
HAL Id: hal-03602603
https://hal.inrae.fr/hal-03602603

Submitted on 9 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Protein Design with Deep Learning
Marianne Defresne, Sophie Barbe, Thomas Schiex

To cite this version:
Marianne Defresne, Sophie Barbe, Thomas Schiex. Protein Design with Deep Learning. International
Journal of Molecular Sciences, 2021, 22 (21), �10.3390/ijms222111741�. �hal-03602603�

https://hal.inrae.fr/hal-03602603
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 International Journal of 

Molecular Sciences

Review

Protein Design with Deep Learning

Marianne Defresne 1,2, Sophie Barbe 1 and Thomas Schiex 2,*

����������
�������

Citation: Defresne, M.; Barbe, S.;

Schiex, T. Protein Design with Deep

Learning. Int. J. Mol. Sci. 2021, 22,

11741. https://doi.org/10.3390/

ijms222111741

Academic Editors: Mingon Kang and

Jung Hun Oh

Received: 30 September 2021

Accepted: 26 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, ANITI,
31077 Toulouse, France; marianne.defresne@insa-toulouse.fr (M.D.); sophie.barbe@insa-toulouse.fr (S.B.)

2 Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France
* Correspondence: thomas.schiex@inrae.fr; Tel.: +33-561-28-5428

Abstract: Computational Protein Design (CPD) has produced impressive results for engineering
new proteins, resulting in a wide variety of applications. In the past few years, various efforts
have aimed at replacing or improving existing design methods using Deep Learning technology
to leverage the amount of publicly available protein data. Deep Learning (DL) is a very powerful
tool to extract patterns from raw data, provided that data are formatted as mathematical objects and
the architecture processing them is well suited to the targeted problem. In the case of protein data,
specific representations are needed for both the amino acid sequence and the protein structure in
order to capture respectively 1D and 3D information. As no consensus has been reached about the
most suitable representations, this review describes the representations used so far, discusses their
strengths and weaknesses, and details their associated DL architecture for design and related tasks.

Keywords: computational protein design; artificial neural network; protein structure; inverse folding
problem; language models; deep learning; generative models

1. Introduction

The wide variety of natural proteins fulfills many different functions, from catalysis
to specific recognition, transport, or regulation. This functional diversity makes protein
crucially useful objects in a variety of settings, with direct applications in areas such as
green chemistry, health, and biotechnologies [1].

The aim of Computational Protein Design (CPD) is to design proteins with new or
enhanced properties (such as thermostability, binding affinity, etc.) or function (including
ligand specificity and new activities) [2,3]. The most usual approach to CPD consists in
choosing or de novo constructing a target backbone structure that could carry the function
of interest and then identify a sequence that will fold onto this backbone and present the
expected properties. In this case, the input of the problem is the target backbone with the
targeted properties and the output is the designed sequence. This approach is sometimes
referred as the inverse folding problem.

Importantly, the aim of protein design is not only to predict a sequence folding onto a
target backbone, but also to bestow the design a specific function and required properties.
Designing a useful new protein requires imposing specific global and local biochemical and
geometrical constraints to dictate the desired properties. As an example, tight binding may
benefit from the shape complementarity of the chosen fold to its target, but poorly placed
charges, polar, or hydrophobic regions may prevent binding (see in [4] as an example).
On the path from sequence to function, structure looks therefore as a crucial intermediary,
but Machine Learning also offers pure sequence-based approaches that learn how to
design sequences having a specific function, starting from a set of sequences carrying
this function [5].

Based on its tremendous success in processing image, video, speech, and audio data [6],
Deep Learning (DL) has been applied to many fields, including structural biology. In this
area, the most visible success of DL has been obtained by AlphaFold2 [7,8] for protein

Int. J. Mol. Sci. 2021, 22, 11741. https://doi.org/10.3390/ijms222111741 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2581-5022
https://orcid.org/0000-0001-6049-3415
https://doi.org/10.3390/ijms222111741
https://doi.org/10.3390/ijms222111741
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111741
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111741?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 11741 2 of 20

structure prediction, demonstrating neural networks’ ability to learn a significant fraction
of the complex relationships between sequence and structure in natural proteins. Deep
neural networks (the type of architecture used in DL) being universal approximators [9],
they are theoretically able to learn any function from enough data and computational
power. Given the large amount of protein sequence and structure publicly available [10],
this makes DL a very appealing approach to enhance protein design methods. However,
applying DL to CPD is not straightforward. First, DL methods require suitably formatted
input and output data. The chosen input representation must be adapted to protein of
variable lengths and be able to concisely encode the relational information of the protein
structure. Indeed, protein structures are naturally insensitive to translations and rotations;
locally, only the relative orientation and position of structural motifs matters [11]. Ideally,
the protein structure representation should account for these properties to make training
more efficient. For now, there is no final consensus about which representation is best to
capture protein structures and which neural architecture should be privileged.

In this review, after some background on CPD and Deep Learning, we present the
different types of representation that have been used to represent protein data, both
sequences and structures, when used for design or related tasks. We discuss their strengths
and weaknesses, and detail the neural architecture used to process them.

2. Background on Computational Protein Design
2.1. Foundations and Methods

Computational Protein Design is becoming an increasingly attractive pathway to
engineer new proteins with new functions or improved properties [12]. The first important
challenge of CPD is the sheer combinatorial size of the sequence space: for a sequence of n
amino acids, n choices among twenty amino acids, or more, have to be made, leading to
> 20n possible sequences, a number that quickly becomes larger than the number of atoms
in the known universe.

The usual approach to design protein sequences relies on a target structure that is
expected to carry the targeted function. This allows to formulate the design problem as an
optimization problem: given a input backbone, find a sequence that maximally stabilizes
the input backbone (and also fulfill the desired function) by minimizing a score function
that usually combines the free energy of the resulting protein with other function-related
criteria. This formulation is convenient to develop algorithms, but it should be noted that
it makes CPD an ill-posed problem: the sequence is optimized for the target structure, but
this structure may not be optimal for the sequence which ultimately may fold in a different
structure [13,14]. Because of the many degrees of freedom of proteins and the complexity
of free energy computations, the resulting problem remains intractable and simplifying
assumptions have to be made [2,15]: the target backbone is assumed to be rigid, side chain
flexibility is captured by a discrete collection of conformations (or rotamers) [16], and
energy reduced to a very simplified form. Even with these simplifications, CPD remains
a non-deterministic polynomial-time hard (NP-hard) problem [17]. For the sizes of the
problem that need to be solved, stochastic and deterministic approaches have however
often been able to produce working solutions. The most usual algorithm is based on
simulated annealing, as implemented in the software Rosetta [18]. As an iterative algorithm,
its computational cost is fully adjustable and solutions of good quality are often produced
in reasonable time, but convergence cannot be reliably detected. Instead, provable methods
exists that can always produce a solution of good quality, but their running time may grow
quickly with the size of the problem. Historically, the first provable method was based
on dead-end elimination and the A* algorithm, as implemented in OSPREY [2,19]. More
recently, an AI-Automated reasoning solver, Toulbar2 [20], was able to produce proofs of
optimality fast enough to point out Rosetta’s algorithm inability to always converge to an
optimal solution [21].

The excitement that has been generated by the progress of Deep Learning has led to
the proposal of DL-based tools targeted at various protein-design related tasks. Note that



Int. J. Mol. Sci. 2021, 22, 11741 3 of 20

most existing structure-based DL-based tools target the creation of an amino acid sequence
that will fold into a target rigid backbone, often without any explicit representation of a
specifically sought function. These tools either directly produce a simple joint distribution
over sequences (e.g., described through a Position Specific Score Matrix (PSSM)) or may
predict one extra amino acid given some of its context (in terms of sequence and/or
structure). The notion of protein function is instead often central in pure sequence-based
DL design tools. They do not need a target backbone, but may instead start from a large
multiple sequence alignment of proteins, sharing the targeted function.

Beyond pure sequence design, there are also additional tasks that the protein designer
often needs to solve and for which DL provides new solutions (see Figure 1). Upstream of
the design itself, structure-based methods require an appropriate input backbone. When
an existing protein with no experimentally determined structure needs to be engineered,
template-based modeling is used. This step will be greatly facilitated by the recent advance
in DL-based structure prediction. Following the success of DL in the CASP13 competition
(Critical Assessment of protein Structure Prediction) [7,22], many of the top methods
integrated with success some DL components for CASP14 [23], including trRosetta [24],
D-I-TASSER, and D-Quark [25]. Currently, top methods [8,26] can sometimes reach atomic
accuracy on single chains, and can even deal with multimers [27]. For more information on
DL for protein structure prediction, the reader is referred to the recent reviews in [28,29].

Other DL methods have been proposed that aim at generating backbones coordi-
nates by learning how to generate distance maps [30–32], how to complete partial contact
maps [33], or by directly generating 3D coordinates [34]. This may be useful for ab initio
design and loop modeling. While some of these tools allow for sampling protein structures
from a sequence or a sequence family, they often lack the ability to guide the generation
process by a design target. Recent proposals however do introduce some preliminary form
of control, using dedicated architectures [32,34] or loss functions [35]).

Following the design itself, it is usual to filter designed sequences to keep only those
that are reliably predicted to fold in the target structure, a procedure called “forward
folding”. Again, the recent advances in DL-based structure prediction tools will make this
step more efficient and more reliable. We list these various tasks in Table 1. In this paper,
we focus on the pure sequence design task, aiming at producing a sequence that should
either fold in a target backbone or, for some, present a desired function.

Table 1. Protein design-related tasks tackled by DL.

Task Approach

Learning sequence embedding [36–41]

Prediction of sequences from other sequences
from sequences of the same family [42,43]
from a random sequence [44,45]
from any sequences [46–48]

Backbone generation [8,26,31–35]

Prediction of sequences from input structure
by reconstructing the native sequence [49–55]
by predicting residues given their local environment [56–58]
by inverting a folding network [13]

Prediction of single-point mutation [43,59]

Prediction of side chain orientation [60]

Forward folding [8,26]



Int. J. Mol. Sci. 2021, 22, 11741 4 of 20

Figure 1. General workflows for computational protein design. Deep Learning-based approaches
are represented in green, other approaches are in blue. The top workflow represents pure sequence-
based approaches where a sequence, capturing a function is used to scan sequence databases in
order to build a multiple sequence alignment. This alignment is used to train a machine or deep
learning model that can be sampled to produce a sequence library. The bottom workflow is for
structure-based computational protein design. One or several backbones (if multistate/flexibility is
sought) are generated and possibly locally or globally perturbed. These can be exploited by usual
energy/score function based method exploring a design space of possible rotamers (blue) or DL-based
design (green). The resulting sequence library can be filtered using “forward folding”: randomized
predictions are used to check if the sequence is predicted to reliably fold on its target backbone. The
design objectives (beyond reaching the target fold itself) can be taken into account at different steps
in these workflows (arrows). Traditional energy-based design offers several opportunities to inject
these objectives in the design process: during backbone design, in the optimized score function, by
combining them with the approximate free energy function used for optimization and also in the
sequence/conformation space explored. In sequence-based design, such capabilities are strongly
constrained by the landscape of existing proteins but some control may still be possible during the
selection of the learning data-set and the sampling procedure. Most structure-based Deep learning
approaches offer little or no control beyond backbone design (dotted lines).

2.2. Evaluation of Design Methods

Protein design methods need to be assessed, and there is no perfect metric. The most
usual metric, native sequence recovery rate (NSR), evaluates whether design produces
sequences similar to the native protein sequence of a natural given structure. However,
with the restricted number of observed folds [61], it is known that many sequences will
adopt a similar structure (degeneracy). Thus, a designed sequence with an NSR between
30 and 40% is already considered as satisfying, matching the sequence identity between
homologous proteins [62]. It is also often impossible to directly compare the NSR of
different methods if they have not been measured (and trained, when Machine or Deep
Learning is used) on the same sets of target backbones [63]: some backbones are more
constrained than others and this influences the likelihood of reconstructing the native
sequence. The composition of the set of structures used for measuring NSR may therefore
strongly influence the final numerical estimation. A much better evaluation consists in



Int. J. Mol. Sci. 2021, 22, 11741 5 of 20

experimentally testing that the actual fold matches the targeted one, but this is an expensive
process and few papers DL papers experimentally characterize the structure adopted by
designed sequences (by X-ray crystallography [56] or circular dichroism [49]).

One should also not forget that the true purpose of most designs is not just to reach
a suitable structure. Usually, the design target includes specific properties that are not
captured by the backbone structure alone. This includes affinity, catalytic activity, ligand
specificity, and ease of expression that needs specific essays. In practice, to have real added
value compared to natural proteins, the designed proteins are often required to be func-
tional in non-natural conditions in terms of temperature, pH, solvent, or ligand specificity,
for example. In this situation, recovering the native sequence becomes increasingly unlikely
and NSR, increasingly irrelevant.

3. Background on Deep Learning

In this section, we detail the notions of Deep Learning that are important to understand
the protein design approaches described. Deep Learning, as a specific variety of Machine
learning, is a method that tries to extract patterns from data [6]. Compared to other
Machine Learning approaches, DL is highly efficient at extracting features from raw data,
thus bypassing the complex task of hand-crafting informative features. It has shown
unprecedented accuracy on various complex learning tasks. DL relies on a specific data
structure, called an artificial neural network (see Section 3.2). A non-naive but simple
example of it is the Multi-Layer Perceptron (MLP): it takes as input a vector of real numbers
and processes it through a succession of linear transforms (defined by multiplicative
weights, or parameters) alternated with nonlinear functions such as max (0, x), called
activation functions. The final output, usually a small vector of real numbers, is then used to
produce an answer to the targeted task. The general architecture (number of layers, sizes,
activation functions) and the parameters need to be adjusted (trained) so that the output
reliably produces correct answers to the targeted task, and not just on examples that were
used for training (generalization, see Section 3.1). In supervised learning, this parameter
tuning is achieved using a large collection of input vectors with associated known solution
(or label) by minimizing a dedicated loss function using some variant of gradient descent.
Efficient computations can only be reached using a variable number of Graphics Processing
Units (GPUs).

3.1. Training

The exclusive data type that artificial neural networks deal with are tensors of real
numbers, or multidimensional tables. It includes vectors, matrices, and beyond. The train-
ing data needs therefore to be first transformed into tensors to be processed by the network.
The final output of the network, on its last layer, is then assessed by a numerical loss func-
tion that quantifies how well the learning objective is attained, empirically, using known
answers (supervised learning) or not (unsupervised learning). Starting from the gradient
of this loss, gradients on the neural network’s weights can be computed using a method
called back-propagation and the weights updated using a simple gradient-based update.

The output of a neural network is also a tensor that can be interpreted in many
different ways. In classification (predicting a class among k possible ones), the output is a
vector of size k and the index of maximum value gives the predicted class. In regression
(predicting a continuous number), a single number is produced. For each task, a specific
loss needs to be used. For instance, given a protein sequence, one can ask the network
to predict whether it is intrinsically disordered or not (classification), or to estimate its
stability (regression). Training is usually supervised, comparing the predicted label to the
true label and back-propagating the errors.

Generative models have a more complex output because their aim is to generate new
data (sample the probability distribution from which the training data comes). In the rest
of the review, we will describe the two main examples of such models (see GAN and
VAE in Section 3.2.4) that directly design new sequences (or structures). Training is often



Int. J. Mol. Sci. 2021, 22, 11741 6 of 20

unsupervised as the data is just a collection of objects with no associated labels. These
models therefore optimize specifically-crafted loss functions (sometimes loss functions
that are learned by another neural network). Different types of models are summarized in
Figure 2.

Figure 2. General pipeline of neural network training. Input data is in green, output in red. The types
of model are written in bold.

More complex situations may benefit from transfer learning, that may exploit both
labeled and unlabeled data. We later describe approaches that train a first network on
unlabeled protein sequences, then use intermediary output to enhance a second network,
trained in a supervised fashion to predict the properties of the sequence.

To detect and avoid overfitting (lack of generalization to unseen data), the perfor-
mances of the neural network are assessed on a separate, independent test data-set. These
performances are evaluated quantitatively thanks to metrics adapted to the output and
to the objective. For a proper evaluation of the network performance, it is crucial for the
composition of this test set to be representative of its final usage conditions.

3.2. Architectures
3.2.1. Convolutional Neural Network

The first non-naive DL architecture, the MLP we already mentioned, is a feed-forward
network: the process that produces the output from the input shows no cycle. This archi-
tecture alone is already suitable for many tasks.

It has been refined to process images by restricting the linear transformations of MLP
to local convolutions, an operation that computes a pixel state as a linear combination of
neighboring pixels only. Through convolution, the output of a translated image is just
translated. Convolutions are interleaved with pooling layers that merge blocks of (usually
2 × 2) pixels, thus reducing scale. The succession of convolutive and pooling layers,
separated by activation functions, can extract more and more global features while taking
into account neighboring information. Figure 3 summarizes the resulting Convolutional
Neural Network (CNN). This architecture is of particular interest for protein design because
the protein structure can be represented as a 3D image. Thus, all the CNNs developed to
process images—a very dynamic field of artificial intelligence—are directly applicable to
protein structures.

CNNs are an example of an architecture leveraging the symmetries of the problem
(i.e., a translated motif stays the same motif) through translation invariance (translation of
the input does not affect the prediction). Invariance can exist for all sorts of operations on
the input, including rotation and permutation. An architecture that transforms its output
in the same way as the input is said equivariant. Both invariance and equivariance are
a major target in Deep Learning as they reduce the number of parameters to be learned
without losing any power of representation. Fewer data are needed and performances
improve in terms of training time and generalization ability.

CNNs have been improved to take into account multiple channels (used for color,
with 3 RGB channels).



Int. J. Mol. Sci. 2021, 22, 11741 7 of 20

Figure 3. Convolutional neural network (CNN) architecture. The architecture is composed of a
succession of convolutions, followed by an activation function and pooling layers to extract more
and more global features from the image. Then, these features are flattened into a vector fed into a
usual MLP which output is directly used to predict the class or regression value.

This has been directly used on protein structures (considered as a 3D image) by
considering one channel per type of atoms (see Section 5.2). Empirically, CNN performance
was observed to increase with the number of layers used (the depth), but this eventually
lead to numerical issues during back-propagation, which slows down and possibly stops
learning. To go deeper, residual connections [64] were introduced: the input of a layer is
directly added to the output of following layers.

This idea has been pushed further in DenseNet [65], where each layer input is added
to all residual blocks output and not just the next one. This is used in DenseCPD (see
Section 5.2). Finally, if CNNs exploit translation-invariance, they are sensitive to rotation
of the input. Thus, a rotated motif in the input—possibly a protein structure—will not be
automatically recognized. A usual approach to tackle this issue is to use data augmentation:
the training set is completed by similarly perturbed (rotated) images. However, this
approach makes training longer and harder and using rotation-equivariant architectures
is better.

3.2.2. Recurrent Architectures

Text is a very common type of data that has been massively analyzed in Natural
Language Processing (NLP), driving the development of dedicated architectures. From
sentences, a succession of words, a very common task is next-word prediction: completing
a partial sentence with an appropriate word. Here, training can be achieved from existing
sentences, which are widely available. Protein sequences can be seen as sentences made of
amino acid types, and thus can be processed by the same architectures.

Compared to images, that can always be scaled to a proper format, sentences have
variable length. Recurrent Neural Networks (RNN) have been developed to process each
word at a time by the same operation. The current output is computed from the current
input word and the previous output, thus the name recurrent (see Figure 4). The idea,
which is reminiscent of Hidden Markov Models, is to integrate the information from
previous words to predict the next one. To preserve information from previous words,
additional parameters, acting as a form of memory, have been introduced in LSTMs (long
short-term memory) [66].

Individual words must be transformed in fixed size numerical tensors (vectors here).
The most obvious approach is to sort all words and identify each by its position i. However,
close numbers may correspond to totally unrelated and this makes training difficult. One-
hot encoding represents word by a vector of 0s, except for a 1 at the ith position.



Int. J. Mol. Sci. 2021, 22, 11741 8 of 20

As explained later (in Section 4.2), such discrete data are often better represented
using a learned embedding, where each word is associated to a specific real vector of a chosen
fixed size. Embeddings can be learned by Languages Models (LMs) [67,68] to give them a
semantic flavor: similar embeddings (in terms of cosine distance between vectors) should
have a similar meaning.

Figure 4. Pipeline of a Recurrent Neural Network. Elements x of the input sequence are processed
individually by the same weights W.

Ultimately, they can even be used to get a working semantic “algebra” as often
exemplified by the (approximately satisfied) equation (king − man + woman = queen) [69].
Suitable learned embeddings are critical for the performances of various models built on
top of them. Various architectures have been suggested for LMs, and many of them have
been applied to protein sequences to “learn the language of life” [39]. These approaches
are presented in Section 4.2.

3.2.3. Attention Models

A more recent approach to handle sequential data replaces recurrence by so-called
attention mechanisms, popularized in the Transformer architecture [70]. Recurrent architec-
tures have an inherent difficulty in exploiting long-distance interactions in a sequence [71].
Attention models have been precisely designed to fight this limitation by learning to iden-
tify which part of the input is important (and how) for the prediction. The neural net can
then focus on those parts, no matter their range, to predict the output.

For instance, when predicting protein contacts, attention can make each residue attend
to only few other residues, which are therefore more likely to truly be in contact [72].

To allow for considering any distant interaction, the size of the input sequence is
bounded to a maximum and data processing is parallel instead of being sequential. This
makes the process potentially more efficient but also more memory intensive, especially
for large maximum lengths.

3.2.4. Generative Models

Generative models aim at learning the unknown distribution of the training data
in order to generate new data from the same distribution. Figure 5 gives a graphical
representation of the architecture of the two most usual DL-based generative models:
autoencoders and Generative Adversarial Networks. DA simple generative model can
be learned using autoencoders: an input x is successively reduced in dimensionality by
an encoder, producing an internal low-dimensional representation of the input x (a latent
representation). This representation is then decoded to produce back the original input
x. This encoder–decoder pair is trained as a single network that must learn the identity
function. This process has been simplified in Variational Autoencoders (VAE) [73] with



Int. J. Mol. Sci. 2021, 22, 11741 9 of 20

a simpler latent distribution representation. The learned latent representation may be
useful as a learned embedding of the input but also for generative purposes: new data can
be generated by sampling the latent space and decoding it. However, this often leads to
inconsistent output because the fraction of the latent space that describes correct output
may be very small.

Another popular approach is Generative Adversarial Networks (GAN) [74]. GANs
also use a combination of two neural nets: a generator that learns how to generate new
data (from the same distribution as the training data) and a discriminator that learns to
predict whether its input is out-of-distribution or not. The training objective, encapsulated
inside the loss, encourages the generator to fool the discriminator and the discriminator
to reject out-of-distribution data, thus the name adversarial. After training, the generator
alone is used to generate new data. Training GANs can be challenging as both learners
need to learn at comparable speed [75]. GAN and VAE are unsupervised methods but the
inner architecture of their networks are of the same type as discussed before (MLP, CNN,
attention-based), depending on the type of data to handle.

Figure 5. Examples of generative models. From top to bottom: Variational Autoencoder (VAE) and
Generative Adversarial Network (GAN) models. The encoder, decoder, generator, and discriminator
may be neural networks of any type (including MLPs, recurrent, and attention-based).

4. Representation of the Protein Sequence

The CPD problem requires to produce sequences as output, and sequences are
also often present in the input, possibly as the sole input in pure sequence-based ap-
proaches. In this case, compared to structure-based approaches, training data-sets can be
extremely large: more than two-billion sequences have been clustered in the “Big Fantastic
Database” [8]—a tiny fraction of them being associated with a reliable functional label
(80,000 with Molecular Function Gene Ontology in SwissProt [76]). Given that neural nets
only accept tensors for input and output, protein sequences must be formatted into a tensor.
Three major approaches have been used here, as summarized in Figure 6.



Int. J. Mol. Sci. 2021, 22, 11741 10 of 20

Figure 6. Various protein structure and sequence representations.

4.1. One-Hot Encoding

As already described, a protein sequence of length n can be one-hot encoded. Each
amino acid is represented by a Boolean vector of size 20 (or more if gaps/unknown amino
acids need to be represented), all concatenated into a n × 20 matrix representing the full
sequence. This simple encoding is widely used in DL protein design methods based on
language models (see Section 4.2) or in generative models that try to learn the distribution
of the training set (sequences) to generate similar data (hopefully, sequences with the same
property as the training set).

These approaches can be used to design new sequences that should carry the function
of the input training set, usually an MSA built from one chosen functional protein, some-
thing that was already been proven to be feasible using generative probabilistic models
such as Markov Random Fields [5,77,78] or autoregressive models [43], closely related
to Bayesian networks [79]. While they explicitly target a function, these methods look
intrinsically limited to sampling the distribution generated by nature, which is not ideal to
design proteins offering new functions, or to extend the scope of an existing function to
non-natural conditions.

Generative models such as GANs [42] have been used to design new functional se-
quences (here a malate dehydrogenase MSA was used as a starting point), VAE [46] to craft
metal-binding site to sequences or predict sequences folding according to a general topo-
logical description, encoder/decoder architecture [47] to design peptide signal sequences.
As all these approaches bypass the need of an intermediate structure and use a simple
sequence representation, they are not the core of this review. For further reading, we refer
the reader to recent reviews [80,81].

One-hot encoding is a limited representation that does not integrate much information
per se. It makes all the configurations equidistant, whereas some sequences are biologically
or physically closer than others. Thus, neural networks applied to such input cannot
leverage possible crucial information that could be captured by learned embeddings.

4.2. Learned Embedding

A more informative input than a one-hot vector can be obtained through a suitable
sequence embedding, a fixed-size vector representing the sequence, learned to capture
important information in the context of the targeted task. Several NLP-inspired approaches
tried to decipher “the language of life” [39] by considering the protein sequence as a
sentence and the amino acids as words. A natural sequence corresponds to a meaningful
and correct sentence. In this context, “next word prediction” approaches can be directly
leveraged to predict the next amino acid or to recover a masked sequence [40].



Int. J. Mol. Sci. 2021, 22, 11741 11 of 20

This tight connection with NLP has attracted a lot of interest. In order of publication,
NLP approaches have been adapted to protein word embeddings [36], recurrent archi-
tectures by UniRep [37], Embedding from Language Models [38] by SeqVec [39] and the
attention-based Transformer [40]. Finally, ProtTrans [41] compared six successful NLP
architectures on a dataset of an unprecedented size (2122 million proteins, 8 times larger
than those previously used). They all produce a fixed-length embedding for each amino
acids, then average them to obtain the sequence embedding.

One major drawback of protein embedding is the computational cost to learn them.
The most complex of the models mentioned above, ProtTrans, was trained using Summit,
the world’s second-fastest computer. Such costs are prohibitive for most research groups,
meaning the learned protein embeddings can be impactful only if the trained model is
publicly available, as it is the case for ProtTrans.

If the embeddings are meaningful by themselves (the embedding space is clustered
along protein functional, biophysical and structural properties [40,41]), they are especially
interesting when used as inputs for subsequent supervised tasks. Indeed, simple models
on top of such embedding outperformed complex models taking one-hot encoded amino
acids as inputs on prediction tasks [82].

These embeddings have been used for protein design: ProGen [83] framed the problem
as “next amino acid prediction”, each of them being represented by a learned embedding.
The output sequence is built iteratively by a Transformer architecture (see Section 3.2.3)
from the partial sequence predicted so far and from conditioning and taxonomic tags
describing the desired properties with keywords (such as cellular component, biological
process, and function terms).

Another approach used UniRep embeddings for in silico directed evolution [48].
Embeddings were first fine-tuned on sequences related to the target protein. Then, a low
number (24 or 96) of experimentally characterized mutants of the wild type were used to
train a linear regression predicting the activity from the fine-tuned embeddings. Finally,
top sequence candidates were selected by in silico-directed evolution based on the activity
predicted by linear regression. About 10% of them displayed an activity higher than
the wild type.

4.3. Position-Specific Scoring Matrices

Neural networks designed to predict sequences often chose to output a tensor which
can be directly interpreted as a Position-Specific Scoring Matrix [84]. In most cases, these
scores are transformed to a probability distribution over amino acids using a “softmax”
function at the final layer [50,54–58]. Softmax combines exponentiation with normalization
to transform arbitrary real vectors into vectors that can be interpreted as a multinoulli
probability distribution. PSSM are also frequently used as a simple representation of
sets of (aligned) input protein sequences [13,52,84]. A general limitation of PSSM is that
they ignore interactions between different residues, which is physically untrue. Pairwise
interactions, at least, seem crucial to capture some of a protein function [5].

This simple probabilistic-like output is very convenient however. Specific probabilistic
measures such as cross-entropy can be directly used as losses. Moreover, this probability
may encode the conditional probability of each amino acid, given the environment at each
residue [13,46,50] to ultimately sample a diversity of sequences from the same network
prediction, e.g., using a Monte Carlo algorithm [56]. This last approach reaches state-of-the
art prediction accuracy for a single residue given its environment, approximately 57% [56].
This metric should not be confused with the native sequence recovery rate, which compare
the whole designed sequence with the native sequence and which is usually between 30
and 40% depending on the test set [49,54,63,65].

Residue-level accuracy allows us to get some insight on the inner representations
learned by the neural network. ProDCoNN approach, based on a CNN, found that their
confusion matrix is similar to the usual BLOSUM62 [85] protein similarity matrix. It means
the neural network confounds similar residues and has been able to capture the natural



Int. J. Mol. Sci. 2021, 22, 11741 12 of 20

degeneracy of proteins. This was also observed by Alley et al. [37] who found a better
performance on buried residues [56,57], which is consistent with the fact that these residues
are more constrained.

5. Representing the Protein Structure

Protein design, when framed as the inverse folding problem, requires an input protein
backbone. A protein structure being a complex object, the choice of its representation is both
critical and non-trivial. The obvious insensitivity of proteins to translation and rotations
should ideally be directly exploited in the associated architecture. The first approaches
used sequential representation of the structure, which was convenient for use but did not
leverage the geometric properties of protein structures. To date, there is still no consensus
on what representation is the most adapted to learn from protein structures [53]. Three
major types of representation are used: voxels, distance maps, and graphs (Figure 6). In
this section, we describe the use, benefits, and drawbacks of each of these for CPD as well
as the type of neural network used to process them (see Table 2).

Table 2. Explicit representations of the structure and the neural architecture they are fed into.

Hand-Crafted Voxels Distance Map Graph Point Clouds

MLP [50,55,86] - - - -
CNN - [56–59] [13,44,54] - -
GNN - - - [49,53] [52]
Transformer - - - [51] [60]
Generative [46] - [45] - -

5.1. Sequential and Hand-Crafted Representations

Given the input protein backbone, one straightforward way to represent it as a tensor
is to consider it as a sequence of distances, angles and dihedrals (as usual in molecular
modeling). While rotation- and translation-invariant, this 1D representation is not ideal
in the context of Deep or Machine learning because of its sensitivity to noise through the
well-known “lever effect”: a tiny change in one dihedral angle may translate in very large
changes in distant Cartesian coordinates [50,55,86]. Instead, each position of the sequence
can be associated with structural features (characteristics deemed to be significant for the
learning problem), possibly completed with other features related for example to the target
design properties. Such an approach was used in the first DL-based CPD systems, starting
with SPIN [86] and its extension SPIN2 [55]. Both used sequence-local and non-local fea-
tures including the above 1D representation: backbone torsion angles, interaction energies
with side-chains, and sequence profiles obtained by comparing 5-residue fragments of the
target structure to a template library, keeping sequences of structurally similar fragments.
Non-local features included contact numbers and interaction energies between a residue
and the rest of the backbone. All theses features were stacked and fed into a 3-layer MLP
to produce protein sequences. Wang et al. [50] used a similar architecture on simple per-
residue geometric and structural features (such as dihedral angles, Cα − Cα distances or
the solvent accessible surface area). A sliding window incorporated information from the
k-nearest neighboring residues in 3D space. Both output a PSSM.

Instead of working at the residue level, Greener et al. [46] represent the input fold
using a context-free grammar based on its secondary structure elements [46]. A flat tensor
of the one-hot encoded rules of this grammar are fed into a VAE to produce a sequence
likely to adopt the input general fold topology.

The main advantage of using hand-crafted structural features is to obtain a fixed-size
feature vector, which is required by many DL architectures, including MLPs and CNNs.
Even recurrent models, that accept sequences of variable length, need a fixed-size word
embedding (the amino acid feature vector). The obvious drawback resides in the features
themselves. Crafting and selecting suitable features, with enough information to learn the



Int. J. Mol. Sci. 2021, 22, 11741 13 of 20

complex sequence/structure relationship, is a hard task, and important information may
just be lacking (or some be redundant). This does not leverage the ability of neural network
to automatically extract features which also requires to feed the neural net with an entire
structure. Thus, other representations are needed.

5.2. Voxel Representation

As a three-dimensional object, a protein structure can be directly analyzed as volumet-
ric data that can be fed into a 3D-CNN: the space is discretized into cubic voxels of typically
1 Å side. Atoms within each voxel are counted and a Gaussian filter is applied to the dis-
crete count to produce an occupancy map. Each type of atom is counted independently and
treated as different channels, specifically RGB channels [56–59]. All approaches consider
nitrogen, oxygen, and carbon atoms, but some also represent sulfur and phosphorus [56],
or differentiate Cα and Cβ from other carbons [57].

The usually considered task is to predict an amino acid given its local environment.
The input of the network is a box of size about 20 Å, centered on the target residue.
The geometrical environment is canonized to ensure rotational and translational invariance.
This input, of shape C×(volume of the cube) with C the number of channels, is fed into a
3D CNN, which is trained on existing proteins, to output a probability over the 20 possible
amino acids. The details of the architecture differ between approaches: DenseCPD stacked
Dense blocks [65] while ProDCoNN used three parallel layers of different filter sizes to
catch information about covalent bonds, bond angles, and dihedral angles [58]. This task is
also useful for single-point mutation prediction [59], or for protein design, either indirectly
(using the prediction to reduce the search space of Rosetta [57]) or directly by taking the
maximum probability for each amino acid [58], or by sampling [56]. While DenseCPD
outperformed several competitors in a recent benchmark experiment [63], these results
have to be taken with caution because the training and testing data-sets used were not
proven to be separated in the evaluation.

The main interest of this approach is the ability of 3D-CNNs to take into account
the geometry of the protein structure. 3D-CNNs are used to identify structural motifs,
independently of their scale or position, which is critical to decipher the sequence/structure
relationship. The sensitivity of CNNs to rotation is canceled by the use of canonized frames
but this may not be always sufficient in the context of protein complexes [87]. This limitation
can be bypassed by rotational data-augmentation, which increases computation time.
Discretization also requires to settle compromises between computational complexities
and fidelity.

5.3. Distance Maps

A distance map is a 2D representation of a protein structure. It is a n × n matrix
(n being the length of the protein) giving the distance between Cα atoms of each pair of
amino acids. Contact maps are binary maps obtained by putting a distance threshold
on the distance map. Both contact and distance maps have been massively used for
protein structure prediction methods, including AlphaFold [7], trRosetta [88], and their
successors [8,26].

These structure prediction networks can be partially inverted using so-called symbolic
gradients: when an input sequence and an output structure are given, backpropaga-
tion can not only compute gradients on the weights (for training), but also on the input.
Norn et al. [13] relied on trRosetta: a CNN with residual connections (see Section 3.2.1)
predicting a distance map (and more) from a sequence. A random sequence is fed into
trRosetta, and the differences between the predicted and targeted distance maps are back-
propagated to the input sequence (or more precisely, its encoding). Iterated, this process
tends to optimize the input sequence so that it folds in the target structure. The major
claimed advantage here is that the resulting sequence seems to avoid the pitfall of the usual
ill-posed CPD problem: the predicted sequences seems to implicitly avoid the existence
of alternate stable backbones. Another method exploited trRosetta to hallucinate ideal



Int. J. Mol. Sci. 2021, 22, 11741 14 of 20

proteins [44]. Starting with a random sequence, a single random mutation is introduced
and its distance map computed by trRosetta. The mutation is kept with the objective of
encouraging the sequence to be different from background and the process iterated. The
resulting proteins have nature-like structure and a low sequence similarity (10%) with
known proteins. Twenty-seven sequences, out of 129 (20.9%), were experimentally shown
to produce folds consistent with the predicted structure. The two approaches have been
later combined for local hallucination [35].

Distance map can also be used directly to represent an input structure. SPROF extended
SPIN2 by incorporating 3D information in the form of a contact map [54]. They processed
the map as an image, and the corresponding sequence as a caption. Then, taking inspiration
from the usual “image captioning” task, they coupled a RNN and a CNN to output a PSSM,
from which a designed sequence is produced.

As a 2D representation of a 3D structure, contact and distance maps offer several
advantages. They are a low-dimensional, which makes computations efficient. They are
images that benefit from all DL methods developed in the field such as CNNs with residual
connections [7,54,88]. Finally, they are invariant for rotation or translation of the protein
structure. The dimension reduction leads to the loss of some geometric information that
can often be recovered [89].

5.4. Graph Representations
5.4.1. Graphs

Graphs are well-suited to represent relationships, here between residues in a protein
structure. In the most basic graph, each node, or vertex, corresponds to one residue, and
edges connect pairs of residues within a distance threshold. Such a graph is equivalent
to a contact map. A graph can be advantageous when there are few interactions between
amino acid (modeled by a small distance threshold). With a sparse graph (with few edges
compared to a complete graph), computations can be more efficient than on a distance map
which explicitly represents all pairwise interactions. Contact maps are naturally sparse as
the number of contacts of each residue is bounded. Moreover, nodes and edges usually
can contain more attributes than just the amino acid type and distance respectively. As
additional edge attributes, Strokach et al. [49] used the number of residues in between the
nodes in the sequence. Ingraham et al. [51] consider also direction and orientation from
local coordinate systems, as well as dihedral for extra node attributes.

Such annotated graphs can be processed by a dedicated Graph Neural Network (GNN)
architecture. If recurrent neural nets can be seen as generalized Hidden Markov Models,
GNNs are inspired by graphical models message passing algorithms [90]: each node sends
information to its neighboring nodes, then each node aggregates the information received
from its neighbors to update its state. The first step is done by defining a graph convolution,
an operation that generalizes the usual convolution for graph [91]. The difficulty here
is that a node can have a variable number of neighbors, so graph convolutions must
operate on a variable size input. Most approaches define their own graph operations,
including ProteinSolver [49]. Starting with a target structure and a masked sequence to
complete, node and edge embedding are produced through several graph convolution and
aggregation blocks. The node embeddings are then fed into feed-forward layers to predict
the missing residues. ProteinSolver was ranked as one of the worst performers in a recent
evaluation [63], but GNNs offer a lot of hyperparameters to tune.

Graphs can also be processed by an adapted Transformer architecture. Ingraham et al. [51]
used an encoder with three attention layers to produce node embeddings. Then, an
autoregressive decoder produces the output sequence, residue after residue.

Graphs are of course very convenient to capture spatial neighbors information, but
they lack the ability to capture fine grain geometry as CNNs on voxels. In order to benefit
from the advantages of both approaches, the Geometric Vector Perceptron approach defines
a specific graph convolution that is rotation and translation equivariant [53] as convolution
for translation. The resulting operations are also computationally more tractable than



Int. J. Mol. Sci. 2021, 22, 11741 15 of 20

other equivariant approaches [92]. With their architecture, the output sequences achieved
state-of-the-art results in terms of native sequence recovery rate (40.2%, see Section 2.2 for
caution on interpreting such numbers).

5.4.2. Point Clouds (3D Coordinates)

The most brutal way to represent a structure is probably as a point cloud, the list of
all 3D coordinates of its constituents, much like a PDB file. This dense information can
be filtered to just keep the coordinates of Cα carbon atoms [52], or an all (heavy) atom
representation can be preserved [60].

These points can then be used as nodes in a graph, and thus they can be processed by
a GNN-like architecture such as MimNet [52]. When fed with a PSSM, MimNet returns
protein structure 3D coordinates. It can also be reversed to predict a PSSM from coordinates.
Thus, MimNet is able to do both folding (forward) and design (background). The reversibil-
ity of the architecture is achieved thanks to a specific graph convolution, inspired by a
differential equation describing molecular dynamics. MimNet is simultaneously trained
on the two tasks so that the design is improved when the structure is better predicted.

Coordinates can also be considered as a set of points, as in Atom Transformer, a net-
work learning an energy function to predict the protein conformation. As its name suggests,
it is based on a Transformer architecture that processes a set of atom coordinates and fea-
tures (atom type, amino acid type, and position in the side chain). Atom Transformer is
trained in an unsupervised fashion, by maximizing the likelihood of the learned energy
function [60]. The conformation with the lowest energy is predicted to be the native confor-
mation. In this architecture, the attention mechanism replaces the graph convolution for
the task of seeking information from the neighbors.

Point clouds can be directly processed by rotation-equivariant operations, avoid-
ing data augmentation. However, these operations are costly in terms of computation
time [92]. By comparison with the general graph representation described in the previous
Section 5.4.1, point clouds do not reduce the geometric information about the structure.

6. Conclusions

In the last couple of years, Deep Learning has been widely used to propose new
protein design approaches, either by directly generating a sequence from a set of sequences
carrying a function or by using a backbone target to predict a sequence likely to fold onto
it. In either case, sequences and structures need to be represented as tensors. As the
literature shows, there is a wide variety of choices and no clear consensus on the preferable
representations or architectures for design.

When compared with classical CPD methods, pure Deep Learning models can often
avoid the restricting assumptions that are present in the usual energy-based inverse folding
formulation [13] of CPD. These simplifying assumptions may reduce the size of the search
space to make computations less intractable by targeting a fixed chosen backbone. This
is something that pure sequence based DL (or ML) approaches do not need to do. When
structure is explicitly considered, alternative backbone conformations seems to be also
implicitly accounted for in reversed structure prediction based methods for design [13],
avoiding the ill-posed nature of the inverse folding formulation. Finally, DL-based ap-
proaches do not need discretized side chain geometry, and some of them explicitly model
flexible backbones [51], something that is far from simple for energy-based methods [14].
However, except for a few of them (see Section 2.2), these methods have not been experi-
mentally validated.

Beyond this, most of the existing structure-based proposals are focused on designing
sequences for a fold. In practice, various additional constraints need to be imposed on the
chemical composition (sequence), geometry, or stability of various critical regions. Practical
designs rarely require producing a new sequence for a known fold. Pure sequence-based
approaches starting from a known family sharing a function do target a function, but may



Int. J. Mol. Sci. 2021, 22, 11741 16 of 20

be limited to sampling the distribution of natural proteins. Instead, computational protein
design is most useful when radically new functions or properties need to be created.

Therefore, one of the main weaknesses of DL and ML approaches to protein design
probably lies in the difficulty they have to produce specifically targeted out-of-distribution
protein sequences which would fold and work in non-natural conditions in terms of pH,
temperature, ligand-specificity, target, catalytic activity, or other enhanced properties. This
is often dealt with, in energy-based design, using multiple criteria or constraints capturing
not only energy, but also design targets. Some DL approaches have tried to incorporate
constraints to their model by adding additional features, such as as supplementary one-hot
vector indicating the desired type of metallo-binding site to add [46]. Imposing constraints
on DL models output is a challenging problem for Deep Learning in general, for which
specific losses have been proposed [93]. This usually requires a new training every time a
new constraint needs to be enforced.

Recent advances in protein structure prediction, which can produce predictions close
to atomic resolution [8], will have consequences in protein design. When used for forward
folding, DL-based structure prediction should enable a more precise assessment of pre-
dicted sequences. Additionally, neural networks can also be reversed to guide design [94],
as previously done with trRosetta [13]. By adapting the loss function to the design objective,
authors designed de novo monomers, protein complexes, and oligomers able to switch
conformation. However, this method shares the limitations of all DL-based methods on
the enforcing of additional constraints on the predicted sequence. Our own prediction is
that energy-based and DL/ML-based methods still have a long way to go and need to
learn from each other. Effective design requires approaches that can combine the specific
strengths of each approach and that are also experimentally validated.

Author Contributions: Writing—original draft preparation, M.D. and T.S.; writing—review and edit-
ing, M.D., T.S. and S.B.; visualization, M.D. and T.S.; supervision, T.S. and S.B.; funding acquisition,
S.B. and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the French ANR through grants ANR-19-PI3A-0004 and
ANR-18-EURE-0021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CPD Computational Protein Design
DL Deep Learning
GAN Generative Adversarial Network
GNN Graph Neural Network
MLP Multi-Layer Perceptron
MSA Multiple Sequence Alignment
NLP Natural Language Processing
PDB Protein Data Bank
PSSM Position-Specific Scoring Matrix
RNN Recurrent Neural Network
VAE Variational Autoencoder



Int. J. Mol. Sci. 2021, 22, 11741 17 of 20

References
1. Huang, P.; Boyken, S.; Baker, D. The coming of age of de novo protein design. Nature 2016, 537, 320–327. [CrossRef] [PubMed]
2. Hallen, M.A.; Donald, B.R. Protein Design by Provable Algorithms. Commun. ACM 2019, 62, 76–84. [CrossRef]
3. Adolf-Bryfogle, J.; Teets, F.D.; Bahl, C.D. Toward complete rational control over protein structure and function through

computational design. Curr. Opin. Struct. Biol. 2021, 66, 170–177. [CrossRef]
4. Noguchi, H.; Addy, C.; Simoncini, D.; Wouters, S.; Mylemans, B.; Van Meervelt, L.; Schiex, T.; Zhang, K.Y.J.; Tame, J.R.H.; Voet,

A.R.D. Computational design of symmetrical eight-bladed β-propeller proteins. IUCrJ 2019, 6, 46–55. [CrossRef]
5. Russ, W.P.; Figliuzzi, M.; Stocker, C.; Barrat-Charlaix, P.; Socolich, M.; Kast, P.; Hilvert, D.; Monasson, R.; Cocco, S.; Weigt, M.; et al.

An evolution-based model for designing chorismate mutase enzymes. Science 2020, 369, 440–445. [CrossRef] [PubMed]
6. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Senior, A.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Zidek, A.; Nelson, A.; Bridgland, A.; et al. Improved

protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef]
8. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.;

Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
[PubMed]

9. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2, 359–366. [CrossRef]

10. Frappier, V.; Keating, A.E. Data-driven computational protein design. Curr. Opin. Struct. Biol. 2021, 69, 63–69. [CrossRef]
11. Laine, E.; Eismann, S.; Elofsson, A.; Grudinin, S. Protein Sequence-to-Structure Learning: Is This the End(-to-End Revolution)?

arXiv 2021, arXiv:2105.07407.
12. Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697.

[CrossRef]
13. Norn, C.; Wicky, B.I.M.; Juergens, D.; Liu, S.; Kim, D.; Koepnick, B.; Anishchenko, I.; Players, F.; Baker, D.; Ovchinnikov, S. Protein

sequence design by explicit energy landscape optimization. bioRxiv 2020. [CrossRef]
14. Bouchiba, Y.; Cortés, J.; Schiex, T.; Barbe, S. Molecular flexibility in computational protein design: An algorithmic perspective.

Protein Eng. Des. Sel. 2021, 34, gzab011. [CrossRef] [PubMed]
15. Leman, J.; Weitzner, B.; Lewis, S.; Adolf-Bryfogle, J.; Alam, N.; Alford, R.; Aprahamian, M.; Baker, D.; Barlow, K.; Barth, P.; et al.

Macromolecular modeling and design in Rosetta: Recent methods and frameworks. Nat. Methods 2020, 17, 665–680. [CrossRef]
[PubMed]

16. Shapovalov, M.V.; Dunbrack, R.L. A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel
Density Estimates and Regressions. Structure 2011, 19, 844–858. [CrossRef] [PubMed]

17. Pierce, N.A.; Winfree, E. Protein Design is NP-hard. Protein Eng. Des. Sel. 2002, 15, 779–782. [CrossRef]
18. Kuhlman, B.; Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 2000,

97, 10383–10388. [CrossRef] [PubMed]
19. Hallen, M.A.; Martin, J.W.; Ojewole, A.; Jou, J.D.; Lowegard, A.U.; Frenkel, M.S.; Gainza, P.; Nisonoff, H.M.; Mukund, A.; Wang,

S.; et al. OSPREY 3.0: Open-source protein redesign for you, with powerful new features. J. Comput. Chem. 2018, 39, 2494–2507.
[CrossRef]

20. Traoré, S.; Allouche, D.; André, I.; de Givry, S.; Katsirelos, G.; Schiex, T.; Barbe, S. A new framework for computational protein
design through cost function network optimization. Bioinformatics 2013, 29, 2129–2136. [CrossRef] [PubMed]

21. Simoncini, D.; Allouche, D.; de Givry, S.; Delmas, C.; Barbe, S.; Schiex, T. Guaranteed discrete energy optimization on large
protein design problems. J. Chem. Theory Comput. 2015, 11, 5980–5989. [CrossRef] [PubMed]

22. Xu, J.; Wang, S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins Struct. Funct.
Bioinform. 2019, 87, 1069–1081. [CrossRef] [PubMed]

23. Pearce, R.; Zhang, Y. Deep learning techniques have significantly impacted protein structure prediction and protein design. Curr.
Opin. Struct. Biol. 2021, 68, 194–207. [CrossRef]

24. Anishchenko, I.; Baek, M.; Park, H.; Hiranuma, N.; Kim, D.E.; Dauparas, J.; Mansoor, S.; Humphreys, I.R.; Baker, D. Protein
tertiary structure prediction and refinement using deep learning and Rosetta in CASP14. Proteins Struct. Funct. Bioinform. 2021.
[CrossRef]

25. Zheng, W.; Li, Y.; Zhang, C.; Zhou, X.; Pearce, R.; Bell, E.W.; Huang, X.; Zhang, Y. Protein structure prediction using deep learning
distance and hydrogen-bonding restraints in CASP14. Proteins Struct. Funct. Bioinform. 2021. [CrossRef]

26. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et
al. Accurate prediction of protein structures and interactions using a 3-track network. bioRxiv 2021. [CrossRef]

27. Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein
complex prediction with AlphaFold-Multimer. bioRxiv 2021. [CrossRef]

28. Torrisi, M.; Pollastri, G.; Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 2020,
18, 1301–1310. [CrossRef] [PubMed]

29. Gao, W.; Mahajan, S.P.; Sulam, J.; Gray, J.J. Deep Learning in Protein Structural Modeling and Design. Patterns 2020, 1, 100142.
[CrossRef]

http://doi.org/10.1038/nature19946
http://www.ncbi.nlm.nih.gov/pubmed/27629638
http://dx.doi.org/10.1145/3338124
http://dx.doi.org/10.1016/j.sbi.2020.10.015
http://dx.doi.org/10.1107/S205225251801480X
http://dx.doi.org/10.1126/science.aba3304
http://www.ncbi.nlm.nih.gov/pubmed/32703877
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.sbi.2021.03.009
http://dx.doi.org/10.1038/s41580-019-0163-x
http://dx.doi.org/10.1101/2020.07.23.218917
http://dx.doi.org/10.1093/protein/gzab011
http://www.ncbi.nlm.nih.gov/pubmed/33959778
http://dx.doi.org/10.1038/s41592-020-0848-2
http://www.ncbi.nlm.nih.gov/pubmed/32483333
http://dx.doi.org/10.1016/j.str.2011.03.019
http://www.ncbi.nlm.nih.gov/pubmed/21645855
http://dx.doi.org/10.1093/protein/15.10.779
http://dx.doi.org/10.1073/pnas.97.19.10383
http://www.ncbi.nlm.nih.gov/pubmed/10984534
http://dx.doi.org/10.1002/jcc.25522
http://dx.doi.org/10.1093/bioinformatics/btt374
http://www.ncbi.nlm.nih.gov/pubmed/23842814
http://dx.doi.org/10.1021/acs.jctc.5b00594
http://www.ncbi.nlm.nih.gov/pubmed/26610100
http://dx.doi.org/10.1002/prot.25810
http://www.ncbi.nlm.nih.gov/pubmed/31471916
http://dx.doi.org/10.1016/j.sbi.2021.01.007
http://dx.doi.org/10.1002/prot.26194
http://dx.doi.org/10.1002/prot.26193
http://dx.doi.org/10.1101/2021.06.14.448402
http://dx.doi.org/10.1101/2021.10.04.463034
http://dx.doi.org/10.1016/j.csbj.2019.12.011
http://www.ncbi.nlm.nih.gov/pubmed/32612753
http://dx.doi.org/10.1016/j.patter.2020.100142


Int. J. Mol. Sci. 2021, 22, 11741 18 of 20

30. Anand, N.; Huang, P. Generative modeling for protein structures. In Proceedings of the ACM Conference on Advances in Neural
Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 7494–7505

31. Anand, N.; Eguchi, R.; Huang, P.S. Fully differentiable full-atom protein backbone generation. In Proceedings of the International
Conference on Learning Representations (ICLR) Workshops, New Orleans, LA, USA, 6–9 May 2019.

32. Guo, X.; Tadepalli, S.; Zhao, L.; Shehu, A. Generating tertiary protein structures via an interpretative variational autoencoder.
arXiv 2020, arXiv:2004.07119.

33. Li, Z.; Nguyen, S.P.; Xu, D.; Shang, Y. Protein loop modeling using deep generative adversarial network. In Proceedings of the
2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2017;
pp. 1085–1091.

34. Eguchi, R.R.; Anand, N.; Choe, C.A.; Huang, P.S. Ig-VAE: Generative modeling of immunoglobulin proteins by direct 3D
coordinate generation. bioRxiv 2020. [CrossRef]

35. Tischer, D.; Lisanza, S.; Wang, J.; Dong, R.; Anishchenko, I.; Milles, L.F.; Ovchinnikov, S.; Baker, D. Design of proteins presenting
discontinuous functional sites using deep learning. bioRxiv 2020. [CrossRef]

36. Yang, K.K.; Wu, Z.; Bedbrook, C.N.; Arnold, F.H. Learned protein embeddings for machine learning. Bioinformatics 2018,
34, 2642–2648. [CrossRef]

37. Alley, E.C.; Khimulya, G.; Biswas, S.; AlQuraishi, M.; Church, G.M. Unified rational protein engineering with sequence-based
deep representation learning. Nat. Methods 2019, 16, 1315–1322. [CrossRef]

38. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
arXiv 2018, arXiv:1802.05365.

39. Heinzinger, M.; Elnaggar, A.; Wang, Y.; Dallago, C.; Nechaev, D.; Matthes, F.; Rost, B. Modeling the language of life – Deep
Learning Protein Sequences. bioRxiv 2019. [CrossRef]

40. Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118.
[CrossRef] [PubMed]

41. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rihawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al.
ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Deep Learning and High Performance
Computing. arXiv 2020, arXiv:2007.06225.

42. Repecka, D.; Jauniskis, V.; Karpus, L.; Rembeza, E.; Rokaitis, I.; Zrimec, J.; Poviloniene, S.; Laurynenas, A.; Viknander, S.; Abuajwa,
W.; et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 2021, 3, 324–333.
[CrossRef]

43. Trinquier, J.; Uguzzoni, G.; Pagnani, A.; Zamponi, F.; Weigt, M. Efficient generative modeling of protein sequences using simple
autoregressive models. arXiv Prepr 2021, arXiv:2103.03292.

44. Anishchenko, I.; Chidyausiku, T.M.; Ovchinnikov, S.; Pellock, S.J.; Baker, D. De novo protein design by deep network hallucination.
bioRxiv 2020. [CrossRef]

45. Karimi, M.; Zhu, S.; Cao, Y.; Shen, Y. De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative
Adversarial Networks. J. Chem. Inf. Model. 2020, 60, 5667–5681. [CrossRef]

46. Greener, J.; Moffat, L.; Jones, D. Design of metalloproteins and novel protein folds using variational autoencoders. Sci. Rep. 2018,
8, 16189. [CrossRef] [PubMed]

47. Wu, Z.; Yang, K.K.; Liszka, M.J.; Lee, A.; Batzilla, A.; Wernick, D.; Weiner, D.P.; Arnold, F.H. Signal Peptides Generated by
Attention-Based Neural Networks. ACS Synth. Biol. 2020, 9, 2154–2161. [CrossRef] [PubMed]

48. Biswas, S.; Khimulya, G.; Alley, E.; Esvelt, K.; Church, G. Low-N protein engineering with data-efficient deep learning. Nat.
Methods 2021, 18, 389–396. [CrossRef]

49. Strokach, A.; Becerra, D.; Corbi-Verge, C.; Perez-Riba, A.; Kim, P.M. Fast and Flexible Protein Design Using Deep Graph Neural
Networks. Cell Syst. 2020, 11, 402–411.e4. [CrossRef] [PubMed]

50. Wang, J.; Cao, H.; Zhang, J.; Qi, Y. Computational Protein Design with Deep Learning Neural Networks. Sci. Rep. 2018, 8, 6349.
[CrossRef]

51. Ingraham, J.; Garg, V.K.; Barzilay, R.; Jaakkola, T. Generative models for graph-based protein design. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

52. Eliasof, M.; Boesen, T.; Haber, E.; Keasar, C.; Treister, E. Mimetic Neural Networks: A unified framework for Protein Design and
Folding. arXiv 2021, arXiv:2102.03881.

53. Jing, B.; Eismann, S.; Suriana, P.; Townshend, R.J.L.; Dror, R. Learning from Protein Structure with Geometric Vector Perceptrons.
arXiv 2021, arXiv:2009.01411.

54. Chen, S.; Sun, Z.; Lin, L.; Liu, Z.; Liu, X.; Chong, Y.; Lu, Y.; Zhao, H.; Yang, Y. To Improve Protein Sequence Profile Prediction
through Image Captioning on Pairwise Residue Distance Map. J. Chem. Inf. Model. 2020, 60, 391–399. [CrossRef] [PubMed]

55. O’Connell, J.; Li, Z.; Hanson, J.; Heffernan, R.; Lyons, J.; Paliwal, K.; Dehzangi, A.; Yang, Y.; Zhou, Y. SPIN2: Predicting sequence
profiles from protein structures using deep neural networks. Proteins Struct. Funct. Bioinform. 2018, 86, 629–633. [CrossRef]
[PubMed]

56. Anand-Achim, N.; Eguchi, R.R.; Mathews, I.I.; Perez, C.P.; Derry, A.; Altman, R.B.; Huang, P.S. Protein Sequence Design with a
Learned Potential. bioRxiv 2021. [CrossRef]

http://dx.doi.org/10.1101/2020.08.07.242347
http://dx.doi.org/10.1101/2020.11.29.402743
http://dx.doi.org/10.1093/bioinformatics/bty178
http://dx.doi.org/10.1038/s41592-019-0598-1
http://dx.doi.org/10.1101/614313
http://dx.doi.org/10.1073/pnas.2016239118
http://www.ncbi.nlm.nih.gov/pubmed/33876751
http://dx.doi.org/10.1038/s42256-021-00310-5
http://dx.doi.org/10.1101/2020.07.22.211482
http://dx.doi.org/10.1021/acs.jcim.0c00593
http://dx.doi.org/10.1038/s41598-018-34533-1
http://www.ncbi.nlm.nih.gov/pubmed/30385875
http://dx.doi.org/10.1021/acssynbio.0c00219
http://www.ncbi.nlm.nih.gov/pubmed/32649182
http://dx.doi.org/10.1038/s41592-021-01100-y
http://dx.doi.org/10.1016/j.cels.2020.08.016
http://www.ncbi.nlm.nih.gov/pubmed/32971019
http://dx.doi.org/10.1038/s41598-018-24760-x
http://dx.doi.org/10.1021/acs.jcim.9b00438
http://www.ncbi.nlm.nih.gov/pubmed/31800243
http://dx.doi.org/10.1002/prot.25489
http://www.ncbi.nlm.nih.gov/pubmed/29508448
http://dx.doi.org/10.1101/2020.01.06.895466


Int. J. Mol. Sci. 2021, 22, 11741 19 of 20

57. Qi, Y.; Zhang, J.Z.H. DenseCPD: Improving the Accuracy of Neural-Network-Based Computational Protein Sequence Design
with DenseNet. J. Chem. Inf. Model. 2020, 60, 1245–1252. [CrossRef]

58. Zhang, Y.; Chen, Y.; Wang, C.; Lo, C.C.; Liu, X.; Wu, W.; Zhang, J. ProDCoNN: Protein design using a convolutional neural
network. Proteins Struct. Funct. Bioinform. 2020, 88, 819–829. [CrossRef]

59. Shroff, R.; Cole, A.W.; Morrow, B.R.; Diaz, D.J.; Donnell, I.; Gollihar, J.; Ellington, A.D.; Thyer, R. A structure-based deep learning
framework for protein engineering. bioRxiv 2019. [CrossRef]

60. Du, Y.; Meier, J.; Ma, J.; Fergus, R.; Rives, A. Energy-based models for atomic-resolution protein conformations. arXiv 2020,
arXiv:2004.13167.

61. Chandonia, J.M.; Fox, N.K.; Brenner, S.E. SCOPe: Classification of large macromolecular structures in the structural classification
of proteins—Extended database. Nucleic Acids Res. 2018, 47, D475–D481. [CrossRef]

62. Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: An expanded resource to
predict protein function through structure and sequence. Nucleic Acids Res. 2016, 45, D289–D295. [CrossRef] [PubMed]

63. Castorina, L.V.; Petrenas, R.; Subr, K.; Wood, C.W. PDBench: Evaluating Computational Methods for Protein Sequence Design.
arXiv 2021, arXiv:2109.07925.

64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27—30 June 2016.

65. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,
arXiv:608.06993.

66. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
67. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:1301.3781.
68. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference

on Machine Learning, Bejing, China, 21–26 June 2014; Xing, E.P., Jebara, T., Eds.; PMLR: Beijing, China, 2014; Volume 32,
pp. 1188–1196.

69. Vylomova, E.; Rimell, L.; Cohn, T.; Baldwin, T. Take and Took, Gaggle and Goose, Book and Read: Evaluating the Utility of Vector
Differences for Lexical Relation Learning. arXiv 2016, arXiv:1509.01692.

70. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. AttentionIs All You
Need. In Proceedings of the 1st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9
December 2017.

71. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term
Dependencies. In A Field Guide to Dynamical Recurrent Networks; Kremer, S.C., Kolen, J.F., Eds.; IEEE Press: Piscataway, NJ, USA, 2001.

72. Bhattacharya, N.; Thomas, N.; Rao, R.; Daupras, J.; Koo, P.; Baker, D.; Song, Y.S.; Ovchinnikov, S. Single Layers of Attention
Suffice to Predict Protein Contacts. bioRxiv 2020. [CrossRef]

73. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
74. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680.
75. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; PMLR: Beijing, China, 2017;
Volume 70, pp. 214–223.

76. Consortium, T.U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, 235–242.
77. Tian, P.; Louis, J.M.; Baber, J.L.; Aniana, A.; Best, R.B. Co-Evolutionary Fitness Landscapes for Sequence Design. Angew. Chem.

Int. Ed. 2018, 57, 5674–5678. [CrossRef] [PubMed]
78. Cheung, N.J.; Yu, W. Sibe: A computation tool to apply protein sequence statistics to predict folding and design in silico. BMC

Bioinform. 2019, 20, 455. [CrossRef] [PubMed]
79. Srinivas, S. A generalization of the noisy-or model. In Uncertainty in Artificial Intelligence; Heckerman, D., Mamdani, A., Eds.;

Morgan Kaufmann: Burlington, MA, USA, 1993; pp. 208–215.
80. Wu, Z.; Johnston, K.E.; Arnold, F.H.; Yang, K.K. Protein sequence design with deep generative models. Curr. Opin. Chem. Biol.

2021, 65, 18–27. [CrossRef] [PubMed]
81. Ofer, D.; Brandes, N.; Linial, M. The language of proteins: NLP, machine learning & protein sequences. Comput. Struct. Biotechnol.

J. 2021, 19, 1750–1758. [CrossRef] [PubMed]
82. Villegas-Morcillo, A.; Makrodimitris, S.; van Ham, R.C.H.J.; Gomez, A.M.; Sanchez, V.; Reinders, M.J.T. Unsupervised protein

embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics 2020,
37, 162–170. [CrossRef] [PubMed]

83. Madani, A.; McCann, B.; Naik, N.; Keskar, N.S.; Anand, N.; Eguchi, R.R.; Huang, P.S.; Socher, R. ProGen: Language Modeling for
Protein Generation. arXiv 2020, arXiv:2004.03497.

84. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195–202.
[CrossRef]

85. Henikoff, S.; Henikoff, J. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919.
[CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.jcim.0c00043
http://dx.doi.org/10.1002/prot.25868
http://dx.doi.org/10.1101/833905
http://dx.doi.org/10.1093/nar/gky1134
http://dx.doi.org/10.1093/nar/gkw1098
http://www.ncbi.nlm.nih.gov/pubmed/27899584
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1101/2020.12.21.423882
http://dx.doi.org/10.1002/anie.201713220
http://www.ncbi.nlm.nih.gov/pubmed/29512300
http://dx.doi.org/10.1186/s12859-019-2984-1
http://www.ncbi.nlm.nih.gov/pubmed/31492097
http://dx.doi.org/10.1016/j.cbpa.2021.04.004
http://www.ncbi.nlm.nih.gov/pubmed/34051682
http://dx.doi.org/10.1016/j.csbj.2021.03.022
http://www.ncbi.nlm.nih.gov/pubmed/33897979
http://dx.doi.org/10.1093/bioinformatics/btaa701
http://www.ncbi.nlm.nih.gov/pubmed/32797179
http://dx.doi.org/10.1006/jmbi.1999.3091
http://dx.doi.org/10.1073/pnas.89.22.10915
http://www.ncbi.nlm.nih.gov/pubmed/1438297


Int. J. Mol. Sci. 2021, 22, 11741 20 of 20

86. Li, Z.; Yang, Y.; Faraggi, E.; Zhan, J.; Zhou, Y. Direct prediction of profiles of sequences compatible with a protein structure
by neural networks with fragment-based local and energy-based nonlocal profiles. Proteins Struct. Funct. Bioinform. 2014,
82, 2565–2573. [CrossRef]

87. Eismann, S.; Townshend, R.J.; Thomas, N.; Jagota, M.; Jing, B.; Dror, R.O. Hierarchical, rotation-equivariant neural networks to
select structural models of protein complexes. Proteins Struct. Funct. Bioinform. 2021, 89, 493–501. [CrossRef]

88. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted
interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [CrossRef]

89. Adhikari, B.; Cheng, J. CONFOLD2: Improved contact-driven ab initio protein structure modeling. BMC Bioinform. 2018, 19, 22.
[CrossRef]

90. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.;
PMLR: Bejing, China, 2017; Volume 70, pp. 1263–1272.

91. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

92. Fuchs, F.B.; Worrall, D.E.; Fischer, V.; Welling, M. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks.
arXiv 2020, arXiv:2006.10503.

93. Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; Broeck, G. A semantic loss function for deep learning with symbolic knowledge. Int.
Conf. Mach. Learn. 2018, 80, 5502–5511.

94. Jendrusch, M.; Korbel, J.O.; Sadiq, S.K. AlphaDesign: A de novo protein design framework based on AlphaFold. bioRxiv 2021.
[CrossRef]

http://dx.doi.org/10.1002/prot.24620
http://dx.doi.org/10.1002/prot.26033
http://dx.doi.org/10.1073/pnas.1914677117
http://dx.doi.org/10.1186/s12859-018-2032-6
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1101/2021.10.11.463937

	Introduction
	Background on Computational Protein Design
	Foundations and Methods
	Evaluation of Design Methods

	Background on Deep Learning
	Training
	Architectures
	Convolutional Neural Network
	Recurrent Architectures
	Attention Models
	Generative Models


	Representation of the Protein Sequence
	One-Hot Encoding
	Learned Embedding
	Position-Specific Scoring Matrices

	Representing the Protein Structure
	Sequential and Hand-Crafted Representations
	Voxel Representation
	Distance Maps
	Graph Representations
	Graphs
	Point Clouds (3D Coordinates)


	Conclusions
	References

