

Timing, volume and precursory indicators of rock- and cliff fall on a permafrost mountain ridge (Mattertal, Switzerland)

Hanne Hendrickx, Gaëlle Le Roy, Agnès Helmstetter, Eric Pointner, Eric Larose, Luc Braillard, Jan Nyssen, Reynald Delaloye, Amaury Frankl

▶ To cite this version:

Hanne Hendrickx, Gaëlle Le Roy, Agnès Helmstetter, Eric Pointner, Eric Larose, et al.. Timing, volume and precursory indicators of rock- and cliff fall on a permafrost mountain ridge (Mattertal, Switzerland). Earth Surface Processes and Landforms, 2022, 57 (6), pp.1532-1549. 10.1002/esp.5333 . hal-03603637

HAL Id: hal-03603637 https://hal.inrae.fr/hal-03603637

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 Integration of high resolution records for understanding the processes behind a disintegrating

- 2 permafrost rock face, Mattertal, Switzerland.
- 3

4 Abstract: Rockfall sites often represent a challenging study object due to a complex interaction 5 between site-specific conditions such as geology, topography and meteorology on the one hand and 6 their inaccessibility on the other hand. Therefore, the combination of several close-range remote 7 sensing techniques were used to offer a detailed account of 339 rock- and cliff fall events (< 10 - 318 300 m³) observed in a timespan of four years (2017-2020) at a south facing rock face at Grosse Grabe 9 in Mattertal (Western Swiss Alps), depositing more than 200 000 m³ of debris. Large cliff falls (10⁴-10⁶ 10 m³) were preluded by an outward movement that started to increase 1.5 years before any significant 11 collapse of the rock face and reaching locally up to 30 cm. This progressive displacement of the rock 12 face was more pronounced in summer, indicating thermal induced failure mechanism were at play at 13 fracture level. In addition, ice cementation in the clefts could have played a stabilising role in the 14 winter. The largest cliff fall events occurred in summer and systematically exposed ice in the clefts. 15 This is assumed to be the base of the permafrost from the north side, because the collapsing south 16 face is unsuitable for permafrost to occur. The presented dataset is unique because data collection 17 started before the onset of the rock wall destabilisation and collapse, allowing to get insight into the 18 processes at play prior to large rock- and cliff fall. Highly fractured south-exposed gneiss lithology is 19 viewed as the main precondition for the observed rockfall events, allowing high temperature 20 oscillations to cause irreversible movements at fracture level. Rapid permafrost degradation is viewed 21 as a triggering factor after its exposure, causing progressive failure of the rock wall leading to very high 22 rock wall erosion rates on a decadal timescale.

23

Keywords: Terrestrial laser scanner, photogrammetry, rockfall, seismology, mountain permafrost,
 structural predisposition

26 **1. Introduction**

27 Rockfall, i.e. the downward free or bounding movement of rock detachments from steep 28 rock walls, is a common geomorphic phenomenon in steep relief (Luckman, 2013) and an 29 important rockwall erosion agent (Krautblatter and Moore, 2014). Rockfall usually describes 30 detachments of a magnitude up to 10⁴ m³ (Dussauge, Grasso and Helmstetter, 2003), ranging 31 from boulder falls (10¹-10² m³), debris falls (< 10³ m³) and block falls (10²-10⁴ m³) (Krautblatter, 32 Funk and Günzel, 2013). Larger magnitude events are defined as cliff falls (10⁴-10⁶ m³), rockslides 33 and rock avalanches (>10⁶ m³) (Krautblatter, Funk and Günzel, 2013). Geological structures and 34 related fracture geometry and density are important predisposition factors for rock wall 35 instability leading to rockfall (Gunzburger, Merrien-Soukatchoff and Guglielmi, 2005; Hasler, 36 Gruber and Beutel, 2012; Beniston et al., 2018). Temperature oscillations, both on daily, seasonal 37 and annual timescales, can serve as a potential preparatory factor. The expansion and contraction 38 of rock can cause thermal stress fatigue and small irreversible displacements of rock fractures 39 (Gunzburger, Merrien-Soukatchoff and Guglielmi, 2005; Collins and Stock, 2016; Weber et al., 40 2017; Bakun-Mazor et al., 2020). When seasonal or permanent ice is present in the rock wall, 41 temperature cycles drive cryogenic processes such as ice segregation and volumetric expansion 42 (Matsuoka, 2008), leading to rockwall erosion by frost weathering (Krautblatter and Dikau, 2007; 43 Draebing and Krautblatter, 2019). Rockfall is therefore particularly common in the high mountain 44 environment experiencing seasonal frost or permafrost (Fischer et al., 2012; Ravanel, Magnin and 45 Deline, 2017). In periglacial areas, rockfall events mostly occur in the warm half of the year (Sass, 46 2005c), triggered for example by rainfall (Helmstetter and Garambois, 2010; Dietze, Turowski, et 47 al., 2017), diurnal temperature changes (Dietze, Turowski, et al., 2017) and freeze-thaw 48 transitions (Luckman, 2013; Dietze, Turowski, et al., 2017). Because of this, rockfall activity is 49 often higher during spring and autumn (Gardner, 1983; Luckman, 2013; Dietze, Turowski, et al., 50 2017). North-facing rockwalls also experience more frost action due their high moisture levels 51 and lower average temperatures, leading to enhanced rockfall activity (Gardner, 1983; Sass, 52 2005b). This highlights that climatic factors are crucial for rock wall stability as well, since they 53 control weathering processes (Sass, 2005a; Draebing and Krautblatter, 2019) and affect bedrock 54 permafrost, the latter possibly subjected to fast change (Gruber and Haeberli, 2007). In this 55 context, climate change can modify the rockfall susceptibility and the related hazard risk 56 (Haeberli and Beniston, 1998). Warming permafrost and increasing seasonal thaw depth can alter 57 the stability of steep rock faces (Noetzli et al., 2007; Fischer et al., 2012; Draebing, Krautblatter 58 and Dikau, 2014) by the failure of ice-filled rock fractures due the lowering of shear resistance 59 with increasing temperature (Davies, Hamza and Harris, 2001). Areas characterized by warm 60 permafrost (between -2°C and 0°C) will first be affected by this process. For mountains flanked 61 by densely populated areas, like the European Alps, rockfall is particularly hazardous, affecting 62 communities, infrastructures and economies at lower elevations (Gruber and Haeberli, 2007; 63 Walter et al., 2019).

In the last three decades, an increase rockfall events (< 10⁴ m³) have been observed in permafrost areas in many places of the European Alps, often related to summer heatwaves that cause excessive permafrost thawing from the surface, deepening the active layer (Gruber, 2004; Fischer *et al.*, 2011; Stoffel and Huggel, 2012; Ravanel, Magnin and Deline, 2017). An increase in larger rockfall or cliff fall events (10⁴-10⁶ m³) has been observed as well (Fischer *et al.*, 2012), 69 caused by failure at greater depth as the consequence of a gradual permafrost degradation, 70 rather than active layer thaw (Gruber and Haeberli, 2007; Allen and Huggel, 2013). Very large 71 rock slope failures, often referred to as rockslides or rock avalanches (> 10^6 m³), can occur at any 72 time of the year (Phillips et al., 2017) and are not necessarily linked to areas where warm 73 permafrost occurs (Hasler et al., 2011). In these cases, the rockfall occurrence is primarily 74 controlled by the lithological settings of the site (Fischer et al., 2012) and by the slow change in 75 fracture toughness of rock bridges due to warming (Krautblatter, Funk and Günzel, 2013). 76 Unprecedented large scale cliff falls, rockslides and rock avalanches may substantially affect the 77 alpine sediment cascade, providing fragmented rock debris on talus slopes, glaciers, rock glaciers 78 and in high alpine torrents. Such unconsolidated sediments may for instance be remobilized by 79 rainfall-triggered debris flows and cause infrastructural damage to downstream communities 80 long after the initial rockfall event (Baer et al., 2017).

81

82 To increase the understanding of rock wall instability and its development, important for 83 predicting process dynamics and mitigating hazards (McColl and Draebing, 2019), related rockfall 84 frequencies and magnitudes need to be monitored (Fischer et al., 2012). Terrestrial laser scanning 85 (TLS) and Uncrewed Aerial Vehicle (UAV) data can provide accurate 3D-information about rock 86 face geometry, allowing to derive rockfall location and volume when repeated measurements are 87 done. Precursory indicators before failure such as cleft opening or pre-failure deformation of a 88 few cm can also be detected if the accuracy of the method allows it (Abellán et al., 2010). 89 However, multiple rockfall releases within one monitoring period cannot be resolved using 90 TLS/UAV data (Dietze, Mohadjer, et al., 2017). Automatic camera images can help identify 91 different events, but only when visibility allows it (and thus e.g. not during the night or foggy 92 conditions). Rockfall events can also be studied by analysing the characteristic seismic pulses they 93 cause. In contrast to TLS/UAV data, seismic data does not rely on survey intervals (Dietze, 94 Mohadjer, et al., 2017; Le Roy et al., 2019) or visibility conditions (Dietze, Mohadjer, et al., 2017). 95 Seismic data can therefore be used for real-time detection and warning. Moreover, the link 96 between external factors influencing the rockfall event can be studied better if the exact timing 97 of the latter is known (Dietze, Mohadjer, et al., 2017; Le Roy et al., 2019). Relationships between 98 rockfall event properties (detachment and impact areas, volume, geometry and propagation) and 99 the seismic signal can also be applied in different geological settings and for different rockfall 100 magnitudes (Le Roy et al., 2019). Combining different datasets is therefore essential for rockfall 101 characterisation (Fischer et al., 2011; Dietze, Mohadjer, et al., 2017). Although it is rare to have 102 data from initial destabilisation up to failure of a rock face, this information is of high importance 103 for adopting early warning systems (Leinauer, Jacobs and Krautblatter, 2020).

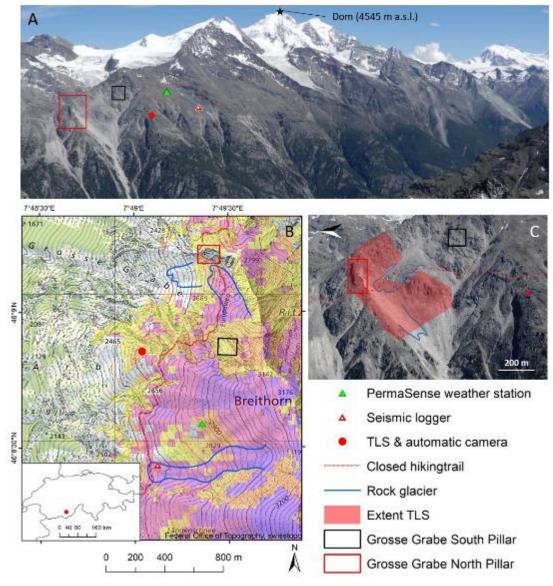
104 The main aim of this study is to accurately present the temporal and spatial distribution 105 of all rockfall events that occurred at a disintegrating south-facing rock face (2600 – 2700 m a.s.l.) 106 in Mattertal, Switzerland. To achieve this, a combination and integration of four different 107 datasets (UAV, TLS, seismic and automatic camera data) were used. By doing so, this study 108 provides valuable information for rockfall hazard management and contributes toward the 109 understanding of the processes involved in large rock- and cliff fall, having increasingly occurred 110 in high mountain environments during the last three decades (Huggel et al., 2012). While post-111 event remote sensing is common to study rockfall in the periglacial high mountain environment 112 (Fischer et al., 2011; Dietze, Mohadjer, et al., 2017; Le Roy et al., 2019; Sala, Hutchinson and 113 Harrap, 2019), it is rare to have direct observations before, during, and after rockfall. Here, we 114 present such a unique dataset (2017 – 2020), resulting in valuable information about precursory 115 processes, temporal distribution and potential triggers of rockfall. This study benefited greatly 116 from the datasets available from seismic and automatic camera installations, already in place for 117 rock glacier monitoring and their relationship to debris flow activity (Kummert, Delaloye and 118 Braillard, 2018; Guillemot et al., 2020).

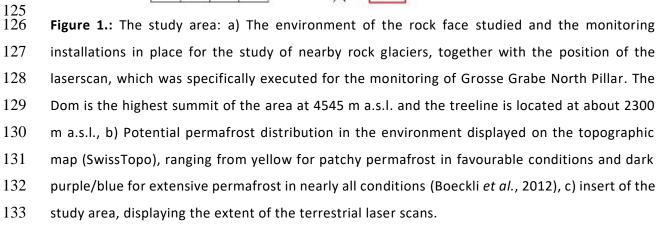
119

120 **2.** Study site, material and methods

121 **Table 1.:** Overview of application and integration of the various methods used in this study

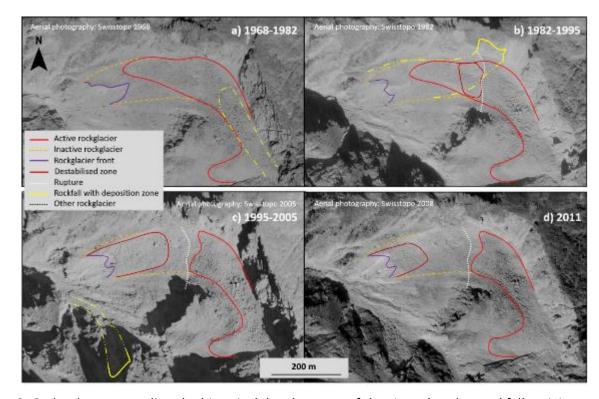
Fixed installations for the monitoring of rock


		glaciers					
	TLS	UAV	Seismics	Time-lapse camera			
Start of the monitoring	2017	2020	2015	2011			
Temporal resolution	Bi-annual (10 scans)	Weekly (5 surveys)	Continuous	Hourly			
Spatial accuracy	3 cm	30 cm	Low, only one logger	High qualitative confirmation of rockfall			
Spatial extent	Grosse Grabe North Pillar and adjacent rock wall	Grosse Grabe North Pillar	Grosse Grabe North Pillar, South pillar and environments	Grosse Grabe North Pillar			
Remarks	 Topographic occlusion due to single scan position Cumulative volumes Precursory deformation 	 No topographic occlusion Visual information Event based volumes 	 All rockfall recorded Estimated volumes No exact rockfall location 	 Near real-time confirmation of rockfall and location Precursory fracture widening Qualitative data 			


¹²²

TLS: terrestrial laser scanning, UAV: uncrewed aerial vehicle

123


124 2.1. Study area

135The study area is an unstable south-facing rock face (2600 – 2700 m a.s.l.), North of the136Grosse Grabe torrent (and hereafter referred to as Grosse Grabe North Pillar) and its adjacent137rock wall, at the orographic right side of the Mattertal valley, Switzerland (46°09′08″N, 7°49′21″E,138Figure 1). The lithological structure consists of highly fractured augen gneiss with a foliation dipping

139 SW, interlaced with various tectonic cleft structures (Bearth, 1978). The studied rock face is part 140 of a narrow ridge with a height of 100 – 120 m. The first monitored rock fall activity at Grosse 141 Grabe North Pillar occurred in the mid-1980s, as observed in historical aerial photographs (Figure 142 2b, Delaloye et al., 2014). The rock glacier at the base of the rock face was overburdened by these 143 deposits and reaccelerated rapidly (velocities up to 5 m per year between 1995 and 2010). Because of 144 this, the upper and currently intact part of the rock glacier, not impacted by the rockfall of the 1980s, 145 is separated from the lower terminal tongue (Figure 2c-d, Delaloye et al., 2013). The movement of the 146 terminal tongue has been decreasing since 2010 (Delaloye et al., 2013) and had become very slow 147 when the survey of the lower section stopped in 2017 (< 0.5 m/yr). This marks the end of the 148 destabilisation phase of the rock glacier, likely indicating the almost completed permafrost 149 degradation at depth, in analogy to the attested absence of permafrost in the well-developed rupture 150 zone of a similarly destabilised rock glacier (Delaloye and Morard, 2011). Rock wall instabilities in the 151 surroundings of the study area are common as well, with isolated rockfall from the same ridge in the 152 1970s (Figure 2a, Delaloye et al., 2014). More recent rockfall from an area more to the south of the 153 studied rock face (Grosse Grabe South Pillar, Figure 1) led to the closure of the hiking trail crossing 154 the area in 2018.

155

Figure 2. Orthophotos revealing the historical development of the site related to rockfall activity,
a) isolated rockfall from the same ridge occurring in the 1970s, b) rockfall from Grosse Grabe

158 North Pillar occurring in the mid-1980s, overburdening the rock glacier below, c) and d) the 159 development of the rupture of the rock glacier.

6

161 The studied rock face is below the lower limit of permafrost occurrence of south faces, which 162 is around 3300 m a.s.l. in the Mont Blanc Massif (Magnin et al., 2017) and around 2900 m a.s.l. in the 163 Swiss Alps, for ice-poor permafrost (Kenner, Noetzli, et al., 2019). However, permafrost may exist in 164 the studied rock wall because of the opposite north face, here in a distance of approx. 50 - 70 m 165 across the pillar. Indeed, the potential permafrost distribution map shows that local permafrost likely 166 to be found at the north face and absent at the south face of Grosse Grabe (Figure 1, Boeckli et al., 167 2012). Moreover, the highly fractured bedrock favours bedrock cooling by the convection of cold air 168 (Moore et al., 2011) and the trapping of snow in winter time (Hasler, Gruber and Haeberli, 2011). All 169 of the above makes permafrost presence in the studied rock wall likely.

170

171 2.2. Meteorological data

172 A long term record of high temporal resolution meteorological data is available from Grächen 173 station (MeteoSwiss, 46°11'42"N, 7°50'09"E at 1605 m a.s.l., approx. 5 km from the study area, same 174 orographic side of the valley); this meteorological station has measured air temperature and 175 precipitation since 1864, with automatically measured data available since 2013. Annual mean 176 precipitation at this station is 625 ± 120 mm for the reference period of 1981 - 2010. There is low 177 seasonality in precipitation, with October the wettest month (63 ± 52 mm), and January through April 178 the driest months (30-40 mm on average) (Stoffel, Tiranti and Huggel, 2014, MeteoSwiss). Mean 179 annual air temperature (MAAT) at the meteorological station is around 5.3 ± 0.7 °C (1981-2000) 180 (MeteoSwiss). A shorter temperature record (2012-2020) with a 2-minute interval is available 181 from a weather station located on the Breithorn landslide (2873 m a.s.l.), 1 km from the study 182 area (Figure 1), revealing a MAAT of -0.3 ± 0.7 °C. This weather station is deployed by PermaSense, 183 a consortium of researchers and research projects developing and operating autonomous sensing 184 systems in high-mountain environments for acquiring long-term datasets (UZH - The PermaSense 185 Consortium, 2021). Temperature data of the PermaSense station correlates well linearly with the 186 temperature record of Grächen ($R^2 = 0.97$), corresponding to a lapse rate of 4.9 ± 1.03 C° km⁻¹. 187 This linear relationship justifies the use of the Grächen temperature record when data gaps occur 188 in the PermaSense station. Within this study, temperature and precipitation data is used to detect 189 relationships between rockfall and frost/thaw and wet/dry cycles, as shown by other studies 190 (Helmstetter and Garambois, 2010; Bajni, Camera and Apuani, 2020). To do this, the cross-correlation 191 function was established between temperature or precipitation data from the more complete Grächen 192 series and the rate of rockfalls detected from the seismic network. This highlights the potential

triggering effect of precipitation/temperature without defining a threshold and provides the time delay between a certain meteorological event and the occurring rockfall. For a detailed description of the methodology, see Helmstetter and Garambois (2010). Local temperature data from the PermaSense station was used to detect if any specific event preluded the largest rock – and cliff fall observed (> 5000 m³), using a simple t-test comparing weekly temperature averages on the 95% significance level.

199

200 2.3. Hourly terrestrial time-lapse photography

201 Monitoring of rockfall occurrence can be achieved by photographic surveys using fixed 202 installations (D'Amato et al., 2016; Matsuoka, 2019). In this study, the observation of the rock face 203 started in 2011 with the hourly archival of images taken by an automatic camera (Table 1, Figure 3). 204 The latter was installed to study the rock glaciers underneath the face and its connection to the torrent 205 prone to debris flows (Delaloye et al., 2013; Kummert, Delaloye and Braillard, 2018). This offers a near 206 real-time visual check of the Grosse Grabe North pillar, detecting the first rockfall events in the winter 207 of 2017 and dating and locating the rockfall events thereafter, similar to D'Amato et al. (2016). The 208 automatic camera imagery also revealed that some parts of the pillar showed precursory deformation 209 before 2017 (Figure S1, Suppl. Material), but as the motion was mostly directed towards the camera, 210 it was not possible to quantify it reliably. The automatic camera is powered by an 80 W solar panel 211 which charges a 12 V battery. This battery is also used to power a router which transfers the hourly 212 images to a server. Near real-time images and selected time lapse sequences can be accessed via the 213 webpage of the Geomorphology research group of Fribourg University (Study sites - Grosse Grabe, 214 2021).

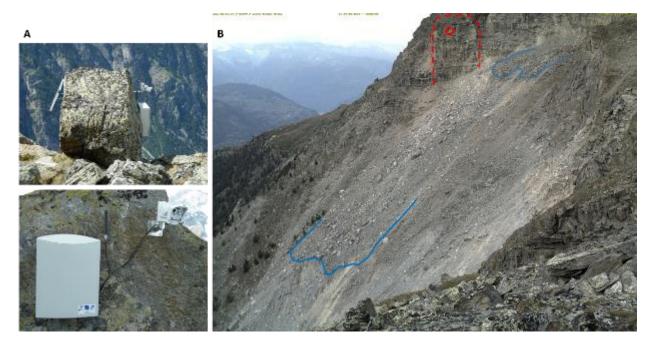


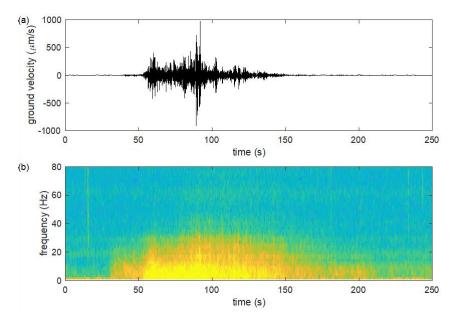
Figure 3.: Set-up of the hourly terrestrial time-lapse photography: a) the installed automatic camera on a large boulder on stable bedrock and b) example of a photograph taken by the automatic camera, displaying the situation before the summer of 2019, indicating the unstable Grosse Grabe North Pillar (striped line), the location of the small scale 2017 rockfall (red circle) and the rock glaciers (blue lines) as the initial subject of study.

215

222 2.4. Detailed topographic data derived from terrestrial laser scans and Uncrewed Aerial Vehicle223 photographs

224 Terrestrial laser scans (TLS) of the study area were performed from 2017 to 2020 at the beginning 225 (late June/early July) and end (late September/early October) of the summer season (Table 1), using 226 an ultra-long-range near-infrared pulse-based Riegl VZ[®]-6000 LiDAR system. This LiDAR system allows 227 for a rapid survey (up to 222 000 measurements per second) and permits scans at a large distance from 228 the area of interest (in this case ca. 700 m) (Figure 1). The TLS scan provides high-resolution 3-229 dimensional point cloud data from the upper talus slope, the upper rock glacier front, Grosse Grabe 230 North Pillar and the adjacent rockwall (Figure 1 c). Starting in 2020, additional scans were executed at 231 the same place to get topographic data from the lower part of the talus slope/rock glacier below to 232 investigate the rockfall deposits. The resulting point clouds were post-processed in RiScanPro® 233 software (version 3.3.438). Data were registered relatively to each other in a local coordinate system 234 using the first scan of geomorphologically stable areas as a reference such as developed by Fischer et 235 al. (2016) and Kummert and Delaloye (2018). The multi-station adjustment of all scans achieved an 236 accuracy of 0.03 m as the overall standard deviation of the normal distances and is used as the Level of Detection (LoD). The residuals of the corresponding stable areas between the reference scan and the registered scan showed Gaussian distributions. The resulting point cloud was subsampled to a minimum point spacing of 0.10 m using RiScanPro[®]'s octree filter.

240 Uncrewed Aerial Vehicle (UAV) photographs were gathered after large rock- and cliff fall events 241 in the summer of 2020 (Table 1) to improve the frequency of observations and to obtain observations 242 in areas not detectable from the TLS survey position due to topographic occlusion. The UAV imagery 243 was also used to make post-failure observations, allowing to visually detect if massive ice is present in 244 the rockfall scar. Five flights were performed with a DJI Phantom 4 Pro and flown without specific flight 245 planning. Given the inaccessibility of the site no ground control points were placed or measured. The 246 same software and workflow as in Hendrickx et al. (2020) were used for processing the photographs 247 into point clouds (See Suppl. Material for more details). To obtain data with high comparative accuracy, 248 the co-alignment methodology was adapted, based on the automatic detection of common tiepoints 249 in the stable areas. A small percentage of these common tiepoints (0.4 - 1%) is sufficient to enforce a 250 common geometry (Cook and Dietze, 2019). For Grosse Grabe, the five UAV surveys share 9% of the 251 total tiepoints. This resulted in a point cloud time-series with 0.30 m as the LoD, calculated on the 252 average change measured in the stable areas (Cook and Dietze, 2019), compared to 1-2 m of detected 253 change in the stable areas when the co-alignment method was not adopted. The resulting UAV derived 254 3D-models were used for the mapping and the measurements of the geological structures, using the 255 ShapeMetric3D software v3.7.1 (*ShapeMetric3D*, 2021).


256 Point clouds derived from TLS and UAV data were further analysed in CloudCompare (version 257 2.11). The Multiscale Model to Model Cloud Comparison (M3C2, normal and projection = 0.6 m, 258 calculated on all the points, minLoD as registration error, preferred orientation in -Y), developed by 259 Lague, Brodu and Leroux (2013), was used to quantify a 3D change accurately to detect deformation 260 of the rock face prior to any rockfall. The function "compute cloud/cloud distance" was used to quickly 261 identify rockfall zones. Both individual and cumulative rockfall volumes were calculated by fitting a 262 plane through the affected rock face and applying the resulting matrix values on the entire point cloud 263 using the 'Apply transformation tool'. This way, 2.5D volumes were calculated in the Z direction, taking 264 the LoD into account. When consecutive rockfall did not affect the same zone, rockfall volumes 265 from individual events could be derived from TLS/UAV data. Therefore, individual TLS volumes are 266 only available for the first rockfall events in the winter and spring of 2017 and 2018. Otherwise, 267 cumulative rockfall volumes spanning the monitoring interval were used to establish a relationship 268 between the measured seismic parameters. The total rockfall volume derived from the TLS data was 269 used to calculate rock wall erosion rate for the entire period of direct observation (2011-2021), 270 including observations from the automatic camera that confirmed no significant rockfall events 271 between 2011 and 2017. The resulting mean annual rockfall volume (m³) was divided by the slopeperpendicular surface area (m²) of the studied rockwall (Figure 1 c, TLS extent), similar to the methods
used in Hartmeyer *et al.*, (2020).

274

275 2.5. Seismic observations

To obtain the exact timing of the rockfall events, we used seismic data of one seismometer (Table 1), part of a network of six seismometers that have been installed to monitor Gugla rock glacier (Guillemot et al., 2020), located 2 km away from the rock face (Figure 1). This sensor was the only one providing continuous data during this study (2017-2020). The sensor is a Sercel L22 one-component geophone with a resonance frequency of 2 Hz (flat response above this frequency) and the signal is recorded continuously at a sampling rate of 200 Hz since 2015. No significant rockfall was detected from the study site before 2017.

We analysed all seismic events within the time interval of events detected by the automatic camera. We selected all events with a peak ground velocity larger than 10 μ m s⁻¹ and characteristics typical of rockfall seismic signals (Helmstetter and Garambois, 2010; Le Roy *et al.*, 2019): a duration longer than 20 s and an energy content in the range 1-20 Hz. The seismic signal of the largest event is shown in Figure 4. We also checked visually all signals to manually remove earthquake pulses, which show a typical separate arrival of P- and S-wave and long-lasting decreasing tail (coda) (Dietze, Turowski, *et al.*, 2017).

290

Figure 4. Seismogram (a) and spectrogram (b) for the largest event that occurred on 14 August 2020
at 10:59 UTC time.

293

We then estimated the seismic energy of each event assuming a point-source (Kanamori and Given, 1982; Eissler and Kanamori, 1987) because the source-sensor distance is much larger than the source area, considering the medium as isotropic and homogeneous. We also considered that surface waves dominate the seismic signal (Deparis *et al.*, 2008; Vilajosana *et al.*, 2008; Dammeier *et al.*, 2011). Signals were band-pass filtered between 2 and 20 Hz. We used the following relationship to estimate the seismic energy E_s (Vilajosana *et al.*, 2008):

300
$$E_s = 2\pi r phc \int_{t_0}^{t_1} u_{env}(t)^2 e^{\alpha r} dt$$
 (1)

301 where t_0 and t_1 are the manually picked onset and end times of the seismic signal, r is the distance 302 between the event and the recording station (2040 m for the North Pillar and 1400 m for the South 303 Pillar), p is the ground density (assumed at 2700 kg m⁻³), h is the thickness of the layer through which 304 surface waves propagate (taken as one wavelength of Rayleigh waves, h=200 m for a frequency 305 centroid of 10 Hz), c is the phase velocity of Rayleigh waves (assumed at 2000 m s⁻¹), $u_{env}(t)$ is the 306 envelope of the ground velocity obtained using the Hilbert transform. The damping factor α accounts 307 for an elastic attenuation of seismic waves and is calculated using the maximum amplitudes of the 308 rockfall seismic signal at two seismic stations and the distances between source and sensor. Since only 309 one seismic station is available for the study site, the value (of α =8.8 x10⁻⁴ m⁻¹) estimated for Mount 310 Saint-Eynard rockfalls was used, with a frequency centroid of 10 Hz (Le Roy et al., 2019).

Rockfall seismic signals can also be characterized by their equivalent magnitude, using the same relations as for earthquakes. Local magnitude can be estimated from the seismic energy using the Gutenberg-Richter magnitude-energy relation (Kanamori and Anderson, 1975).

$$314 \qquad Log E_s = 1.5M_L + 4.8 \tag{2}$$

We then calibrated a relation between the magnitude M_L of a rockfall event and its volume V. We assumed a relation in the form of (Le Roy *et al.*, 2019):

317
$$M_L = a \log_{10}(V) - b$$

For each time interval between two TLS or UAV surveys, we selected all events within this time interval. We then optimized the parameters a and b of equation (3) in order to minimize the root-mean-square error between the logarithm of volume estimated from TLS or UAV surveys and the cumulated volume estimated from the signal magnitude using equation (3). We found a=0.84 and b=1.38, in good agreement with the results obtained by Le Roy *et al.* (2019) for rockfalls in the Chartreuse massif (French Alps).

324

325 **3. Results**

(3)

326 3.1. Precursory observations and geomorphological development of the rock face

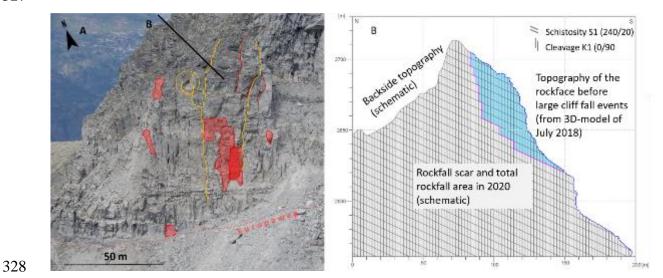
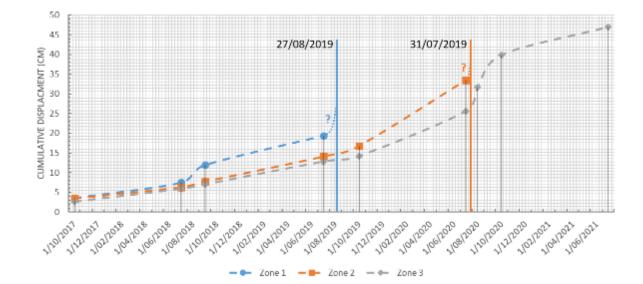


Figure 5. Close up of Grosse Grabe North Pillar: a) Before any large rockfall occurred (photograph of 06/09/2018). Precursory indicators of destabilization could already be observed by terrestrial laser scanner (red) and automatic camera (yellow) in forms of small scale rockfall (< 10³ m³) and fracture opening. And b) geological cross section showing main schistosity and cleavage related to the total rockfall area and scar surface (derived from ShapeMetric3D software).


334

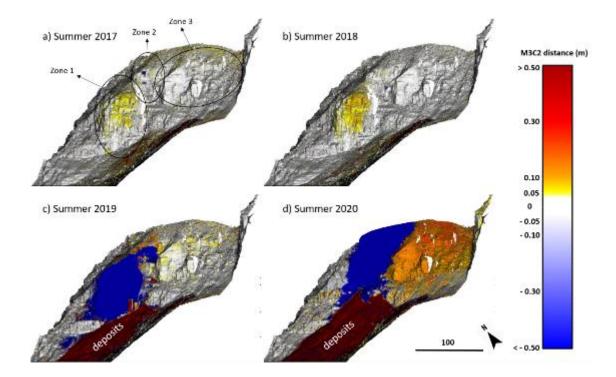
Two isolated boulder falls $(10^{1}-10^{2} \text{ m}^{3})$ were detected visually for the first time in January and May 2017 (Figure 3b, Figure 5 a, yellow circle), launching a more accurate survey of Grosse Grabe North Pillar and the adjacent rock wall by Terrestrial laser scans (TLS) in July 2017. In the following winter seasons of 2018 and 2019, small magnitude rockfall (< 10^{3} m³) were observed, occurring in between January and May (Figure 5 a, red polygons). In the summer of 2019 and 2020 larger magnitude rockfalls (10^{4} m³) and cliff falls ($10^{4}-10^{6}$ m³) followed up each other in close succession, with no single rockfall event in the associated winter period (November 2019 – April 2020).

342 Besides rockfall, deformation of the Grosse Grabe North Pillar was also observed as an outward 343 displacement with more pronounced displacement in the upper part, indicating a tilting or toppling 344 motion. Cleft opening and widening, associated with this outward displacement, could be observed on 345 two different time scales. TLS data indicated that cleft opening at the upper part of the rock pillar was 346 already ongoing in 2017 and 2018, gradually opening up (Figure 5 a, red lines), while automatic camera 347 imagery revealed an accelerated cleft widening four to five weeks before the first cliff fall in August 348 2019 (Figure 5 a, yellow lines, Figure S2, suppl. material). The observed displacement and associated 349 cleft opening is therefore considered to be the main precursory factor for the sudden large rock- and 350 cliff fall events having occurred in the summer of 2019 and 2020. The observed displacement also has

351 a clear seasonal pattern with an average monthly displacement by a factor of 1.2 to 2 times bigger in 352 summer (June-September) than in winter (October-May) (Figure 6). Three different zones can be 353 distinguished (Figure 6, 7, 8): (i) zone 1 that collapsed in the summer of 2019 (Figure 7 c, Figure 8 b), 354 and corresponds to the Grosse Grabe North Pillar, displayed on Figure 5, (ii) zone 2 that collapsed 355 almost entirely in the summer of 2020 (Figure 7 d, Figure 8 c,d) and (iii) zone 3 that has not yet 356 experienced any large rockfall up to the summer of 2021 (Figure 7 d, Figure 8 d). However, rockfall is 357 still to be expected in this zone, where a cumulative displacement of up to 47 cm has been (Figure 6, 358 7 d).

359

360


361 **Figure 6.:** Cumulative displacement based on the third quartile (75th percentile) of all the measured

displacement for Grosse Grabe North Pillar (Zone 1) and the adjacent rock face (zone 2 and zone 3).

363 Collapse date is indicated for zone 1 and 2, while zone 3 has not experienced any significant rockfall

364 up to the summer of 2021. Dotted line is an interpolation of the measurements.

365

366

Figure 7.: The forward displacement of the Grosse Grabe North Pillar (zone 1) and adjacent rock wall (zone 2 and 3) in the summer of a) 2017, b) 2018, c) 2019 and d) 2020. Observed changes are relative to the scan at the beginning of summer and are statistically significant at the 95% confidence level with a minimum level of detection of 3 cm. Background is a hillshade based on terrestrial laser scan surveys.

372 A wet rockfall scar was observed by the automatic camera for several days after large cliff 373 falls, in otherwise dry conditions, suggesting the presence of ice and thus potentially thawing 374 permafrost. This was observed for the first time at the end of August 2019, when a total scar 375 depth of 22.5 m (Figure 5 b), measured by the TLS data, was reached from the preluding rock-376 and cliff fall events (Figure 9 a). In the summer of 2020, the presence of compact ice could be 377 confirmed with more detailed UAV imagery (Figure 9 b, c) after fresh rock- and cliff fall events 378 occurring on 29 July and 31 July 2020 respectively. The latter was a very large cliff failure, with a 379 calculated volume of 21 392 ± 6418 m³ based on the UAV imagery (Video S1; Suppl. Material). 380 Following rockfall events (Table 2) diminished the width of the upper ridge even further by 381 removing 17.1 m of rock. This resulted in a very narrow and highly fractured ridge of a width of 382 only 8 m, as calculated by using the UAV imagery (Figure 8 c). Finally, the ridge collapsed after 383 several large rock- and cliff fall events that took place on 14 August 2020 between 8h30 and 11h, 384 accounting for the largest volume of 33 880 \pm 10164 m³ recorded so far (Table 2, Figure 8 d). A 385 laser scan performed on the 19 August 2020 measured a total volume of 94 523 ± 3781 m³ for 386 the entire summer period (01 July – 19 August 2020), this being an underestimation because no surface comparison could be made where the ridge was denudated (estimated to have had a volume of ± 3000 m³ based on the seismic signal and thus within the error margin of the TLS derived volume).

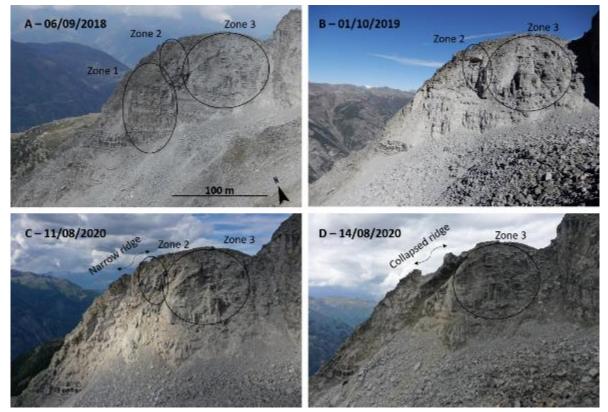


Figure 8: Geomorphological development of Grosse Grabe North Pillar and the adjacent rock
wall: a) Situation before the large rock- and cliff fall events of the summer of 2019 and b) after
the summer of 2019 and the situation c) before and d) after the largest cliff fall event on 14
August 2020, causing the collapse of part of the ridge. All imagery taken under a (sub)horizontal angle.

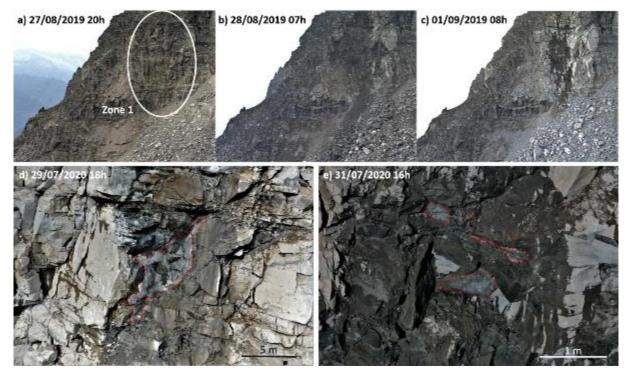
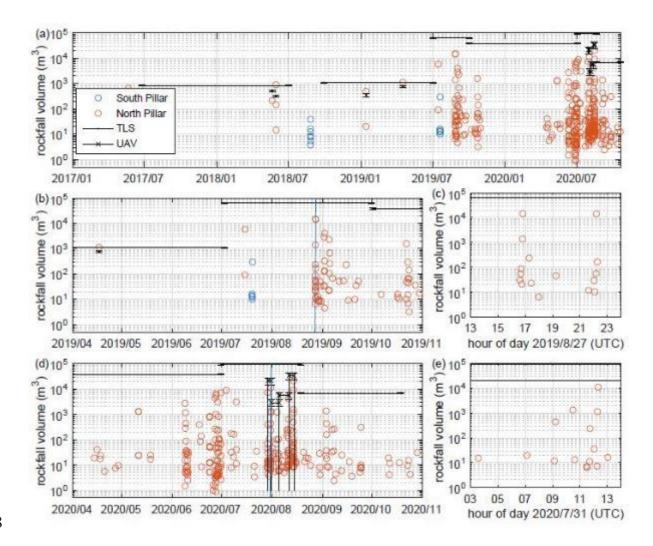



Figure 9.: Exposed ice at Grosse Grabe North Pillar (Zone 1), indicating the possible presence of permafrost, which occurs deep in the rock face following a cliff fall event, a) automatic camera imagery of 2019 showing an image before and b) after the cliff fall event of 27 August 2019, and c) the wet rockfall scar a couple of days after in otherwise dry conditions, d) UAV imagery shortly after the event of 29 July 2020 showing compacted ice and e) UAV imagery after the event of 31 July 2020 showing smaller ice patches, indicated by a red dotted line. All imagery taken under a (sub-)horizontal angle.

406

407 *3.2.* The timing and extent of rockfall events

408

Figure 10.: Timeline of rockfall events (a) for the full time period between January 2017 and September 2020, (b) for the period April 2019 – November 2019, with c) highlighting the first large cliff fall events on 27/08/2019, d) for the period April 2020 – November 2020, with e) highlighting the cliff fall event on 31/07/2020, showing precursory rockfall. Red (North Pillar) and Blue (South Pillar) circles represent individual rockfall volumes estimated from the seismic signals using equations (1-3). Black dots and black crosses represent respectively cumulated volumes in each time interval between TLS or UAV surveys.

417 **Table 2.:** The topographic data gathered and the resulting rockfall volumes calculated

Date (dd/mm/jjjj)	Topographic data derived from:	Number of scans or photographs	Number of points in point cloud	Rockfall volumes since previous survey (m ³)	5	Cumulated seismic sig (95% confi interval)	. ,
26/06/2017	TLS	1	15 500 167				
06/10/2017	TLS	1	16 313 071		0		0
03/07/2018	TLS	1	20 191 249	831 ±	33	1265	(416-3845)
29/09/2018	TLS	1	18 350 987		0	92	(30-281)

03/07/2019	TLS	1	13 628 608	1 102 ± 44	1635 (538-4969)
01/10/2019	TLS	1	20 566 426	63 138 ± 2526	49 192 (16181-149548)
01/07/2020	TLS	2	32 640 662	37 697 ± 1508	42 466 (13969-129102)
19/08/2020	TLS	2	24 300 449	94 523 ± 3781	76 991 (25325-234061)
19/10/2020	TLS	2	38 576 084	6846 ± 274	3208 (1055-9752)
29/07/2020	UAV	139	21 045 119		
31/07/2020	UAV	79	21 208 056	21 392 ± 6418	59 779 (19663-181734)
05/08/2020	UAV	116	16 630 783	2 880 ± 864	6025 (1982-18317)
11/08/2020	UAV	139	18 593 781	5 559 ± 1668	6025 (1982-18317)
14/08/2020	UAV	149	14 383 741	33 880 ± 10164	34 260 (11269-104155)
	Total	measured volum	e (26/06/2017-	204 137 ± 8166	175700 (57794-534147)
			19/10/2020)		

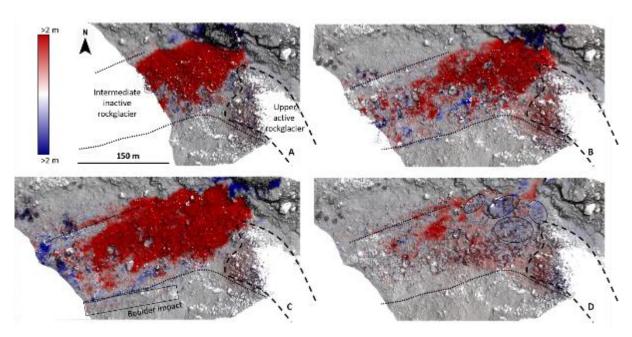
^{4&}lt;u>18</u> 419

TLS: terrestrial laser scanning, UAV: uncrewed aerial vehicle

⁴²⁰ Analysing the seismic data resulted in a high temporal record of all the rock- and cliff fall 421 events that occurred at Grosse Grabe North pillar and adjacent rock wall. The few events that 422 occurred at Grosse Grabe South Pillar, out of reach for the automatic camera and the TLS/UAV 423 data could also be quantified. In total, the seismic logger detected 339 rockfall events for the 424 North Pillar and 12 for the South Pillar in the timespan of four years (2017-2020) (Figure 10) 425 (Table S1, Suppl. Material). Most of the timely isolated and significant events at the North Pillar 426 could be confirmed by the automatic camera, indicating the zone of failure (Figure S2, Suppl. 427 Material). Isolated and small scale rockfall events occurred before the summer of 2019, in mid-428 winter (January) and in springtime (April - May). This changed in the summer of 2019, with the 429 first isolated larger rockfall event occurring in mid-July (10³ - 10⁴ m³) preluding larger cliff fall 430 events (10⁴ m³) around the end of August (Figure 10 b, c). Rockfall continued to occur throughout 431 September and October, but decreasing in magnitude (Figure 10 b). No rockfall occurred during 432 the winter of 2019-2020 (November - May). Rockfall events started again in April-May 2020 433 (Figure 10 d). By the end of June and throughout July and August several cliff fall events (10⁴ m³) 434 were observed again (Figure 10 d, e). The last event of around 500 m³ occurred in late October. 435 No significant rockfall events were observed in the following winter (2020-2021). It can be 436 deduced from the seismic dataset (Figure 10) that 82% of the larger rock- and cliff fall events (> 5000 437 m³, N=11) are preluded by two or more smaller events. In all cases, precursory rockfall happened 438 within the hour before a large failure, often only a few minutes before. Only half of the larger rockfall 439 events experienced precursory rockfall several hours before (Figure 10 e). Post-failure small-scale 440 boulder falls ($\leq 10^2 \text{ m}^3$) happened some minutes up to a few hours after the collapse are common as 441 well (Figure 10 c). After that, rockfall activity ceased for several days up to weeks before rockfall events 442 became numerous again ($\leq 10^3$ m³). At the same time, these events announced the detachment of 443 the next larger volumes of rockfall. This process continued until late summer, when finally rockfall 444 activity ceased until spring.

445 The cross correlation between the meteorological data (temperature and precipitation) 446 and rockfall activity suggests that rockfall occurs more frequently a few days after precipitation 447 or a warming event, but the correlation is very weak (peak correlation of around 0.1 for daily 448 precipitation for a time delay of 2 days) and barely significant. This could be because of the short 449 time dataset (2017 - 2020), where the events are grouped together in burst of activities. 450 However, it is clear that rockfall activity mostly develops in the summer only (Figure 10). Half of 451 the large rock- and cliff fall events we observed happened in the second half of the summer (end 452 of July, August), when temperatures are in general warmer and when summer air temperature 453 had the time to warm the rock temperature at depth. Moreover, most large rock- and cliff fall (8 454 out of 11) occurred in the (late) afternoon. In addition, the three rockfall events that occurred in 455 June 2020 were preluded by weekly higher temperatures (7.9 ± 0.3 °C) than are the average for 456 June (5.7 ± 2.7 °C) based on data of the PermaSense weather station (2013-2020). This is also the 457 case with the four large rockfall events between 29 July – 14 August 2020, preluded by 458 significantly higher temperatures (10.5 \pm 1.2 °C) than normal for that time of the year (7.8 \pm 1.5 459 °C).

460


461 3.3. Rockwall erosion rates and the deposited material

462 A total rockfall volume of 204 137 ± 8166 m³ was measured based on high resolution TLS and 463 UAV derived topographic data (Table 2, 2017-2020). Since no significant rockfall was observed by the 464 automatic camera since 2011, we assume this to be the total rockfall volume across a full 10-year 465 period of direct observations. This corresponds to a mean rockwall erosion rate of 214 ± 8.9 mm a⁻¹ for 466 Grosse Grabe North Pillar and the adjacent rockwall (Figure 1 c, TLS extent). If we include the indirect 467 observations of rockfall occurrence based on historical aerial photographs (Figure 2), we can assume 468 that the measured rockfall volume (2017-2020) was the only significant rockfall across a 30-year 469 period. This would correspond to a mean rockwall erosion rate of 71.2 ± 2.8 mm a⁻¹.

470 More than 200 000 m³ of material was deposited below the Grosse Grabe North Pillar in 471 between 2017 and 2020, based on the measured and estimated rockfall volumes. These deposits 472 overlay most of the intermediate rupture zone between the upper intact part and the terminal tongue 473 of the Grosse Grabe rock glacier (Figure 2). The measured deposited volumes within the range of 474 the TLS scan (Figure 11) are 99 625 ± 3985 m³ for 2019-2020. If we assume an initial porosity of 475 30%, in line with the porosity of blocky talus (Sass and Wollny, 2001) and that of other rockfall 476 deposits in an alpine setting (Sanders et al., 2013), we get an estimated deposited volume of 70 477 000 m³. As settling of the deposit sets in, a downward movement of up to two meters could be

478 observed in late summer – autumn 2020 at the apex of the rock fall deposit cone. The motion is 479 restricted to the deposited area and is diminishing further down, indicating crushing and a 480 decrease in porosity as main process for the movement caused (Figure 11). Single large boulders 481 were also transported into the Grosse Grabe torrent, outside the range of the scan (Video S1; 482 Suppl. material). This occurred at least 11 times according to the imagery of the automatic 483 camera, corresponding with the largest rock- and cliff fall events (> 5000 m³) during the summer 484 of 2019 and 2020. Rock debris is considered ending up in the torrent each time it is discernibly 485 overpassing the rock glacier front.

486

487

Figure 11.: Rockfall deposits (thickness perpendicular to slope) on the talus slope below the rock face for a) the summer of 2019, b) the winter of 2019-2020, c) the first part of the summer of 2020 (1 July – 19 August) and d) the second part of the summer of 2020 (19 August – 19 October), the latter showing compression of the deposits under their own weight in the upper part of the debris cone (indicated by the ellipses). Zones with no data is due to differences in the scan extent.

494

495 **4. Discussion**

496 4.1. Limitations of the methods

Uncertainties remain present within the collected high resolution datasets, even though different
 methods were integrated and the record starts two years prior to the main destabilisation period. The
 TLS data serves well to detect and quantify precursory deformation before the large rockfall events in

500 the summer of 2019 and 2020 but was limited to a Level Of Detection (LoD) of 3 cm and the monitoring 501 interval. Precursory deformation in zone 2 and 3 was close to this LoD at the onset of the monitoring 502 period (Figure 6). (Near-) continuous and more detailed quantification of rockwall deformation and 503 cleft opening can alternatively be achieved by ground-based InSAR (Gischig et al., 2009) and the in-situ 504 installation of crackmeters (Weber et al., 2017). However, such methods are expensive and depend 505 highly on site accessibility respectively. Imagery from the time-lapse camera was also able to detect 506 the outward movement, already occurring before 2017 (Figure S1, Suppl. Material), but could only be 507 quantified after the launch of the TLS survey. From the additional scan performed in August 2020, we 508 know that the largest displacement occurs at the end of the summer season (19/08-19/10/2020). The 509 measured winter (October – May) displacement likely occurs mostly in autumn, although this cannot 510 be confirmed due to the restrictions of the monitoring interval. The monitoring interval does not allow 511 rockfall volumes to be calculated either if they were released from the same zone. The largest rockfall 512 events also caused topographic occlusion due to the single scan position, leading to an 513 underestimation of the rockfall volume. This is somewhat corrected by the five UAV surveys launched 514 before and after the largest events in the summer of 2020, not suffering from occlusion. However, the 515 occluded volumes, calculated by subtracting the UAV derived volumes with the TLS derived volumes, 516 fall completely within the error margins of the TLS data (< 4 - 5 %) and would thus not affect the 517 results significantly. Besides the visual confirmation of ice in the rockfall scars only hours after the 518 events, this shorter monitoring interval also allows the optimising of the established relationship 519 between measured volumes and the seismic signal (Figure 12). Overall, we achieve a good fit between 520 the estimated volume based on the seismic data and the ones more directly measured by TLS and UAV 521 point cloud meshes (Table 2). The seismic data collection is the only monitoring method in this study 522 that allows all rockfall events to be recorded. This way, pre- and post-event rockfall events could be 523 analysed. The seismic data of only one sensor could be used for the rockfall period. This has the 524 disadvantage that rockfall locations cannot be estimated precisely. It is therefore crucial to have the 525 time-lapse imagery to validate the observed seismic signals. Only one event with a large amplitude was 526 recorded by the seismic sensor and could not be detected on the time-lapse imagery. Likely, this 527 rockfall event with an estimated volume of 300 m³ occurred elsewhere in the area.

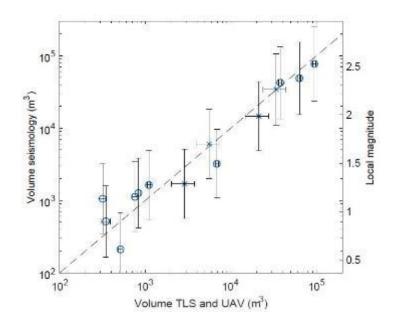


Figure 12. Volume estimated from the seismic signals and equivalent local magnitude as a function of rockfall volume estimated from TLS (circles) or UAV surveys (crosses) (summing over all events in each time interval). Error bars are 95% confidence intervals given by a linear fit of logarithms of volumes.

4.2. Structural predisposition, potential preparatory factors and observed precursory indicators to rock slope destabilisation

535 At Grosse Grabe North Pillar, the gentle dipping angle of 20° and cleavage-parallel weak layers 536 susceptible to disruption in combination with deep, persistent and sub-vertical fracture systems favour 537 large rockfalls (Figure 5 b). Already in 1982 and the following years, similar consecutive events took 538 place (Figure 2). Probably the same structural conditions were at play. This could be a geological legacy 539 of the glacial retreat after the Last Glacial Maximum, known to have affected and cause rock fractures 540 in the Matter Valley (Leith et al., 2014). The structural predisposition of the studied rock face entails 541 several potential failure mechanisms, acting on fracture level, to operate as preparatory factors. 542 Irreversible movements of fractures can be caused by thermal fluctuations (Gunzburger, Merrien-543 Soukatchoff and Guglielmi, 2005; Collins and Stock, 2016; Bakun-Mazor et al., 2020), water pressure 544 (Hasler, Gruber and Beutel, 2012; Walter et al., 2019), freezing and thawing of water in the rock mass 545 (Hasler, Gruber and Beutel, 2012; Weber et al., 2017) and seismic vibrations (Luckman, 2013; Bakun-546 Mazor et al., 2020) and a combination of all of these processes.

547 The cumulative and repetitive nature of thermally induced failure mechanisms are considered 548 an important preparatory factor for rockfall in fractured rock masses exposed to high temperature 549 oscillations (Gunzburger, Merrien-Soukatchoff and Guglielmi, 2005; Collins and Stock, 2016; Draebing, 550 Krautblatter and Hoffmann, 2017; Bakun-Mazor *et al.*, 2020). Although no in situ rock temperatures 551 were measured at the south facing rock face of Grosse Grabe, similar south-exposed rockwalls yield a 552 daily temperature variation of up to 16.5°C compared to only 4°C for north-facing rockwalls as a result 553 of solar radiation differences (Draebing and Mayer, 2021). While daily temperature changes only 554 penetrate down to shallow depths (up to 0.4 m) (Gunzburger, Merrien-Soukatchoff and Guglielmi, 555 2005), seasonal thermal changes can propagate deeper in highly fractured bedrock (up to 100 m) due 556 to air convection (Gischig et al., 2011). Thus, Grosse Grabe North pillar is likely to be very susceptible 557 to this thermally induced failure mechanism due to large daily and seasonal temperature variations, 558 the presence of a gently inclined sliding plane and the high fracture density of the rock (Figure 5 b). 559 Moreover, such thermally induced displacements are typically observed when temperatures are rising 560 during summer (Bakun-Mazor et al., 2020). This matches well with the observed seasonality of the pre-561 failure displacement observed at Grosse Grabe, with a displacement that was more pronounced by a 562 factor of 1.2 to 2 in summer (Figure 6, 7). The observed larger irreversible displacements in summer 563 might also indicate the potential role of water-related processes, such as changes in water pressure 564 (Walter et al., 2019) and advective warming by water percolation (Hasler et al., 2011; Weber et al., 565 2017), for example due to snow or permafrost meltwater (Weber et al., 2017) and summer rainfall 566 (Walter et al., 2019). However, we found no indication for the latter in the meteorological data, 567 possibly due to the long offset-time until rockfall occurrence. In addition, the catchment area of the 568 rock face is small and mostly free of snow. Moreover, water pressure might not be dominant in strongly 569 fractured and steep rock because of its high drainage ability (Phillips et al., 2016; Weber et al., 2017). 570 Seismic vibrations due to earthquakes might influence fracture stability and prepare and trigger 571 rockfall (Luckman, 2013). 2634 earthquake events were measured by the seismic sensor since 2015 572 and this might have played a role in rock wall destabilisation. However, the earthquakes observed for 573 our analysed period never exceeded a ground motion of 2 mm s⁻¹, too weak to trigger any rockfall as 574 compared to a ground motion 0.5 m s⁻¹ suggested as a minimum threshold for triggering landslides or 575 rockfalls (Keefer, 1984).

576 Temperature cycles also drive cryogenic processes in the studied rock wall, due the confirmed 577 presence of ice (Figure 9). Although observed winter rockfall activity is limited, frost weathering can 578 still act as a preparatory factor for rockfall occurrence by subcritical cracking and progressively 579 reducing rock strength (Draebing and Krautblatter, 2019). Frost weathering might be highly effective 580 at Grosse Grabe North Pillar, as indicated by modelling results of rock walls at similar elevation and 581 exposition (Draebing and Mayer, 2021), preparing rockfall that is than subsequently triggered by 582 processes in summer, such as thermal stresses described above. Fracture displacement due to 583 cryogenic processes is often linked to ice pressure and thus widening of the fractures at the onset of 584 freezing (Draebing, Krautblatter and Hoffmann, 2017; Weber et al., 2017). However, we observed a 585 decrease in the displacement in winter, which we link to the cementing effect of permanent and

seasonal ice as a consequence of a rapid cooling of the clefts due to colder air temperatures and probably to air circulation in the fractured rock (Gruber and Haeberli, 2007; Hasler, Gruber and Beutel, 2012). This cementing effect of the ice-bonded discontinuities decreases progressively during the summer due to a decrease in stiffness and strength of the ice at warmer temperatures (Davies, Hamza and Harris, 2001). This hypothesis is supported by the presence of ice in the deeper bedrock (at least at 15 m depth), affecting the sub-vertical fractures. Permafrost degradation might therefore be a potential preparatory factor, considering the long-term warming of the area.

593 Both precursory rockfall and deformation are known to sometimes prelude rock- and cliff fall 594 (Abellán et al., 2010). From the moment fractures are subjected to large irreversible movements, 595 driven by one or several of the mechanisms explained above, a critical state will slowly be reached 596 (Hasler, Gruber and Beutel, 2012). A change in deformation geometry is detected approx. 1.5 years 597 before the first significant collapse in zone 1 and zone 2. After this, large, irreversible movements are 598 clearly observed at Grosse Grabe North Pillar, with an increase in pre-failure displacement by a factor 599 of 2-3.5 prior to the collapse (Figure 6). This increase in outward displacement is mainly observed in 600 the upper part of Grosse Grabe North Pillar, with the rock volume staying the same, indicating a tilting 601 or toppling type of failure developed (Abellán et al., 2010). This type of failure is often linked to sub-602 vertical fractures (Goodman and Kieffer, 2000). At Grosse Grabe, the failure of sub-vertical fractures 603 in the lower rockwall are believed to be the cause of the toppling motion. The isolated rockfall events 604 before 27 August 2019 are considered to be precursory rockfalls preluding the destabilisation phase in 605 the summer of 2019 and 2020.

606 4.3. Potential triggers leading to progressive rockwall collapse

607 Most rockfall occurred in the warmer half of the year and no large rockfall occurred in winter. 608 In addition, large follow-up rockfall events (> 5000 m³) occurred when weekly temperatures were 609 warmer than average for that time of the year and occurred mostly in the (late) afternoon. Next to 610 thermal stresses, this could also indicate that the melting of ice-filled joints (or decreasing of their 611 resistance to stress) (Davies, Hamza and Harris, 2001) close to the surface plays a role. The depth 612 at which temperature change is perceptible in bedrock after a week of unusually high 613 temperature is likely to be no more than 1 m based on borehole data (PERMOS, 2016). Moreover, 614 larger events within this destabilisation phase were also announced by small-scale rockfall within hours 615 of the larger volume, similar to small magnitude rockfall events during hot summers (Figure 10 e). 616 These rockfall events are typically associated to permafrost presence at shallow depths, triggered by 617 active layer thickening (Ravanel, Magnin and Deline, 2017). Such type of rockfall had not been 618 observed at Grosse Grabe before the rockfall event of 27 august 2019 (Figure 10 c), indicating that 619 permafrost was not present at the sub-surface of the south-facing rock, confirming model results 620 (Boeckli et al., 2012; Magnin et al., 2017). However, permafrost presence was confirmed when 621 rockfall exposed massive ice (Figure 9), which often occurs after failures in permafrost-affected rock 622 (Gruber and Haeberli, 2007; Mamot et al., 2018; Kenner, Bühler, et al., 2019; Walter et al., 2019). 623 According to numerical models of subsurface temperature fields in ridge topography (Noetzli et al., 624 2007), this likely corresponds to the base of the permafrost developed at the north face, at the distance 625 of 50 – 70 m. We exclude the possibility that this is seasonal ice, considering it is exposed at the time 626 when we at least expect seasonal ice to persist (at the end of summer). Since the large cliff fall on 27 627 August 2019 (Figure 10 c) permafrost has been exposed and prone to rapid degradation due to thermal 628 adjustment and subsequent active layer thaw. This thermal adjustment, together with the 629 redistribution of stress from preceding large rockfalls (Nishii and Matsuoka, 2012; Stock et al., 2012), 630 leads to progressive failure of the rock face and the observed rapid sequence of events (Figure 10). 631 The bounding ice quickly melted, not only at the surface but also at shallow depths in the clefts, quickly 632 changing the strength of the rock mass and favouring the detachment of the next volume. This process 633 did not occur in winter and ceased in September 2019, when cold weather conditions kept the exposed 634 face frozen and thus dry. Large rockfall events are to be expected for the next years at Grosse Grabe 635 North pillar, because of the dense fracturation of the rock face and the observed pre-failure 636 displacement of up to 47 cm in zone 3 (Figure 6, 7). However, no change in geometry (i.e. cleft 637 widening) has been observed in this zone. The displacement is characterised by a homogenous 638 movement of the face along the dipping plane, suggesting a deep-seated gravitational deformation or 639 sackung taking place.

640

641 4.4. Observed rock wall erosion rates and their implication for future development

642 High magnitude rockfall events, such as observed in this study, are highly relevant for shaping 643 alpine landscapes (McColl and Draebing, 2019). Logically, observations of rock wall retreat made in a 644 period of high rockfall activity tend to overestimate long-term rock wall erosion rates. Erosion rates 645 based on a short term record should therefore be interpreted with care (Hartmeyer et al., 2020). 646 Commonly, long-term rock wall retreat rates for alpine periglacial environments are around 1 mm a⁻¹ 647 (Ballantyne, 2018; Matsuoka, 2019). Higher rates are reported in deglaciating circues, with a rate of 648 1.9 mm a⁻¹ to 10.3 mm a⁻¹ on short time scales (4-6 yrs) (Kenner *et al.*, 2011; Hartmeyer *et al.*, 2020). 649 Even the most conservative rock wall retreat rate (71.2 \pm 2.8 mm a⁻¹) calculated for Grosse Grabe 650 (assuming the rockfall events of 2017-2020 are the only major activity since 1990 for the entire extent 651 of the monitored rock face (Figure 1)) is still very high compared to rock wall erosion rates of other 652 studies. Hartmeyer et al. (2020) reported very high retreat rates (57.32 \pm 0.67 mm a⁻¹) for recently 653 deglaciated areas along highly fractured weakness zones close to the glacial surface. Although the

654 monitored rock face in this study is not recently deglaciated, highly fractured lithology does play an 655 important role in the observed high rock wall retreat rates. In addition, and as discussed in the previous 656 section, we believe that the exposure of the base of the permafrost from the North side of the ridge 657 triggered progressive failure of the rock wall and is responsible for the unusually high erosion rates. 658 Although interpretation should be done with care, our results suggest that permafrost degradation in 659 these specific settings has the potential to alter the rock wall retreat rate drastically on a short time 660 scale. In the future, air temperatures are expected to increase in the European Alps (Gobiet et al., 661 2014). Because of this, and the change in associated cryogenic and thermal stresses acting on rock 662 walls, Draebing, Krautblatter, and Hoffmann (2017) expect a shift from cryogenic driven rockfall on 663 north-exposed rock walls to thermally driven rockfall on south-facing rockwalls. If this occurs in narrow 664 ridge topography in areas experiencing marginal permafrost, exposure of deep bedrock permafrost 665 developed from the north side could lead to progressive failure of the rock wall, as observed in this 666 study. Although rock wall erosion rates are expected to decrease at the elevation of our study site due 667 to a shift of frost weathering to higher elevations (Draebing and Mayer 2021), they might first increase 668 due to scenario's similar to the one presented in this study. Moreover, the observed temporal 669 clustering of the rockfall events has an important implication for hazard management, potentially 670 endangering hikers making use of the hiking track in summer.

5. Conclusion

672 This research presents a detailed temporal and spatial record of the processes and events 673 before, during and after consecutive large rock- and cliff falls that occurred at a rock face at Grosse 674 Grabe in Mattertal (Western Swiss Alps) in 2019 and 2020. This rockfall record proved to be highly 675 valuable to gain insight in the preconditioning, preparatory and triggering factors involved, of use for 676 understanding similar rockfall happening elsewhere in the European Alps. We also show the potential 677 of combining multiple close-range remote sensing data for the detection of rockfall in high 678 mountain environments, where challenging field conditions do not allow in-situ measurements. 679 The integration of both high resolution topography datasets derived from TLS and UAV with seismic 680 observations resulted in a detailed overview of the exact timing and estimated volumes of all individual 681 rockfall events, as validated by the automatic camera.

The initial cause of the large consecutive rock- and cliff falls (10³ - 10⁶ m³) that occurred in the summers of 2019 and 2020 are considered to be of geological nature with a pre-existing mesh of discontinuities (mostly tectonic clefts and schistosity bedding). The south exposure makes this densely fractured rock wall vulnerable for thermally induced failure mechanism on different timescales, highlighted by the increased irreversible displacement observed in summer, the occurrence of rockfall mostly in the second half of summer and in the (late) afternoon. The observed outward displacement 688 of the rock face prior to any rockfall suggest a toppling failure mechanism related to sub-vertical 689 fractures in the rock wall. A change in deformation geometry was observed 1.5 years before any 690 significant collapse, with an increase in the outward displacement at the top of the rock face. The 691 deformation was probably affecting frozen rock as well, indicating that permafrost degradation is a 692 potential preparatory factor. A large rockfall event at the end of August in 2019 exposed deep bedrock 693 permafrost, believed to be the base of the permafrost developed from the north side of the ridge, 694 triggering progressive failure of the rock wall due to thermal adjustment. This process quickly melted 695 the exposed and the subsurface ice and together with the unloading caused large rock- and cliff fall 696 events to occur in a short succession in the summer of 2019 and 2020. These events were often 697 preluded by precursory small-scale rockfall, believed to be triggered by active layer thickening, hours 698 before the larger volume detached. All rockfall activity ceased in the winter season when the process 699 of thermal adjustment is stalled due to colder temperatures. All site specific conditions, such as the 700 dense fracturation, the southerly aspect, the gentle dipping of the schistosity bedding and the large 701 cliff falls exposing deep bedrock permafrost, lead locally to very high rock wall erosion rates.

702 DATA AVAILABILITY STATEMENT

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

705 **CONFLICT OF INTEREST**

The authors declare that there is no conflict of interest.

707

708 **References**

709 Abellán, A. et al. (2010) 'Detection and spatial prediction of rockfalls by means of terrestrial laser

710 scanner monitoring', *Geomorphology*. Elsevier, 119(3–4), pp. 162–171. doi:

711 10.1016/j.geomorph.2010.03.016.

Allen, S. and Huggel, C. (2013) 'Extremely warm temperatures as a potential cause of recent high
mountain rockfall', *Global and Planetary Change*, 107, pp. 59–69. doi:
10.1016/j.gloplacha.2013.04.007.

- Baer, P. *et al.* (2017) 'Changing debris flow activity after sudden sediment input: a case study from the
 Swiss Alps', *Geology Today*, 33(6), pp. 216–223. doi: 10.1111/gto.12211.
- 717 Bajni, G., Camera, C. and Apuani, T. (2020) 'Bajni, Greta, Corrado Camera, and Tiziana Apuani.
- 718 "Deciphering Rainfall and Freeze thaw cycles as long-term preparatory factors for alpine rockfalls', in
- 719 EGU General Assembly Conference Abstracts., p. 6793.

- 720 Bakun-Mazor, D. et al. (2020) 'Thermally-Induced Wedging–Ratcheting Failure Mechanism in Rock
- Slopes', *Rock Mechanics and Rock Engineering*, 53(6), pp. 2521–2538. doi: 10.1007/s00603-020-020756.
- 723 Ballantyne, C. K. (2018) *Periglacial Geomorphology*. John Wiley & Sons.
- 724 Bearth, P. (1978) 'Geologischer Atlas der Schweiz 1:25 000, Karte 71. Blatt 1308. Swisstopo: St. Niklaus'.
- 725 Beniston, M. et al. (2018) 'The European mountain cryosphere: A review of its current state, trends,
- 726 and future challenges', *Cryosphere*, 12(2), pp. 759–794. doi: 10.5194/tc-12-759-2018.
- Boeckli, L. *et al.* (2012) 'Permafrost distribution in the European Alps: Calculation and evaluation of an
 index map and summary statistics', *Cryosphere*, 6(4), pp. 807–820. doi: 10.5194/tc-6-807-2012.
- 729 Collins, B. D. and Stock, G. M. (2016) 'Rockfall triggering by cyclic thermal stressing of exfoliation
- 730 fractures', *Nature Geoscience*. Nature Publishing Group, 9(5), pp. 395–400. doi: 10.1038/ngeo2686.
- 731 Cook, K. L. and Dietze, M. (2019) 'Short Communication: A simple workflow for robust low-cost UAV-
- derived change detection without ground control points', Earth Surface Dynamics Discussions, 7(4),
- 733 pp. 1–15. doi: 10.5194/esurf-2019-27.
- D'Amato, J. *et al.* (2016) 'Influence of meteorological factors on rockfall occurrence in a middle
 mountain limestone cliff', *Natural Hazards and Earth System Sciences*, 16(3), pp. 719–735. doi:
 10.5194/nhess-16-719-2016.
- 737 Dammeier, F. *et al.* (2011) 'Characterization of alpine rockslides using statistical analysis of seismic
- r38 signals', Journal of Geophysical Research: Earth Surface. Blackwell Publishing Ltd, 116(4). doi:
 r39 10.1029/2011JF002037.
- 740 Davies, M. C. R., Hamza, O. and Harris, C. (2001) 'The effect of rise in mean annual temperature on the
- stability of rock slopes containing ice-filled discontinuities', *Permafrost and Periglacial Processes*. John
- 742 Wiley & Sons, Ltd., 12(1), pp. 137–144. doi: 10.1002/ppp.378.
- 743 Delaloye, R. et al. (2013) 'Rapidly moving rock glaciers in Mattertal', Jahrestagung der Schweizerischen
- 744 *Geomorphologischen Gesellschaft*, (i), pp. 21–31.
- 745 Delaloye, R. et al. (2014) Blockgletscher und Hangrutschungen in Permafrostgebieten Departement für
- 746 Geowissenschaften, Blockgletscher und Hangrutschungen in Permafrostgebieten, Projekt 'Mattertal'
- 747 (2009-2013), Gemeinde St.-Niklaus und Randa, Abschlussbericht 2013. non publié, 121p.
- 748 Delaloye, R. and Morard, S. (2011) 'Le glacier rocheux déstabilisé du Petit-Vélan (Val d'Entremont,
- 749 Valais): morphologie de surface, vitesses de déplacement et structure interne', in *La géomorphologie*
- 750 alpine: entre patimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie, 3-5
- 751 septembre 2009, Olivone (Géovisions n° 36). Institut de géographie, Université de Lausanne., pp. 197–
- 752 210.
- Deparis, J. *et al.* (2008) 'Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps', *Bulletin of the Seismological Society of America*. GeoScienceWorld, pp. 1781–1796. doi:

- 755 10.1785/0120070082.
- Dietze, M., Mohadjer, S., *et al.* (2017) 'Seismic monitoring of small alpine rockfalls-validity, precision
 and limitations', *Earth Surface Dynamics*, 5(4), pp. 653–668. doi: 10.5194/esurf-5-653-2017.
- 758 Dietze, M., Turowski, J. M., et al. (2017) 'Spatiotemporal patterns, triggers and anatomies of seismically
- 759 detected rockfalls', *Earth Surface Dynamics*, 5(4), pp. 757–779. doi: 10.5194/esurf-5-757-2017.
- Draebing, D. and Krautblatter, M. (2019) 'The Efficacy of Frost Weathering Processes in Alpine
 Rockwalls', *Geophysical Research Letters*, 46(12), pp. 6516–6524. doi: 10.1029/2019GL081981.
- 762 Draebing, D., Krautblatter, M. and Dikau, R. (2014) 'Interaction of thermal and mechanical processes
- in steep permafrost rock walls: A conceptual approach', *Geomorphology*. Elsevier, 226, pp. 226–235.
 doi: 10.1016/j.geomorph.2014.08.009.
- 765 Draebing, D., Krautblatter, M. and Hoffmann, T. (2017) 'Thermo-cryogenic controls of fracture
- kinematics in permafrost rockwalls', *Geophysical Research Letters*, 44(8), pp. 3535–3544. doi:
 10.1002/2016GL072050.
- Draebing, D. and Mayer, T. (2021) 'Topographic and Geologic Controls on Frost Cracking in Alpine
 Rockwalls', *Journal of Geophysical Research: Earth Surface*. Blackwell Publishing Ltd, 126(6). doi:
 10.1029/2021JF006163.
- Dussauge, C., Grasso, J.-R. and Helmstetter, A. (2003) 'Statistical analysis of rockfall volume
 distributions: Implications for rockfall dynamics', *Journal of Geophysical Research: Solid Earth*.
 American Geophysical Union (AGU), 108(B6). doi: 10.1029/2001jb000650.
- Eissler, H. K. and Kanamori, H. (1987) 'A single-force model for the 1975 Kalapana, Hawaii, Earthquake', *Journal of Geophysical Research*. American Geophysical Union (AGU), 92(B6), p. 4827. doi:
 10.1029/jb092ib06p04827.
- Fischer, L. *et al.* (2011) 'Monitoring topographic changes in a periglacial high-mountain face using high resolution DTMs, Monte Rosa East Face, Italian Alps', *Permafrost and Periglacial Processes*. John Wiley
- 779 & Sons, Ltd, 22(2), pp. 140–152. doi: 10.1002/ppp.717.
- Fischer, L *et al.* (2012) 'On the influence of topographic, geological and cryospheric factors on rock
 avalanches and rockfalls in high-mountain areas', *Natural Hazards and Earth System Science*, 12(1), pp.
- 782 241–254. doi: 10.5194/nhess-12-241-2012.
- 783 Fischer, L. *et al.* (2012) 'On the influence of topographic, geological and cryospheric factors on rock
- avalanches and rockfalls in high-mountain areas', *Natural Hazards and Earth System Science*, 12(1), pp.
- 785 241–254. doi: 10.5194/nhess-12-241-2012.
- 786 Fischer, M. *et al.* (2016) 'Application and validation of long-range terrestrial laser scanning to monitor
- the mass balance of very small glaciers in the Swiss Alps', *Cryosphere*, 10(3), pp. 1279–1295. doi:
- 788 10.5194/tc-10-1279-2016.
- 789 Gardner, J. S. (1983) 'Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky

- 790 Mountains', Zeitschrift für Geomorphologie, 27(3), pp. 311–324. doi: 10.1127/zfg/27/1983/311.
- 791 Gischig, V. et al. (2009) 'Identification of active release planes using ground-based differential InSAR at
- the Randa rock slope instability, Switzerland', *Natural Hazards and Earth System Science*. Copernicus
- 793 GmbH, 9(6), pp. 2027–2038. doi: 10.5194/nhess-9-2027-2009.
- Gischig, V. S. *et al.* (2011) 'Thermomechanical forcing of deep rock slope deformation: 1. Conceptual
- study of a simplified slope', Journal of Geophysical Research: Earth Surface, 116(4), p. F04010. doi:
- 796 10.1029/2011JF002006.
- Gobiet, A. *et al.* (2014) '21st century climate change in the European Alps-A review', *Science of the Total Environment*, 493, pp. 1138–1151. doi: 10.1016/j.scitotenv.2013.07.050.
- Goodman, R. E. and Kieffer, D. S. (2000) 'Behavior of Rock in Slopes', Journal of Geotechnical and
- 800 *Geoenvironmental Engineering*. American Society of Civil Engineers (ASCE), 126(8), pp. 675–684. doi:
- 801 10.1061/(asce)1090-0241(2000)126:8(675).
- 802 Gruber, S. (2004) 'Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003',
- 803 *Geophysical Research Letters*, 31(13), p. L13504. doi: 10.1029/2004GL020051.
- 804 Gruber, S. and Haeberli, W. (2007) 'Permafrost in steep bedrock slopes and its temperatures-related
- 805 destabilization following climate change', *Journal of Geophysical Research: Earth Surface*, 112(2), pp.
- 806 1–10. doi: 10.1029/2006JF000547.
- 807 Guillemot, A. et al. (2020) 'Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise
- correlation, microseismicity and modelling', *Geophysical Journal International*. Oxford University Press
 (OUP), 221(3), pp. 1719–1735. doi: 10.1093/gji/ggaa097.
- 810 Gunzburger, Y., Merrien-Soukatchoff, V. and Guglielmi, Y. (2005) 'Influence of daily surface
- 811 temperature fluctuations on rock slope stability: Case study of the Rochers de Valabres slope (France)',
- 812 International Journal of Rock Mechanics and Mining Sciences. Pergamon, 42(3), pp. 331–349. doi:
- 813 10.1016/j.ijrmms.2004.11.003.
- Haeberli, W. and Beniston, M. (1998) 'Climate change and its impacts on glaciers and permafrost in
- 815 the Alps', *Ambio*, 27, pp. 258–265.
- 816 Hartmeyer, I. et al. (2020) 'A 6-year lidar survey reveals enhanced rockwall retreat and modified
- 817 rockfall magnitudes/frequencies in deglaciating cirques', *Earth Surface Dynamics*. Copernicus GmbH,
- 818 8(3), pp. 753–768. doi: 10.5194/esurf-8-753-2020.
- 819 Hasler, A. *et al.* (2011) 'Advective heat transport in frozen rock clefts: Conceptual model, laboratory
- 820 experiments and numerical simulation', *Permafrost and Periglacial Processes*. John Wiley & Sons, Ltd,
- 821 22(4), pp. 378–389. doi: 10.1002/ppp.737.
- Hasler, A., Gruber, S. and Beutel, J. (2012) 'Kinematics of steep bedrock permafrost', Journal of
- 823 Geophysical Research: Earth Surface. John Wiley & Sons, Ltd, 117(1), p. n/a-n/a. doi:
- 824 10.1029/2011JF001981.

- Hasler, A., Gruber, S. and Haeberli, W. (2011) 'Temperature variability and offset in steep alpine rock and ice faces', *Cryosphere*, 5(4), pp. 977–988. doi: 10.5194/tc-5-977-2011.
- 827 Helmstetter, A. and Garambois, S. (2010) 'Seismic monitoring of Schilienne rockslide (French Alps):
- 828 Analysis of seismic signals and their correlation with rainfalls', Journal of Geophysical Research: Earth
- 829 *Surface*, 115(3), pp. 1–15. doi: 10.1029/2009JF001532.
- 830 Hendrickx, H. et al. (2020) 'Talus slope geomorphology investigated at multiple time scales from high-
- 831 resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland)', Earth
- 832 *Surface Processes and Landforms*, p. esp.4989. doi: 10.1002/esp.4989.
- Huggel, C. *et al.* (2012) 'Ice thawing, mountains falling-are alpine rock slope failures increasing', *Geology Today.* John Wiley & Sons, Ltd, 28(3), pp. 98–104. doi: 10.1111/j.1365-2451.2012.00836.x.
- 835 Kanamori, H. and Anderson, D. L. (1975) 'Theoretical basis of some empirical relations in seismology',
- 836 Bulletin of the Seismological Society of America, 65(5), pp. 1073–1095.
- 837 Kanamori, H. and Given, J. W. (1982) 'Analysis of long-period seismic waves excited by the May 18,
- 838 1980, eruption of Mount St Helens a terrestrial monopole?', Journal of Geophysical Research. John
- 839 Wiley & Sons, Ltd, 87(B7), pp. 5422–5432. doi: 10.1029/JB087iB07p05422.
- Keefer, K. D. (1984) 'Landslides caused by earthquakes', *GSA Bulletin*, 95(4), pp. 406–421. doi:
 https://doi.org/10.1130/0016-7606(1984)95<406:LCBE&amp;gt;2.0.CO;2.
- 842 Kenner, R. *et al.* (2011) 'Investigation of rock and ice loss in a recently deglaciated mountain rock wall
- 843 using terrestrial laser scanning: Gemsstock, Swiss Alps', Cold Regions Science and Technology. Elsevier,
- 844 67(3), pp. 157–164. doi: 10.1016/j.coldregions.2011.04.006.
- 845 Kenner, R., Noetzli, J., et al. (2019) 'Distinguishing ice-rich and ice-poor permafrost to map ground
- temperatures and ground ice occurrence in the Swiss Alps', *Cryosphere*, 13(7), pp. 1925–1941. doi:
- 847 10.5194/tc-13-1925-2019.
- 848 Kenner, R., Bühler, Y., et al. (2019) Ereignisanalyse. Felssturz und Lwine vom 19.3.2019 am Flüela
- 849 Wisshorn (Davos, Graubünden).
- 850 Krautblatter, M. and Dikau, R. (2007) 'Towards a uniform concept for the comparison and extrapolation
- 851 of rockwall retreat and rockfall supply', *Geografiska Annaler, Series A: Physical Geography*. Blackwell
- 852 Publishing Ltd, 89(1), pp. 21–40. doi: 10.1111/j.1468-0459.2007.00305.x.
- 853 Krautblatter, M., Funk, D. and Günzel, F. K. (2013) 'Why permafrost rocks become unstable: A rock-ice-
- mechanical model in time and space', *Earth Surface Processes and Landforms*, 38(8), pp. 876–887. doi:
- 855 10.1002/esp.3374.
- 856 Krautblatter, M. and Moore, J. R. (2014) 'Rock slope instability and erosion: Toward improved process
- 857 understanding', *Earth Surface Processes and Landforms*. John Wiley & Sons, Ltd, pp. 1273–1278. doi:
- 858 10.1002/esp.3578.
- 859 Kummert, M. and Delaloye, R. (2018) 'Mapping and quantifying sediment transfer between the front

- 860 of rapidly moving rock glaciers and torrential gullies', *Geomorphology*. Elsevier, 309, pp. 60–76. doi:
- 861 10.1016/j.geomorph.2018.02.021.
- Kummert, M., Delaloye, R. and Braillard, L. (2018) 'Erosion and sediment transfer processes at the front
- 863 of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss
- Alps', *Permafrost and Periglacial Processes*, 29(1), pp. 21–33. doi: 10.1002/ppp.1960.
- Lague, D., Brodu, N. and Leroux, J. (2013) 'Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)', *ISPRS Journal of Photogrammetry*
- 867 and Remote Sensing. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS), 82,
- 868 pp. 10–26. doi: 10.1016/j.isprsjprs.2013.04.009.
- 869 Leinauer, J., Jacobs, B. and Krautblatter, M. (2020) 'Process dynamics , real time monitoring and early
- 870 warning at an imminent cliff fall (Hochvogel, Allgäu Alps)', in EGU General Assembly 2020. Online, pp.
- 871 EGU2020-19073.
- Eith, K. et al. (2014) 'Subglacial extensional fracture development and implications for Alpine Valley
- 873 evolution', *Journal of Geophysical Research: Earth Surface*. John Wiley & Sons, Ltd, 119(1), pp. 62–81.
- 874 doi: 10.1002/2012JF002691.
- Luckman, B. H. (2013) 'Processes , Transport , Deposition , and Landforms : Rockfall', in Shroder, J. F.
- 876 (ed.) *Treatise on Geomorphology*. 7th edn. San Diego: Academic Press, pp. 174–182. doi:
 877 10.1016/B978-0-12-374739-6.00162-7.
- Magnin, F. *et al.* (2017) 'Modelling rock wall permafrost degradation in the Mont Blanc massif from
 the LIA to the end of the 21st century', *Cryosphere*. Copernicus GmbH, 11(4), pp. 1813–1834. doi:
 10.5194/tc-11-1813-2017.
- Mamot, P. *et al.* (2018) 'A temperature-and stress-controlled failure criterion for ice-filled permafrost
 rock joints', *Cryosphere*. Copernicus GmbH, 12(10), pp. 3333–3353. doi: 10.5194/tc-12-3333-2018.
- 883 Matsuoka, N. (2008) 'Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term
- 884 (1994–2006) observations', *Geomorphology*. Elsevier, 99(1–4), pp. 353–368. doi:
- 885 10.1016/j.geomorph.2007.11.013.
- Matsuoka, N. (2019) 'A multi-method monitoring of timing, magnitude and origin of rockfall activity in
 the Japanese Alps', *Geomorphology*. Elsevier, 336, pp. 65–76. doi: 10.1016/j.geomorph.2019.03.023.
- 888 McColl, S. T. and Draebing, D. (2019) 'Rock Slope Instability in the Proglacial Zone: State of the Art', in.
- 889 Springer, Cham, pp. 119–141. doi: 10.1007/978-3-319-94184-4_8.
- 890 Moore, J. R. *et al.* (2011) 'Air circulation in deep fractures and the temperature field of an alpine rock
- slope', *Earth Surface Processes and Landforms*. John Wiley & Sons, Ltd, 36(15), pp. 1985–1996. doi:
- 892 10.1002/esp.2217.
- Nishii, R. and Matsuoka, N. (2012) 'Kinematics of an alpine retrogressive rockslide in the Japanese Alps',
- 894 Earth Surface Processes and Landforms. John Wiley & Sons, Ltd, 37(15), pp. 1641–1650. doi:

- 895 10.1002/esp.3298.
- Noetzli, J. et al. (2007) 'Three-dimensional distribution and evolution of permafrost temperatures in
- 897 idealized high-mountain topography', Journal of Geophysical Research: Earth Surface, 112(2), p.

898 F02S13. doi: 10.1029/2006JF000545.

- 899 PERMOS (2016) Permafrost in Switzerland 2010/2011 to 2013/2014. Edited by J. Noetzli, R. Luethi, and
- B. Staub. Glaciological Report (Permafrost) No. 12-15 of the Cryospheric Commission of the SwissAcademy of Sciences.
- 902 Phillips, M. *et al.* (2016) 'Seasonally intermittent water flow through deep fractures in an Alpine Rock
- Ridge: Gemsstock, Central Swiss Alps', *Cold Regions Science and Technology*. Elsevier, 125, pp. 117–
 127. doi: 10.1016/j.coldregions.2016.02.010.
- 905 Phillips, M. *et al.* (2017) 'Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch

906 (Eastern Swiss Alps), February 2014', Earth Surface Processes and Landforms. John Wiley and Sons Ltd,

- 907 42(3), pp. 426–438. doi: 10.1002/esp.3992.
- 908 Ravanel, L., Magnin, F. and Deline, P. (2017) 'Impacts of the 2003 and 2015 summer heatwaves on
- 909 permafrost-affected rock-walls in the Mont Blanc massif', Science of the Total Environment. Elsevier
- 910 B.V., 609, pp. 132–143. doi: 10.1016/j.scitotenv.2017.07.055.
- 911 Le Roy, G. et al. (2019) 'Seismic Analysis of the Detachment and Impact Phases of a Rockfall and
- 912 Application for Estimating Rockfall Volume and Free-Fall Height', Journal of Geophysical Research:
- 913 *Earth Surface*, 124(11), pp. 2602–2622. doi: 10.1029/2019JF004999.
- 914 Sala, Z., Hutchinson, D. J. and Harrap, R. (2019) 'Simulation of fragmental rockfalls detected using
- 915 terrestrial laser scans from rock slopes in south-central British Columbia, Canada', Natural Hazards and
- 916 *Earth System Sciences*, 19(11), pp. 2385–2404. doi: 10.5194/nhess-19-2385-2019.
- Sanders, J. W. *et al.* (2013) 'The sediment budget of an Alpine cirque', *Bulletin of the Geological Society of America*. GeoScienceWorld, 125(1–2), pp. 229–248. doi: 10.1130/B30688.1.
- 919 Sass (2005a) 'Rock moisture measurements: Techniques, results, and implications for weathering',
- 920 *Earth Surface Processes and Landforms*. John Wiley & Sons, Ltd, 30(3), pp. 359–374. doi: 921 10.1002/esp.1214.
- Sass (2005b) 'Spatial patterns of rockfall intensity in the northern Alps', *Zeitschrift für Geomorphologie*,
 138, pp. 51–65.
- Sass (2005c) 'Temporal variability of rockfall in the Bavarian Alps, Germany', *Arctic, Antarctic, and Alpine Research*, 37(4), pp. 564–573. doi: 10.1657/1523-0430(2005)037[0564:TVORIT]2.0.CO;2.
- 926 Sass, O. and Wollny, K. (2001) 'Investigations regarding alpine talus slopes using ground-penetrating
- 927 radar (GPR) in the Bavarian Alps, Germany', Earth Surface Processes and Landforms. John Wiley & Sons,
- 928 Ltd, 26(10), pp. 1071–1086. doi: 10.1002/esp.254.
- 929 ShapeMetric3D (2021). Available at: https://3gsm.at/produkte/shape-metrix/ (Accessed: 19 October

- 930 2021).
- Stock, G. M. *et al.* (2012) 'Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall
 rock falls in Yosemite Valley, California, USA', *Earth Surface Processes and Landforms*. John Wiley &
 Sons, Ltd, 37(5), pp. 546–561. doi: 10.1002/ESP.3192.
- Stoffel, M. and Huggel, C. (2012) 'Effects of climate change on mass movements in mountain
 environments', *Progress in Physical Geography*. SAGE Publications, 36(3), pp. 421–439. doi:
 10.1177/0309133312441010.
- Stoffel, M., Tiranti, D. and Huggel, C. (2014) 'Climate change impacts on mass movements Case
 studies from the European Alps', *Science of the Total Environment*, 493, pp. 1255–1266. doi:
 10.1016/j.scitotenv.2014.02.102.
- 940Studysites-GrosseGrabe(2021).Availableat:941https://www3.unifr.ch/geo/geomorphology/en/resources/study-sites/grosse-grabe.html(Accessed:9423 May 2021).
- 943 UZH The PermaSense Consortium (2021). Available at: https://www.permasense.ch/en.html
 944 (Accessed: 28 September 2021).
- Vilajosana, I. *et al.* (2008) 'Rockfall induced seismic signals: Case study in Montserrat, Catalonia', *Natural Hazards and Earth System Science*. European Geosciences Union, 8(4), pp. 805–812. doi:
 10.5194/nhess-8-805-2008.
- Walter, F. *et al.* (2019) 'Direct observations of a three million cubic meter rock-slope collapse with
 almost immediate initiation of ensuing debris flows', *Geomorphology*, p. 106933. doi:
 10.1016/j.geomorph.2019.106933.
- Weber, S. *et al.* (2017) 'Quantifying irreversible movement in steep, fractured bedrock permafrost on
 Matterhorn (CH)', *Cryosphere*, 11(1), pp. 567–583. doi: 10.5194/tc-11-567-2017.