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Multisensor Land Cover Classification With Sparsely
Annotated Data Based on Convolutional Neural

Networks and Self-Distillation
Yawogan Jean Eudes Gbodjo , Olivier Montet, Dino Ienco , Raffaele Gaetano, and Stephane Dupuy

Abstract—Extensive research studies have been conducted in
recent years to exploit the complementarity among multisensor (or
multimodal) remote sensing data for prominent applications such
as land cover mapping. In order to make a step further with respect
to previous studies, which investigate multitemporal SAR and opti-
cal data or multitemporal/multiscale optical combinations, here, we
propose a deep learning framework that simultaneously integrates
all these input sources, specifically multitemporal SAR/optical data
and fine-scale optical information at their native temporal and
spatial resolutions. Our proposal relies on a patch-based multi-
branch convolutional neural network (CNN) that exploits different
per-source encoders to deal with the specificity of the input signals.
In addition, we introduce a new self-distillation strategy to boost the
per-source analyses and exploit the interplay among the different
input sources. This new strategy leverages the final prediction of the
multisource framework to guide the learning of the per-source CNN
encoders supporting the network to learn from itself. Experiments
are carried out on two real-world benchmarks, namely, the Reunion
island (a French overseas department) and the Dordogne study site
(a southwest department in France), where the annotated reference
data were collected under operational constraints (sparsely anno-
tated ground-truth data). Obtained results providing an overall
classification accuracy of about 94% (respectively, 88%) on the
Reunion island (respectively, the Dordogne) study site highlight the
effectiveness of our framework based on CNNs and self-distillation
to combine heterogeneous multisensor remote sensing data and
confirm the benefit of multimodal analysis for downstream tasks
such as land cover mapping.

Index Terms—Convolutional neural networks (CNNs), land use
and land cover (LULC) mapping, multisensor, multitemporal
and multiscale remote sensing, self-distillation, sparsely annotated
data.
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I. INTRODUCTION

NOWADAYS, a plethora of satellite missions continuously
provides remotely sensed images of the Earth surface

via various modalities (e.g., SAR or optical) and at different
spatial and temporal scales. Therefore, the same study area
can be effectively covered by rich, multifaceted, and diverse
information. In particular, with the advent of the European Space
Agency’s Sentinel missions [1], a set of quasi-synchronous SAR
and optical data is systematically made available over any area of
the planet’s continental surface at high spatial (order of 10 m) and
temporal (an acquisition up to every five/six days) resolution.
The remote sensing community has been focusing its efforts for a
while now to demonstrate the benefit to combine the multimodal
information provided by such sensors [2].

With particular emphasis on land use and land cover (LULC)
mapping, recently, the community has investigated the potential
of deep learning (DL) approaches to integrate complementary
sensor acquisitions available on the same study area [3] with the
aim to leverage as much as possible the interplay between input
sources exhibiting different spectral as well as spatial content to
ameliorate the underlying mapping result.

Differently from standard and/or legacy approaches devoted
to remote sensing data fusion [2], [4], where, first, each source is
processed independently to extract additional information (i.e.,
indices in the context of optical data), second a machine learning
approach is still deployed (independently) for each source, and,
finally, a voting schema is applied on the output of each source-
specific method in order to get the final prediction, DL methods
have the ability to directly work with raw signal data avoiding
intermediate steps (i.e., data harmonization or spatial/temporal
resampling) and automatically deal with the process of source
combination in an end-to-end manner.

In the works presented in [5] and [6], panchromatic (PAN)
and multispectral (MS) bands at different spatial resolutions
are directly combined to provide LULC mapping at the finest
resolution. Recently, Hong et al. [7] propose to fuse together MS
LIDAR with hyperspectral optical information for urban LULC
classification.

Considering multimodal remote sensing classification, when
at least one of the sources depicts a satellite image time se-
ries (SITS), Kussul et al. [8] and Ienco et al. [9] combine
together SAR and optical SITS with the aim to leverage the
complementarity between active and passive sensors. Moreover,
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Fig. 1. Location of the Reunion island study site. The RGB composite is the VHSR SPOT-6 image. The corresponding ground truth is shown on the right.

Benedetti et al. [10] and Gadiraju et al. [11] propose to com-
bine multitemporal and single-date very high spatial resolution
(VHSR) optical data with the objective to jointly exploit multi-
temporal and multiscale information.

The majority of DL-based multimodal approaches proposed
in remote sensing literature mainly involve two different sources
as input. This is especially the case when SITS data are lever-
aged in the analysis (SAR with optical and optical multitempo-
ral/multiscale).

Here, we propose a patch-based convolutional neural network
(CNN) framework to cope with the combination of SAR and
optical SITS data as well as VHSR optical imagery to support
real-world operational LULC mapping under sparsely annotated
ground-truth (GT) data scenario, where three different input
sources are combined together to ameliorate the underlying land
cover mapping process.

The goal is to produce the mapping of a study area from a
limited set of per LULC class samples on the same area [12]–
[14]. Furthermore, in order to get the most out of the interplay
among multimodal information, we design a self-distillation
strategy [15], [16], in which per-source encoders are optimized
considering the final multimodal classification output. In this
way, we allow the DL model to learn from itself. More in
detail, we enable the network architecture to distill knowledge
from deeper layers (the output of the model) to shallow layers
(the per-source encoders) with the aim to steer the learning
process associated with lower levels of the network. While
this process has recently gained attention in computer vision to
strengthen the performance of standard CNN frameworks [17]
for monosource analysis, it is still unexplored in the context
of multimodal (or multisource) image classification. To assess
the effectiveness of the proposed framework, we consider two
real-world benchmarks, namely, the Reunion island (a French
overseas department located in Indian Ocean) and the Dordogne
study site (a southwest department in France) both involving
highly sparse GT data obtained by means of field campaigns

and institutional surveys (see Figs. 1 and 2). Our framework
adopts CNNs as per-source encoders since they are consolidated
strategies to deal with VHSR image, and recent studies (see,
e.g., [8], [9], [18], and [19]) have highlighted that such models
are even competitive for multitemporal information such as SITS
data.

When dealing with real-world LULC mapping in an opera-
tional setting, the collected GT is generally sparse due to human
effort and cost constraints [20]–[22]. This means that a limited
number of polygons (in terms of surface with respect to the
study site) are annotated by field experts with the aim to have
samples covering the whole study area without taking care of
highlighting possible spatial correlations among classes (class
polygons are far away from each other). For instance, Fig. 1
depicts a study area characterized by sparse GT data. In the
extract to the right of the figure, we clearly observe that only a
small portion of the area is labeled and polygons are spatially
sparse. As a matter of fact, the most common GT data collection
protocol in operational settings prevents the use of standard
semantic segmentation approaches [23]–[25] widely adopted in
the computer vision community, since semantic segmentation
strategies require densely annotated patches on which the model
is trained on (each pixel should be associated with a label
information). For this reason, when sparsely annotated data are
considered, patch-based approaches are usually preferred [9],
[13], [26]. For more details about patch-based and semantic
segmentation approaches, the interested reader can refer to [27].

To summarize, the contributions of our work are the
following:

1) a patch-based multibranch CNN framework to deal with
multimodal remote sensing land cover mapping con-
sidering simultaneously three different input sources:
SAR/optical SITS and VHSR optical imagery;

2) a new self-distillation strategy to transfer knowledge from
deeper layers (the output of our model) to shallow ones (the
per-source encoder layers) with the aim to boost the final
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Fig. 2. Location of the Dordogne study site. The RGB composite is the VHSR SPOT-6 image. The corresponding ground truth is shown on the right.

classification performances of our multimodal framework;
and

3) an in-depth experimental study to characterize the inter-
play among the different input sources. The same study
also underlines that the proposed framework is capable to
take the most out of the multimodal information associated
with the study sites.

The rest of this work is structured as follows. Section II in-
troduces the data associated with the two study sites. Section III
describes the proposed framework, while the experimental set-
tings and the results are reported and discussed in Section IV.
Finally, Section V concludes this article.

II. DATA

The study was carried out on the Reunion island, a French
overseas department located in Indian Ocean (see Fig. 1), and
on a part of the Dordogne department located in the southwest
of France (see Fig. 2). Satellite data on the Reunion island
consists of a Sentinel-1 (S1) and Sentinel-2 (S2) time series of
26 and 21 images, respectively, acquired over the year 2017,
as well as a VHSR SPOT-6 image. The latter was obtained
via a radiometrically harmonized mosaic [28] of four images
acquired, respectively, on December 26, 2016 and on May 10,
June 11 and November 20, 2017 in order to ensure a cloud-free
coverage of the whole study area. The Dordogne study site
dataset includes, respectively, time series of 31 S1 and 23 S2
images, both acquired in 2016, and a cloud free VHSR SPOT-6
image dated March 3, 2016.

S1 data were acquired in the C-band with co- and cross-
polarization (VH and VV) and in ascending orbit. The data
were downloaded from the PEPS platform1 in the Ground Range

1[Online]. Available: https://peps.cnes.fr/

Detected format and Interferometric Wideswath mode2 with a
pixel spacing of 10 × 10 m. The S1 images were first radio-
metrically calibrated in backscatter values, then orthorectified,
and finally a multitemporal filtering [29] was performed over
the time series in order to reduce speckle. The S2 images were
downloaded from the THEIA pole platform3 at level-2A (top
of canopy reflectance values) and were provided with cloud
masks. Only 10-m spatial resolution bands (Blue, Green, Red,
and near-infrared spectrum) were considered in this analysis. A
preprocessing was performed over each band to fill cloudy pixel
values as detected by the supplied cloud masks through a linear
multitemporal interpolation (cf. temporal gap filling [12]). In
addition, two spectral indices were then extracted and involved
in the analysis, i.e., the NDVI [30] and the NDWI [31], leading
to a total of six channels describing each Sentinel-2 image. The
SPOT-6 images consist of one PAN and four MS bands (Blue,
Green, Red, and near-infrared spectrum) at 1.5- and 6-m spatial
resolutions, respectively, which have been preprocessed in top
of atmosphere reflectance.

The GT data for the Reunion island were collected from vari-
ous sources: the Registre Parcellaire Graphique (RPG) reference
data for 2016 (the French land parcel identification system),
Global Positioning System records from June 2017, and the
visual interpretation of a SPOT image completed by a field
expert with knowledge of territory. The Reunion island dataset
is publicly available4 [32]. Similarly for the Dordogne site,5 the
GT was built from RPG reference data for 2016 and the visual
interpretation of a SPOT image as well. For both study sites,

2[Online]. Available: https://sentinel.esa.int/web/sentinel/missions/sentinel-
1/data-products

3[Online]. Available: http://theia.cnes.fr
4[Online]. Available: https://doi.org/10.18167/DVN1/TOARDN and addi-

tional information can be found in
5Currently available upon request.

https://peps.cnes.fr/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
http://theia.cnes.fr
https://doi.org/10.18167/DVN1/TOARDN
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TABLE I
CHARACTERISTICS OF THE REUNION ISLAND GROUND TRUTH

TABLE II
CHARACTERISTICS OF THE DORDOGNE SITE GROUND TRUTH

the GT was assembled in geographic information system vector
file, containing a collection of polygons, each attributed with a
land cover category (see Tables I and II).

Finally, the polygons have been rasterized at the Sentinel
spatial resolution (10-m), obtaining 880 723 labeled pixels for
the Reunion island (respectively, 814 436 labeled pixels for
the Dordogne site). Owing to the fact that the GT is sparsely
annotated, as can be observed (see Figs. 1 and 2), we focus our
efforts on patch-based multimodal remote sensing classification
strategies instead of semantic segmentation ones since the latter
requires densely labeled GT data conversely to the ones we
dispose in our context.

III. FRAMEWORK

In this section, we introduce our framework, named
MMCNNSD (Multimodal CNN with per-source Self-
Distillation). First, we supply an overview of the general
multimodal architecture; then, we describe the new
self-distillation strategy we have introduced; and finally,
we introduce the per-source components we have adopted to
manage the different remote sensing data sources.

A. Multimodal Patch-Based CNN

Fig. 3 depicts the proposed framework, MMCNNSD. In our
scenario, each geospatial location is described by means of
different and complementary information, each of them coming
from a different sensor.

The model has three branches, one for each of the in-
put sources: S1 SITS, S2 SITS, and VHSR SPOT imagery.

Each branch is associated with an encoder network that extracts a
source-specific representation: RS1, RS2, and RSPOT. Succes-
sively, the different per-source representations are aggregated
together considering a late fusion schema [33] by summing
together the three per-source representations with the aim to ob-
tain a multisensor representation (RM ) of the specific geospatial
location. Finally, the multisensor representation is fed through
two fully connected layers and an output layer with the goal
to obtain the final classification decision for the considered
geospatial location.
MMCNNSD leverages a self-distillation component [15],

[16] that supports the network to learn from itself. More pre-
cisely, for each per-source encoder, we add an output layer
(auxiliary classifier) with the aim of forcing the extraction of
complementary and discriminative information from each of
the input modality. The per-source output layers are trained
to mime the behavior of the final multimodal classification, as
shown in Fig. 3, with the goal to distill knowledge from deeper
layers (the output of our model) to shallow ones (the per-source
encoder layers). While classical knowledge distillation [16] is
based on a teacher–student framework, where the objective is
to distill/transfer the dark knowledge of the teacher model to
the student one, self-distillation [17] does not require a pair
(or a set) of distinct models since a model tries to distill/transfer
knowledge from itself, autonomously. To make a connection
with standard teacher–student frameworks, in our case, the out-
put of MMCNNSD (the final multimodal classification) can be
considered as the teacher output, while the per-source encoders
represent the students models that have the goal to mime the
teacher’s behavior. Here, we introduce such a strategy in the
context of multimodal remote sensing analysis. To the best of
our literature review [15], [16], this is the first time that such
kind of strategy is employed in a multisource scenario for image
analysis and classification.

We formally define the loss of MMCNNSD as follows:

L = CE(Y,CL(RM ))

+ λ
∑

s∈{S1,S2,SPOT}
CE(CL(RM ), OUT (Rs)) (1)

where Y is the supervision provided by the labeled information,
CE(·, ·) is the standard cross-entropy loss function, CL(·) is
a neural network with two fully connected layers with ReLU
activation function and batch normalization followed by an
output layer with SoftMax activation, and OUT (·) is a fully
connected output layer with SoftMax activation. The λ hyper-
parameter controls the tradeoff between the cost involving the
multisensor representation and the costs concerning the self-
distillation associated with the per-source output layers. While
the model training involves both the main classifier and the
auxiliary classifiers associated with the self-distillation strategy,
at inference stage, only the decision provided by the main clas-
sifier CL(RM ) is considered. The parameters associated with
the entire framework (per-source feature encoders, prediction,
and auxiliary classifiers) are learnt end-to-end.
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Fig. 3. Overview of MMCNNSD framework. The architecture has three branches, each of them dedicated to an input source. Sentinel-1 SITS and SPOT data
are processed by means of 2D-CNN encoders, while Sentinel-2 SITS is analyzed through a 1D-CNN encoder. Then, the per-source feature representations are
aggregated by the means of the sum operation in order to perform the final land cover classification. To this end, a main classifier associated with the aggregated
features and per-source auxiliary classifiers, supervised from the distillation of the main classifier, are employed.

B. Per-Source CNN Encoders

Due to the fact that the different sensors contain diverse and
complementary information, we design specific CNN encoders
for each of them.

For the S1 SITS data, we consider a two-dimensional con-
volutional neural network (2D-CNN) with the goal to alleviate
possible issues induced by spatial speckle phenomena that usu-
ally affects SAR signal [34]. To this end, the S1 SITS described in
Section II is organized as a stacked image with as many bands as
the number of timestamps times 2 since S1 data have backscatter
values with two polarizations: VV and VH. Patches extracted
from the stacked image are then concatenated and constitute the
input information for the Sentinel-1 encoder branch.

For the S2 SITS data, according to recent literature on land
cover mapping [19], [35], we adopt a one-dimensional con-
volutional neural network (1D-CNN). Such a model explicitly
manages the sequential information of the SITS since it per-
forms multidimensional convolutions on the temporal dimen-
sion. Here, only pixel time-series information is considered.

For the VHSR SPOT image, we still consider a 2D-CNN
model with the aim to exploit the available fine-scale spatial
information as much as possible. In addition, the SPOT image
has PAN and MS bands with a resolution of 1.5 and 6 m,
respectively. With the aim to manage such data at their native
resolution avoiding as much as possible intermediate resampling
steps (e.g., pansharpening), the 2D-CNN model for the SPOT
image starts processing the PAN information, and once feature
maps at the same resolution of the MS information are produced,
the MS bands are integrated in the analysis by concatenation.

TABLE III
ARCHITECTURE OF THE MULTIMODAL CNN ENCODERS

The per-sensor feature representations are successively aggregated together by
means of the sum operation and processed by fully connected layers to perform
the final classification. (For the sake of readability, auxiliary classifiers are omitted).

In addition, managing PAN and MS at their original spatial
resolution allows us to reduce the computational burden that
can be introduced if the MS bands are resampled at the same
resolution of the PAN information [6].

To summarize, Table III reports the whole architecture as-
sociated with the proposed framework. Conv1D and Conv2D
represent 1-D and 2-D convolutions, respectively. The associated
value (128, 256, 512) is the number of filters. Each convolutional
layer is followed by a ReLU activation function, a batch normal-
ization, and a dropout layer.

The top of the table (including the global average pooling
layers) describes the per-source encoders according to the choice
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we have discussed above. Successively, the per-source represen-
tations produced by the pooling layers are aggregated together
by means of the sum operation and exploited to provide the final
land cover prediction. For the sake of clarity and readability, in
Table III, we have voluntarily omitted to report the auxiliary clas-
sifiers associated with the self-distillation strategy. We remind
that our framework manages the different sensor information at
their original spatial resolutions, and therefore, it explicitly deals
with the fusion of multiscale sensor information.

IV. EXPERIMENTS

In this section, we present the experimental settings and dis-
cuss the results obtained on the datasets previously introduced.

A. Experimental Settings

First of all, we validated the architectural choices related to
our framework by assessing the behavior of each sensor encoder.
For this evaluation, S1 and S2 SITS are analyzed considering
1D-CNN, 2D-CNN, and 3D-CNN. The 1D-CNN and 2D-CNN
are the same as in the proposed architecture (see Table III). As
concerns the 3D-CNN, it has the same number of convolutional
layers and filters as 1D-CNN and 2D-CNN. A kernel size of
(3× 3× 3) was employed for the first three convolutional lay-
ers, as suggested in [18], which found it suitable for SITS data,
while the last layer is set up with a kernel size of (1× 1× 1)
similarly to 1D-CNN and 2D-CNN encoders. In addition, we
used a stride of 2 in the timestamp axis, i.e., (1× 1× 2), for
the second and third convolutional layers with the aim to further
explore the temporal signal. Finally, a global average pooling
layer was employed to extract the feature representation before
classification.

Then, we evaluate the integration of multimodal data via the
proposed framework. We also consider as competitor for this
evaluation an extension of the model introduced in [10], named
M3Fusion. The M3Fusion approach was originally designed to
perform land cover classification from S2 SITS and a VHSR
SPOT image. It processes input data through dedicated streams
(encoders) based on a recurrent neural network (RNN) block to
manage S2 SITS and a 2D-CNN branch for the SPOT image. In
order to make a fair comparison considering our setting, we have
equipped this model with an additional RNN stream especially
dedicated to process S1 SITS.

To further assess the behavior of the proposed framework,
we also perform ablation studies to disentangle the interplay
among the different input sources (the variants are named
MMCNNS1+S2

SD and MMCNNS2+SPOT
SD , respectively) as well

as the contribution of the per-source auxiliary classifiers that
support the self-distillation strategy (this variant is named
MMCNNnoSD). This latter can be assimilated to a standard late
fusion procedure, as reported in [3]. Additionally, we consider
two other baselines: the first one is a variant of the proposed
framework named MMCNNHardLabels that follows studies on
multisource land cover mapping as [9], [10], in which per-source
auxiliary classifiers are supervised from the original (hard)
labels; the second one named MMCNN10

SD is a version of our
framework, which treats all input sources at the same spatial

TABLE IV
HYPERPARAMETER SETTINGS OF THE EVALUATED APPROACHES

resolution, i.e., 10 m. Finally, we gauge the effect of varying in
our framework, the per-source feature dimensionality, and the λ

hyperparameter that controls the self-distillation process.
As regards sensor input data, we extracted image patches

to describe each specific geospatial location. The Sentinel (S1
and S2) patch size was fixed to 9 × 9, while similarly to [6],
SPOT MS and PAN patch size were set to 8 × 8 and 32 ×
32, respectively. To fit the input requirements of the M3Fusion
competitor, the VHSR SPOT images were pansharpened on
both study sites, and MS image patches of size 32 × 32 at
the highest spatial resolution, i.e., 1.5 m, were extracted. For
the MMCNN10

SD baseline, the pansharpened images were re-
sampled to 10-m spatial resolution using the nearest neighbor
method, and finally, MS image patches of size 5 × 5 (covering
approximately the same spatial extent as the native resolution
image patches) were extracted. Note that we have considered
the 2D-CNN designed for the Sentinel data in order to process
the SPOT patches at 10-m spatial resolution. Nonetheless, for
compatibility purposes, a zero padding was set up for the first
convolutional layer.

The values of the dataset were normalized per band in the
interval [0,1], considering the time series and the VHSR, pan-
sharpened, and resampled images. The datasets were split into
training, validation, and test sets with a proportion of 50%,
20%, and 30% of samples, respectively. We imposed that pixels
belonging to the same GT polygon were assigned exclusively to
one of the data partitions (training, validation, or test) with the
aim to avoid possible spatial bias in the evaluation procedure.
The evaluated models were optimized via the training/validation
procedure [36]. Their hyperparameter settings are reported in
Table IV. For the settings of the M3Fusion model, we adopted
the same hyperparameter values as reported in [10].

The assessment of the model performances was done con-
sidering test set and the following metrics: Accuracy (global
precision), F1 score (harmonic mean of precision and recall),
and Cohen’s Kappa (level of agreement between two raters
relative to chance). Since the model performances may vary
depending on the split of the data due to simpler or more complex
samples involved in the different partitions, all metrics were
averaged over five random splits of the dataset following the
strategy mentioned above. Experiments were carried out on a
workstation with an AMD Ryzen 7 3700X CPU, 64 GB of
RAM, and RTX 2080 NVIDIA GPU. The number of trainable
parameters of the evaluated models and the associated time
costs are reported in Table V. The different architectures were
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TABLE V
TRAINABLE PARAMETERS OF THE DIFFERENT MODELS AND ASSOCIATED TIME

COSTS OVER THE 300 TRAINING EPOCHS

TABLE VI
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING THE

PER-SENSOR CNN ENCODERS ON THE REUNION ISLAND

TABLE VII
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING THE

PER-SENSOR CNN ENCODERS ON THE DORDOGNE SITE

implemented using the Python Tensorflow library. The code
implementation of MMCNNSD is available at.6

B. Per-Sensor Encoder Assessment

The performances of the per-sensor encoders at the two study
sites are reported in Tables VI and VII, respectively. As regards
average results, we note first that leveraging temporal or spa-
tial dependencies for S1 and S2 exhibits different behaviors.
Employing 2-D convolutions in the CNN instead of 1-D convo-
lutions is clearly more effective for S1, while obtained results
are comparable for S2. This specific behavior comes from the
fact that 2-D convolutions, in turn, reduce the spatial speckle
noise [34] in the S1 data exploiting the spatial context informa-
tion available when input patches are used. About the 3D-CNN,
it achieves overall slightly lower (e.g., for S1) or similar results

6[Online]. Available: https://github.com/eudesyawog/S1S2VHSR

TABLE VIII
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING THE

MULTIMODAL COMBINATION ON THE REUNION ISLAND

TABLE IX
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING THE

MULTIMODAL COMBINATION ON THE DORDOGNE SITE

(e.g., for S2) than the 2D-CNN encoder. Only average results
for S2 in the case of Reunion island are slightly better than those
of the 2D-CNN. Then, here, the benefit of leveraging simultane-
ously convolutions in both spatial and temporal domains via the
3D-CNN is minimal, especially regarding trainable parameters
and training time costs (see Table V). For the rest, SAR data
(S1) are less effective than optical ones (S2 or SPOT) for the
land cover mapping tasks. However, note the significance of the
fine-scale spatial information provided by the VHSR SPOT data
on the Reunion island, which gives competitive performances
than those of S2 data, with respect to the Dordogne site. Overall,
the validation of per-source CNN encoders suggests that the
2D-CNN model is the most effective to deal with S1 SITS,
while the 1D-CNN seems more appropriate to manage S2 SITS
owing to a cheaper cost in terms of computational training time.
Hereafter, S1 and S2 refer to the single-modality models with
2D-CNN and 1D-CNN, respectively.

C. Multimodal Patch-Based CNN Assessment

The performances of the multimodal models at the two study
sites are reported in Tables VIII and IX, respectively. Following
average behavior, we first note that combining complementary
sensor information systematically ameliorates the land cover
classification with respect to per-sensor performances. The in-
tegration of all available modality via the proposed framework
is the most efficient. Our framework achieved the best perfor-
mances on both study sites, more than 94% (respectively, 88%)
of accuracy on the Reunion island (respectively, on the Dordogne
site), and it also demonstrates its effectiveness considering the
M3Fusion competitor.

As regards the ablation study on the efficiency of
the self-distillation strategy (i.e., MMCNNnoSD versus
MMCNNHardLabels versus MMCNNSD), we note that this

https://github.com/eudesyawog/S1S2VHSR
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Fig. 4. Learning history, considering accuracy on training and validation sets,
of the proposed framework with and without self-distillation strategy. The latter
refers to the behavior of the method named (MMCNNnoSD).

architectural component contributes to the final land cover clas-
sification performances. First, we observe that the models with
the auxiliary classifiers (MMCNNSD and MMCNNHardLabels)
achieve better classification results than the baseline model that
does not adopt such architectural component (MMCNNnoSD).
In order to further investigate such a phenomenon, with a major
emphasis on the proposed framework, in Fig. 4, we depict the
behaviors of MMCNNSD and MMCNNnoSD over the estab-
lished number of training epochs considering their performances
on both training and validation sets. As can be noted, while
both models clearly fit the training set, the proposed approach
(MMCNNSD) exhibits superior performances on the validation
set underlying that the use of self-distillation strategy clearly
supports the model to better generalize on previously unseen
data.

Second, regarding the direct comparison between our frame-
work (MMCNNSD) and the strategy that uses the origi-
nal (hard) labels to supervise per-source auxiliary classifiers
(MMCNNHardLabels), we can see that the use of self-distillation
systematically ameliorates, in terms of evaluation metrics, the
joint exploitation of multimodal sources. This behavior is inline
with recent studies on knowledge distillation [15], [16], where
it is observed that the soft labels produced by the teacher model
(in our case the fused classifier) carry on more useful and easy
to exploit information for the student network (in our case the
auxiliary classifiers) than the original (hard) label information,
thus facilitating the student network to mime the behavior of the
teacher model.

Finally, by comparing the MMCNN10
SD baseline to the pro-

posed framework, we also notice on both study sites the helpful-
ness of the fine-scale information provided by the VHSR data
as well as the significance of integrating multiscale data at their
native spatial resolution for the land cover classification task.

D. Effect of Varying the Framework Hyperparameters

In this evaluation, we analyze two main hyperparameters
associated with the proposed framework. We evaluate how the
dimensionality of per-source features extracted by the CNN en-
coders and the λ hyperparameter controlling the self-distillation
strategy influence the behavior of the proposed framework. We
vary the former hyperparameter considering the set of values

Fig. 5. Land cover classification performances varying the dimensionality of
the per-source features. Standard deviation is displayed as error bar. Trainable
parameters and time costs are shown beside.

Fig. 6. Land cover classification performances varying the λ hyperparameter
that controls the cost involving the self-distillation strategy. Standard deviation
is displayed as error bar.

{64, 128, 256, 512}, while the latter one is evaluated according
to the following values: {0.1, 0.2, 0.3, 0.4, 0.5}. Results are
summarized in Figs. 5 and 6, respectively.

The analysis on the dimensionality of per-source features
shows that 256 features seem suitable for the proposed frame-
work on both study sites, and the performance is relatively stable
(between 93% and 94% of F1 score on the Reunion island
and around 88% on the Dordogne site) with respect to the
considered range. Particularly, it is noteworthy that the model
can already generalize well with only 64 features, which could
reduce the number of trainable parameters and the associated
computational cost related to the training stage.

As regards the assessment on the λ hyperparameter, here also,
we note relatively stable performances on the two study sites
for values equal to or greater than 0.2. This result underlines
that such a hyperparameter does not influence the behavior of
MMCNNSD when it is varied among the considered range.

E. Per-Class Analysis

The per-class F1 scores at the two study sites are shown in
Figs. 7 and 8, respectively. In this analysis, we note that leverag-
ing complementary sources of information is fully beneficial for
almost all the land cover classes, particularly when all modalities
are combined. Salient examples on the Reunion island are the
Greenhouse and shaded crops, Market gardening, Orchards, or
Urbanized areas land cover classes. The F1 score of Greenhouse
and shaded crops, for instance, improved from 50% (with S2)
to 75% (with MMCNNSD). Such land cover especially benefits
from the fine resolution information provided by SPOT data
(67% of F1 score). The benefit is similar for Urbanized areas and
Orchards classes, which are better distinguished with fine-scale
spatial information. On the Dordogne site, Urbanized areas and



GBODJO et al.: MULTISENSOR LAND COVER CLASSIFICATION WITH SPARSELY ANNOTATED DATA 11493

Fig. 7. Average per-land-cover-class F1 score (standard deviation as error bar) considering the various combinations of the multimodal data (i.e., S1, S2, SPOT,
MMCNNS1+S2

SD , MMCNNS2+SPOT
SD , and MMCNNSD).

Fig. 8. Average per-land-cover-class F1 score (standard deviation as error bar) considering the various combinations of the multimodal data (i.e., S1, S2, SPOT,
MMCNNS1+S2

SD , MMCNNS2+SPOT
SD , and MMCNNSD).

Fig. 9. Confusion matrices of the land cover classification considering the various combinations of the multimodal data (i.e., S1, S2, SPOT, MMCNNS1+S2
SD ,

MMCNNS2+SPOT
SD , MMCNNSD, and M3Fusion).
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Fig. 10. Confusion matrices of the land cover classification considering the various combinations of the multimodal data (i.e., S1, S2, SPOT, MMCNNS1+S2
SD ,

MMCNNS2+SPOT
SD , MMCNNSD, and M3Fusion).

crop classes especially profit from the multimodal combination.
To go further with the per-land-cover-class analysis, in Figs. 9
and 10, we supply the confusion matrices for both study sites.
The trend observed in the per-class score analysis is confirmed
by the confusion matrices. The more complementary sources
are combined, the less confusions remain between land cover
classes. Only some minor misclassifications remain on the Re-
union island with the proposed framework, especially between
Greenhouse and shaded crops and Urbanized areas. On the
Dordogne site, the major confusions between Moor and Forest
classes are also alleviated. Overall, the simultaneous combina-
tion of multisensor, multitemporal, and multiscale information
was valuable for characterizing land cover classes carrying out
not only temporal dependencies, such as the ones related to crops
or natural vegetation, but also spatial patterns as evidenced by
the performance improvement associated with the Urbanized
areas land cover class.

F. Qualitative Investigation of Land Cover Maps

In Fig. 11, we report some extracts from the land cover maps
produced on the Reunion island. We focused only on this study
site since it exhibits a more heterogeneous and challenging
landscape in terms of land cover classes than the Dordogne
site. We recall that all land cover maps were generated at
Sentinel spatial resolution (10 m). In addition, owing to the
fact that the models are patch based, the border pixels of the
maps (i.e., 4 pixels in each direction since considered Sentinel
patch size is 9× 9) remain unlabeled. For the sake of clarity,

we only considered extracts of the maps produced by consider-
ingMMCNNS1+S2

SD ,MMCNNS2+SPOT
SD , andMMCNNSD. The

extracts were selected following discussions we had with field
experts and with the aim to be representative of observations
made in the per-land-cover-class analysis.

The first extract [see Fig. 11(a)–(d)] depicts a part of Saint-
Pierre, a coastal urban area with sugarcane and orchards planta-
tions. Misclassifications between Urbanized areas and Green-
house and shaded crops can be highlighted in MMCNNS1+S2

SD

extract, while the introduction of fine-scale spatial information
(cf. MMCNNS2+SPOT

SD and MMCNNSD extracts) significantly
reduced this issue. The second extract [see Fig. 11(e)–(h)] is lo-
cated within the Cilaos cirque, a landscape consisting of hamlets
with some market gardening activities surrounding. Here, the
MMCNNS1+S2

SD map exhibits major misclassifications between
Rocks and natural bare soil class and Urbanized areas. This
artifact is still slightly noticeable in the MMCNNSD classifica-
tion, while S2 and SPOT combination (i.e., MMCNNS2+SPOT

SD )
better deals with the Rocks and natural bare soil class. The
third extract [see Fig. 11(i)–(l)] shows an area around Le Tam-
pon, a mixed urban and pasture landscape with some market
gardening. Beyond the confusions exhibited by MMCNNS1+S2

SD

between Urbanized areas and Greenhouse and shaded crops, we
note a general overestimation of Orchards plantations although
minimized by MMCNNS2+SPOT

SD and MMCNNSD. The fourth
extract [see Fig. 11(m)–(p)] depicts the Belouve forest, which
consists of a primary growth forest and forest plantations. There
is some minor inaccuracies in the forest detection, misclas-
sified with Orchards and Moor and savannah classes, which
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Fig. 11. (a)–(t) Qualitative investigation of land cover maps produced by considering MMCNNS1+S2
SD , MMCNNS2+SPOT

SD , and MMCNNSD. The VHSR
SPOT image is supplied as reference. Five areas are detailed, from top to bottom: Saint-Pierre, the Cilaos cirque, Le Tampon, the Belouve forest, and Saint-Gilles
les Bains.
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Fig. 12. t-SNE visualization of internal feature representation learned by considering the various combinations of the multimodal data (i.e., S1, S2, SPOT,
MMCNNS1+S2

SD , MMCNNS2+SPOT
SD , and MMCNNSD) on the Reunion island site.

are suppressed in the MMCNNSD map. Finally, the fifth and
last extract [see Fig. 11(q)–(t)] focused on the Saint-Gilles
les Bains area. The landscape consists of orchards, savannah,
some sugarcane plantations, and built-up. According to field
experts, there is a general underestimation of Moor and sa-
vannah class, which is classified as Wooded areas, although
MMCNNS2+SPOT

SD combination slightly alleviates this issue. To
wrap up, this qualitative investigation also validates the benefit
of combining multimodal remote sensing data for land cover
mapping. Overall, MMCNNS2+SPOT

SD and MMCNNSD land
cover maps are of a satisfying quality, while MMCNNS1+S2

SD

exhibits extensive errors. This fact is probably due to the noise
remaining in SAR data, which sometimes leads to inaccuracies
such as the overestimation of orchards areas, and the precious
information provided by the SPOT image that is especially
pertinent for the considered study area.

G. Visualization of Internal Feature Representations

In this last stage of our experimental results, we supply a
visualization of the internal feature representation learned by
considering the various combinations of the multimodal data
at the two study sites. To this end, we randomly chose 300

samples per land cover class in the test set, and we extracted their
feature representation. Subsequently, we applied t-SNE [38]
and reduced the feature dimensionality to 2 for visualization
purposes. Results are displayed in Figs. 12 and 13, respectively.
On both study sites, we can observe an improved separability of
the per-land-cover-class representations as additional and com-
plementary sensors information are combined. As underlined
before, S1 is less discriminative than optical sensors (i.e., S2
or SPOT), while the fine-scale spatial information carried out
by SPOT is particularly relevant to disentangle the per-class
feature visualization on the Reunion island. However, some
land cover class representations are still barely separable with
single-modality data, especially Orchards and Wooded areas or
Pasture and fodder and Market gardening on the Reunion island
(respectively, Moor and Forest or Orchards, Vineyards and Other
crops on the Dordogne site). Such ambiguities are successively
alleviated by the combination of the multimodal data, especially
MMCNNS2+SPOT

SD and MMCNNSD, which separate in a sim-
ilar way the land cover classes, while MMCNNS1+S2

SD notably
on the Reunion island site is still affected by these confusions.
Overall, the visualization of internal features representation is
coherent with the quantitative as well as qualitative findings we
previously discussed.
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Fig. 13. t-SNE visualization of internal feature representation learned by considering the various combinations of the multimodal data (i.e., S1, S2, SPOT,
MMCNNS1+S2

SD , MMCNNS2+SPOT
SD , and MMCNNSD) on the Dordogne site.

V. CONCLUSION

In this work, we have presented a framework, named
MMCNNSD, to deal with the task of multimodal land cover
mapping. More specifically, MMCNNSD simultaneously ex-
ploits multitemporal and multiscale remote sensing data,
namely, Sentinel-1 and Sentinel-2 SITS and SPOT VHSR image,
for land cover mapping through a three-branch patch-based CNN
model that integrates a new self-distillation strategy especially
tailored for multisource analysis. The new knowledge distilla-
tion component allows us to effectively transfer knowledge from
the final prediction to the per-source CNN encoders supporting
the network to learn from itself. All the process is performed
end-to-end.

The results obtained on two real-world benchmarks, the Re-
union island and the Dordogne study sites, have highlighted the
quality of the proposed framework regarding both quantitative
and qualitative analyses. Furthermore, the obtained results have
also validated the importance to boost the representation ex-
tracted by per-source encoders combining auxiliary classifiers
with self-distillation. To sum up, all the experimental findings
clearly support the hypothesis that complementary sensor in-
formation is definitively valuable for downstream tasks such as
land cover mapping.

Possible future work can be related to extending our approach
to deal with possible temporal as well as spatial transfer. As of

now, our framework deals with a standard land cover mapping
setting, where a map of a particular study site is derived by
learning a classification model from some per-class samples
that belongs to the same area. How to transfer a model learnt
on a particular area (respectively, period of time) to another
different area (respectively, period of time) is an active domain of
research considering multitemporal monosource strategies [39],
[40], while it is still more challenging and open to investigation
when multisource data are involved.

The proposed framework can also be extended going further
with the exploitation of Sentinel-1 and Sentinel-2 data integrat-
ing for the former sensor, data coming from both ascending and
descending orbits and, for the latter sensor, the rest of Sentinel-2
bands, following a schema like the one we have used for the PAN
and MS bands of the SPOT image.
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