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Abstract: A better knowledge of tree vegetative growth phenology and its relationship to environ-
mental variables is crucial to understanding forest growth dynamics and how climate change may
affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on
the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures
impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern
for most species. The humid tropics, on the other hand, have less seasonality and contain many more
tree species, leading to a diversity of patterns that is still poorly known and understood. The work
in this study aims to advance knowledge in this area, focusing specifically on herbarium scans, as
herbariums offer the promise of tracking phenology over long periods of time. However, such a study
requires a large number of shoots to be able to draw statistically relevant conclusions. We propose
to investigate the extent to which the use of deep learning can help detect and type-classify these
relatively rare vegetative structures in herbarium collections. Our results demonstrate the relevance
of using herbarium data in vegetative phenology research as well as the potential of deep learning
approaches for growing shoot detection.

Keywords: vegetative phenology; plant growth; herbarium specimens; natural history collection;
deep learning; machine learning; neural network; visual analysis

1. Introduction

The current challenges of climate change require a better understanding of plant
growth dynamics, particularly to better measure the evolution of the carbon sequestration
capacity of forests [1]. The dynamics of carbon sequestration are intimately linked to the
phenology of growth processes in woody plants, i.e., the temporal patterns of recurrent
biological events [2]. A tree is an organism that builds on itself by extending its axes
(stems and roots) through the process of primary growth and by thickening these axes
via the formation of wood through the process of secondary growth [3]. The accumula-
tion of carbohydrates in wood represents the first component of carbon sequestration in
trees. Because carbohydrates are synthesized in leaves through photosynthesis, it is of
primary importance to understand shoot extension dynamics (which include shoot leaf
and internode extension), leaf functioning, and life span over time. This understanding
must nevertheless be achieved by integrating different scales such as the leaf organ, the
crown of the tree, the populations of species, or the community of species that make up the
forest canopy.
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In temperate climates, the phenology of the fundamental processes underlying tree de-
velopment and reproduction is coordinated by temperature and light constraints imposed
by winter [4]. Broadly speaking, the phenology of trees in northern temperate regions
generally follows these successive steps: (i) bud break and appearance of the first floral
structures between late winter and early spring, (ii) flowering and development of vegeta-
tive new shoots during spring, (iii) fruiting and slowing down of vegetative growth during
summer, (iv) dissemination of seeds and fruits coupled with defoliation during autumn,
and (v) plant dormancy during winter. An illustration of that pattern is provided in Figure 1
for four common tree species in western European temperate regions. Therefore, in those
regions, an event such as growth can be said to occur, with annual periodicity, in spring. It
lasts from a few days to several weeks, depending on the species, with an amplitude—e.g.,
the length of the shoot—that varies according to the species, the environment of the tree, or
the shoot position inside the tree architecture; it is also synchronous, both at the individual
tree and the species population levels. This simplified description may seem rough, and
one could propose numerous exceptions (e.g., buds break more or less early in the spring
depending on the individuals of a population, several shoot extensions can appear within a
year due to polycyclism, etc.); however, compared to the diversity of phenological patterns
observed in the tropics, it remains coherent.

Figure 1. Phenological diagrams of four common tree species (Aesculus hippocastanum L., Crataegus
monogyna Jacq., Cornus sanguinea L., Juglans regia L.) in western European temperate regions, based
on field observations from the Pl@ntNet citizen science platform. Coordinates of the geographical
areas on which these phenological diagrams are based are provided above of each of the diagrams.

The great diversity of species present in the tropics is attended by a wide variety
of life forms and phenological patterns [5,6]. Except for high-altitude locations, in those
tropical regions, temperature is generally considered not to be a limiting and structuring
trigger in phenological growth patterns [7]. Rather, variations in insolation or water
availability appear to be the main drivers at the tree community level [8–10]. To illustrate
this point, we consider French Guiana, which will be used as a support for this study.
An overall phenological pattern at the scale of the tree community can be observed, but
it is not as marked as in temperate climates. Indeed, based on regular monitoring of
the vegetation by different approaches (direct observations on transects, nets placed in
the understory collecting twigs, leaves, flowers, fruits that fall from the canopy, and
observations by remote sensing), a general pattern emerges at the global scale of the
forest. In the period of August–September, at the very beginning of the long dry season
(precipitation < 100 mm·month) when solar irradiation is at its maximum (minimal cloud
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cover and high length of daylight), the trees renew their leaves. These shoots bear flowers
and the peak of flowering occurs in September–October. With the return of the rains, the
fertilized flowers are transformed into fruits, which will take several months to mature,
and the peak of fruiting is reached in April of the following year, in the heart of the long
rainy season. In July–August, many leaves fall from the canopy and deciduous species
shed their leaves [11–14]. However, behind this general pattern lies a strong inter-annual
variability in the calendar of these events. More importantly, at the species level, many of
them have phenological patterns deviating from this general seasonal pattern. For instance,
some species can grow at different times of the year with populations whose individuals
are not necessarily synchronous with each other [12,15]. Furthermore, the patterns of
shoot extension over time (e.g., rhythm, duration) remain largely unknown at the species
level. It is thus difficult to understand how we can change the scale, from a collection of
species-specific phenological patterns to a global phenological pattern at the community
scale, all in interaction with environmental climate fluctuations. Herbarium collections
could provide a valuable source of data to help fill this knowledge gap.

The recent and massive digitization of natural history collections, particularly of
herbaria, offers new material available for many research activities [16–18] such as the
analysis of plant species morphology and diversity [19,20]. Because most of the collections
are dated and geolocated, they constitute a valuable source of information for (i) deter-
mining the proven or potential distribution areas of species [21–23], whether native or
exotic (dynamics of biological invasions), with direct applications in conservation biol-
ogy [24], and for (ii) determining the reproductive phenological patterns of species (e.g.,
date and duration of flowering and fruiting periods) [25–28]. Research in these fields has
been particularly stimulated by questions related to climate change and its effect on the
range of species distribution [29,30] or their biological rhythms [31–39]. More original
aspects have been addressed such as changes over time in (i) herbivory [40,41], (ii) the
concentration of isotopes (δC13, δO18) related to water use efficiency or photosynthetic
efficiency [42], or (iii) the diversity of endophytic fungi present in leaves [43]. This newly
digitized material, widely available through platforms such as iDigBio [44] and eReColNat
(https://www.recolnat.org/en/ accessed on 10 May 2021) provides access to herbarium
specimen scans in addition to textual data. These images contain very rich information
that, before being exploited, needs to be extracted, for instance through crowdsourcing
platforms [38] or automated approaches [45,46]. Among these last approaches, recent
works using deep learning technologies for the analysis of these data have made it possible
to evaluate the relevance of these techniques for the identification of species [47,48], the
detection of the reproductive phenological status [49], and the estimation of the number
of reproductive structures [50–52]. Despite the diversity of these works, none of them has
so far evaluated the use of these techniques for the detection of young growing shoots.
This can be explained in part by the fact that plant samples are mainly collected with
reproductive structures rather than with growing vegetative shoots alone. Indeed, since
plant identification at the species level is largely based on the analysis of reproductive
structures, a collector will generally select plant specimens with flowers or fruits rather than
those solely with leaves. Such fertile specimens therefore often have a greater contribution
to subsequent research studies than sterile specimens.

In this study, we propose to evaluate the potential of deep learning approaches for
the analysis of the vegetative axis extension pattern of tropical tree species based on the
analysis of herbarium specimens. To the best of our knowledge, no such study has ever
been conducted. Hence, this work could pave the way for a new form of research on
plant primary growth dynamics based on such new material. The challenges are (i) to
automatically detect a young shoot bearing leaves in extension, (ii) to detect the modalities
of growth expression (e.g., the presence of growth units due to rhythmic growth), and even
(iii) to eventually distinguish different stages of leaf shoot maturation (phenophases). In
the presence of a sufficient amount of detected herbarium samples, and by leveraging their
dates of collection, this would then allow for a study of the timing and synchronicity of

https://www.recolnat.org/en/
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growth events within populations and communities by analyzing the frequencies of the
detected events [27]. With regards to existing deep learning methods, several challenges
must be addressed. First, since specimen collection is primarily driven by the presence
of reproductive organs, one can expect to find few samples showing vegetative growing
shoots, making it difficult to train an automatic detection model based on deep learning,
which requires a rather large number of training examples to learn from. Moreover, due
to the great taxonomic diversity of tropical regions and the numerous and various visual
aspects and potential smallness of young growing shoots, the automatic detection model
needs to be robust to size and capable of generalizing to a wide variety of visual patterns.

Thus, the main motivation of this work is to try to answer the following questions:

1. Do herbaria contain relevant information for the study of tropical tree growth? If so,
to what extent?

2. Can deep learning-based automated approaches detect growing specimens?
3. If so, which approaches are most relevant and which growth patterns are best detected?

2. Results
2.1. Herbarium Data

A new dataset was created from a selection of specimens located in different ecosys-
tems of the French Guiana territory, scanned and hosted by the Herbarium of French
Guiana (http://herbier-guyane.ird.fr/ accessed on 10 May 2021, see Section 4.1 for more
details on the various steps involved in assembling and enriching the dataset). Each spec-
imen was annotated with taxonomic and contextual information (species, genus, family,
date, name of locality, and GPS), with tags on the presence of fertile organs, but initially
without information on the presence or absence of vegetative growths. A great effort
was made by two experts to manually and meticulously select relevant specimens for our
experiments by checking for the presence or absence of new growing shoots. In the end, the
resulting dataset consists of 408 herbarium specimens belonging to 57 species, 40 genera,
and 25 families, with a total of 77 specimens showing the presence of recent shoots. Two
complementary tags specifying the type of growing shoots—“Rhythmic” or “Continuous”,
corresponding to two fundamentally different plant growth behaviors—were added by
the experts to those 77 specimens. Finally, the scans of each specimen were manually
annotated to provide bounding boxes and masks that precisely localize the growth shoots
in the image. These were used for the training of deep model approaches evaluated in the
experiments. The resulting dataset and its additional annotations of growing vegetative
shoots (type of shoot, bounding boxes, and masks) are an important first contribution of
this paper by providing a new annotated dataset, opening perspectives to phenological
analyses based on the observation of this type of botanical structure.

2.2. Global Model Detection Performance (EXP1, ResNet50)

Three deep learning architectures were evaluated, which can be distinguished as global
and local approaches (see Section 4.3 for more details about the models used and the design
of the experiments). The global approach is based on a ResNet50 convolutional neural
network working at the scale of an entire image without specifying which subparts do or
do not belong to a growing shoot, as in a standard image classification task. On the other
hand, the two local approaches are based on convolutional neural networks specifically
designed for object detection tasks respectively exploiting two different levels of annotation:
(i) bounding boxes for a Faster R-CNN model, and (ii) fine contour delineations of the
growing shoots for a Mask R-CNN model. The Receiver Operating Characteristic (ROC), a
classical performance measure for detection tasks that reports the True Positive Rate versus
the False Positive Rate, was used for each experiment.

The performance of the global model is shown in Figure 2. For growing shoot detection,
this model significantly outperforms a random classifier despite the difficulty of the task.
It is thus able to capture discriminant information using only a global view of the image
without any form of localization information of the growing shoot(s).

http://herbier-guyane.ird.fr/
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Figure 2. ROC curves—true positive rate versus false positive rate—of the global model for growing
shoots (blue) and fertility (orange) detection. The dashed red line, representing the performance curve
of a random classifier, is shown for comparison. The global model is better than the random classifier
for growing shoot detection but is very far from its performance on the fertility detection task.

For comparison, we also tested the performance of this model for a fertility detection
task on exactly the same herbarium specimens used for both training and assessment
(annotations related to the presence and absence of reproductive structures are based on
previous work [49]). Note that due to the selected specimens for these experiments, the
ratio of fertile specimens is around 10–15%. This proportion is much lower than the fertility
ratio of the rest of the specimens in CAY herbaria (around 79.4%), but comparable to the
ratio of specimens possessing growing shoots (18.87%, according to Table 1). Figure 2
shows that the global approach is significantly better for fertility detection than for growing
shoot detection. This highlights the fact that detecting the presence of flowers and/or fruits
is much easier than that of growing shoots.

The performance of the global approach emphasizes the need for a more adapted
method that takes into account the specificity of the task. In the next section, we study the
performance of methods specifically designed for object detection.

2.3. Local Models Detection Performance (EXP2, Faster R-CNN, and Mask R-CNN)

The performance of the local approaches—Faster R-CNN using bounding boxes and
Mask R-CNN using masks—measured by ROC curves are given in Figure 3 in a similar
way to Figure 2. Both local approaches performed better overall than the global approach,
with better trade-offs between the true positive rate (TPR) and the false positive rate (FPR).
The optimal cut-off point is defined as the point closest to the upper-left corner, and it
indicates the best compromise between TPR and FPR for each model. For the Faster Region
based Convolutional Neural Network (Faster R-CNN) model, it is attained for a TPR of
0.80 and an FPR limited to 0.25. For the Mask R-CNN model, there is no salient point
along the curve, but a cut-off point can be found for a TPR of 0.92 and an FPR of 0.46. To
give a more condensed view of the results and to facilitate the comparison of the three
methods, Table 2 reports the true positive rates given at three regular intervals of false
negative rates (0.10, 0.20, and 0.30). As an example, this table indicates that if 20% of the
images without growing shoots are incorrectly predicted as possessing growing shoots,
by using the Faster R-CNN model, we can expect to find 64% of all the specimens really
containing a growing shoot.
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Table 1. Summary of the statistics of the dataset with the number of families (Fam.), genera (Gen.),
species (Sp.), and observations (Obs.) as well as the total number of images (Total), of images with new
growing shoots (w/Shoots), and of images by type of growing pattern (w/Cont. for “Continuous”,
w/Rhyt. for “Rhythmic”). Note that some images have not been fully determined at the species
and/or genus level.

Images

Set Fam. Gen. Sp. Obs. Total w/Shoots w/Cont. w/Rhyt.

Total 25 59 57 352 408 77 32 45
Train 23 49 42 235 275 52 22 30
Test 19 34 35 117 133 25 10 15

Table 2. Comparison of the True Positive Rate (TPR) at three fixed False Positive Rate (FPR) values.
The highest values for each FPR are in bold.

FPR

Model 0.10 0.20 0.30

TPR
ResNet50 (global) 0.24 0.40 0.60

Faster R-CNN (local) 0.44 0.80
Mask R-CNN (local) 0.48 0.60 0.68

Figure 3. Receiver Operating Characteristic (ROC) curves—true positive rate versus false positive
rate—for the Faster R-CNN (blue) and Mask R-CNN (orange) models, considering growing shoots
as one class to be detected. In the dashed red line, the performance curve of a random classifier is
shown for comparison. The Faster R-CNN model is better than the Mask R-CNN model, with the
highest ROC AUC and a clearer optimal cut-point at TPR 0.92 and FPR 0.25. Both models are better
than the global model.

2.4. Local Models Two-Class Detection Performance (EXP3, Faster R-CNN, and Mask R-CNN)

In the previous experiments, during training, the models were told if a scan contained
one or several growing shoots (global approach in EXP1) and then given their localization
in the image (local approaches in EXP2). The additional information of the type of grow-
ing shoots—“Continuous” or “Rhythmic”—can also be provided and leveraged by the
detection models. This is what was studied in experiment EXP3.

Figure 4 provides the ROC curves of the Faster R-CNN and Mask R-CNN models. This
time, the Mask R-CNN model seems to have outperformed the Faster R-CNN as compared
to the previous experiment, EXP2. Indeed, the Faster R-CNN model has more difficulties in
correctly detecting the “Rhythmic” category with an FPR and TPR close to that of random
classifiers. On the contrary, the Mask R-CNN model obtained ROC curves with high AUC
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(area under the curve) for both categories, and with optimal cut-off FPR and TPR values
of 0.28 and 0.90, respectively, for the “Continuous” category, and optimal cut-off FPR and
TPR values of 0.31 and 0.87, respectively, for the “Rhythmic” category. Similarly to EXP2,
Table 3 gives a more condensed view of the performances of the models by providing the
TPR values of the two local models and the two types of growing shoots at three chosen
FPR values (0.10, 0.20, and 0.30). It highlights the fact that the Mask R-CNN model returns
more correctly detected images than the Faster R-CNN model for both types of growing
shoots if we tolerate that 20% or more of the images without growing shoots are incorrectly
predicted with growing shoots.

Figure 4. ROC curves—true positive rate versus false positive rate—for the two models considering
two categories of growing shoots during the training: Faster R-CNN “Continuous” (blue), Faster
R-CNN “Rhythmic” (dashed blue), Mask R-CNN “Continuous” (orange), and Mask R-CNN (dashed
orange). In red, the performance curve of random classifiers is shown for comparison. The Mask
R-CNN model is better than the Faster R-CNN model, especially in the “Rhythmic” category.

Table 3. Comparison of the True Positive Rate (TPR) at three fixed False Positive Rate (FPR) values
for the two detection task classes. The highest values for each FPR and each growing shoot type are
in bold.

FPR

Growing Shoot Type Model 0.10 0.20 0.30

TPR
“Continuous” Faster R-CNN 0.30 0.60 0.80

Mask R-CNN 0.40 0.60 0.90

“Rhythmic” Faster R-CNN 0.27 0.47 0.47
Mask R-CNN 0.20 0.53 0.73

3. Discussion

This study confirms the fact that the proportion of specimens showing new growing
shoots is extremely low in herbarium collections. During the preparation of the dataset,
the two experts went through 1109 herbarium sheets to certify that 104 pictures (9.46%)
contain growing shoots. When we compare this proportion to that of flowering plants
on all the specimens of the herbarium on which [49] have worked (ranging from 79.4 to
92.7%), we see a highly significant difference. This difference can be interpreted by the
combined facts that (i) the elongation and maturation of new shoots usually occur over a
relatively short period of time when growth is rhythmic and that (ii) botanists preferentially
collect fertile (i.e., flowering or fruiting) specimens in order to have maximum evidence
for their botanical determination. Because of the long period of fruit ripening, the axes are
thus fertile for many months of the year. In fact, only few specimens with a new growth
shoot were in flower or fruit during our study. This highlights the low concomitance of
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the presence of growth shoots and the reproductive structure and partly explains why we
observe so few specimens with growing shoots in the studied specimens.

Our study shows that despite the small number of samples and the size and diversity
of visual patterns, automatic detection technologies can nowadays partially predict the
presence of growing shoots in herbarium collections. These results are promising and
encourage the performance of more investigations and intensive evaluation on larger
volumes of training and test data.

The performance of the three types of approaches are proportional to the annotation
effort in the images: the limited annotations for the presence/absence tag of the growing
shoots led to the least good performances, while a time-consuming annotation effort, with
masks delimiting the growing shoots to the nearest pixel and a categorization of the type
of shoot allowed for the achievement of the best results. Intermediate annotation effort
with bounding boxes and a single general category of growing shoot offered an interesting
compromise between annotation effort and performance.

In the case of a single general category of growing shoots, it seems that the Mask
R-CNN approach encounters more difficulties to converge than the Faster R-CNN approach.
This observation could be explained by the fact that the mask prediction learning was
forced on more heterogeneous visual concepts, which are more difficult to generalize from
and would require more data for the model to capture appropriately. Conversely, if the
two concepts of growing shoots are considered as two distinct categories, this additional a
priori information will be leveraged by the model. In this case, the Mask R-CNN can more
easily capture the contours of both types of growing shoots, converge better, and finally
outperform the Faster R-CNN.

Detecting “Rhythmic” growth is more difficult than detecting “Continuous” growth,
especially with the Faster R-CNN model, and to a lesser extent with the mask R-CNN
model. Shoots labeled “continuous growth” mostly develop at the ends of branches and
are then often arranged on the uniform background of the sheet without overlapping
with other parts of the plant. Conversely, rhythmic shoots include lateral branching and
can more frequently partially cover or be covered by other parts of the plant. Bounding
boxes around a shoot then capture a lot of less relevant content (parts of mature leaves,
bark, tape) that probably disturbs the training of the Faster R-CNN model on the rhythmic
growing shoots.

In the best of cases, when using the Mask R-CNN model, about 87–90% of the herbaria
with growing shoots can be found at a rate of 28–30% false alarms according to the current
evaluated test set. Furthermore, it is interesting to note that the Mask R-CNN offers the
additional possibility of producing masks on which biologists could conduct morphological
measurements (size, shape, coloration), bringing more fineness to such types of herbarium-
based phenological analyses. However, this approach deserves more investigations on the
quality of the masks produced and the risk of overfitting because it seems that predicted
masks of better quality are created at the cost of more training iterations, leading to a
decrease in the true positive rate (see Appendix B).

Deep learning, and AI in general, is a very active research field. The performance
of such difficult tasks could certainly be improved in future works, with the latest state-
of-the-art techniques, such as with a complementary active learning process [53]. Such
methodology, which contributes to interactively annotating and introducing progressively
new training material, and particularly the most useful images for improving a model, could
allow for a more rapid expansion of training data, which is sorely lacking at the moment.

Our study shows that historical data, with the help of AI technologies, represent an
original material with which new knowledge about the vegetative phenology of tropical
tree species could be built. However, the following recommendations for the community of
taxonomists and biologists who collect and prepare herbarium specimens could further
contribute to the facilitation of future phenological studies based on this methodologi-
cal framework:
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• Collect more specimens with growing shoots in addition to those with reproductive
structures;

• Organize the specimens on the herbarium sheet in order to better visualize the ends of
the axes, and to avoid leaf overlaps;

• Annotate the presence or absence of new growing shoots.

4. Materials and Methods
4.1. Assembling Herbarium Records and Manual Annotations

A specific dataset was created from a large corpus already made available to the
scientific community by the Herbarium of French Guiana [54] (http://herbier-guyane.
ird.fr/ - CAY - accessed on 10 May 2021) of the French national institute for sustainable
development (IRD). All digitized specimens of this herbarium are accessible online (http:
//publish.plantnet-project.org/project/caypub_en accessed in 10 May 2021). Most of
them were collected in the tropical rainforests of French Guiana, with the remaining
specimens coming from Suriname, Guyana, and Brazil (Amapá and Pará states). The
new dedicated dataset consists of a selection of specimens located in different ecosystems
of the French Guyana territory [55]. Each specimen is annotated with taxonomic and
contextual information—species, genus, family, date, locality name, and GPS—and tags
about the presence of fertile organs. Initially, no information related to the presence or
absence of vegetative growths was recorded for these specimens. Two experts spent more
than two full-time days manually and meticulously scanning the specimens and checking
for the presence or absence of new growing shoots. Analyzing and double-checking the
specimen scans was a tedious task because new growing shoots are sometimes difficult to
observe due to their small size or relatively discrete characteristics that only experts can
notice. Finally, from an initial list of 70,563 herbarium sheets covering a large taxonomic
diversity—about 3500 species, 790 genera, 130 families—1099 sheets were annotated for
the presence (104 sheets) or a certified absence (995 sheets) of new growing shoots. This
manual annotation gives a first estimation of the ratio of herbaria that contain growing
shoots, which is about 9.46%. However, this initial estimate is probably an overestimation
of the true ratio, as the two experts focused on taxonomic groups that were likely to contain
growing shoots.

Moreover, for this first selection, we decided to exclude a large number of taxa from
the final dataset—about 150 species, 80 genera, and 13 families—that were associated
with a single specimen. Indeed, retaining too many species (and a wide taxonomic cover-
age) would have incurred the risk of introducing many isolated and potentially atypical
vegetative growing patterns, which would have strongly affected the performances of
the automatic detection methods. Furthermore, by excluding these isolated specimens, it
was assured that any herbarium containing a growing shoot that would be used for the
evaluation of automated approaches would have at least one training example from the
same taxonomic group. In the end, the resulting dataset was composed of 408 herbarium
specimens belonging to 57 species, 40 genera, and 25 families, with a total of 77 specimens
showing the presence of recent growing shoots. These additional annotations of growing
vegetative shoots represent the first important contribution of this paper by proposing
a new annotated dataset, opening perspectives in phenological analyses based on the
observation of this type of botanical structure.

During the identification of the growing shoots, we tried to distinguish two categories
of shoot extension modalities: “rhythmic” or “continuous” growth. “Rhythmic growth” is
manifested by an alternation of periods of rest and periods of active shoot extension or
“growth flushes”. A “growth unit” is defined as the portion of an axis that develops during
an uninterrupted period of extension [56]. On the other hand, “continuous” growth exhibits
a relatively constant extension of phytomers, i.e., internodes associated with their leaves
and axillary buds throughout the year. The temporal pattern of rhythmic growth often
results in structural regularities from a morphological point of view. The limit between two
growth units is usually identifiable by a series of short internodes associated with leaves

http://herbier-guyane.ird.fr/
http://herbier-guyane.ird.fr/
http://publish.plantnet-project.org/project/caypub_en
http://publish.plantnet-project.org/project/caypub_en
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reduced in size or scale leaves (i.e., cataphylls). However, in other cases, when the buds
are not made of cataphylls but of leaf primordia, these “naked” buds [57] generally do not
leave any morphological evidence that allow for the localization of the growth stops. In
this case, it may be difficult to distinguish rhythmic from continuous growth by simple
observation of the morphology. Nevertheless, when a set of leaves is elongated during a
flush, they generally present a homogeneous state of maturation. On the contrary, during
continuous growth, we observe a gradient of maturation (size, texture, color) from the
proximal part of the elongated shoot to its distal part. In some intermediate cases, axes
that elongate leaves one after the other, as in continuous growth, can enter a phase of rest
constrained by the seasonality of the climate. In these cases, we assigned the category
“Rhythmic” to species whose young shoots had, at their base, small internodes associated
with small leaves or cataphylls in addition to young leaves with a relatively homogeneous
state of maturation. On the other hand, we assigned the category “Continuous” to young
shoots which did not present these characteristics. Note that this last category can include
species with rhythmic growth without any morphological markers. These two growing
patterns are illustrated in Figure 5. Because of the ambiguity between continuous and
rhythmic patterns (due to the potential overlap of some structures with the basis of the
new shoot, among others), some of the specimens initially annotated as having a recent
growing shoot were finally removed from the dataset.

From the perspective of deep learning approaches, there are several ways to auto-
matically detect recent growing shoot and eventually specify their type (“Rhythmic” or
“Continuous”). In this study, we first considered a global approach that tried to detect the
presence or not of growing shoots in an image without precisely indicating their locations.
This first approach was then compared to local approaches that tried to more finely detect
the growing shoots through bounding boxes or even masks that locate the vegetative
structures at the pixel level. To evaluate the performance of such different approaches, the
herbarium dataset was manually annotated at three levels of granularity related to the
presence of growing shoots:

• “FullImage” level. All herbarium sheets used in this study were associated with a
tag (Yes or No) indicating if the sheet had at least one recent growing shoot visible
or not. No information on the location, number, or size of recent growing shoots
was recorded.

• “Mask” level. In each herbarium sheet containing one or several recent growing
shoots, each shoot was manually annotated and cross-validated by two co-authors
using COCO Annotator (https://github.com/jsbroks/coco-annotator) accessed on
10 May 2021) a web-based image annotation tool designed to efficiently label images
and create training data for object detection tasks (see Figure 6). This allows for the
precise capture of their full shape. It should be noted that it was not uncommon for
growing shoots to be partially overlapped by other plant parts (leaves of adult sizes,
branches, petioles) or sometimes by pieces of tape. In this case, only the visible part in
the foreground was annotated, thus generating a mask potentially based on several
disjointed polygons for a single growing shoot.

• “BoundingBox” level. Once the masks were created, the bounding boxes were di-
rectly deduced from the masks based on the min and max coordinates in x and y,
respectively, for each mask. This gives us rectangles that capture both the growing
shoots and the surrounding visual context such as parts of stems, leaves, textual
description, and paper.

https://github.com/jsbroks/coco-annotator
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Figure 5. (a) Young shoot at the end of growth in Cupuassou (Theobroma grandiflorum, Malavaceae).
Rhythmic growth is denoted by the presence of leafless internodes at the base of the growth units and
by young leaves in the same state of maturation. (b) Growth unit at the very beginning of elongation
in Carapa procera (Meliaceae). (c) Growth unit at the end of elongation in Pradosia cochlearia (Sapotaceae).
In this case, the boundary of the growth unit is not distinguished by the presence of short internodes
or cataphylls, although growth is rhythmic. (d) Elongating growth unit in Goupia glabra (Goupiaceae).
In this case, the growth unit is branched, with the lateral branches developing at the same time
as the supporting axis (immediate branching). (e) Gradient of size and state of maturation of the
leaves from the apex to the base of the axis in Schefflera morototoni (Araliaceae). In this case, the leaves
are progressively elongated one after the other, although growth may stop regularly. (f) Collection
by D. Loubry (n°1005, CAY) of a Parinari excelsa (Chrysobalanaceae). Note the presence of a growth
unit distinguished by a leaf cohort (f′) and the presence of cataphylls at the base associated with
short internodes (f′′). This specimen is classified as “rhythmic growth”. (g) M.S. collection (n°253,
CAY) of a Cordia schomburgkii (Boraginaceae). On this specimen, an acropetal gradient of leaf size and
maturation status is seen, with no growth unit boundary clearly visible through the presence of short
internodes or cataphyll. This specimen is classified as “continuous growth”.

Figure 6. Coco annotator user interface. On the right panel, a herbarium specimen is fully anno-
tated, with two pairs of young leaves, both with bounding boxes (yellow and purple) and manual
segmentations (green and pink).
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4.2. Preliminary Analysis of the Annotations

Before trying to predict the presence of new growing shoots in herbarium speci-
mens, we propose to have a look at the collected annotations to gain insights into this
detection task.

In Figure 7a, we superpose the growing shoots of all the scans. It can be noticed that
most of them are on the upper part of the scans. Furthermore, they are more likely to
be horizontally situated near the center rather than close to the edges of the sheets. This
position distribution is unsurprising as, when compelled to agree with the standards, plants
are often arranged in a predictable way, and if growing shoots are present on them, they
will thus be found in similar areas of the sheets. This hint could be leveraged by automatic
detection algorithms as it is not necessary to look at the whole scan but only at a subpart
of it.

Next, we analyze the distribution of the number of growing shoots in the specimens
in Figure 7b. Most scans only contain a single new growing shoot (68%), and merely a
handful of them contain more than three (7.8%). However, in nearly one-third of the cases,
there is more than one growing shoot in the image. While standard classification methods
run on full images would see those scans as single data points, each growing shoot could
be seen as a separate training sample to train from by more local approaches. Exploiting
this would allow for the optimal use of the limited amount of training data available.

Finally, we study the surface occupied by each growing shoot in the image to under-
stand the size of the objects to be detected. Figure 8a shows the distribution of the relative
(average) surface occupied by each growing shoot in the scans. Most growing shoots are
very small and occupy less than 1% of the pixels in the image. However, in some cases,
they can cover a non-negligible part of the scan but very rarely over 10% of the total surface.
Moreover, as shown in Figure 8b, there is a correlation between the number of growing
shoots and their relative size. In particular, when a lot of shoots are present, they are more
likely to be small. The smallness of the objects we want to detect is likely to cause issues in
traditional classification approaches which are designed to detect rather big objects in the
images [58].
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Figure 7. (a) a heatmap shows the relative distribution of the positions of the growing shoots in the
herbarium specimen sheets based on the Mask level annotations. Growth shoots are not located
randomly in the scans but rather in the upper part of the images. On (b), the distribution of the
number of growing shoots per image is displayed. Most herbarium specimens contain a single shoot,
and it is rare to find more than three shoots on a single sheet.
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Figure 8. (a) shows the distribution of the (average) surface occupied by the growing shoots in the
scan is shown. Most growth shoots are small objects within the overall image. On (b), this distribution
is shown according to the number of growing shoots per image. The more growing shoots are present
in the image, the more likely they are to be small.

To summarize this section, we can state that (i) the growing shoots are not randomly
positioned in the scans, (ii) they can be numerous in each image, and (iii) they are usually
very small relative to the image. These three observations justify looking beyond traditional
image classification models, which usually look at the full image scale, and the testing of
more local object detection approaches.

4.3. Description of Experiments

The objective of the experiments is to evaluate deep learning-based automated tech-
niques to detect new growing shoots in herbarium specimens of tropical woody plants.
More precisely, the main tasks are the following:

• Detection: What is the performance of automatic growing shoot detection in herbaria?
Do we obtain performances comparable to the automatic detection of reproductive
structures? With what proportions of missed growing shoots and detection errors?

• Detection and classification: Is it possible to both detect and classify different types
of growing patterns (“Continuous” or “Rhythmic”) automatically?

4.4. Evaluated Deep Learning Architectures

Several deep learning architectures were evaluated. They can be divided into two
categories: global and local approaches. The global approach considers the detection task
as a visual classification task and works at the scale of a whole image without specifying
which sub-parts belong or not to the different considered categories. In the context of this
study, the Detection task is related to a two-category problem (“Without” or with “New
Growing Shoot”), and to a three-category problem for the Detection and classification
task (“Without”, “Continuous”, “Rhythmic”). The advantage of this approach is that it
does not require expensive manual annotation work inside each image of the training set.
A local approach, on the other hand, is specifically designed to locate objects, growing
shoots in our case, with different levels of precision, such as bounding boxes or fine contour
delineations, depending on the power of the method used and the manual annotation effort
one is willing to make to train a deep learning model. A total of three architectures were
evaluated, one using a global approach and two a local approach, all relying on the same
pretrained backbone model (a ResNet50 [59]), to make fair comparisons.

• Global model (ResNet50). The first deep learning model that was trained is the Con-
volutional Neural Network (CNN) ResNet50 [59]. It was pretrained on the ImageNet
dataset [60] and fine-tuned on our training dataset. ResNet50 is widely used in image
classification tasks and research works for its good compromise between performance,
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memory use, and training time. Moreover, ResNet50 is often preferred to other re-
cent architectures for a wide range of application studies because its architecture is
rather simple, and it is relatively easy to find training hyperparameters that produce
good and stable results. A CNN produces as outputs a list of classification scores
(probabilities) related to the considered categories, but without any information about
the sub-parts of the image that contributed to the prediction. Pre-trained models
can be easily found for most Deep Learning frameworks, particularly for PyTorch
(https://pytorch.org/, accessed on 10 May 2021), which was used for our experi-
ments. Details on this model adaptation, data augmentation strategy, and the used
hyperparameters are provided in Appendix A.

• Local model (Faster R-CNN). The second model that we evaluated is based on the
Faster R-CNN architecture [61], which was chosen for its demonstrated efficiency
in various object detection tasks and challenges such as MS COCO [62]. A trained
Faster R-CNN model produces as outputs a list of bounding boxes associated with
probabilities related to the considered categories for detection. We used the Detectron2
implementation [63] itself using the PyTorch framework, based on ResNet50 as the
backbone CNN and the Feature Pyramid Network [64] as the Region Proposal Net-
work for object detection. The total number of training iterations was made based on
the empirical observation of the model’s training performance. A detailed description
of the hyperparameters that were used to train the model is provided in Appendix B.

• Local model (Mask R-CNN). The third model that we evaluated is based on the Mask
R-CNN architecture [65], which was chosen for its ability to perform an instance
segmentation task by extending the Faster R-CNN approach to a pixel-level mask
prediction task. A trained Mask R-CNN model produces as outputs a list of polygon
sets, each associated with probabilities related to the considered categories. As for
the Faster R-CNN, we used the Detectron2 implementation [63], using by default the
same backbone ResNet50 and the Feature Pyramid Networks as for Faster R-CNN.
A detailed description of the hyperparameters that were used to train the model is
provided in Appendix B.

4.5. Assessing Raw Performances of Deep Learning Models
4.5.1. Training and Test Datasets

To evaluate the ability of the different models to automatically detect growing shoots,
the subset of plant observations containing at least one herbarium sheet that showed
growing shoots was randomly split at a ratio of 0.66, following a stratified strategy based
on taxa. In this way, we reduced the risk of bias by preventing images belonging to the same
plant observation from being split between the training and test sets, which would have
led to overly optimistic measures of performance. On the other hand, the stratified split by
taxa guaranteed that the growing shoots related to one given taxon to be detected in the test
set have some training examples related to the same taxon in order to not unfairly penalize
the performance. Afterwards, images without growing shoots where added to extend the
training and test sets and to introduce “negative” examples that were needed to train the
global model (see Table 1 for detailed statistics). For local approaches, negative images
were not mandatory because this type of approach already learned to differentiate the areas
of interest to be detected from the areas to be excluded within the “positive” images (i.e.,
images with growing shoots). However, as for the global approach, negative images were
here used in the local approaches under the assumption that these images would show
supplementary visual content and to train better models. For the test set, negative images
allowed for the evaluation of the robustness of the approaches by measuring in particular
the false positive rate.

4.5.2. Tasks

To allow the comparison of our three deep learning models, a first set of of experiments
were conducted to evaluate the Detection task, i.e., the ability to detect if an image contains

https://pytorch.org/
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or not growing shoots. Then, the same experiments were repeated on the Detection and
Classification task, i.e., the ability to detect if an image contains a “Continuous” or a
“Rhythmic” or no growing shoots.

• EXP1: Detection, Global model (ResNet50)
• EXP2: Detection, Local models (Faster R-CNN, Mask R-CNN)
• EXP3: Detection and Classification, Local models (Faster R-CNN, Mask R-CNN)

4.5.3. Metrics

Considering a herbarium collection, a phenological study of the vegetative growth
dynamics must be able to rely on images that are deemed certain to contain growing shoots.
Nevertheless, it is equally important to ensure with certainty the absence of growing shoots,
especially in the case of rhythmic shoots. Indeed, too many false positives, i.e., images
wrongly predicted to have growing shoots, could strongly degrade the conclusions of
such a study (in particular, on the duration between stop and restart of growth). This is
why we retained the main metric of the Receiver Operating Characteristic (ROC) curve.
The ROC curve basically gives True Positive Rate (TPR) versus False Positive Rate (FPR)
at various probability thresholds. It is typically used in binary classification, as in our
experiments EXP1 and EXP2, and it can be extended to multi-label classification with one
ROC curve drawn per label (“Continuous” and “Rhythmic” for the experiments EXP3).
The Area Under the Receiver Operating Characteristic Curve (ROC AUC) summarizes
the ROC information in one number that can be used to select the best model parameters
(see Appendix B). The highest difference between the TPR and FPR is used to select the
probability threshold giving the optimal cutoff point, i.e., the threshold giving the best
trade-off between TPR and FPR.

5. Conclusions

The vegetative phenology of plants is an area where much knowledge remains to
be discovered, especially for tropical floras. We still do not know the precise growth
patterns for the vast majority of species, nor their adaptation behavior in the climatic,
geographical, and environmental contexts. These are fundamental research questions that
also have an applicative scope in the fields of silviculture and agroforestry, such as knowing
the best periods of the year that favor the pruning of trees for better growth and better
production of wood, or in the management of trees used for shade in coffee plantations in
an agroforestry system.

We have shown in this study that herbaria represent a potentially interesting and
usable source of information that can serve as material for studies on the vegetative
phenology of tropical tree species. However, specimens with growing shoots are quite rare
and unbalanced at the taxonomic level since the collection of specimens is often motivated
by the presence of reproductive organs. We have shown that deep learning techniques can
potentially help to detect at best about 87–90% of the images that truly contain growing
shoots but at the cost of a false positive rate of about 28–30%. Future investigations can
focus on reducing the false positive rate to ensure the prediction of the absence of growing
shoots, which is a crucial piece of information, especially in the case of rhythmic shoots.

Automatic techniques can thus be used to enhance past historical data and provide
original material based on herbarium specimens of great value for future works on veg-
etative phenology. Looking towards the future, the study also led us to propose several
recommendations for the next collection of herbarium specimens in order to facilitate
the implementation of automated methods, and to encourage the consideration of future
phenological studies at unprecedented time and space scales that were until now deemed
unthinkable by the biology community.
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Appendix A. Global Model (ResNet50)

The model used for experiment EXP1 (Section 2.2) is based on a ResNet50 [59] Convo-
lutional Neural Network architecture. As in most image classification neural networks, its
architecture mainly consists of a succession of convolutional layers, followed by a spatial
pooling layer and a final fully connected layer. Unlike the fully connected layer, the con-
volutional layers are agnostic to the spatial extent of their inputs and act as visual feature
extractors. The pooling layer removes the residual spatial information before feeding the
fully connected layer, which can then perform the final classification.

The original ResNet50 model was designed to take square images with 224 × 224 pixels
as input. However, herbarium sheets are usually scanned at high resolution to record very
fine visual information and have a rectangular shape. To cope with this rectangular shape
and to preserve as much detail as possible, the original ResNet50 model had to be adapted.
This was accomplished by changing the last pooling layer of fixed size, either by increasing
its kernel size or by replacing it with an adaptive version that accepted inputs of arbitrary
size. This modification is in line with a previous work related to the automatic annotation
of phenological stages of reproductive organs in herbaria [49]. Note that, in PyTorch’s
ResNet50 implementation, the adaptive pooling is now used by default. Thus, no modifica-
tion to the model specification is actually required. In our case, we used images with the size
of 674 × 450 pixels. Such a modification can in fact be applied to many other architectures
and is not limited to ResNet50. It comes at the cost of computing more activations, which
implies the additional usage of memory and computing time, especially during training.

https://zenodo.org/record/5777028
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However, with such an approach, the number of parameters remains the same while being
able to exploit finer details in the images. Moreover, this allows for the performance of
transfer learning by fine-tuning the model, reusing parameters from a pre-trained model
on another dataset. This method dramatically reduces the training time and enables the
achievement of good performances despite the limited number of herbarium images in
our dataset.

Two separate models were trained: one for the growing shoot detection task and
one for the reproductive organ detection task. Both were fine-tuned on our herbarium
dataset from a pre-trained ResNet50 model on tens of millions of images from the ImageNet
dataset [60] and available from PyTorch’s model zoo (https://pytorch.org/vision/stable/
models.html accessed on 10 May 2021). Each model was optimized using a binary cross-
entropy loss to predict, for each scan given as input, a probability of the presence of
growing shoots and reproductive organs. Both models were trained for 50 epochs using a
stochastic gradient descent (SGD), with batches of size 32, a learning rate of 0.01, Nesterov’s
momentum value of 0.9, and a weight decay value of 1 × 10−4. No learning rate decay
was performed. During training, data augmentation was used. It first consisted of random
horizontal flips and random rotations of ±45 degrees on the input images. The scans were
then resized to have a width of 500 pixels while preserving the aspect ratio, followed by
the extraction of a random crop size of 674 × 450 pixels. At test time, the scans were solely
resized to a width of 500 pixels while preserving the aspect ratio, before extracting a center
crop size of 674 × 450 pixels, without any randomness in this pre-processing step.

Appendix B. Local Models (Faster R-CNN and Mask R-CNN)

The two local detection models Faster R-CNN and Mask R-CNN used for experiments
EXP2 and EXP3 (Sections 2.3 and 2.4) are based on the Detectron2 framework [63]. These
two models come from the same family of Region-Based Convolutional Neural Networks
(R-CNN) dedicated to object detection. We propose to quickly go through the history of
this family in order to understand the hyperparameters retained for our experiments.

Historically, the first R-CNN model [66] used a selective untrainable search [67] that
scanned an input image and generated numerous crops or regions of interest (RoI) likely
to contain an object based on multiple hand-created attributes and the calculation of an
“objectness” score. These regions were then warped to fit the square input of a pre-trained
CNN to produce independent features and finally predict the class with an SVM classifier.
However, the regions typically have many overlaps and independent feature extractions,
resulting in too much unnecessarily repeated computation.

The Fast R-CNN version [68] streamlines the computational effort of working directly
on the intermediate feature maps extracted from a truncated CNN, called a backbone, in
order to perform region of interest pooling and class prediction with an auxiliary bounding
box prediction.

Next, the Faster R-CNN [61] replaces the selective search with a Region Proposal
Network (RPN) trained jointly with the rest of the model. Through this end-to-end training,
the RPN learns to generate region proposals that are relevant in terms of quality and number.
The essential elements of RPN are the use of anchors and Non-Maximal Suppression (NMS).
Anchors are predefined bounding boxes used by the RPN to select candidates for object
detection. The sizes and aspect ratios of the anchors are hyperparameters of the model that
can eventually be determined by statistical research on the shape distribution of objects
in the training data. NMS is a post-processing that merges and then reduces the number
of regions through a greedy algorithm that loops over all classes. If the IoU (Intersection
over Union) between two bounding boxes of the same class is greater than a certain
threshold, the algorithm discards the box with the lowest confidence score (which is the
product of the objectness score and the conditional probability of the class). Later, the
implementation adds a supplementary trainable feature extractor called Feature Pyramid
Network (FPN) [64]. The FPN generates a pyramid of feature maps at different scales that
feed the RPN with better quality information.

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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Finally, the Mask R-CNN [65] extends the Faster R-CNN to enable instance-based
segmentation. The model introduces a Region of Interest alignment layer to preserve the
spatial information on the extracted features maps. In this way, the output of this layer
contains feature maps of the same shape for all the regions of interest that can be then used
to train not only the class and bounding box predictions for each region of interest, but also
the pixel-level position of the object through an additional fully convolutional network.

In our experiments, we fine-tuned four models from two pre-trained models related
to experiments Sections 2.3 and 2.4: two Faster R-CNN models, one considering a single
“Growing shoot” class and another considering two growing shoot classes (“Continuous”,
“Rhythmic”), and two Mask R-CNN models considering the same two sets of class labels.
The models were fine-tuned on our dataset from pre-trained models on the COCO dataset
2017 [62]. The Detectron2 model zoo (https://github.com/facebookresearch/detectron2
/blob/main/MODEL_ZOO.md accessed on 10 May 2021) provides numerous pretrained
models. We selected the pretrained models combining a ResNet50 backbone (initially itself
pre-trained on an ImageNet classification task) with a Feature Pyramid Network. According
to the Detectron2 documentation, these baseline models obtain the best speed/accuracy
trade-off. The pre-trained models are named “R50-FPN” on the Detectron2 model zoo and
are associated with the configuration file named faster_rcnn_R_50_FPN_3x.yaml for Faster
R-CNN and mask_rcnn_R_50_FPN_3x.yaml for Mask R-CNN.

Then, we used the following hyperparameters, which are, for the most part, those
from the default configuration of Detectron2:

• The images were resized with a minimum size of 1000 pixels;
• The anchor size values were set to [32; 64; 128; 256; 512] with aspect ratios of [0.5; 1; 2];
• An NMS threshold set to 0.7;
• An initial learning rate of 0.002, with a rate decay of 6:2:2 (the initial learning rate

value was divided by 10 at six-tenths and eight-tenths of the training);
• Random horizontal flips and random rotations of ±45 degrees as data augmentation;
• Batch size of three images per iteration;
• A maximum of 10,000 iterations (approximately 74 epochs), with snaphots every 1 k

iterations to select the best model (see below).

For predictions, we set the confidence score threshold to 0.1 with an NMS of 0.5.
Afterwards, to compare the performances between several models and to calculate the ROC
AUC curves at the image level information, when a model detected several predictions on
an image, we kept the prediction with the highest probability.

Then, for each model, we selected the best model learned during the training to
establish fair performance measures between the approaches. Indeed, each model has
its own speed of progression and requires its own number of total iterations to converge
to its best performance. Moreover, after a significant number of iterations, a model can
eventually suffer from overfitting and end up generalizing less on new data not unseen
during training such as in the test set. To select the best model, during the training, we
measured the ROC AUC that summarized in one number a trade-off between the True
Positive Rate (TPR) and the False Positive Rate (FPR) at regular intervals of 1 k iterations,
set at a maximum of 10 k iterations. Figure A1 shows the evolution of the ROC AUC at
10 steps of 1 k iterations for the 4 trained models.

Considering one class of growing shoot, we can see in (a) and (b) that the two models
progress rapidly after 1 k iterations and then stagnate around ROC AUCs between 0.75
and 0.8. For the experiments in the paper, according to these measures, we selected the
Faster R-CNN model at iteration 6 k, where the model reached a slight peak, and at 3 k
iterations for Mask R-CNN. Now, considering two classes of growing shoot, (“Continuous”,
“Rhythmic”), we selected the models where there is a maximal sum of the ROC AUC of
both categories: 1 k iterations for the Faster R-CNN model, and 2 k iterations for the Mask
R-CNN model.

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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(a) (b)

(c) (d)

Figure A1. ROC AUC at regular intervals of 1 k iterations during a training set, at a maximum of
10 k iterations for the four models trained for the experiments. (a) Faster R-CNN (1 class); (b) Mask
R-CNN (1 class); (c) Faster R-CNN (2 classes); (d) Mask R-CNN (2 classes).
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21. López-Pujol, J.; López-Vinyallonga, S.; Susanna, A.; Ertuğrul, K.; Uysal, T.; Tugay, O.; Guetat, A.; Garcia-Jacas, N. Speciation and
genetic diversity in Centaurea subsect. Phalolepis in Anatolia. Sci. Rep. 2016, 6, 1–14. [CrossRef]

22. Gregor, T. The distribution of Galeopsis ladanum in Germany based on an analysis of herbarium material is smaller than that
indicated in plant atlases. Preslia 2009, 84, 377–386.

23. Geri, F.; Lastrucci, L.; Viciani, D.; Foggi, B.; Ferretti, G.; Maccherini, S.; Bonini, I.; Amici, V.; Chiarucci, A. Mapping patterns of
ferns species richness through the use of herbarium data. Biodivers. Conserv. 2013, 22, 1679–1690. [CrossRef]

24. Nualart, N.; Ibáñez Cortina, N.; Soriano, I.; López-Pujol, J. Assessing the relevance of herbarium collections as tools for
conservation biology. Bot. Rev. 2020, 83, 303–325. [CrossRef]

25. Borchert, R. Phenology and flowering periodicity of Neotropical dry forest species: Evidence from herbarium collections. J. Trop.
Ecol. 1996, 12, 65–80. [CrossRef]

26. MacGillivray, F.; Hudson, I.L.; Lowe, A.J. Herbarium collections and photographic images: Alternative data sources for
phenological research. In Phenological Research; Springer: Dordrecht, The Netherlands, 2010; pp. 425–461.

27. Zalamea, P.C.; Munoz, F.; Stevenson, P.R.; Paine, C.T.; Sarmiento, C.; Sabatier, D.; Heuret, P. Continental-scale patterns of Cecropia
reproductive phenology: Evidence from herbarium specimens. Proc. R. Soc. B Biol. Sci. 2011, 278, 2437–2445. [CrossRef]
[PubMed]

28. Davis, C.C.; Willis, C.G.; Connolly, B.; Kelly, C.; Ellison, A.M. Herbarium records are reliable sources of phenological change
driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 2015, 102, 1599–1609.
[CrossRef]

29. Feeley, K.J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium
records. Glob. Chang. Biol. 2012, 18, 1335–1341. [CrossRef]

30. Lavoie, C. Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies.
Perspect. Plant Ecol. Evol. Syst. 2013, 15, 68–76. [CrossRef]

31. Primack, D.; Imbres, C.; Primack, R.B.; Miller-Rushing, A.J.; Del Tredici, P. Herbarium specimens demonstrate earlier flowering
times in response to warming in Boston. Am. J. Bot. 2004, 91, 1260–1264. [CrossRef]

32. Miller-Rushing, A.J.; Primack, R.B.; Primack, D.; Mukunda, S. Photographs and herbarium specimens as tools to document
phenological changes in response to global warming. Am. J. Bot. 2006, 93, 1667–1674. [CrossRef]

33. Gallagher, R.; Hughes, L.; Leishman, M. Phenological trends among Australian alpine species: Using herbarium records to
identify climate-change indicators. Aust. J. Bot. 2009, 57, 1–9. [CrossRef]

34. Park, I.W. Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to
MODIS satellite imagery. Int. J. Biometeorol. 2012, 56, 1179–1182. [CrossRef] [PubMed]

35. Diskin, E.; Proctor, H.; Jebb, M.; Sparks, T.; Donnelly, A. The phenology of Rubus fruticosus in Ireland: herbarium specimens
provide evidence for the response of phenophases to temperature, with implications for climate warming. Int. J. Biometeorol.
2012, 56, 1103–1111. [CrossRef] [PubMed]

36. Calinger, K.M.; Queenborough, S.; Curtis, P.S. Herbarium specimens reveal the footprint of climate change on flowering trends
across north-central North America. Ecol. Lett. 2013, 16, 1037–1044. [CrossRef]

37. Park, I.W.; Schwartz, M.D. Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the
southeastern USA. Int. J. Biometeorol. 2015, 59, 347–355. [CrossRef]

http://dx.doi.org/10.1139/b94-226
http://dx.doi.org/10.1080/01431161.2010.507610
http://dx.doi.org/10.1007/s13595-011-0172-1
http://dx.doi.org/10.1002/aps3.11371
http://dx.doi.org/10.1038/s41559-017-0401-6
http://dx.doi.org/10.1016/j.tree.2017.03.015
http://dx.doi.org/10.1080/23818107.2018.1482782
http://dx.doi.org/10.1080/23818107.2018.1446357
http://dx.doi.org/10.1038/srep37818
http://dx.doi.org/10.1007/s10531-013-0503-7
http://dx.doi.org/10.1007/s12229-017-9188-z
http://dx.doi.org/10.1017/S0266467400009317
http://dx.doi.org/10.1098/rspb.2010.2259
http://www.ncbi.nlm.nih.gov/pubmed/21227965
http://dx.doi.org/10.3732/ajb.1500237
http://dx.doi.org/10.1111/j.1365-2486.2011.02602.x
http://dx.doi.org/10.1016/j.ppees.2012.10.002
http://dx.doi.org/10.3732/ajb.91.8.1260
http://dx.doi.org/10.3732/ajb.93.11.1667
http://dx.doi.org/10.1071/BT08051
http://dx.doi.org/10.1007/s00484-012-0521-2
http://www.ncbi.nlm.nih.gov/pubmed/22350421
http://dx.doi.org/10.1007/s00484-012-0524-z
http://www.ncbi.nlm.nih.gov/pubmed/22382508
http://dx.doi.org/10.1111/ele.12135
http://dx.doi.org/10.1007/s00484-014-0846-0


Plants 2022, 11, 530 21 of 22

38. Willis, C.G.; Law, E.; Williams, A.C.; Franzone, B.F.; Bernardos, R.; Bruno, L.; Hopkins, C.; Schorn, C.; Weber, E.; Park, D.S.; et al.
CrowdCurio: An online crowdsourcing platform to facilitate climate change studies using herbarium specimens. New Phytol.
2017, 215, 479–488. [CrossRef]

39. Brenskelle, L.; Stucky, B.J.; Deck, J.; Walls, R.; Guralnick, R.P. Integrating herbarium specimen observations into global phenology
data systems. Appl. Plant Sci. 2019, 7, e01231. [CrossRef]

40. Meineke, E.K.; Davies, T.J. Museum specimens provide novel insights into changing plant–herbivore interactions. Philos. Trans.
R. Soc. B 2019, 374, 20170393. [CrossRef]

41. Beaulieu, C.; Lavoie, C.; Proulx, R. Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife (Lythrum
salicaria). Philos. Trans. R. Soc. B 2019, 374, 20170398. [CrossRef]

42. Bonal, D.; Ponton, S.; Le Thiec, D.; Richard, B.; Ningre, N.; Hérault, B.; Ogée, J.; Gonzalez, S.; Pignal, M.; Sabatier, D.; et al. Leaf
functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species:
A historical δ13C and δ18O approach using herbarium samples. Plant Cell Environ. 2011, 34, 1332–1344. [CrossRef]

43. Daru, B.H.; Bowman, E.A.; Pfister, D.H.; Arnold, A.E. A novel proof of concept for capturing the diversity of endophytic fungi
preserved in herbarium specimens. Philos. Trans. R. Soc. B 2019, 374, 20170395. [CrossRef] [PubMed]

44. Soltis, P.S. Digitization of herbaria enables novel research. Am. J. Bot. 2017, 104, 1281–1284. [CrossRef] [PubMed]
45. Corney, D.P.; Clark, J.Y.; Tang, H.L.; Wilkin, P. Automatic extraction of leaf characters from herbarium specimens. Taxon 2012,

61, 231–244. [CrossRef]
46. Younis, S.; Schmidt, M.; Weiland, C.; Dressler, S.; Seeger, B.; Hickler, T. Detection and annotation of plant organs from digitised

herbarium scans using deep learning. Biodivers. Data J. 2020, 8, e57090. [CrossRef] [PubMed]
47. Unger, J.; Merhof, D.; Renner, S. Computer vision applied to herbarium specimens of German trees: Testing the future utility of

the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 2016, 16, 1–7. [CrossRef] [PubMed]
48. Carranza-Rojas, J.; Goeau, H.; Bonnet, P.; Mata-Montero, E.; Joly, A. Going deeper in the automated identification of Herbarium

specimens. BMC Evol. Biol. 2017, 17, 1–14. [CrossRef]
49. Lorieul, T.; Pearson, K.D.; Ellwood, E.R.; Goëau, H.; Molino, J.f.; Sweeney, P.W.; Yost, J.M.; Sachs, J.; Mata-Montero, E.;

Nelson, G.; et al. Toward a large-scale and deep phenological stage annotation of herbarium specimens: Case studies from
temperate, tropical, and equatorial floras. Appl. Plant Sci. 2019, 7, e01233. [CrossRef]

50. Goëau, H.; Mora-Fallas, A.; Champ, J.; Love, N.L.R.; Mazer, S.J.; Mata-Montero, E.; Joly, A.; Bonnet, P. A new fine-grained method
for automated visual analysis of herbarium specimens: A case study for phenological data extraction. Appl. Plant Sci. 2020,
8, e11368. [CrossRef]

51. Davis, C.C.; Champ, J.; Park, D.S.; Breckheimer, I.; Lyra, G.M.; Xie, J.; Joly, A.; Tarapore, D.; Ellison, A.M.; Bonnet, P. A new
method for counting reproductive structures in digitized herbarium specimens using Mask R-CNN. Front. Plant Sci. 2020,
11, 1129. [CrossRef]

52. Love, N.L.; Bonnet, P.; Goëau, H.; Joly, A.; Mazer, S.J. Machine Learning Undercounts Reproductive Organs on Herbarium
Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of Streptanthus tortuosus. Plants 2021,
10, 2471. [CrossRef]

53. Mora-Fallas, A.; Goeau, H.; Mazer, S.J.; Love, N.; Mata-Montero, E.; Bonnet, P.; Joly, A. Accelerating the Automated Detection,
Counting and Measurements of Reproductive Organs in Herbarium Collections in the Era of Deep Learning. Biodivers. Inf. Sci.
Stand. 2019, 3, e37341. [CrossRef]

54. Gonzalez, S.; Bilot-Guérin, V.; Delprete, P.G.; Geniez, C.; Molino, J.-F.; Smock, J.-L. L’herbier IRD de Guyane. Available online:
https://herbier-guyane.ird.fr/ (accessed on 10 May 2021).

55. Guitet, S.; Euriot, S.; Brunaux, O.; Baraloto, C.; Denis, T.; Dewynter, M.; Freycon, V.; Gonzales, S.; Jaouen, G.; Hansen, C.R.; et al.
Catalogue des Habitats Forestiers de Guyane; National Forests Office (ONF): Guyane, France, 2015.

56. Halle, F.; Martin, R. Study of the growth rhythm in Hevea brasiliensis (Euphorbiaceae Cronoideae). Andansonia 1968, 8, 475–503.
57. Schoonderwoerd, K.M.; Friedman, W.E. Naked resting bud morphologies and their taxonomic and geographic distributions in

temperate, woody floras. New Phytol. 2021, 232, 523–536. [CrossRef] [PubMed]
58. Zhu, Z.; Liang, D.; Zhang, S.; Huang, X.; Li, B.; Hu, S. Traffic-sign detection and classification in the wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2110–2118.
59. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
60. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
61. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
62. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft

COCO: Common Objects in Context; Springer: Cham, Switzerland, 2014.
63. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/

detectron2 (accessed on 10 May 2021).
64. Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. arXiv 2016,

arXiv:1612.03144.

http://dx.doi.org/10.1111/nph.14535
http://dx.doi.org/10.1002/aps3.1231
http://dx.doi.org/10.1098/rstb.2017.0393
http://dx.doi.org/10.1098/rstb.2017.0398
http://dx.doi.org/10.1111/j.1365-3040.2011.02333.x
http://dx.doi.org/10.1098/rstb.2017.0395
http://www.ncbi.nlm.nih.gov/pubmed/30455213
http://dx.doi.org/10.3732/ajb.1700281
http://www.ncbi.nlm.nih.gov/pubmed/29885238
http://dx.doi.org/10.1002/tax.611016
http://dx.doi.org/10.3897/BDJ.8.e57090
http://www.ncbi.nlm.nih.gov/pubmed/33343217
http://dx.doi.org/10.1186/s12862-016-0827-5
http://www.ncbi.nlm.nih.gov/pubmed/27852219
http://dx.doi.org/10.1186/s12862-017-1014-z
http://dx.doi.org/10.1002/aps3.1233
http://dx.doi.org/10.1002/aps3.11368
http://dx.doi.org/10.3389/fpls.2020.01129
http://dx.doi.org/10.3390/plants10112471
http://dx.doi.org/10.3897/biss.3.37341
https://herbier-guyane.ird.fr/
http://dx.doi.org/10.1111/nph.17506
http://www.ncbi.nlm.nih.gov/pubmed/34028040
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Plants 2022, 11, 530 22 of 22

65. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
66. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and

Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [CrossRef]
67. Uijlings, J.; van de Sande, K.; Gevers, T.; Smeulders, A. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013,

104, 154–171. [CrossRef]
68. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13

December 2015.

http://dx.doi.org/10.1109/TPAMI.2015.2437384
http://dx.doi.org/10.1007/s11263-013-0620-5

	Introduction
	Results
	Herbarium Data
	Global Model Detection Performance (EXP1, ResNet50)
	Local Models Detection Performance (EXP2, Faster R‐CNN, and Mask R‐CNN)
	Local Models Two-Class Detection Performance (EXP3, Faster R‐CNN, and Mask R‐CNN)

	Discussion
	Materials and Methods
	Assembling Herbarium Records and Manual Annotations
	Preliminary Analysis of the Annotations
	Description of Experiments
	Evaluated Deep Learning Architectures
	Assessing Raw Performances of Deep Learning Models
	Training and Test Datasets
	Tasks
	Metrics


	Conclusions
	Global Model (ResNet50)
	Local Models (Faster R-CNN and Mask R-CNN)
	References

