi is the random effect of ith genotype 
with iid  gi ∼ N(0, Iσ2

g) where σ2
g is genetic variance and 

εij is the residual error with iid εij ∼ N(0, Rσ2
ε). To account 

for heterogeneous error variance caused by differences in 
the numbers of hills harvested from plot to plot and from 
trial to trial, the diagonal of R was set to h/hmax where, h 

EqG =

n
∑

i=1

(

1

2gi

)

(1)yij = µ+ gi + · · · + εi

is the number of hills harvested and hmax is the maximum 
number of hills harvested in the environment. The … in 
the model denotes the blocking factors and a covariate 
for missing hills which were conditional to the trial. 
These terms were included in the model because they 
were identified as improving model fit during analyses of 
individual trials. Blocking factors were considered ran-
dom if they had more than five levels. The possible block-
ing factors were modelled to determine which factors led 
to the lowest Bayesian information criterion (Spilke et al. 
2010; Piepho et al. 2015). For trials that followed a row-
column design, the possible factors were row and col-
umn, for those following a partially replicated design, the 
possible factors were row, column, replicate, and block, 
for those following a RCBD or augmented RCBD, the 
possible factor was replicate, for those following an 
alpha-lattice design the possible factors were replicate, 
block nested within replicate, row, and column. The 
model with lowest Bayesian information criterion was 
selected and used to extract BLUP of each line and their 
prediction error variances (PEV) were obtained for each 
environment. Reliabilities of the BLUPs were estimated 
according to r2 = 1−

PEV
σ 2
g

 . The process for BLUP estima-
tion per environment was repeated for days to flowering.

In the second stage model, the BLUPs obtained from 
the first stage model were de-regressed by dividing by the 
reliability as described in Garrick et al. (2009), and used 
as response variable in the second stage pedigree-based 
mixed model analysis. The de-regressed BLUPs for yield 
within each environment were modeled according to 
Bates et al. (2014). The model used is as follows:

where  yij is the de-regressed BLUP of each line in envi-
ronment j, μ is the overall mean,  gi is a random effect of 
line i with  gi ∼ N(0, Aσ2

g) where σ2
g is the genetic vari-

ance and A is the additive genetic relationship matrix 
based on pedigree,  ej is a fixed effect of the environment 
j, εij is the residual error with εij ∼ N(0, Rσ2

ε) where R is 
a matrix proportional to the residual error covariance 
matrix and σ2

ε is the error variance. To account for het-
erogeneous error variance, the diagonal of R was 1/r2. In 
the above model yield was adjusted using days to flower-
ing as covariate in the model. The R packages lme4 (Bates 
et al. 2015) and pedigreemm (Bates et al. 2014) were used 
to implement the models.

Assessment of Rate of Genetic Gain
Genetic gain was assessed using breeding values follow-
ing the procedure reviewed by Garrick (2010). Briefly, for 
each year, the breeding values obtained were regressed 

(2)yij = µ+ gi + ej + εijk
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on the year when the cross was made to get the genetic 
gain trends.

Retrospective Analysis of Crosses
The pedigree data of breeding lines developed by the 
IRRI’s irrigated breeding program was obtained from the 
genealogy management system. All crosses made were 
retrieved from the database and filtered based on the 
availability of the following information: whether or not 
it belonged to the irrigated program and the year when 
the cross was made. After those filters, only crosses made 
in 1985 and onward were available. This is related to the 
absence of clear boundaries between breeding programs 
before that date. Indeed, even though lots of material has 
been produced since IRRI inception in 1960, the infor-
mation of the breeding program was not recorded in the 
database before 1985 making it difficult to extract rele-
vant information. For each cross the EqGs of the F1 and 
of the parental lines were computed based on pedigree 
information. Each cross was then classified based on EqG 
of the parental lines. Parental lines with an EqG lower 
than four (mean EqG value of parents used in 1985) were 
classified as non-elite material and the remaining part as 
elite material.

Formulation of the Elite Core Panel
In order to identify the best breeding genotypes (hereaf-
ter called elite lines) the lines were filtered based on high 
ranking for their grain yield breeding values. Genetic 
relationship for the genotypes was measured by calcu-
lating the coefficient of parentage (CoP) based on the 
pedigree information using R package pedigreemm (Bates 
et al. 2014). Among the 15,286 evaluated lines, 1192 had 
reliability for the breeding value greater than or equal to 
0.4. Then ten percent of these lines were selected to rep-
resent elite material. In total, 119 elite lines were selected 
among which only 80 elite lines were retained based on 
seed availability. Further based on seed-viability and 
intellectual property restrictions, some of the lines were 
removed and 72 elite lines were forwarded for the formu-
lation of the elite core panel (ECP). The 72 ECP lines are 
reported in Additional file 1: Table S1.

Genetic Characterization of the ECP
Genetic diversity of ECP and its relationship with the 
3000 rice genomes (Li et al. 2014) was assessed. Effective 
population size (Ne) of ECP was calculated using SNP 
data. Further, frequency of major trait genes was esti-
mated in the ECP.

DNA Extraction, Genotyping and SNP Filtering
Leaf samples were obtained from the 72 ECP lines and 
10 IRRI varieties (IR 6, IR 64, IR 68, IR 72, IR 74, IRRI 

115, IRRI 116, IRRI 146, IRRI 151, IRRI 164) at vegetative 
growth stage (28–35 days old) plants. DNA was isolated 
and purified according to the modified Cetyltrimme-
thyl Ammonium Bromide (CTAB) protocol (Aboul-
Maaty and Oraby 2019). Genotyping was done using the 
1k-RiCA assay (Arbelaez et al. 2019). The 1k-RiCA SNPs 
were filtered in TASSEL v5.0 (Bradbury et al. 2007) using 
the following criteria: individuals with more than 15% of 
heterozygous loci where removed, markers with more 
than 15% of missing values and a minor allele frequency 
below 0.05 were removed. After filtering, 703 markers on 
76 lines including 66 ECP lines were retained for down-
stream genetic analyses (Additional file 1: Table S2).

To enable a better characterization of key genes related 
to biotic stresses, resequencing data was generated on 
ECP lines. DNA was extracted from mature leaf tissue 
using the QIAgen DNeasy Plant maxi kit. Sequencing 
was performed on total genomic DNA on an Illumina 
Sequel II system (Macrogen, Korea) or a HiSeq 2000 
system (Corteva, Hyderabad). Resequencing data was 
filtered and trimmed for low-quality base calls using 
standard pipelines, and mapped to the MSU7 build of the 
Nipponbare genome. Based on sequencing data quality, 
four lines were discarded. Base calls at specified informa-
tive positions were generated using SAMtools (Li et  al. 
2009) and analysed to generate a call for the allele present 
at each of 37 specified high-value genes related to abiotic 
stresses but only 33 had sufficient data to be called. The 
information related to the 37 genes is available in Addi-
tional file 1: Table S3.

Diversity of ECP and Its Relationship with 3K-RG, 
and Favorable Frequency Estimation
The relationship of ECP lines with the indica subpopu-
lation of the 3K-RG was assessed using principal com-
ponent analysis (PCA). First, the physical position 
coordinates of the 703 filtered 1k-RiCA SNPs were used 
to extract the filtered set of markers from the 3K-RG 
using the rice SNP-Seek database (Mansueto et al. 2017). 
Out of 703 filtered markers, 625 markers were common 
between the two data sets and used for downstream 
analysis. Modern varieties coming from IRRI are known 
to be within the Xian/Indica (XI) subpopulation. There-
fore, the 1787 indica accessions included in the 3K-RG 
representing part of a diversity of O. sativa L. ssp. indica 
were selected. These accessions, representing landraces 
and varieties predominately from Asia, were classified 
according to Wang et al. (2018) as: ‘XI-1A’ with 209 lines 
mostly from East Asia, ‘XI-1B’ with 205 modern varie-
ties of diverse origin, ‘XI2’ with 285 lines from South 
Asia, ‘XI3’ with 475 lines from South East Asia, and ‘XI-
adm’ with 613 admixed lines. The combined genotypic 
data of ECP and 1787 indica accessions was imputed in 
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TASSEL with LD-kNNi method using the default param-
eter (Money et  al. 2015) and then formatted as a dos-
age matrix with marker genotyped coded as 0, 0.5, or 1 
(Additional file  1: Table  S4). The principal component 
analysis was performed using the R function prcomp 
(R Core Team 2018). The principal components were 
extracted and then visualized using the R package ggplot2 
(Wickham 2016).

To assess the diversity and genetic relationships among 
ECP lines, a hierarchical clustering analysis was per-
formed based on 703 filtered 1k-RiCA SNPs using Man-
hattan distance and Wards methods with the functions 
dist and hclust in R software (R Core Team 2018). Den-
drogram was created using the R package dendextend.

Estimation of Effective Population Size (Ne)
Effective population size  (Ne) was estimated based on 
linkage disequilibrium (LD) information between the 
markers (Hill 1981) using the following equation: 
Ne = 1

4c

(

1

E(r2)
− 1

)

 (Sved 1971). Here, c is the genetic 
distance in Morgans and was calculated by dividing the 
physical distance of each marker by 250 kb, and E(r2) is 
expected r2 for a marker distance c. Pearson’s squared 
correlation coefficient (r2) of each pair of loci as a meas-
ure of LD in relation to physical distance was calculated 
in the R package sommer (Covarrubias-Pazaran 2016).

Phenotypic Characterization of the ECP
ECP accessions were evaluated for disease resistance to 
two important pathogens (Magnaporthe oryzae, the fun-
gus causing blast disease and Xanthomonas oryzae pv. 
oryzae (Xoo), the bacteria causing bacterial leaf blight 
disease (BLB)) were assessed in controlled conditions. 
The pathogens for both blast and BLB were obtained 
from isolates collected in the Philippines. In addition 
to the evaluations in controlled condition, agronomic 
traits were evaluated in multi-environment experiments 
located in the target regions of IRRI’s irrigated breeding 
program.

Evaluation of ECP Accessions Against Blast Disease
Plant Material
72 elite lines from the ECP, 2 highly susceptible rice cul-
tivars (Lijiangxintuanheigu and CO 39) and four blast 
resistant checks (IRBLta2-Pi, IRBLSH-B, IRBLkm-Ts and 
IRBLKh-K3) were evaluated. The experiment was set by 
planting test genotypes in the screen house trays at IRRI, 
Los Baños, a systematic arrangement was adopted, ten 
plants were established per genotype and each plant was 
treated as a replicate for the genotype. The two check 
lines were planted alternately at intervals of every ten test 
genotypes. Plant establishment and management were 

according to the rapid generation advancement protocol 
(Collard et al. 2017).

Blast Strains
Five highly virulent Magnaporthe oryzae isolates, M101-
1-2-9-1, M64-1-3-9-1, Ca89, BN111 and IK81-25 were 
selected based on their reported differential disease spec-
trum on blast monogenic lines carrying blast resistance 
genes Pi54, Pi9, Pi-ta, Pi-km and Pi2. These Isolates are 
part of the set of 20 standard differential blast isolates 
in the Philippines. They were selected due to their good 
sporulation and ability to differentiate the differential 
varieties. Further, they have been used over time in rice 
variety selection experiments and their pathogenicity has 
remained stable (Telebanco-Yanoria et al. 2008).

Inoculation and Assessment of Infection
Single spore conidial stocks were revived on prunes 
Gulaman medium. The inoculated plates were incubated 
at 25 ± 1  °C for 10  days, after which inoculated plates 
were scraped with a sterilized glass slide and exposed 
to continuous light for 4  days to induce heavy sporula-
tion. Conidia were dislodged by rubbing the incubated 
plates gently with a glass slide. The spores were washed 
with 10  ml sterilized distilled water homogenized with 
0.02% Tween 20. The suspensions were filtered through 
three layers of gauze mesh and concentration adjusted to 
 105 conidia per ml using a hemocytometer. Plants were 
inoculated 21 days after planting following the standard 
methods (Bonman et  al. 1986). Seven days later plants 
were assessed for disease symptoms based on the Stand-
ard Evaluation System for Rice (IRRI 2013). Ten plants 
were observed and scored at a scale of 0 to 5 [score 0 
represents absence of blast lesions and graded as highly 
resistant (HS), 1 = resistant, 2 = moderately resistant, 
3 = moderately susceptible, 4 = susceptible, whereas 5 
was considered highly susceptible. One line was removed 
from the analysis due to the high number of missing data. 
The average infection scores for all the ECP lines and the 
checks are available in Additional file 1: Table S5.

Evaluation of Bacterial Leaf Blight Strains Effect on ECP 
Lines
Plant Material
The 72 ECP lines were tested alongside with three checks 
carrying different BLB resistance genes (IRBB23 (Xa23, 
Sweet13), IRBB60 (Xa4, xa5, xa13, Xa21 and Xa26) and 
IRBB62 (Xa4, Xa7, Xa21 and Xa26)) and a susceptible 
cultivar (IR24). The experiment was conducted under 
greenhouse conditions in systematic arrangement with 
two replications at IRRI, Los Baños, Philippine in 2018. 
28 minoru trays (two trays per strain) were prepared. 
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Crop management was performed according to rapid 
generation advancement protocol (Collard et al. 2017).

BLB Strains
Fourteen Philippine strains (PXO) representing 10 races 
of Xanthomonas oryzae pv. oryzae (Xoo) were used, 
namely: PXO16, PXO86, PXO79, PXO340, PXO71, 
PXO112, PXO99, PXO145, PXO280, PXO339, PXO349, 
PXO347, PXO363 and PXO34. The Xoo strains were 
sourced from IRRI laboratory stock and revived using 
modified Wakimoto’s medium for 48 to 72  h at 28  °C. 
Inoculum preparation was implemented according to 
Goto (2012).

Inoculation and Assessment of Infection
The accessions were prepared for inoculation by pun-
ning the lower leaves and extra tillers on the  35th day 
after seeding. Plants were inoculated with one strain of 
Xoo on the  45th day after seeding using a leaf-tip clipping 
method. Three leaves per plant were inoculated. Evalua-
tion of resistance was done at 14  days after inoculation 
(DAI) by measuring the lesion starting from the point of 
inoculation to the end with visible symptoms. For a given 
isolate, the genotypes with less than four measurements 
(out of six) were removed from the analysis. The average 
lesion length was computed for all the ECP lines and the 
checks. The final dataset had 2.9% missing data and is 
available in Additional file 1: Table S6.

Field Based Evaluation and Data Analysis
Phenotypic characterization of ECP for grain yield was 
conducted in Kenya, Tanzania, India and the Philippines. 
Different experimental designs such as randomized com-
plete block, alpha-lattice and partially replicated designs 
were used across these environments (Additional file  1: 
Table S7). Plot-level yields were normalized based on plot 
size and all the experimental data is stored in the breed-
ing for results (B4R) data management system.

Grain yield (ton/ha) and days to 50% flowering time 
(days) from all the ECP trials were used in this study. 
The best linear unbiased predictor (BLUP) values were 
calculated using the predict function from the R pack-
age asreml in which the entry was used as a random 
effect in all the trials. For the trials that followed a par-
tially replicated design, the possible factors were row, 
column, replicate, and block, for those following a ran-
domized complete block design, the possible factor was 
replicate, for those following an alpha-lattice design the 
possible factors were replicate, block nested within rep-
licate, row, and column. The BLUP values were used to 
rank the performance of the accessions along with the 
IRRI and local checks grown in each location. The three 

IRRI checks used in this study were IR 64, IR 72 and 
IRRI 154, which are high yielding varieties released in 
the years 1985, 1988 (Peng and Khush 2003) and 2010, 
respectively. The local checks are specific to the regions 
and are selected by the partners conducting the trial. 
BASMATI 370 and IRRI 215 in Kenya; SUPA, SUPA BC 
and TXD 306 in Tanzania; MTU 1010, IGKV-R1, CG-
Deobhog, CR Dhan-304, CR Dhan-307, ARIZE 6444 
Gold, SWARNA, IRRI 216 in India were the local check 
entries in the trials. For the Philippines, the global 
checks also served as the local checks.
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Ne: Effective population; NPT: New plant type; RYMV: Rice yellow mottle virus; 
SSD: Single seed descent.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12284- 021- 00533-5.

Additional file 1: Table S1. List of all lines 15,286 of the irrigated breeding 
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lent complete generation (EqG), breeding value for yield corrected from 
flowering time. Table S2. Genotypic data for 66 ECP and 10 IRRI varieties 
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to five highly virulent Magnaporthe oryzae isolates measured in controlled 
conditions are reported along with the favorable alleles (if any) for each 
line. The resistant and susceptible checks are also included. Table S6. 
Results of the evaluation of the elite core panel against bacterial leaf 
blight. The average average lesion length (based on six plants) to fourteen 
isolates of Xanthomonas oryzae pv. oryzae measured in controlled condi-
tions are reported along with the favorable alleles (if any) for each line. 
The resistant and susceptible checks are also included. Table S7. Studies 
conducted in the target regions for IRRI’s irrigated rice breeding program 
to evaluate the performance of the elite core panel (ECP) lines in 2019.

Additional file 2: Fig. S1. Evolution of equivalent complete generation 
(EqG) of parental lines used between 1985 and 2014 for IRRI’s breeding 
program for irrigated systems. Fig. S2. Distribution of the infection score 
(0 = highly resistant to 5 = hihgly susceptible) for five isolates of blast 
(Magnaporthe oryzae). The elite core panel (ECP) lines are in grey, the 
susceptible checks (Lijiangxintuanheigu and CO 39) are in orange and 
the resistant checks (IRBLta2-Pi, IRBLSH-B, IRBLkm-Ts and IRBLKh-K3) in 
green. Fig. S3. Scatter plots and rank correlations between blast isolates 
using infection scores. Fig. S4. Distribution of the lesion length of elite 
core panel (ECP) lines after controlled inoculation with Xanthomonas 
oryzae pv. Oryzae. Fourteen different isolates were used to assess the level 
of resistance of the ECP lines. The ECP is in grey, the susceptible check (IR 
24) is in orange and the resistant checks (IRBB23, IRBB60 and IRBB62) in 
green. Fig. S5. Scatter plots and rank correlations between bacterial leaf 
blight isolates using the average lesion length for each genotype. Fig. S6. 
Correlation matrix for grain yield (A) and time to flowering (B) for all the 
environments where the ICP lines have been evaluated.
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