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Abstract: The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating
or hostile environmental conditions. This adaptation most often involves morphological changes
such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for
these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is
conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family
in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs
significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation,
giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments
or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins
from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying
cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.

Keywords: Saccharomyces cerevisiae; cell wall; flocculins; adhesins; FLO11; phenotypic variation;
adaptive plasticity

1. Introduction

When microbial cells are challenged by unfavorable environmental conditions, evo-
lutionary models predict that natural selection favors genetic changes that give cells an
advantage in an adverse condition. For microbes that reproduce asexually and very
quickly, random mutations can generate genetic diversity to adapt in fluctuating envi-
ronments. However, many other strategies are employed by microbial cell populations
to generate phenotypic diversity and adapt to their environments. The budding yeast
Saccharomyces cerevisiae has conceived an original adaptive response that consists of switch-
ing from a unicellular to a multicellular lifestyle according to the environmental conditions.
Flocculation is among the best-known multicellular growth forms of yeast, which was orig-
inally described by Emil Hansen more than 100 years ago [1]. While the classic definition
of flocculation is the reversible calcium-dependent aggregation of thousands of vegetative
cells into flocs [2,3], works from the Verstrepen group showed that the flocculation is
a cooperative protection mechanism that shields cells from stressful environments and
protect them against cheaters cells, such as excluding flo1- negative cells from the flocs [4].
Velum is another lifestyle where yeasts form a buoyant biofilm at the air–liquid interface at
the end of an alcoholic fermentation process as an adaptive mechanism to gain access to
oxygen in these poor oxygenated but high ethanolic environments [5,6]. Under deleterious
nutritional condition, such as nitrogen starvation or glucose depletion, S. cerevisiae can
trigger a filamentous program in the form of pseudohyphae, which correspond to chains
of attached cells that are formed from one another by budding [7–10]. This morphological
change enables cells to penetrate solid substrates and to grow invasively, a phenotype that
is commonly monitored by invasion in agar plates [11,12]. The yeast S. cerevisiae is also
able to form biofilms as mats, which are aggregated cells on a semi-solid agar surfaces
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exposed to air and may correspond to what they likely experience in rotting fruits [13].
Biofilms can also be formed on abiotic surface such as plastic or polystyrene [14]. These
phenotypic behaviors, of which a nice illustration can be found in reference [15], are thus
taken as a model to study the molecular basis of biofilm formation, as it is the most common
mode of colonization and infection of host cells and tissues by pathogenic yeasts, such as
Candida albicans [16,17].

A key feature in this multicellular behavior is the original propensity of wild S. cerevisiae
for cell–cell adhesion and cell–surface adhesion. This prerequisite is brought about by a
family of glycosylphosphatidylinositol-anchored cell wall proteins (GPI-CWPs) termed
flocculins, which are encoded by FLO1, FLO5, FLO9, FLO10, and FLO11. Although the
S. cerevisiae genome is endowed with these five genes encoding flocculins, to which could
be added FIG2 and AGA1 encoding cell-wall associated surface proteins that also belong
to adhesins family but do not display the same sequence architecture as FLO encoded
flocculins [18], we will concentrate this mini-review on the flocculins encoded by FLO11.
We will discuss the recent work about the relationship between protein sequence/structure
and molecular function, notably in term of cell–cell and cell–substrate adhesion. We will
examine what differentiates Flo11p from the other flocculins and how this cell–surface
protein is capable of engendering so many varied phenotypic behaviors, leading to consider
Flo11p as a masterpiece for yeast adaptation and evolution. Flo11p may be taken as a
model for understanding cell–cell and cell–surface adhesion mechanisms that are exploited
by pathogenic yeasts to adhere to abiotic surfaces such as catheters and gain access to the
internal organs of patients or to serve as a reservoir of drug-resistant infectious cells in the
form of biofilms.

2. Primary Sequence Analysis Distinguishes Flo11p from the Other Yeast Flocculins

The S. cerevisiae flocculins belong to a large family of fungal glycosylphosphoinositide-
linked cell wall proteins (GPI-CWPs). As illustrated in Figure 1, these flocculins, which
are encoded by 5 genes, exhibit a modular architecture with an N-terminal domain (A-
domain) flanked by a secretory signal sequence, a large middle region (B-domain) con-
taining serine/threonine-rich repeats, and a C-terminal part at which a remnant of GPI
anchor establishes the cross-link between an amino acid of this C-domain and a non-
reducing end of β-1,6-glucan, which involves a transamidation and transglycosylation
reactions, respectively [19]. The representation of the primary structure of the flocculins by
a hydrophobic-cluster analysis (HCA) [20] already points to differences between Flo11p
and the other flocculins. First, on a global sequence, the similarity between Flo1p and
Flo11p is only 37% whereas it is >90% between Flo1p, Flo5p, and Flo9p [18]. Second, the
A-domain that spans about 200–230 amino acids at the N-terminus of the flocculin is very
different in sequence and structure between Flo11p and the other flocculins. For Flo1 to
Flo10p, this domain encompasses a PA14 lectin domain, which is widely distributed in
the Bacteria, Archaea, and Eukarya domain, and harbors a unique Ca2+-binding motif
DcisD. It also contains a so called Flo subdomain that is exposed at the cell surface and
bears the carbohydrate binding site and [21,22]. This type of A-domain fully accounts for
the dominant Ca2+-dependent flocs formation. For further details on the structure of the
P14-Flo domain, the reader should consult the recent review on adhesins in yeast [23].
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In contrast, the structural analysis of the A-domain of Flo11p has revealed a fibronectin
type III-like adhesion domain that does not have any mannose-binding sites [24]. Interest-
ingly, this type of domain is found only in the ascomycetal orders of Saccharomycetales, and
in the Flo11p of Komagataella pastoris (formerly known as Pichia pastoris [25]) although shar-
ing only 32% homology with ScFlo11p [26]. Interestingly, this A-domain is present in up to
three times in adhesins of the human pathogenic Candida lusitaniae and the wood-boring
beetle associated fungus, Spasthasphora passalidarum [24].

A third significant difference between Flo11p and the other flocculins is found at the
large middle region (B-domain) of these proteins. Albeit the primary sequence in this
B-domain consists of tandem repeats, this analysis eventually splits the flocculins into two
categories. The first one that comprises Flo1p, Flo5p, and Flo9p is characterized by a large
number of short sequences of 5 to 7 amino acids especially rich in β-branched amino acids
Val, Ile, and Thr with a β-aggregation potential > 30% as predicted by TANGO predictor
software (http://tango.crg.es/) (accessed on 15 October 2021) More than 50% of these
β-aggregation prone sequences have the consensus T(V/I)IVI and they are all present in
the 45-residue repeats of these flocculins. It is considered that high β-aggregation potential
sequences provide amyloid fiber properties to these proteins [27]. Ramsook et al. [28]
indeed showed that a synthetic peptide containing a Flo1p TANGO positive sequence
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forms amyloid fibers in vitro. The second category encompasses Flo10p and Flo11p, which
exhibit less β-aggregation complexity within the B-domain. However, Flo11p possesses at
its C-terminus two β-aggregation sequences that nicely match the amyloid-core sequence
VVSTTV or VTTAVT, which is supported by the finding that this protein is also able to
aggregate into amyloid fibers in vitro [28,29] and in vivo ([30] see below).

3. Relationship between Sequence/Structure and Role in the Physiological Function
of Flo11p
3.1. Strain Phenotypes Are Shaped by the Plasticity of the FLO11-Encoded Protein

The gene encoding Flo11p was originally isolated and characterized independently
by two research groups from a Saccharomyces cerevisiae var. diastaticus [31,32], which is
a yeast able to grow on starch due to the production of a glucoamylase encoded by any
one of the members of the STA genes family [33]. Two seminal properties of this flocculin
were already disclosed in these works, which were the requirement of Flo11p for invasive
and pseudohyphal growth under carbon or nitrogen limitation and its involvement in
flocculation. Subsequent work revealed other phenotypes, including the formation of
velum, which is a biofilm of yeast cells floating on the surface of a wine barrel [5,34,35],
and mats, which correspond to a floral-like biofilm that expands over a wet, semi-solid
surface by sliding motility [14]. Adhesion of yeast cells on solid surfaces such as plastic
or polystyrene was reported as a property elicited by Flo11p [12]. Additionally, Flo11p
was shown to be implicated in colony morphologies exhibited by different yeast strains
growing on solid media in the presence of various carbon sources [36]. More recently, we
showed that Flo11 molecules could cluster together to form adhesion nanodomains on the
cell surface, a property that is dependent on a threshold number of amyloid-β-aggregation
prone sequences in the Flo11p ([37]; discussed below). This wide variety of phenotypes
raises the question of whether they can be expressed collectively in a single yeast strain
and which domain(s) of Flo11p is/are responsible for these phenotypes. Works from the
Hyman [38] and Verstrepen teams [39] have in part provided some answers to the first
question. They both used the laboratory strain S288c in which FLO genes are not expressed
because of a nonsense mutation in the major transcriptional activator encoded by FLO8 [40].
While one group integrated individual FLO genes under the strong TEF promoter, the other
expressed FLO11 in a high copy plasmid under the galactose inducible GAL1 promoter.
These works led to two major findings regarding differences between Flo11p and the other
flocculins. On the one hand, only Flo11p has the ability to trigger strong invasive growth
in a semi-solid environment, and thus it is essential in mats formation [41]. However, this
property only occurs if the FLO8 gene is functional, suggesting that while the absence of
FLO11 prevents the invasion process, the latter requires other factors under the control of
FLO8. On the other hand, FLO11 is unable to induce a flocculation phenotype, whether
FLO8 is active or not, although agglutination of 10–30 cells can be observed under an
optical microscope in a strain that expresses only this gene, indicating that Flo11p promotes
cell–cell interactions but not to the extent that it induces aggregation of thousands of cells
leading to flocculation. Since this result was at variance to Flo11p-mediated flocculation of
the S. cerevisiae var. diastaticus strain [42], it was argued that strain-specific difference in the
Flo11p phenotype may result from significant sequence differences in the FLO11 alleles,
rather than quantitative differences in FLO11 expression [43]. This assertion was further
supported by the fact that laboratory strain S288c is unable to exhibit a flor phenotype or to
produce nanodomains on its cell surface even upon dramatic overexpression of FLO11 [37].
In conclusion, these results highlight the importance of the sequence/structure of the Flo11
protein in the expression of these phenotypes.

3.2. Role of A, B, and C-Domains in the Physiological Function of Flo11p

As exposed in Figure 1, the Flo11p presents a modular architecture in three domains
or regions whose structure–function began to emerge from recent works [24,37,43–45]. The
N-terminal domain of Flo11p (A-domain also referred as N-Flo11p) of the S288c strain
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from aa 22 to 207 was purified and its crystal structure solved at 0.89 Å resolution. This
N-Flo11p was shown to be composed of three subdomains: a hydrophobic apical region,
a β-sandwich of fibronectin type III domain, and a neck domain [24]. The N-Flo11p can
be O-glycosylated but not N-glycosylated; although, there is a predicted N-glycosylated
site (Figure 1) and it did not harbor any carbohydrate binding site. The relevant property
of the N-Flo11p is to show a homophilic Flo1p interaction. This interaction was nicely
demonstrated in vitro using surface plasmon resonance analysis [46] and in vivo using
mutants that express Flo11p defective of the N-terminus by single-cell force spectroscopy
experiments [45]. Cells of these mutants do not interact each other anymore and they also
have lost the invasive growth phenotype [24]. More remarkably, this N-Flo11p confers kin
discrimination at the species and subspecies level, accounting for social behavior of yeast
by allowing aggregation between single cells expressing the same Flo11p and excluding
those that do not express Flo11p or a different alleles of FLO11 as well as cells from different
yeast species that express a paralog of ScFLO11 [45]. This homophilic interaction depends
on evolutionary conserved aromatic amino acids residues, which form two bands that are
present at the apical and the neck region of the N-Flo11p [24]. How different N-Flo11p
variants can discriminate between homotypic (kin) and heterotypic (non-kin) interactions
is still unclear. Nonetheless, this property makes FLO11 a member of the green beard
genes, which confers cooperation between cells that carry the same allele [47]. These
exquisite structural details of the N-terminal of Flo11 and their role in adhesion still leave
unexplained why Flo11p from S. cerevisiae var. diastaticus causes flocculation, mediates
adherence to plastic, but does not elicit agar invasion [42], even though this protein shows
homotypic interaction [29]. Barua et al. [43] compared primary sequence of Flo11p from
this strain with that of S288c and Σ1278b. Apart a 15-amino acid insertion in the N-terminal
of the Flo11p of Σ1278b, which is otherwise exclusively found in the ‘sake lineage’ of the
S. cerevisiae strain [48] and confers a higher adhesion force between cells [45], no other
difference could be noticed between the N-terminus of these three Flo11p. This could
suggest that another genetic component whose function is dependent on the presence of
Flo11p is implicated in the phenotypes shown by S. cerevisiae var. diastaticus.

The Flo11p harbors at its carboxyl terminal a typical GPI-attachment site “GAANIKVL-
GNFMWLLLALPVVF” that is composed of the ω-site (G) at position 1346 followed by
a hydrophobic-like sequence termed pro-peptide (aa 1347 to 1376) [49]. This attachment
signal is cleaved off and replaced by a preformed GPI-anchor in the endoplasmic reticulum,
which enables trafficking of the modified protein via the classical secretory pathway to end
up at the plasma membrane as GPI-PMPs [26]. A still unresolved issue is how some of
these GPI-PMPs are sorted into the cell walls to be covalently linked to β-1,6-glucan, which
involves a transglycosylation mediated by a Dfg5 enzyme [50,51]. Based on an in silico
analysis of 51 protein sequences with putative GPI attachment sites, Caro et al. [49] pro-
posed that the presence of two basic amino acids upstream of theω site at the C-terminus
of these GPI-anchored proteins would in most cases dictate retention at the membrane,
whereas GPI-PMPs that do not have these motifs, such as Flo11p, are transferred to the
cell wall. Another model is that of Vogt et al. [51] who propose that it is the ethanolamine
phosphate (EtN-P) modifications on the central GPI glycan that partly dictate the transfer
of GPI-PMPs to the cell wall, with the enzyme Dfg5 acting as a decoder of the presence of
the EtN-P modification on these GPI-glycans. Whatever the model, the destination of a
GPI-anchored protein to the membrane or to the cell wall is not absolute. Accordingly, it
was reported that Flo11 protein defective in the C-terminus can be secreted into the culture
medium [29], whereas our recent immunofluorescence experiments showed that such a
Flo11p variant was still localized at the cell surface.

These results indicate that part of Flo11p could be weakly retained in the cell wall
by non-covalent bonding mainly by hydrogen bonding and S-S bridges [52]. Hot SDS-
β-mercaptoethanol treatment of the yeast cell wall should be tested to validate this
hypothesis [53]. Moreover, the finding that Flo11p can shed from the cells may also agree
with the fact that not all Flo11 proteins are covalently attached to the β-1,6-glucan More-
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over, this shedding involves a cleavage within the N-terminus of Flo11p by the protease
Kex2p [54]. Nonetheless, the major consequence of losing the C-domain of Flo11p is that
a yeast strain expressing this variant is no longer able to grow invasively in a semi-solid
medium and to form mats, and same effects that were found in a kex2 mutant [37,54]. The
loss of these phenotypes can be explained by the inability of the cells to be retained on the
agar plate after washing since this Flo11p variant is no longer retained covalently on the
cell wall.

Although there are less data on the structure and function of the central part of the
S. cerevisiae Flo11p protein, referred as the B-domain (Figure 1), than that of the N- and
C-terminus, several studies attest to its strategic importance in the function of Flo11p.
The B-domain contains several tandem repeated Ser/Thr sequences predicted to be O-
and N-glycosylated, but they are comparatively less numerous than Flo1p, which could
explain the higher hydrophobicity character of the latter [55]. This B-domain is also
critically important for the velum phenotype of the flor strains of S. cerevisiae as reported by
Fidalgo et al. [5]. These authors found that the Flo11p of the flor strain 133d had twice as
many tandem repeats as its counterpart in the laboratory strain S288c and that this higher
number of repeats was accompanied by increased cell hydrophobicity, suggesting that this
gain in hydrophobicity was critical to the floatability property of this strain. The same
argument of cell surface hydrophobicity to elicit this buoyancy property was proposed by
Zara et al. [35]. In addition, these authors showed a good correlation between length of the
B-domain and potency of making this type of biofilm. This conclusion was completed by
Fidalgo et al. [56] who indicated that in addition to the length variation in repeats, changes
in the order and/or proportion of the different repeats in Flo11p may be another factor
contributing to the buoyant biofilm as well as to other phenotypes including adherence to
plastic and invasion in agar. Our recent work carried out with a Flo11p from an industrial
strain L69 led to a similar conclusion [37]. Finally, the N-glycosylation status of the B-
domain may be another source of phenotypic variation brought about by Flo11p. Using a
conditional pmi40-101 mutant, which is compromised in the early stage of glycosylation
due to the loss of phosphomannose isomerase activity at the restrictive temperature, Meem
and Cullen [57] showed a significant reduction of invasive growth, mat formation, and
pseudohyphal development. It would be worth to verify whether velum formation is also
abolished in flor strain defective in this process.

3.3. Dual Role of the Amyloid-Forming Sequence in Flo11p-Dependent Cell–Cell Interactions

Fungal adhesins, including the S. cerevisiae flocculins have severalβ-aggregation-prone
sequences (see Table 1) that consist mostly of aliphatic β-branched amino acids, which have
a high propensity to form β-aggregates. This β-aggregation of proteins increases their local
concentration and consequently increases the avidity of binding [58,59]. Physically, the for-
mation of these clusters can be elicited by shear force, such as vortex mixing, laminar flow,
or stretching in atomic force microscopy (AFM) [60–62]. Moreover, they can be visualized
as high avidity adhesins patches termed nanodomains by AFM [62,63]. In the pathogenic
yeast, Candida albicans, this phenomenon has received a lot of attention because cell surface
adhesins control essential processes of adhesion, colonization, and biofilm formation on
host tissues and indwelling medical catheters [64]. Work from Lipke and colleagues have
shown that these amyloid-core sequences are needed for clustering adhesin molecules in
cis on the cell surface, but they also mediate cell–cell interaction in trans through these
cross-β bonds [65,66]. The Flo11p from the laboratory strains S288c and Σ1278b has two
typical amyloid core sequences (VVSTTV/VTTAVT) at the boundary between the middle
region and the C-terminal domain (see Figure 1), which may likely explain that a soluble
version of this protein can assemble into amyloid fibers in vitro [28,29]. In spite of in vitro
data and in vivo experiments showing increased cell–cell aggregation upon hydrodynamic
shear that can be antagonized by amyloidophilic perturbants [28,30,61], the finding of
amyloid-dependent formation of nanodomains and their role in cell–cell adhesion have
not been directly demonstrated in the yeast S. cerevisiae, until we discovered the formation
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of abundant patches on the cell surface of an industrial wine yeast L69 strain under the
contact of an AFM bare tip [67]. We demonstrated that these patches corresponded to
adhesion nanodomains formed by the clustering of Flo11p, which exhibited nanomechani-
cal properties similar to those formed by nanodomains of Candida albicans adhesins [63].
The formation of nanodomains on the cell surface of the L69 strain and not on that of the
laboratory strain S288c even after overexpression of its endogenous Flo11p was explained
by a duplication of a short 100 amino acids sequence near the C-terminal of Flo11p of the
industrial strain, which provided two additional amyloid-core sequences (VVSTTV). This
data argued that a threshold number of these short β-aggregation prone sequences is nec-
essary for effective nanodomains production under shear force [37]. Moreover, this work
provided evidence that amyloid-core sequences contribute to trans-interactions between
Flo11p of opposing cells, and hence supported the model of Lipke and colleagues for a dual
role of amyloid β-sheet interactions; that is, in the formation of clusters of Flo11p on the
cell surface (cis-interaction) and in homophilic bonding between Flo11p of opposing cells
(trans-interactions) [66,68]. Taking into account these data and that Flo11p can connect
cells by forming an extracellular matrix that involves co-aligned Flo11 fibers as suggested
from ultrastructure analysis by electron microscopy [24], we propose the model depicted
in Figure 2 in which nanodomains resulting from cis-interactions of Flo11p on the cell
surface may enhance the homophilic interactions between Flo11 proteins of opposing cells,
strengthening henceforth cell–cell interactions.
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Table 1. Predicted β-aggregating sequence (>30%) in Flo proteins from Saccharomyces cerevisiae S288c strain according to the predictor TANGO software.

Flo1p Flo5p Flo9p Flo10p Flo11p

Domain AA
Position Motif β-Aggregate

(%)
AA

Position Motif β-Aggregate
(%)

AA
Position Motif β-Aggregate

(%)
AA

Position Motif β-Aggregate
(%)

AA
Position Motif

Mean
β-Aggregate

(%)

A 7–21 YMFLAVFTL
LALTSV 82.2 9–22 IFVILAFLAL

INVA 82 6–22
YYCLLLAI
VLLGLT-

NVV
77.6 7–23 YIFLTGLFL

LSVANVAL 81.7 5–16 FLLAYVLSLLF 96

B

308–312 TVIVI 87.9 207–215 TVYMYAGYY 30.5 118–122 IIAYW 72
353–357 TIIVI 87.3 308–312 TVIVI 73.2 207–215 TVYMYAGFY 50.9
398–402 TIIVI 87.3 353–357 TVIVI 87.8 308–312 TVIVI 87.9
443–447 TIIVI 87.3 398–402 TVIVI 87.8 353–357 TIIVI 87.3
488–492 TIIVI 87.3 443–447 TVIVI 87.8 398–402 TIIVI 87.3
533–537 TIIVI 87.2 488–492 TVIVI 87.8 443–447 TIIVI 87.3
578–562 TIIVI 87.2 533–537 TVIVI 87.9 498–492 TIIVI 87.3
623–627 TIIVI 87.2 578–582 TVIVI 87.9 533–537 TIIVI 87.2
667–672 TIIVI 87.2 623–627 TVIVI 87.9 578–582 TIIVI 87.2
713–717 TIIVI 87.2 783–788 TLVTVT 31.7 623–627 TIIVI 87.2
758–762 TVIVI 87.8 802–811 AIVSTATVTV 45.2 668–672 TIIVI 87.2
803–807 TVIVI 87.8 855–859 TVVTI 37.2 713–717 TIIVI 87.2
848–852 TVIVI 87.8 758–762 TVIVI 87.8
893–897 TVIVI 87.8 803–807 TVIVI 87.8
938–942 TVIVI 87.8 848–852 TVIIV 87.,7
983–987 TVIVI 87.8 1021–1026 TLVTVT 31.9

C

1028–1032 TVIVI 87.9 1040–1049 AIVSTATVTV 42.6
1073–1077 TVIVV 88.5 1093–1097 TVVTI 37.4

1234–1239 TLVTVT 31.7 1028–1035 VVTVYSTW 48.5 1033–1042 VTTVVSTT
VV 75.8

1254–1262 IVSTATVTV 45.9 1115–1119 VLISV 47 1056–1061 ITTTFV 56

1299–1303 TVVTI 37.2 906–911 TLVTVT 36.1 1144–1149 TLVTVT 37.7 1157–1168 ISIFIASLLLAI 89.8 1133–1144 TLVTTAVT
TTVV 84.8

1350–1355 TLVTVT 36 1063–1074 LSVFIASLLLAI 87 1175–1182 VVTVYSTW 82.6 1356–1362 FMWLLLA 85.3

1525–1536 LSVFIASLL
LAI 87 1310–1321 LSVFIASLL

LAI 87
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4. Intragenic Repeats Combined with Epigenetic and Conventional Genetic
Regulation of FLO11 Confers an Impressive Evolutionary Plasticity to S. cerevisiae to
Exploit New Niches and Resources

Although the common criteria of all FLO11-dependent phenotypes are the ability of
cells to adhere to each other, this broad phenotypic repertoire indicates that this gene is
endowed with a unique plasticity that allows yeast to rapidly adapt to hostile environment
or to exploit new niches. This plasticity is brought about by three unique features that
characterize the FLO11 gene, which are (i) intragenic repeats in the DNA sequence of
FLO11, (ii) genetic regulation by nutrients and pheromones signaling pathways, and
(iii) epigenetic control. The repetitive nature of highly similar DNA sequences within a
gene is the driving force for the generation of new alleles with reduced or expanded repeats
units, resulting from frequent slippage and/or recombination events during replication
of DNA. Expression of these new alleles can lead to phenotypic changes. These original
finding that expansion or contraction of intragenic repeats results in phenotypic variability
was shown with FLO1 encoding a flocculin responsible for flocculation phenotype [69].
These authors reported a seemingly linear relationship between flocculation potency and
number of tandem repeats. As reported in Table 2, the number of repeat units, as well as
their nature, are quite variable among the FLO11 of these four yeast strains, which may
likely explain why only strain 133d exhibits the so called velum phenotype [5]. Moreover,
it was shown that this velum phenotype was not solely dependent on the number of
tandem repeats but also on the nature of repetitive units [56]. In addition, these authors
demonstrated that a reduction of intragenic repeats in FLO11 can occur rapidly under
neutral (YPD medium) conditions, but not under selective conditions under which this
phenotype is needed (i.e., in the wine medium). Indeed, after five passages on YPD, a large
fraction of the yeast population contained shorter FLO11 that have lost several repeats, and
consequently the cells expressing these alleles had also lost most of their FLO11-phenotype
including buoyancy, invasive growth, and adhesion to plastic.

The FLO11 promoter spans more than 3 kb to which several transcriptional factors are
conveyed that either activate or repress the expression of this gene in response to several
environmental clues, which mainly include glucose depletion and nitrogen starvation
(Figure 3), but also pH or the quorum-sensing-like signal tryptophol through signaling
pathways. The cAMP-PKA and the fMAPK (or pheromone-dependent-MAPK) are the
main signaling pathways that regulate FLO11-dependent adhesion, invasion, and filamen-
tation in response to nutrient limitation/depletion in vegetative cells [70,71]. The former
stimulates FLO11 expression by activating the transcription factor Flo8p and inhibiting the
repressor Sfl1p, whereas Tec1/Ste12p is the transcription factor through which the fMAPK
upregulates FLO11 (see [15] and references therein). It is interesting to notice that these
two signaling pathways can compensate each other, such as the loss of FLO8 results in
a lack of FLO11 expression, which can be overcome by the overexpression of TEC1 and
reciprocally [70,72]. Effects of glucose depletion on FLO11-dependent invasive growth
in haploid cells was shown to be mediated by the SNF1 kinase pathway [73] through
the apparent inhibition of the transcriptional repressor Nrg1 [74], whereas the TORC1
pathway positively regulates filamentation growth in diploid cells through its transcription
factors Gln3 and Ure2 in response to nitrogen limitation, in parallel to the cAMP-PKA
pathway [75]. The RIM101 cascade, which is known to regulate gene expression under
alkaline conditions [76] and is crucial in fungal pathogenicity [77] was found to contribute
to mat formation and colony morphology, and this action involves the activation of FLO11
probably through Nrg1p [36,71]. Finally, several transcription factors including Mss1, Msn1,
and Mga1 have been identified as activators of FLO11 mostly via their capacity to suppress,
when overexpressed, mutations in genes in cAMP-PKA, TORC1, or SNF1 signaling path-
ways (see [15] and reference therein). Therefore, it is unclear to which environmental clues
these transcription factors respond and to which signaling pathways they belong. Collec-
tively, this complex transcriptional regulation of FLO11 indicates that this gene is critically
important for the yeast S. cerevisiae to readily adapt to environmental fluctuations.
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Table 2. Intragenic repeats in the middle region (B-domain) of FLO11 gene from various Saccharomyces cerevisiae strains.

Strain ORF (bp) Repetition Length
(TR) Score Count Repetition Start (nt. seq.) Repetition Stop

(nt. seq.)
Repetition

Conservation (%) Repeated Sequence (Consensus)

S288c 4104

63 304 24 688 2388 60.8 tctactacagcaaccacttcaaccaccgcaactactgcaaccacttctactactgaaaccact
33 55 8 2832 3095 66.7 ctctgcatgaacaaccactaccactacaactac
45 48 3 2429 2563 84.4 caaccccatcaagctctagcactgaaagctcttctgctccagtat
72 24 4 3099 3386 66.7 aactacagttttctccccaaacactgttactactacggtttcttctacaactacaactggtgcagacactac

Σ1278b 3633

81 438 13 767 1819 74.6 caaccagctctaccactgaaagctcttctgctccagctccaactccaaccagctctaccactgaaagctcttctgctccag
45 94 5 1923 2147 80.9 cactgaaagctcttctgctccagtaccaactccatccagctctag
45 46 3 2158 2292 83.7 ccagtaccaactccatccagctctagcactgaaagctcctctgct
45 29 2 335 424 91.1 gttgcgacgaaaatacctatttgattgacaacccaactgatttca

133d 4890 81 1708 49 827 4795 72.5 cttcttctgctccagttacttcttctactactgaatcttcttctgctccagctcctactccttcttcttctactactgaat

L69 5166

63 323 30 658 2547 60.2 acttcatctaccgctactactgcaaccacttctactactgcaaccacttctactactgcaaca
45 95 4 2646 2825 88.9 accagctccaactccatccagctctactactgaaagctcttctgc
45 71 4 2958 3137 82.2 atccagctctaccactgaaagctcttctgctccagtatcaacccc
12 41 8 2836 2955 73.3 agctctactgctcca
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The critical role of FLO11 in conferring adaptive plasticity of S. cerevisiae is further
reinforced by the fact that this gene is under epigenetic control [78–81]. This mode of gene
regulation refers to the heritable change in the expression of a gene that is not caused
by changes in the underlying gene sequence but involves a slow and random toggle
switch between a silenced and a competent promoter state of the gene, resulting in the
generation of phenotypic heterogeneity within a clonal population. This strategy can
take place without necessarily requiring a change in environmental conditions, but it
is precisely a means of anticipating these changes and therefore of being prepared to
face them, at least for a small fraction of the cell population. Therefore, this strategy
complements very well that of genetic regulation, which involves fast fluctuations between
a competent but inactivated, and an activated, state of the gene promoter in response
to environmental changes. As they complement each other, the central question is to
understand mechanistically how this complementation takes place in the case of the FLO11
gene. Of note, it was shown that the epigenetic silencing of FLO11 is dependent on its
genomic position and is promoter specific [78]. While determinants of genomic position
in the FLO11 regulation are still unclear, the promoter specificity seems to depend on the
antagonistic action of the trans repressor Sfl1p and trans activator Flo8p, which both bind
on overlapping sites located −1200 bp upstream of the FLO11 start codon. This competitive
binding initiates events that contribute to either the stabilization of a silent state (Sfl1p
binding) or a competent state (Flo8p binding) in each cell (Figure 3). Taking into account
these main trans factors and including the fMAPK regulated Tec1/Ste12/Phd1p trans
factors in the global transcription of FLO11, Octavio et al. [80] have proposed a model to
account for the kinetic role these different regulators have on the slow promoter fluctuations
associated with the epigenetic switch and the fast promoter fluctuations associated with
conventional genetic activation. This model considers three class of FLO11 regulators: class
I activators represented by Tec1/Ste12/Phd1p regulate fast promoter fluctuations only;
and class II activators, to which Flo8p, Msn1, and Mss1p belong, can convert a silenced
state to a competent promoter state. The combination of class II and class I activators both
have effects leading to high expression of FLO11. An additional regulatory layer on this
epigenetic phenomenon, which may explain that the expression of FLO11 is binary or
variegated in a clonal population, i.e., FLO11 is highly transcribed in some cells whereas
it is totally silenced in others [78], involves two non-coding RNAs, themselves regulated
by Sfl1p and Flo8p and the chromatin remodeler Rpd3L. These two ncRNAs are ICR1,
which represses FLO11 transcription, whereas PWR1 promotes this transcription. On the
other hand, Rpd3L is a chromatin remodeler that can bind in the vicinity of the Flo8p
binding site, and probably hinders the access of Sfl1p and/or represses ICR1, allowing
toggling FLO11 into a competent state [82]. This additional mechanism contributes to the
progression from an unstable or bistable to a stable transcriptional state. Overall, these
genetic and epigenetic regulations offer yeast cell flexibility in shaping the distribution of
gene expression and phenotype within a population.
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signaling pathways with their cognate transcription factors that activate or repress FLO11. In (B) is illustrated the epigenetic
control and transcriptional variegation of FLO11 that is dependent on the competitive binding of Sfl1 and Flo8 trans factor
at overlapping binding domain located at −1200 bp from the FLO11 start codon. This competition also involves the
toggling between two nRNAs encoded by ICR1 and PWR1. This ncRNA circuitry leads to the production of a competent
(Flo8-binding) or a silenced (Sfl1-binding) state that accounts for the variegation of FLO11 in a cell population. Arrows
indicate positive regulation and inhibition is shown by bars. Transcription factors that have a positive or negative effects
on transcription are indicated by (+) or (−). See text for further details on the mechanism and references [15,82,83] for
additional description of FLO11 genetic and epigenetic regulation.

5. Outlook

In this mini-review, we have illustrated all the phenotypic facets provided by the
expression of the FLO11 encoding flocculins, illustrating the ability of this gene to confer to
the yeast S. cerevisiae an impressive plasticity to quickly adapt to a fluctuating or hostile
environment. More precisely, Flo11p seems to be tailored to allow the yeast to adapt to its
ecological niche, as nicely illustrated with the protein expressed in flor strains [5]. This
plasticity can largely be explained by the presence of several intragenic repeats of FLO11,
which from recombination events, leads to the generation of different alleles expressing
different Flo11p, and by epigenetic and genetic regulations. This sophisticated regulation
leads to phenotypic heterogeneity allowing a fraction of the cell population to test the new
environmental conditions while sparing another fraction. To further validate the notion
that FLO11 is a developmental gene enabling yeast to exploit a new ecological niche, a
helpful step would be to compare the FLO11 sequence from a wide variety of S. cerevisiae
strains from diverse natural environments, including woodlands and clinical origins [84,85],
owing to the fact that clinical isolates show strong potency for invasive and pseudohyphal
growth [85–87]. Yet, several questions remain unanswered on the structure–function of
Flo11p, including the role of the number or the nature of the tandem repeats in adhesion
and biofilm formation, the importance of the glycosylation state on Flo11p function, as
well as to clarify how this protein can be retained on the cell wall while its GPI-anchoring
site is removed.
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Like C. albicans adhesins, the S. cerevisiae Flo11 flocculins can make nanodomains
under the action of shear force, and we showed that this property depends on the presence
of a threshold number of amyloid-forming sequences. In addition, it was shown that Flo11p
mediates cell–cell adhesion by homotypic protein–protein interactions characterized by
a strong adhesion force of more than 10 nN between two interacting cells [45]. Further
experiments using e.g., AFM-based single-cell force spectroscopy (SCFS) or fluid force
microscopy (FluidFM) [68] should be conducted to support the model that the formation of
nanodomains (and thus cis-interaction between Flo11p on a same cell) would strengthen
these adhesion forces. Nevertheless, these adhesion characteristics, common to those of
C. albicans adhesins and complemented by the filamentous phenotype of Flo11p, make
this flocculin a good model to study the mechanisms of cell–cell adhesion, cell–surface
adhesion, and biofilm formation, which form the initial events leading to fungal infection
by pathogenic yeasts like C. albicans and C. glabrata.
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