
HAL Id: hal-03603790
https://hal.inrae.fr/hal-03603790

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards virtual modelling environments for
functional–structural plant models based on Jupyter

notebooks: application to the modelling of mango tree
growth and development

Jan Vaillant, Isabelle Grechi, Frédéric Normand, Frédéric Boudon

To cite this version:
Jan Vaillant, Isabelle Grechi, Frédéric Normand, Frédéric Boudon. Towards virtual modelling environ-
ments for functional–structural plant models based on Jupyter notebooks: application to the modelling
of mango tree growth and development. in silico Plants, 2022, 4 (1), �10.1093/insilicoplants/diab040�.
�hal-03603790�

https://hal.inrae.fr/hal-03603790
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

•  1

in silico Plants Vol. 4, No. 1, pp. 1–16
https://doi.org/10.1093/insilicoplants/diab040
Advance Access publication 14 December 2021
Special Issue: Functional-Structural Plant Models
Technical Advance

Towards virtual modelling environments for
functional–structural plant models based on Jupyter

notebooks: application to the modelling of mango
tree growth and development

Jan Vaillant1,2, Isabelle Grechi1,2, Frédéric Normand1,2 and Frédéric Boudon3,4,* ,

1CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion, France
2HortSys, Univ. Montpellier, CIRAD, Montpellier, France

3CIRAD, UMR AGAP Institut, 34398 Montpellier, France
4UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France

*Corresponding author’s e-mail address: frederic.boudon@cirad.fr

Editor-in-Chief: Stephen P. Long

Citation: Vaillant J, Grechi I, Normand F, Boudon F. 2021. Towards virtual modelling environments for functional–structural plant models
based on Jupyter notebooks: application to the modelling of mango tree growth and development. In Silico Plants 2021: diab040; doi: 10.1093/

insilicoplants/diab040

A B S T R A C T
Functional–structural plant models (FSPMs) are powerful tools to explore the complex interplays between

plant growth, underlying physiological processes and the environment. Various modelling platforms dedicated to
FSPMs have been developed with limited support for collaborative and distributed model design, reproducibility
and dissemination. With the objective to alleviate these problems, we used the Jupyter project, an open-source
computational notebook ecosystem, to create virtual modelling environments for plant models. These environ-
ments combined Python scientific modules, L-systems formalism, multidimensional arrays and 3D plant archi-
tecture visualization in Jupyter notebooks. As a case study, we present an application of such an environment by
reimplementing V-Mango, a model of mango tree development and fruit production built on interrelated pro-
cesses of architectural development and fruit growth that are affected by temporal, structural and environmental
factors. This new implementation increased model modularity, with modules representing single processes and
the workflows between them. The model modularity allowed us to run simulations for a subset of processes only,
on simulated or empirical architectures. The exploration of carbohydrate source–sink relationships on a measured
mango branch architecture illustrates this possibility. We also proposed solutions for visualization, distant dis-
tributed computation and parallel simulations of several independent mango trees during a growing season. The
development of models on locations far from computational resources makes collaborative and distributed model
design and implementation possible, and demonstrates the usefulness and efficiency of a customizable virtual
modelling environment.

K E Y W O R D S :   Distributed 3D visualization; distributed environment; FSPM; Jupyter notebooks; mango tree.

1 .   I N T R O D U C T I O N
Functional–structural plant models (FSPMs) provide new opportuni-
ties to understand the complex interplays between plant growth, their
underlying physiological functioning and the environment (Godin and
Sinoquet 2005; Louarn and Song 2020). To do this, FSPMs combine

a representation of the 3D structure of a plant with the modelling of
physiological processes and environmental interactions. The architec-
tural structure of the plant is defined on the basis of a small number of
types of elementary units that are instantiated on different locations on
a topological representation. The development of the plant is described

© The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://orcid.org/0000-0001-9636-3102
mailto:frederic.boudon@cirad.fr?subject=
https://creativecommons.org/licenses/by/4.0/

2  •  Vaillant et al.

as the appearance, growth, ageing and death of the elementary units
that are affected by physiological and environmental processes. Since
the state and the number of units change over time, simulating plant
growth corresponds to a class of problems formalized as dynamic
systems with dynamic structures (DS)2 (Giavitto and Michel 2001),
which leads to the definition of dedicated formalisms (Godin et al.
2005) such as L-systems (Prusinkiewicz and Lindenmayer 1990).

During the last decades, dedicated modelling platforms (Federl
and Prusinkiewicz 1999; Barczi et al. 2008; Hemmerling et al. 2008;
Pradal et al. 2008; Boudon et al. 2012; de Reffye et al. 2021) have been
developed. They allow the creation of a multitude of models, built
on a series of specialized tools for the simulation of plant growth and
functioning. Such integrative platforms usually rely on software com-
ponents composed of multiple computer languages or formalisms.
Models are created as scripts or as scientific workflows (Pradal et al.
2008; Lang 2019). Some platforms include a visual representation of
the workflows in order to give an overview of the modelled processes
and their interdependencies. However, their reuse by non-experts is
usually limited to the modification of parameters, and the exploration
of model outputs (extraction, transformation, export, plotting, etc.) is
often cumbersome. Extending and customizing the model generally
requires inputs from the authors of the original model. Furthermore,
while some efforts have been made to port these tools over multiple
operating systems, reproducibility and dissemination are hampered by
the complexity inherent in their deployment and installation on new
computers with different configurations.

On the other hand, modelling languages such as Python or R for statis-
tical computation propose ready-to-use ecosystems of scientific packages
(Millman and Aivazis 2011). For instance, the scientific Python ecosystem
(Oliphant 2007) allows data processing and analysis. At the centre of these
packages, multidimensional arrays allow the user to characterize sets of enti-
ties. Numerous tools make it possible to manipulate, visualize and perform
statistical analyses. However, these tools are generally disconnected from
FSPM simulations where flexible, graph-based structures are used to repre-
sent plants. Dedicated software tools are required for parsing model input/
output and extracting homogeneous views of the data for plotting or analyses.

In a new initiative to alleviate these problems, we explored the
use of the Jupyter framework (Kluyver et al. 2016) to create virtual
modelling environments for plant models. To build the simulation
environment, we combined and extended the modules of the Python
scientific ecosystems, namely numpy, pandas, SciPy (Virtanen et al.
2020), xarray (Hoyer and Hamman 2017) and xarray-simlab (Bovy
et al. 2021), based on multidimensional arrays to represent attributes
of plant units over time. We complemented this with the igraph library
(Csárdi and Nepusz 2006) to build, validate and visualize the topology
of the plant using matrices that allow matricial algebraic operations to
model, e.g. physiological processes involving distance relationships.
Finally, we integrated the FSPM dedicated tools, L-Py (Boudon et al.
2012) and PlantGL (Pradal et al. 2009), into the Jupyter notebooks
and used them to efficiently model and visualize the 3D architecture
of the plants. The key points of this environment are: (i) the seamless
integration into Jupyter that allows the easy collaboration, dissemina-
tion, visualization and introspection of the generated data and model
processes; and (ii) a full compatibility with the Python scientific stack
and, therefore, direct access to the vast numpy and SciPy ecosystem
since the data are almost entirely modelled as multidimensional arrays.

To illustrate this approach, we developed a new implementa-
tion of V-Mango (Boudon et al. 2020), a model of mango tree
development and fruit production that is composed of complex
architectural and fruit growth processes sensitive to environmen-
tal (temperature, light, etc.), temporal and structural factors. The
new design of the model, based on this environment, allows clear
modularization of the original model, efficient computation,
easy exploration of the results and simple, reliable installation for
the user.

Our contribution can be summarized as follows:

-The definition of a virtual modelling environment based on the
Jupyter notebooks and the Python scientific ecosystem. The use of
conda, a software environment manager, or Docker, a virtualization
service, allows easy deployment of the environment, both locally
and remotely.
-The development of wrapping and visualization tools of FSPM
modelling software modules for the Jupyter environment and for
xarray-simlab-based scientific workflows, offering new possibilities
to develop models in a modular manner and simulate and visualize
plant development within notebooks.
-The reimplementation of the V-Mango model within this
environment to illustrate its use for a complex FSPM.

While planning the requirements for a redesigned mango tree model
and drawing conclusions from our results within a group of scientists
with diverse scientific backgrounds, it became apparent that we were
addressing some issues that were relevant to a wider audience of FSPM
modellers and users. In particular, we addressed the shortcomings of
current approaches related to dissemination, reproducibility, complex
model handling and interoperability, and greater genericity (Louarn
and Song 2020).

2 .   T H E V I RT UA L M O D E L L I N G
E N V I R O N M E N T

The intent of this project is to propose a virtual software environ-
ment that allows the creation and the execution of FSPM models. As
reported by Capuccini et al. (2019), the idea of on-demand Web-based
working environments on virtual infrastructures was envisioned by
Candela et al. (2013). These working environments, dedicated to a
community of practice, were originally referred to as Virtual Research
Environments. While the Jupyter project and its notebooks provide a
solid foundation for creating such environments, simulating and ana-
lysing complex modelling scenarios of plant growth create specific
needs. In particular, specific formalisms such as growth grammar need
to be integrated. 3D visualization and flexible interaction with 3D
shapes in a distributed way are required. Workflow formalism, possi-
bly with a multiprocessing computation capability, to gather and run
a set of processes that define the model, is also necessary. On the basis
of these concepts, we propose the definition of what we call a virtual
modelling environment for FSPM. The different components of such
an environment are described below.

2.1  Notebook-based environment
These last years have seen the emergence of a new way to communicate
and collaboratively explore scientific computational ideas and data

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  3

analysis using notebooks. In these environments, raw code is inter-
spersed with charts, figures, texts and equations. This allows the crea-
tion of a shareable, interactive computational narrative (Perkel 2018)
where analysis or modelling scenarios can be textually described, with
visual elements alongside their code. Some interactive features allow
the manipulation of different parts of a model and its parameters.
Notebook environments emerged from the concept of literate pro-
gramming originally proposed by Donald Knuth (1984). They were
first introduced in a number of commercial analysis packages such as
Mathematica, Maple, Matlab, and later, in open-source software such
as SageMath.

More recently, the Jupyter project, an open-source computational
notebook ecosystem, has gained wide popularity. Part of its success
is due to its clear and open format for its notebook representation.
Moreover, thanks to a major redesign, it is possible to couple it with
many programming languages. The foundational languages Julia,
Python and R inspired the name of the project (Perkel 2018). Each
language is introduced into the system as a specific computational
kernel that is responsible for the interpretation of the code (https://
github.com/jupyter/jupyter/wiki/Jupyter-kernels). The Jupyter pro-
ject is based on a distributed infrastructure and thus provides easy
deployment on the Internet, e.g. with the JupyterHub project. Based
on this, services such as MyBinder (Auer and Landers 2019) and
Google Colaboratory (Bisong 2019) provide online services to run
any public notebook with minimal configuration. Online resources
for education based on the Jupyter infrastructure have been devel-
oped, like at UC Berkeley (Perez 2018), and modules such as nbgrader
(Hamrick et al. 2017) have been developed to build online exams.
Notebooks are also used to publish books or supplementary informa-
tion on scientific papers.

Notebooks can be imported and run in different applications with
different styles of the Jupyter project. The standard one is the display
of the notebook as a simple editable Web page within the browser,
composed of a sequence of cells for codes and charts, figures, texts
and equations. An advanced version is the JupyterLab that makes it
possible to manage different resources and to customize the display by
arranging cell outputs in different ways so as to create a custom virtual
modelling environment.

Furthermore, dedicated Web applications can be built from note-
books using the voila project (Voila 2020). Finally, notebooks can also
be displayed as interactive slideshows for educational purposes, or run
inside popular IDEs such as Visual Studio Code.

2.2  Integrating L-systems into notebooks
While models built with agnostic modelling languages such as Python
or Java could be easily integrated within Jupyter notebooks, dedicated
formalisms such as L-systems have been widely adopted by the mod-
elling community to create FSPMs and require specific integration.
As a first step to building a useful modelling environment for FSPMs,
we integrated the L-systems formalism into notebooks. To do this,
we reused the L-Py framework (Boudon et al. 2012) that combines
L-systems constructs with Python. Specific notebook cells can be cre-
ated with L-systems code and are executed by the L-Py interpreter.
Since this interpreter is built on top of Python, the execution of this
cell corresponds to the activation of a specific mode of interpretation

rather than the activation of a different computational kernel. Variables
are exchanged with any other Python cell. By using specific interface
modules such as RPy2 (https://rpy2.github.io/), L-system cells can
even be mixed with code cells from other languages such as R (see illus-
tration in https://nbviewer.org/github/fredboudon/plantgl-jupyter/
blob/isp2022/examples/r_and_py.ipynb).

This L-systems integration is illustrated in Fig. 1, which rep-
resents a notebook (https://nbviewer.org/github/fredboudon/
plantgl-jupyter/blob/isp2022/examples/integration-demo.ipynb)
composed of a series of cells that combine formatted text, equations
and both Python and L-systems code. The goal of this model is to
simulate the growth of a simple growth unit. The first cell gives the
title of the notebook and mathematical details on the growth func-
tion. The next cell gives its Python implementation. The second cell
of the code defines the parameters of the L-system that can be graph-
ically controlled by the user. Using the growth function and the pre-
viously defined parameters, some L-systems rules are defined in the
third cell. The cell is initiated with the magic command %%lpy, which
makes it possible to write L-systems rules embedded in Python note-
books. Executing this cell directly generates a 3D dynamic plot in
the browser. Different buttons make it possible to navigate within the
simulation, allowing, e.g., the display of the entire animation of the
simulation or forward or backward movement. Graphical parameters
appear alongside the visualization, and the simulation is automati-
cally updated when these values are edited. For now, parameters of
the scalar, function and 2D curve type can be defined and manipu-
lated. With such tools, it is possible to directly compare the code and
its result, interact with the model and thus provide an educational
experience for the audience.

2.3  The simulation framework
To organize and execute simulations, our environment is based on
the Python library xarray-simlab (Bovy et al. 2021), a feature-rich and
robust extension to the xarray library.

The xarray-simlab library provides a framework to compose com-
plex computational models from sets of reusable components, called
processes. A collection of processes can be combined to form a model,
and their computational ordering is entirely deduced from process
dependencies. In essence, those dependencies are created by explic-
itly linking processes via output variables (producing processes) and
input variables (consuming processes). Variables declared within a
process class may be annotated with other useful metadata like unit,
description, validation functions or specific encoding settings. The
set of variables declared inside a process class describes the process
interface in terms of computed variables. They may be consumed by
any other process in the model as long as no circular dependencies
are created. However, circular dependencies are allowed if a variable
is consumed with an offset over time, i.e. in the following simulation
step. For the case of interdependent variables, their evolution should
be estimated within a common process, for example, using an appro-
priate numerical solver.

The model—the predefined collection of processes—can be
dynamically altered by plugging in or unplugging other processes,
or by replacing a particular process with an alternative imple-
mentation. Processes may inherit from a base process class, and

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://rpy2.github.io/
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/r_and_py.ipynb
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/r_and_py.ipynb
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/integration-demo.ipynb
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/integration-demo.ipynb

4  •  Vaillant et al.

derived classes may implement a different model logic and provide
additional output variables. Models and their processes and vari-
ables can be programmatically inspected, and the computational
order, i.e. process dependency, can be easily visualized.

In order to execute a particular model, users create a model set-up
in which they define the basic parameters for each simulation run. The
most important are the time steps, the values of the model input vari-
ables and the name of the variables to be exported.

Figure 1. Integration of L-systems within a notebook. Cell code that starts with %%lpy contains L-systems rules. At the execution
of the rules, a 3D visualization widget is displayed below. Graphical parameters are defined in the cell above using Python code
and displayed on the right of the 3D visualization.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  5

The xarray-simlab library provides great freedom in the design of
a model and numerous ways to declare variables. We decided to sepa-
rate three types of numerical data: pure constants like natural physi-
cal constants that are kept directly inside a Python module, variables
that effectively vary during a simulation, and parameters that are either
obtained from the literature or after a calibration process and are there-
fore constant within a simulation set-up. Each individual process may
be parameterized with these separate files stored in the toml format.
By default, an initialization function is associated with each process
to load those parameter files and parameterize a process at startup.
However, it is still possible to inject custom parameter values by reim-
plementing a process initialization function.

Simulation inputs and outputs are mostly composed of xarray data
structures (i.e. labelled arrays and data sets). All features from xarray
are therefore readily available for all input and output data: index- and
label-based selections; interpolation and grouping of data; reshap-
ing and combining data sets; reading and writing files; and advanced
plotting.

To adapt this framework to FSPMs, we have extended the
library with new features. L-systems models can be automatically
integrated as processes, and the simulation runs with associated
visualization (see following Section 2.4 below). While FSPMs
simulate structures with a growing number of elements, xarray-
simlab is originally designed to model the dynamics of structures
with a fixed number of elements. We extended it so that all prop-
erty arrays are automatically and consistently resized when new
entities are created. The growth of the entity index over time does
not make it possible to use xarray-simlab built-in parallelism capa-
bilities. We therefore reimplemented the parallel processing of
multi-model simulations using Python’s standard multiprocessing
library. Our solution is not as efficient as some GPU-based solu-
tions for L-systems (Lipp et al. 2010), but it offers great flexibility
and expressiveness to define modelling processes thanks to Python
and its scientific ecosystem.

2.4  Plant representation
Plants can be seen as a collection of entities of various natures (e.g.
vegetative and reproductive units). The topological relationship of
those entities can be expressed as a tree graph, possibly multiscale
(Godin and Caraglio 1998). Dedicated data structures such as the
multiscale tree graph (MTG) (Pradal and Godin 2020) or a brack-
eted string representation (Prusinkiewicz and Lindenmayer 1990)
have been developed to represent and manipulate these structures.
Those representations have various advantages, like easy traversals
through the parent–child relationships and the possibility to store
items with arbitrary structures and properties of various types
within the tree.

However, this flexibility comes with a cost and has several disad-
vantages that may make it a suboptimal choice, depending on the spe-
cific model structure, the research question and the requirements of
the model environment. The main disadvantages are:

	 (i)	 No straightforward transformation to and from array structures
suitable for utilizing features of the standard Python scientific
stack. By default, the Python scientific stack is based on

multidimensional arrays (in general, from the numpy library)
and provides tools to analyse and plot such arrays. Using such
tools for items stored within flexible structures requires the
definition of queries to parse the structures and extract values in
an appropriate order.

	 (ii)	 A lack of control over data consistency. Loosely typed data
structures such as MTG do not ensure that values for a property
stored within a tree are of identical types. Type checking needs
to be introduced to ensure compatibility with standard scientific
stacks.

	(iii)	 Difficulties to store time series data, which are typical for
most biological process models. By default, the standard plant
data structures for FSPM are mainly designed to represent
the current state of the simulation. Time series of structures
can be created, but mapping between entities over time is
challenging. Alternatively, time series of property values can
be directly stored within a structure. However, trees need to
be parsed each time one wants to export the time series of the
properties of different structure entities in order to manipulate,
analyse or plot them.

	 (iv)	 Possible computational inefficacy if operations need to be
repeatedly applied on every or on a large subset of entities.
In particular, structure parsing and type checking creates a
performance overhead that can be avoided when working
directly with multidimensional arrays. Moreover, array-based
operations, optimized at the C level, generally outperform
equivalent operations built using pure Python.

We therefore explored ways of expressing the properties of plant mod-
els and their topologies in multidimensional arrays by essentially creat-
ing arrays for properties and an adjacency matrix (a standard matrix
representation of graphs). An additional time dimension may also be
required for all properties that vary over time. A data structure, referred
to as a data set, from the xarray library makes it possible to assemble
the different properties and the topology in a coherent way. A con-
straint is that all entities have a common set of properties for their rep-
resentation. L-system string representations are made compatible with
the data set of properties by associating a unique id with each module
of the L-systems string that represents the position in the arrays of the
properties of the entities.

The main challenge is to take the growing number of entities over
the simulation time into account. To do this, we extended the xar-
ray-simlab framework to provide an automatic extension of the data
structure representing the plant. Every array representing properties
or topology is extended with new default values upon the appearance
of new entities. By default, the NaN value is used to express the fact
that a value is not set (i.e. entities that have not yet appeared or have
been pruned) and should be determined by the appropriate process.
As a constraint, the values are all expressed as floating-point values (the
only nullable data type available).

2.5  Integrating L-systems into the simulation
workflow

The definition of the processes of a simulation workflow based on
xarray-simlab requires the precise definition of input and output

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

6  •  Vaillant et al.

variables, and an execution function for each process. In the spe-
cific case of L-systems, input and output variables can be directly
deduced from the model definition. Using L-Py specifications,
model input variables are defined using the extern command.
These variables are directly exported onto the process interface.
As output, an L-system generates topological structures in the
shape of L-strings, and 3D representations. To be compliant with
the array-based plant representation of the simulation frame-
work, the parameters of the different modules of the L-strings are
grouped and stored as individual arrays. For each type of module,
an index array is also generated. This makes it possible to directly
access and manipulate all values of the parameters of all entities of
the same type.

The integration of L-systems within the xarray-simlab scien-
tific workflow is illustrated in Fig. 2 (https://nbviewer.org/github/
fredboudon/plantgl-jupyter/blob/isp2022/examples/lpy-simlab/
lpy_carbon_light.ipynb). In the first cell, the code of an L-system is
defined. The extern commands (lines 5–7) define the input vari-
ables that control the simulation. Note that the step_delta is a
custom variable of xarray-simlab that gives the current step duration,
which is required as input for each step of the L-system simulation.
The second cell of the code generates an xarray-simlab process from

the L-system code, automatically exposing in and out variables. For
the out variables, the lpyprocess function individually exports
all the parameters of the custom modules as arrays. For instance, the
Metamer_t variable stores all values for parameter t of all Metamer
modules. Although it is transparent from the L-system point of view,
the redirection of the module parameters into arrays is made through
specific Param structures that are automatically generated for the
simulation. For each module of an L-string, the Param structure
mainly stores the id of the module it represents and has the possibility
of retrieving or modifying its associated parameters within the array
representation.

The third cell of the code defines a second process that
simulates a simple carbon allocation procedure. To do this,
some parameters of the L-system simulation are used, such as
Metamer_t. Other parameters are filled in by the process,
such as Metamer_allocation. Another process (code not
shown) simulates the intercepted light (from a zenithal light
source in this example). The fourth cell assembles these pro-
cesses into a simulation workflow, defines its set-up and visual-
izes it. The workflow is then run and some of the variables are
explored and visualized as 2D plots, such as the amount of inter-
cepted light per metamer over time.

Figure 2. Integration of L-systems within a notebook-based scientific workflow.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/lpy-simlab/lpy_carbon_light.ipynb
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/lpy-simlab/lpy_carbon_light.ipynb
https://nbviewer.org/github/fredboudon/plantgl-jupyter/blob/isp2022/examples/lpy-simlab/lpy_carbon_light.ipynb

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  7

2.6  3D visualization of plants in a
client-server context

Both execution of the model and visualization of the simulation results
are performed inside Jupyter notebooks using the plantgl-jupyter
module (Vaillant and Boudon 2021). The Jupyter framework has a
distributed architecture with a client (Web browser) and a server that
contains the actual execution of the model. The result of a simulation
must therefore be communicated by the server to the client using
Internet protocols and be rendered by the Web client. While stand-
ard protocols for streaming and display of pictures and 2D charts have
been adopted for a long time, the case of the 3D representation is less
clear. Different libraries allow the definition and the streaming of 3D
shapes (pythreejs, k3d, etc.). From the client side, high-level JavaScript
libraries such as three.js (mrdoob 2021) allow the rendering of 3D
shapes in the browser using WebGL.

To have interactive visualization, the time necessary to transmit the
3D representation has to be minimized. This time can be broken down
into a time to encode the representation into a streamable representa-
tion, the actual time of streaming and the time to decode the represen-
tation, convert it into three.js objects, and the time for the rendering
itself. Streaming time is proportional to the size of the encoded data,
while encoding and decoding are proportional to the size of the origi-
nal 3D scene. We tested different procedures to serialize and stream
3D representations with minimal encoding and streaming time, and
we evaluated their benefits.

We first tested the pythreejs library (https://pythreejs.readthe-
docs.io/) that wraps three.js in Python and allows the streaming and
display of 3D objects in a Web browser. The advantage of such an
approach is that a similar representation is used both by the server and
the client, minimizing data transformation. However, it does not allow
a straightforward high-level representation for plants, and it leaves
too little room for customizations. As such, many objects need to be
stored with low-level mesh representation. Furthermore, due to its
architecture, every custom user interaction with the browser’s canvas
(where the 3D scene is rendered) must be transmitted to the server’s
Python runtime, which in turn issues a signal to the renderer. This pro-
cess slows down the visualization and user interaction. As an alterna-
tive, we tested the Draco mesh compression library (https://google.
github.io/draco) that proposes an efficient compression algorithm that
makes it possible to minimize streaming time. The drawback is that it
requires converting the entire 3D representation into a single mesh,
thus removing semantic information contained in the 3D scene.

Finally, we tested an alternative method that consists in directly
using the serialization methods for 3D objects of the PlantGL library
(Pradal et al. 2009) and combining it with a standard zip compression
format. PlantGL representation allows the use of massive instantiation
and high-level primitives with compact representation. From the client
perspective, a port of the PlantGL API can be created using its original
C++ code and a WebAssembly transpiler such as Emscripten (Zakai
2011). With such an approach, server and client share a high-level geo-
metric representation. Discretization of the geometry for rendering is
made by the client, allowing the server to dedicate its computational
capability to the simulation. This last approach proved to be efficient
with minimal coding costs since C++ routines already implemented in

PlantGL could be made readily available in JavaScript. Nevertheless,
minimal computational capabilities are required for the client. Our
approach might be suboptimal for less well-equipped terminals such
as tablets or smartphones.

2.7  Deployment of the virtual environment
In order to deliver deployable software modules for reproducible sci-
ence, we rely on the conda management system. It allows us to build
a software environment relatively independent of the host operating
system. An environment is simply specified using a text file that lists all
the required software modules and, possibly, their version. An environ-
ment can be created locally or on online services such as binder from
this file.

To create custom FSPM environments, some of the software mod-
ules we developed, such as PlantGL and L-Py, were packaged for conda
so as to be easily deployed. To rapidly build and assemble these pack-
ages, we defined a releasing pipeline based on online services for open
software. Code is managed on the GitHub repository that is now con-
figured to trigger automatic build on continuous integration services
such as GitHub Actions or AppVeyor. If the build is successful and
passes the automatic tests, a new version of the package is automati-
cally published on the conda package online database (https://ana-
conda.org/), currently in the fredboudon channel. This allows the
rapid publication of new features and bug correction, while preserving
previous versions for reproducibility of previous environments.

3 .   A P P L I C AT I O N TO T H E
V - M A N G O M O D E L

The integrative FSPM V-Mango was recently developed to simu-
late mango tree growth, phenology and fruit production (Boudon
et al. 2020). Mango is an important fruit from tropical and subtropi-
cal regions and its cultivation faces several agronomic challenges. In
particular, it exhibits (i) phenological asynchronisms partly due to
complex interactions between vegetative and reproductive growth
(Dambreville et al. 2013; Normand and Lauri 2018), and (ii) fruit
heterogeneity at harvest in terms of size, gustatory quality and post-
harvest behaviour. To understand such a complex behaviour, the
precise modelling of the development of the mango tree architecture
and its constituents (growth units (GUs), inflorescences and fruits)
was required. A number of developmental processes were formalized
and assembled. In the first version of the model, these processes were
implemented as simple functions or L-system rules with no way to dis-
tinguish them from each other, except by their names. The model was
implemented using Python, R and the L-Py framework. Glue-code
between these different technologies was based on code developed
in-house. In particular, the fruit model was implemented in R and,
because of the simple interface provided, no interaction with the other
submodels written in Python was possible.

In the new version of the model, called vmango-lab and published
at https://github.com/fredboudon/vmango-lab/tree/isp2022 under
an open-source license, we used the virtual modelling environment
based on the notebooks presented above to redesign the model and
reorganize its code. Most of the work consisted in defining processes
and their inputs/outputs, and assigning corresponding model logic.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://pythreejs.readthedocs.io/
https://pythreejs.readthedocs.io/
https://google.github.io/draco
https://google.github.io/draco
https://anaconda.org/
https://anaconda.org/
https://github.com/fredboudon/vmango-lab/tree/isp2022

8  •  Vaillant et al.

Code was also adapted to the use of multidimensional arrays to store
parameter values. This new modular implementation allows the cus-
tomization of the model for new use cases. To illustrate this, we pre-
sent in the following sections the application of vmango-lab for testing
carbon allocation strategies at the scale of individual GUs, and for
performing parallel multi-model simulations. For each of the cases
presented, a notebook with further detail is available at https://github.
com/fredboudon/vmango-lab-demo/tree/isp2022.

3.1  Modularity and redesign of the V-Mango
processes

V-Mango is a complex model where different processes simulate the
growth and the phenology of the mango tree and its constituents of
interest (GUs, inflorescences and fruits). To have a homogeneous and
simple representation, the model formalizes the tree as a collection of
GUs with flowering and fruiting attributes to represent information on
inflorescences and fruits. During the simulation, the variables repre-
senting the different attributes of the GUs are passed between the dif-
ferent processes of the model and their values are updated to simulate
the development of the mango tree and its constituents of interest. The
model is now formalized as the sets of processes depicted in Fig. 3.

A first collection of processes, depicted in green in Fig. 3, simulates
the appearance of the botanical entities in the architecture at differ-
ent time steps. The appearance of these entities is broken down into
elementary stochastic events that describe the occurrence, the inten-
sity and the timing of their appearance and are modelled by binomial,
Poisson and ordinal multinomial distributions, respectively. These
distributions are assembled into a stochastic automaton that simulates
the number, timing and fate (purely vegetative, flowering or fruiting)
of new entities appearing on each terminal GU. The different distri-
butions were parameterized from measured architectural data using

generalized linear models, and probabilities were determined by archi-
tectural and temporal factors (Dambreville et al. 2013; Boudon et al.
2020). Different automata were formalized for the different types of
entities (GUs, pure inflorescences and mixed inflorescences). For veg-
etative development, GUs appearing during the same growing cycle
as their mother GU are distinguished from the ones appearing dur-
ing the following cycle since different factors affect their appearance.
All of this developmental information is contained in the Integrative
Developmental process that updates the developmental attributes.
Finally, the Topological Growth process uses this developmental infor-
mation to extend the plant representation at each time step according
to the simulated appearance date (feedback represented with a dashed
arrow on the diagram).

A second set of processes, represented in purple in Fig. 3, simu-
lates the development and growth of the individual entities. To do
this, potential growth is estimated from empirical distribution (Organ
Initiation process), thermal time models are run for the development
and the growth of each entity (Organ Phenology process) and their
spatial dimensions are increased accordingly (Organ Growth process).

The specific case of fruit growth in terms of dry matter is modelled
based on carbon exchange. To do this, we extended and modular-
ized the carbon balance model proposed by Léchaudel et al. (2005)
for mango fruiting branches (represented in yellow in Fig. 3). First,
carbon supplies (reserves and assimilation by photosynthesis) and
demands (maintenance and growth) are estimated by different pro-
cesses. Carbon reserves are estimated for the different GUs as a func-
tion of their size (Carbon Reserve process). Carbon demand for organ
maintenance and fruit growth are determined in the Carbon Demand
process as a function of organ size and potential growth for each fruit.
Carbon assimilated by photosynthesis (Photosynthesis process) is cal-
culated from intercepted light given by the Light Interception process.

Figure 3. Workflow of the new V-Mango model. The diagram has been directly generated from the code, except for the dashed
arrow. Explicit names to explain process purposes are used. Abbreviated names for processes are also used in the code (see
Supporting Information—Table S1 for correspondences).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://github.com/fredboudon/vmango-lab-demo/tree/isp2022
https://github.com/fredboudon/vmango-lab-demo/tree/isp2022
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  9

At this time, light interception is chosen from microclimate environ-
ments measured within canopies.

Based on the estimations of carbon supplies and demands, and
on the exchange parameters determined from distances between
GUs (Carbon Flow Coef process) and allocation rules, the Carbon
Allocation process performs the allocation of carbon between organs
and functions. Priority for carbon allocation is as follows: organ main-
tenance is first satisfied with local carbon supply; supplementary
carbon is then exported to demanding fruiting GUs according to the
estimated distance-based flow coefficient; and finally, fruit growth in
dry mass is determined from their allocated carbon.

A last set of processes, represented in red in Fig. 3, simulates fruit
growth in fresh matter and fruit quality. We integrated the model pro-
posed by Léchaudel et al. (2007) for mango fruiting branches. The
amount of soluble sugars, starch, acids and minerals in the fruit is
empirically linked to fruit age and fruit dry mass (Fruit Composition
process). Fruit growth in fresh matter is then modelled by water-
related processes (water inflow into the fruit, driven by stem and fruit
water potentials, and fruit transpiration), and sugar content is calcu-
lated (Fruit Quality process). The Fruit Harvest process calculates a
ripeness index for each fruit. By default, the index is estimated as a
threshold on the thermal time sum of the fruit.

3.2  Estimating carbon fluxes from a distance matrix
In the original model, carbon demand (for GU maintenance and
fruit growth) and supply (from reserves and photosynthesis) were
globally estimated for all the GUs composing a fruiting branch. As a
limit, no topological change in the structure was allowed during fruit
growth. In order to model more detailed exchanges, all GUs are now
considered separately. Their carbon exchanges with the surrounding
fruits are explicitly formalized using an exchange matrix (Carbon
Flow Coef process) based on distances that can be re-evaluated at
the appearance of each new GU. The distance between two GUs is
expressed as the number of GUs in the shortest path between the
two GUs in the tree structure. To reproduce the assessment of the
level of carbon autonomy of branches according to their size found
in the original version of the model, only carbon flows between GUs
at a distance d from a fruit below a given threshold dmax are consid-
ered. The carbon flow coefficient Fij from a leafy GU i towards a fruit
borne by GU j, with GU j belonging to the set J of fruiting GUs, is
calculated as:

Fij =
H(dmax − dij)∑J
j H(dmax − dij)� (1)

where H represents the heaviside step function equal to one when
distance d is less than or equal to dmax, and zero otherwise. This func-
tion can be seen as a simplified version of the distance-based allocation
function proposed in previous studies (Lescourret et al. 2011; Reyes
et al. 2020). The distance between all GUs in the structure is efficiently
computed using SciPy routines and, in particular, the ‘shortest_
path’ function, from the adjacency matrix representing the tree
structure. The distance matrix makes it possible to test more complex
carbon allocation scenarios in the future.

3.3  Customization of the modelling workflow

Thanks to the introduced modularization, alternative processes can
be easily defined to replace predefined ones. In the following example,
changes in the Fruit Harvest process are illustrated in Listing 1. A new
process to test the sucrose content of the fruit is defined. This process
is defined as a Python class with the @xsimlab.process deco-
rator (lines 1–2). Its run_step function (lines 4–8) first retrieves
the variable sucrose that represents the sucrose content of each
fruit with an array. The ripeness index is set to 1 if the sucrose con-
tent exceeds the threshold sucrose_thresh defined as a param-
eter of this process. A new model customized_vmango is then
instantiated (line 11) as a copy of the vmango model, with removal
of the geometry process (that computes the geometrical represen-
tation). The harvest process is replaced by the new custom process
HarvestByQuality. This non-visual, and thus faster, model
makes it possible to test for an alternative harvesting policy.

Listing 1. Customizing a model by replacing a process and
unplugging another one (code slightly simplified for clarity).
New modelling workflows can thus be designed by partly reusing the
default workflows. For instance, in the notebooks https://nbviewer.org/
github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-
0-modularity.ipynb and https://nbviewer.org/github/fredboudon/
vmango-lab-demo/blob/isp2022/notebooks/1-1-arch_dev.ipynb, a
workflow focussing on the architectural development alone is designed.
In contrast, in https://nbviewer.org/github/fredboudon/vmango-lab-
demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.
ipynb, presented in more detail in the Section 3.5, a fixed architecture is
considered and only phenology and fruit growth are simulated. A variety
of workflows can thus be designed according to the modelling needs.
Since workflows are coupled with L-systems, it can also be seen as a way
to introduce modularity within L-system models.

3.4  Distributed simulations and visualization
The performance of the modelling environment and of the visu-
alization tools is important to provide the user with an interactive
and intuitive experience of the modelling process. The techno-
logical stack presented in this manuscript already provides many
excellent solutions to overcome these challenges. However, cer-
tain aspects of our particular model logic and data representa-
tion, such as the inherent dynamic nature of the topology and
the rendering of its geometric representation, required solutions
that were not readily available. These solutions had to be imple-
mented, in particular, the visualization of large PlantGL scenes
in a notebook context and multi-model parallelization. To evalu-
ate the usability and interactivity of the proposed visualization

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-0-modularity.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-0-modularity.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-0-modularity.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-1-arch_dev.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-1-arch_dev.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb

10  •  Vaillant et al.

system, we first assessed its performance on complex mango
models. In a second step, we assessed the possibility to launch,
display and analyse in parallel simulations with different initial
conditions. In the model development process, these features
offer interesting possibilities for calibrating a model or running a
sensitivity analysis more efficiently.

On the basis of our tests, the rendering engine was able to effi-
ciently transmit and render large scenes with great detail, even
if the scene was generated on a distant system (Fig. 4). Our test
machine was a laptop with a Debian GNU/Linux 10 system with
16 GB of memory and an Intel® Core™ i5-8250U CPU @1.60
GHz × 8, Intel® UHD Graphics 620. With the model execution
and the visualization in the Web browser distributed locally, the
transmission took several milliseconds. The frame rate (FPS) of
the display varied from 40 to 10 for an average tree with 2000 to
3000 GUs (approximately 107 triangles), depending on the num-
ber and level of details in associated GU organs like leaves, flow-
ers and fruits. Similarly, large scenes representing orchards (Fig. 4
and Supporting Information—Video 1) were smoothly visual-
ized, and user interactions like rotation and zoom were seamlessly
performed.

In a second test, a synthetic mango orchard [see Supporting
Information—Video 1] was simulated. Each mango tree was initial-
ized with the same structure, but different seed values controlled the
random number generation used during the stochastic processes of
tree development (Fig. 4).

Depending on the number of available CPU cores, multiple simula-
tions were run in parallel with only a few lines of code (Listing 2

).

Listing 2 : Creating and running a set-up in batch (parallel)
mode and plotting of results.
The batch option (line 2) of the vmango-lab run function made it pos-
sible to pass the array of parameters used by the parallel execution. The
3D view of the parallel simulations was updated by each simulation
independently, allowing a pleasant interactive view of the develop-
ment and fruit production of the virtual ‘orchard’. Results of the dif-
ferent executions were assembled into a common data set and could
be directly plotted (line 4), resulting in the diagram shown in Fig. 5.

The performance of a simulation run varied with the size of the ini-
tial tree, the number of time steps, the number of geometries derived
during the simulation and, last but not least, with the number and fre-
quency of model outputs that needed to be merged into the resulting
xarray data set. As a test case, we benchmarked the duration of a simu-
lation run, both in sequential (four model runs on a single CPU core)
and in parallel mode (four model runs, each on a single CPU core),
over 2 years (daily time steps) with a varying number of GUs in the
initial tree, and generating 3D visualization every 30 steps or only at
the end of the simulation. The model was initialized with trees com-
posed of 100–500 GUs. At the end of the simulation, final trees had
800–5500 GUs, which roughly translated into 4- to 10-year-old mango
trees. The total simulation time increased linearly with the number of
GUs of the final trees, with a higher slope for sequential simulation
and 3D visualization generated every 30 steps (Fig. 6A). A compari-
son between sequential and parallel simulation shows an increasing
speedup ratio with the number of cores used, and ranging from 1.5 to
2.2 for 2–8 CPU cores (Fig. 6B). The general performance was reason-
able for a typical simulation set-up run on a personal computer.

However, for very large trees with several thousand GUs, the
factor limiting computational time could be the available com-
puter memory rather than the number of cores or the capacity of
CPUs and GPUs. Since square adjacency and distance matrices

Figure 4. 3D rendering of a tree at selected simulation steps during several successive growing cycles. Simulation steps are from
leftmost in the back to rightmost in the front.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  11

grow exponentially with the number of GUs in the tree, the mem-
ory required to hold the data grows likewise. For example, allocat-
ing a single full distance matrix for a tree composed of 20 000 GUs
requires 1.6 GB of memory (float32 data type). In the future, this
limitation could be alleviated by integrating sparse implementations
of multidimensional arrays in xarray-simlab based, for example, on
a representation defined in the sparse library (https://sparse.pydata.
org). Alternatively, a vmango-lab environment can be deployed on a
virtual machine with a configurable amount of memory if required
for large simulations.

3.5  Study case: investigating source–sink relation-
ships on measured architecture

The vmango-lab allows a wide range of uses and applications in
agronomical research. In this section, we illustrate how the model
could be used to investigate source–sink relationships, a widely
studied issue in fruit production, by manipulating the Carbon
Allocation process through the threshold distance dmax (Equation
(1)). Model modularity makes it possible to run simulations for
fruit growth- and fruit quality-related processes (represented in
yellow and red, respectively, in Fig. 3), using observed architecture
instead of architecture simulated with architecture-related pro-
cesses (represented in green in Fig. 3). The corresponding note-
book can be found at https://nbviewer.org/github/fredboudon/
vmango-lab-demo/blob/isp2022/notebooks/4-use_case_meas-
ure_and_simulate.ipynb.

The study case consisted in a girdled branch bearing one fruit,
whose architecture (topology, stem diameter, stem length and leaf
number of all GUs) was measured in the field and represented with
a simple drawing (Fig. 7A1 and A2). These data were easily formatted
into a csv file used as model input. A 3D (mock-up, Fig. 7B) and a 2D
(igraph, Fig. 7C1) representations of the observed architectural data
set were generated by the model. Carbon flow between a GU and a
fruit is controlled by a distance-based allocation function (Equation
(1)). It was assumed that only leafy GUs, i.e. those producing pho-
toassimilates, located below a threshold distance dmax to a fruit allocate
carbon to support the growth of this fruit. Carbon flow from a leafy
GU i to the fruit borne by GU j is proportional to the carbon flow coef-
ficient Fij that depends on the distance dij (Equation (1)). The set of
leafy GUs supporting fruit growth according to dmax is illustrated in Fig.
7C1 using an igraph representation of the data, for dmax values of 4 or
10 GUs. Fruit growth in fresh mass was simulated in these two cases,

Figure 5. Cumulated number of fruits harvested per tree,
plotted from the resulting data set of a parallel batch run of four
simulations (four trees) with different seed values.

Figure 6. Evaluation of simulation performances. (A) Comparison of computational time (seconds) of four simulation scenarios:
two parallel multiprocessing simulations with four models run on four cores (in red) and two sequential single process (in blue)
simulations of four model runs, both with either a geometry derived at the end of the simulation (0) or a geometry processed
every 30 days (30); (B) Speedup ratio: time elapsed for n models in a sequential, single process simulation over time elapsed for n
workers (cores/processes) in parallel mode with 10 repetitions (mean, minimum and maximum values are displayed).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://sparse.pydata.org
https://sparse.pydata.org
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.ipynb

12  •  Vaillant et al.

and predicted and observed fruit fresh mass at harvest were com-
pared (Fig. 7C2). The light environment was set to an average default
value for all the GUs of the branch. However, it would be possible to
use observed values if the light environment was measured. Results
showed that 10 GUs was certainly a more adequate dmax value than 4
GUs, indicating that almost all the leafy GUs of the branch might have
contributed to fruit growth. By varying the value of the input param-
eter dmax, it is possible to explore different source–sink relationships
within the branch through simulation. The approach developed at a
local (branch) scale could further be extended at a global (tree) scale,
as proposed, for example, in peach (Lescourret et al. 2011) or apple
(Pallas et al. 2016) fruit crops.

4 .   D I S C U S S I O N
4.1  Notebooks for FSPM

The Jupyter-based modelling environment presented in this manu-
script brings together and customizes scientific and modelling tools of
the Python ecosystem to build robust and shareable FSPMs. Building
on such an environment makes it possible to benefit from the regular
improvements of this dynamic ecosystem. At the centre of the Jupyter
project, the notebook format allows the user to create a computational
narrative of a modelling scenario. Such an approach is efficient because
it allows collaborators and users to test a model, as illustrated by the
notebooks that supplement this manuscript, thus demonstrating the
reproducibility and ease of dissemination of research work on FSPMs. In

Figure 7. Protocol of use of the fruit model on measured architecture. (A) Data acquisition in the field: (A1) picture of the original
branch; and (A2) drawing of the manual measurement of the branch architecture. (B) Reconstruction and 3D visualization of the
branch (a fake trunk was added for visualization). (C) Fruit growth simulation with a threshold distance (dmax) of 4 and 10 GUs
for the Carbon Allocation process, and visualization of model outputs: (C1) carbon flow between all GUs and the fruiting GU;
and (C2) simulated fruit fresh mass dynamics as of the end of fruit cell division (time = 0 d). Red numbers in pictures A1, A2 and
B and numbers in picture C1 are the GUs’ id. Orange, green and white dots in picture C1 represent the fruiting GU, leafy GUs
and GUs without leaves, respectively. Red arrows represent the distance between source and sink GUs, with arrow width inversely
proportional to distance. The red point in picture C2 is the observed fresh mass of the fruit at harvest.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  13

particular, the use of notebooks and the conda package management sys-
tem make it possible to clearly specify software dependencies, hypoth-
eses of the model and actual parameter values. There is still a possible
limitation since the link to any external sources of data can be inconsist-
ent over time and create non-reproducible experiments. A solution to
this problem is to reference only the data distributed in the modelling
project or to follow the FAIR guidelines (Wilkinson et al. 2016).

Moreover, organizing the code, the descriptive texts and illustra-
tions in a didactic way requires special care. The notebook cells can
be executed in any order. This has the advantage of allowing flexible
experiments, but makes it sometimes difficult to assess the exact origin
of the results. As such, notebook design policy should be followed to
ensure consistency of the experiments over time (Rule et al. 2019).

4.2  Continuous delivery
Relying on the conda management system to access standard scientific
tools and to package some of our specific modelling tools proves to be
efficient and allows easy deployment over different computers with dif-
ferent operating systems or clusters or clouds. The continuous delivery
pipeline we used, based on online services, allows us to develop new
features more transparently for collaborators and users since they can
have a view of the new code produced and its releasing state through
the pipeline. Based on our experience, this fosters the interaction with
other groups and the diffusion of the software.

4.3  FSPM modelling
The adaptation of Jupyter notebooks to FSPMs requires the integration
of specific tools and formalisms such as L-system and 3D visualization
capabilities. The possibility to mix cells of L-system code with standard
code and detailed descriptions containing text, equations and figures
makes it possible to create a modelling narrative, with different cells
to compute, display and comment on the different results of the nar-
rative. Nevertheless, the L-system code has a non-standard execution
mode since it generates an entire animation. The visualization inter-
face allows the exploration of this animation by running the model as
a whole or for a reduced number of steps. Several modes of execution
are thus nested in such a notebook: the execution of the L-system cells
and the execution of the steps of the model. This may be particularly
confusing for the beginner. Our experience revealed that computer
science Master’s students were at ease with such an approach, while
plant science Master’s students with little programming experience
preferred the standard L-system interface provided by L-Py. One rea-
son for that was the limited debugging tools provided by the notebook
environment, in particular, for the execution of an L-system model. In
order to improve the tools, it would therefore be important to upgrade
this feature.

The 3D visualization of the growth of a plant structure mod-
elled with an L-system requires an interactive visualization. The
existing solutions were considered to be unsatisfactory since they
may need extensive loading time, which runs counter to the inter-
activity of the tools. The approach we designed relies on transpil-
ing the PlantGL library in WebAssembly. It was relatively simple to
develop and proved to be efficient to execute for standard comput-
ers. As a drawback, it requires the maintenance of specific tools for
3D visualization.

The possibility of distributing simulation computation allows the
efficient computation of multiple models with varying parameters,
and thus makes it possible to perform efficient sensitivity analysis. As
it comes natively within our framework, this feature is easy to use. As
a future step, modelling the growth in parallel of a multitude of plants
would create interesting possibilities for the study of crop growth.
However, this would make it necessary to account for plant interac-
tions, and to thus extend the modelling formalism to allow interactions
between processes computed in parallel.

The virtual modelling environment presented in this manuscript
is largely based on Python. Some modelling softwares of the FSPM
community are built using alternative programming languages such as
C++ or Java (Hemmerling et al. 2008; Griffon and de Coligny 2014).
Jupyter notebooks are compatible with a large number of languages,
including Java and C++. Communication between languages is facili-
tated by the Jupyter project but can still be complicated in some cases
(e.g. Python-Java). As a result, integrating Java-based tools within the
framework presented here would be difficult. However, similarly to
what we did with Python, L-Py and PlantGL, integration of Java-based
FSPM modules into Jupyter can certainly be undertaken in order
to provide a complementary Java-based modelling environment in
notebooks.

4.4  Collaborative design of workflows
Rather than maintaining ‘second-order’ documents about processes,
dependencies, variables and units, we looked for an approach that
would enable us to directly inspect the model code—as the single
source of truth—and to visualize the model structure in order to col-
laboratively develop the model and its processes without the need to
inspect the actual source code itself. Due to the model modularity and
the choice of process granularity, the model can be easily extended and
adjusted, even by collaborators with moderate proficiency in the pro-
gramming language. This increases the usability of the model and its
environment for a larger group of researchers.

With such features provided by xarray-simlab and our customiza-
tions, vmango-lab allows fast model development, interactive model
exploration and collaborative model design—not least due to its seam-
less integration into the Jupyter framework. However, if required, any
simulation and model can be run headless (without a Jupyter frontend
or kernel) as a standard Python module. This is particularly important
for efficient debugging.

4.5  Data representation
Many aspects of xarray and xarray-simlab have been designed for
use in the earth sciences and thus have a strong focus on longitude–
latitude grids. These libraries therefore have no generic support for
modelling topological relations and graphs such as plant entities.
In particular, they lack support for growing structures (i.e. grow-
ing indices along one or more dimensions), sparse representation
of topologies and modelling of inherently cyclical biological pro-
cesses. However, we have shown that an approach based on encod-
ing topologies and entity properties into multidimensional arrays is
viable and computationally efficient, even for large trees with several
thousand GUs. This enables the user to represent the tree topology at
a given moment, as well as to represent its evolution and the changes

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

14  •  Vaillant et al.

in its property values over time. However, modelling architectures
with a particularly high number of elements would require extra
optimization such as the integration of sparse matrix representation.
Moreover, modelling multiscale structures with GUs and their indi-
vidual organs (inflorescences, fruits and leaves) may become cum-
bersome with multidimensional arrays.

Apart from the obvious advantage of having seamless access to the
Python scientific stack, we believe that a great benefit of this approach
is that all Python libraries assembled in the vmango-lab environment
have excellent documentation and a comparatively large user base.
This further improves dissemination of models and reinforces training
and exercises.

4.6  Improvements brought to the V-Mango model by
the virtual modelling environment

The quality of a model does not only rely on valid and rigorous math-
ematical descriptions of its processes, but on its design and ability to
enable a rapid exploration of new hypotheses as well. With the rede-
sign and reimplementation of V-Mango within the virtual modelling
environment, some improvements occur directly in relation to the
new structure of the model, demonstrating the practical implications
of such an approach. In particular, splitting the model into multiple
processes proved to be highly useful since they can be reused, recom-
bined and adapted for different purposes. While the results of the
original model were successfully reproduced (see https://nbviewer.
org/github/fredboudon/vmango-lab/blob/isp2022/notebooks/
vmango_archdev_evaluation.ipynb), new modelling scenarios can be
easily built, like the one described in the study case, thanks to the new
modular design. Changes in topology are efficiently expressed using
L-system processes. On the other hand, functional processes that
mainly deal with the evolution of physiological or geometrical param-
eters can now be directly modelled with multidimensional arrays. We
found such an approach to be efficient in terms of coding and execu-
tion. Exported arrays of properties allow the exploration and visualiza-
tion of the results of the simulation.

Since all processes are able to operate with a common time step of
1 day, it is possible to conveniently import the results of any process
into a new process and transform its variables by introducing a new
logic. For instance, stochastic processes like the forecasting of the fate
of a GU can now be intercepted by other processes (e.g. future pest
and disease models) in order to alter, for example, the potential fruit
number into an effective fruit number per GU.

The computation of carbon exchange between non-fruiting
and fruiting GUs is now dynamic during the fruit growth season.
Each fruiting GU may have an individual harvest date. Moreover,
new GUs that appear during the fruit growth season are included
in the structure as carbon providers once they have reached their
final development stage. Fruit removal or the appearance of new
GUs during the fruit growth season results in a recomputation of all
source–sink relationships. Carbon exchanges between GUs could
also be extended to global compartments of the tree, such as fine
roots, coarse roots and wood. Such a dynamic and flexible model
could be used and customized to explore carbon exchange within
the tree in the future.

4.7  Conclusion
Thanks to the Jupyter project, advances in Web browser technologies
and the development of cluster and cloud computing, new possibili-
ties are now available for modelling locations far from computational
resources, allowing collaborative and distributed model design and
implementation. The major limitations for modelling FSPM into note-
books were the lack of FSPM simulation formalisms such as L-systems
in notebooks, and the limited availability of 3D visualization, for which
we proposed efficient solutions.

We demonstrated the usefulness and efficiency of a customizable,
virtual environment used for mango tree growth and production mod-
elling. The environment was assembled and customized from a set
of high-quality libraries. Reproducibility is enhanced thanks to clear
specification of processes in the xarray-simlab framework and the
documentation provided in the notebook to create the simulation nar-
rative. Interoperability was excellent for data provided as multidimen-
sional arrays or in any other compatible container.

Using a standard representation of multidimensional arrays to
represent plant properties improves the efficiency of modelling and
the coding process because it requires far less custom codes to extract,
transform and visualize data. Those features are provided out-of-
the-box by the Python scientific stack. Furthermore, being compli-
ant with standard data representations reduces the risk of a lock-in
into a specific modelling platform since many libraries/platforms are
compatible with such representations. The modelling environment
should ideally be just a set of well-integrated and exchangeable tools.
Maintaining dedicated FSPM modelling platforms and their com-
prehensive documentation is time-consuming. The FSPM commu-
nity might lack a critical mass to rely on the contributions of source
codes that include features, bug fixes and documentation from the
community.

As an application of the virtual modelling environment, a major
redesign of the V-Mango model was performed and resulted in a
modular and easily customizable model that can efficiently generate
complex sets of trees. Different modelling scenarios can be investi-
gated, such as the exploration of source–sink relationships on meas-
ured architectures presented in this manuscript. This new design will
provide a solid foundation for future modelling experiments on mango
trees. Additionally, we plan to use this virtual modelling environment
for other complex FSPMs, such as the MappleT model (Costes et al.
2008), to enhance the genericity of our approach.

S U P P O RT I N G I N F O R M AT I O N
The following additional information is available in the online version
of this article—
Table S1. Explicit vs. abbreviated names of processes defined in the
vmango-lab model. File processnames.odt.
Video 1. 3D animation of a process-based parallel simulation of a mango
orchard. A new representation of each tree is computed every 14 days.
Video speed is set to be two times faster than the actual model execution.

A C K N O W L E D G E M E N T S
The authors would like to thank Benoit Bovy for his sup-
port, Christophe Pradal for his useful comments and all

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://nbviewer.org/github/fredboudon/vmango-lab/blob/isp2022/notebooks/vmango_archdev_evaluation.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab/blob/isp2022/notebooks/vmango_archdev_evaluation.ipynb
https://nbviewer.org/github/fredboudon/vmango-lab/blob/isp2022/notebooks/vmango_archdev_evaluation.ipynb
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab040#supplementary-data

Virtual modelling environments for FSPMs based on Jupyter notebooks  •  15

open-source contributors to the Jupyter project and to the
libraries we used. We thank the reviewers for their construc-
tive remarks and suggestions.

S O U R C E S O F F U N D I N G
This work was carried out as part of the CIRAD DPP COSAQ
agronomical research program (activities 2015–21) funded by the
European Regional Development Fund and the Conseil Régional de
la Réunion (DPP COSAQ).

C O N F L I C T O F I N T E R E S T
None declared.

C O N T R I B U T I O N S B Y T H E AU T H O R S
Conceptualization: J.V., I.G., F.N., F.B.; Software: J.V., F.B.; Model
application: I.G., J.V.; First draft of the manuscript: F.B., J.V., I.G.;
Review and editing: J.V., I.G., F.N., F.B.

D ATA AVA I L A B I L I T Y
pgljupyter is available at https://github.com/fredboudon/plantgl-
jupyter/ and vmango-lab at https://github.com/fredboudon/
vmango-lab with instructions for the installation process. All exam-
ples in the Section 2 are available as notebooks in a demo repository
at https://github.com/fredboudon/plantgl-jupyter/blob/isp2022/
examples and can be inspected with nbviewer and reproduced either
locally or on a binder instance. The notebooks described in Section 3
are available at https://github.com/fredboudon/vmango-lab-demo/
tree/isp2022.

L I T E R AT U R E C I T E D

Auer E, Landers R. 2019. Creating reproducible and interactive analy-
ses with JupyterLab and Binder. In: 34th Annual Conference of
the Society for Industrial and Organizational Psychology. https://
mybinder.org (3 January 2022).

Barczi JF, Rey H, Caraglio Y, de Reffye P, Barthélémy D, Dong QX,
Fourcaud T. 2008. AmapSim: a structural whole-plant simulator
based on botanical knowledge and designed to host external func-
tional models. Annals of Botany 101:1125–1138.

Bisong E. 2019. Google colaboratory. In: Building machine learn-
ing and deep learning models on Google Cloud Platform. Berkeley,
CA: Apress. doi:10.1007/978-1-4842-4470-8_7. https://colab.
research.google.com (3 January 2022).

Boudon F, Persello S, Jestin A, Briand AS, Grechi I, Fernique P,
Guédon Y, Léchaudel M, Lauri PÉ, Normand F. 2020.
V-Mango: a functional-structural model of mango tree
growth, development and fruit production. Annals of Botany
126:745–763.

Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C. 2012. L-py: an
L-system simulation framework for modeling plant architecture devel-
opment based on a dynamic language. Frontiers in Plant Science 3:76.

Bovy B, McBain GD, Gailleton B, Lange R. 2021. benbovy/xarray-sim-
lab: 0.5.0 (version 0.5.0). Zenodo. doi:10.5281/zenodo.4469813

Candela L, Castelli D, Pagano P. 2013. Virtual research environ-
ments: an overview and a research agenda. Data Science Journal
12:GRDI75–GRDI81.

Capuccini M, Larsson A, Carone M, Novella JA, Sadawi N,
Gao J, Toor S, Spjuth O. 2019. On-demand virtual research
environments using microservices. PeerJ Computer Science
5:e232.

Costes E, Smith C, Renton M, Guédon Y, Prusinkiewicz P, Godin C.
2008. MAppleT: simulation of apple tree development using mixed
stochastic and biomechanical models. Functional Plant Biology
35:936–950.

Csardi G, Nepusz T. 2006. The igraph software package for complex
network research. InterJournal, Complex Systems 1695:1–9. http://
igraph.org (3 January 2022).

Dambreville A, Lauri PÉ, Trottier C, Guédon Y, Normand F. 2013.
Deciphering structural and temporal interplays during the architec-
tural development of mango trees. Journal of Experimental Botany
64:2467–2480.

de Reffye P, Hu B, Kang M, Letort V, Jaeger M. 2021. Two decades of
research with the GreenLab model in agronomy. Annals of Botany
127:281–295.

Federl P, Prusinkiewicz P. 1999. Virtual laboratory: an interactive software
environment for computer graphics. In: Proceedings of Computer
Graphics International’99: Canmore, AB, Canada. 93–100.

Giavitto JL, Michel O. 2001. MGS: a rule-based programming lan-
guage for complex objects and collections. Electronic Notes in
Theoretical Computer Science 59:286–304.

Godin C, Caraglio Y. 1998. A multiscale model of plant topological
structures. Journal of Theoretical Biology 191:1–46.

Godin C, Costes E, Sinoquet H. 2005. Plant architecture modelling—
virtual plants, dynamic and complex systems. In: Turnbull C, ed.
Plant architecture and its manipulation. Annual plant reviews. Oxford:
Blackwell Publishing, 238–287. doi:10.1002/9781119312994.
apr0171

Godin C, Sinoquet H. 2005. Functional-structural plant modelling.
The New Phytologist 166:705–708.

Griffon S, de Coligny F. 2014. AMAPstudio: an editing and simula-
tion software suite for plants architecture modelling. Ecological
Modelling 290:3–10.

Hamrick J, Bussonnier M, Frederic J, Granger B, Page L, Ragan-
Kelley M, Willing C. 2017. nbgrader: a tool for creating and grad-
ing assignments in the Jupyter notebook. In: SciPy 2017, Austin,
TX, 10–16 July 2017.

Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G.
2008. The rule-based language XL and the modelling environment
GroIMP illustrated with simulated tree competition. Functional
Plant Biology 35:739–750.

Hoyer S, Hamman J. 2017. xarray: N-D labeled arrays and datasets in
Python. Journal of Open Research Software 5:10.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M,
Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D,
Abdalla S, Willing C, Jupyter Development Team. 2016. Jupyter
Notebooks—a publishing format for reproducible computa-
tional workflows. In: Positioning and power in Academic Publishing:
players, agents and agendas. Amsterdam: IOS Press, 87–90.
doi:10.3233/978-1-61499-649-1-87

Knuth DE. 1984. Literate programming. Computer Journal 27:97–111.
Lang M. 2019. yggdrasil: a Python package for integrating computa-

tional models across languages and scales. In Silico Plants 1:diz001;
doi:10.1093/insilicoplants/diz001

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://github.com/fredboudon/plantgl-jupyter/
https://github.com/fredboudon/plantgl-jupyter/
https://github.com/fredboudon/vmango-lab
https://github.com/fredboudon/vmango-lab
https://github.com/fredboudon/plantgl-jupyter/blob/isp2022/examples
https://github.com/fredboudon/plantgl-jupyter/blob/isp2022/examples
https://github.com/fredboudon/vmango-lab-demo/tree/isp2022
https://github.com/fredboudon/vmango-lab-demo/tree/isp2022
https://mybinder.org﻿
https://mybinder.org﻿
https://doi.org/10.1007/978-1-4842-4470-8_7
https://colab.research.google.com﻿
https://colab.research.google.com﻿
https://doi.org/10.5281/zenodo.4469813
https://doi.org/10.1002/9781119312994.apr0171
https://doi.org/10.1002/9781119312994.apr0171
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/insilicoplants/diz001

16  •  Vaillant et al.

Léchaudel M, Génard M, Lescourret F, Urban L, Jannoyer M. 2005.
Modeling effects of weather and source–sink relationships on
mango fruit growth. Tree Physiology 25:583–597.

Lechaudel M, Vercambre G, Lescourret F, Normand F, Génard M.
2007. An analysis of elastic and plastic fruit growth of mango in
response to various assimilate supplies. Tree Physiology 27:219–230.

Lescourret F, Moitrier N, Valsesia P, Génard M. 2011. QualiTree, a vir-
tual fruit tree to study the management of fruit quality. I. Model
development. Trees 25:519–530.

Lipp M, Wonka P, Wimmer M. 2010. Parallel generation of multiple
L-systems. Computer & Graphics 34:585–593.

Louarn G, Song Y. 2020. Two decades of functional-structural plant
modelling: now addressing fundamental questions in systems biol-
ogy and predictive ecology. Annals of Botany 126:501–509.

Millman KJ, Aivazis M. 2011. Python for scientists and engineers.
Computing in Science & Engineering 13:9–12.

Mrdoob. 2021. three.js. https://github.com/mrdoob/three.js (3
January 2022).

Normand F, Lauri P-É. 2018. Integrated mango production: objectives
and challenges. Acta Horticulturae 1228:377–383.

Oliphant TE. 2007. Python for scientific computing. Computing in
Science & Engineering 9:10–20.

Pallas B, Da Silva D, Valsesia P, Yang W, Guillaume O, Lauri PE,
Vercambre G, Génard M, Costes E. 2016. Simulation of carbon allo-
cation and organ growth variability in apple tree by connecting archi-
tectural and source–sink models. Annals of Botany 118:317–330.

Perez F. 2018. Sea change: what happens when Jupyter becomes per-
vasive at a university? In: JupyterCon, New York, USA. https://
www.oreilly.com/radar/sea-change-what-happens-when-jupyter-
becomes-pervasive-at-a-university/ (3 January 2022).

Perkel JM. 2018. Why Jupyter is data scientists’ computational note-
book of choice. Nature 563:145–146.

Pradal C, Boudon F, Nouguier C, Chopard J, Godin C. 2009. PlantGL:
a Python-based geometric library for 3D plant modelling at differ-
ent scales. Graphical Models 71:1–21.

Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. 2008.
OpenAlea: a visual programming and component-based software
platform for plant modeling. Functional Plant Biology 35:751–760.

Pradal C, Godin C. 2020. MTG as a standard representation of plants
in FSPMs. In: Book of abstracts of the 9th International Conference
on Functional-Structural Plant Models: FSPM2020, 5–9 October
2020. Germany: University of Hannover. https://hal.inria.fr/hal-
03059523/file/abstract7.pdf (3 January 2022).

Prusinkiewicz P, Lindenmayer A. 1990. The algorithmic beauty of plants.
Berlin, Heidelberg: Springer-Verlag.

Reyes F, Pallas B, Pradal C, Vaggi F, Zanotelli D, Tagliavini M,
Gianelle D, Costes E. 2020. MuSCA: a multi-scale source–sink
carbon allocation model to explore carbon allocation in plants.
An application to static apple tree structures. Annals of Botany
126:571–585.

Rule A, Birmingham A, Zuniga C, Altintas I, Huang SC, Knight R,
Moshiri N, Nguyen MH, Rosenthal SB, Pérez F, Rose PW.
2019. Ten simple rules for writing and sharing computational
analyses in Jupyter notebooks. PLoS Computational Biology
15:e1007007.

Vaillant J, Boudon F. 2021. jvail/plantgl-jupyter: (version v1.2.0).
Zenodo:. doi:10.5281/zenodo.5513337

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J,
van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N,
Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y,
Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R,
Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH,
Pedregosa F, van Mulbregt P; SciPy 1.0 Contributors. 2020. SciPy
1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17:261–272.

Voila: rendering of live Jupyter notebooks with interactive widgets
(2020). https://github.com/voila-dashboards/voila (3 January
2022).

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M,
Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE,
Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O,
Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ,
Groth P, Goble C, Grethe JS, Heringa J, ‘t Hoen PA, Hooft R,
Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A,
Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R,
Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G,
Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J,
Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B.
2016. The FAIR guiding principles for scientific data management
and stewardship. Scientific Data 3:160018.

Zakai A. 2011. Emscripten: an LLVM-to-JavaScript compiler. In:
Proceedings of the ACM International Conference Companion
on Object Oriented Programming Systems Languages and
Applications Companion, October 2011. 301–312. https://
emscripten.org/ (3 January 2022).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab040/6461084 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 10 M

arch 2022

https://github.com/mrdoob/three.js
https://www.oreilly.com/radar/sea-change-what-happens-when-jupyterbecomes-pervasive-at-a-university/﻿
https://www.oreilly.com/radar/sea-change-what-happens-when-jupyterbecomes-pervasive-at-a-university/﻿
https://www.oreilly.com/radar/sea-change-what-happens-when-jupyterbecomes-pervasive-at-a-university/﻿
https://hal.inria.fr/hal-03059523/file/abstract7.pdf﻿
https://hal.inria.fr/hal-03059523/file/abstract7.pdf﻿
https://doi.org/10.5281/zenodo.5513337
https://github.com/voila-dashboards/voila
https://emscripten.org/
https://emscripten.org/

	Introduction
	THE VIRTUAL Modelling ENVIRONMENT
	Notebook-based environment
	Integrating L-systems into notebooks
	The simulation framework
	Plant representation
	Integrating L-systems into the simulation workflow
	3D visualization of plants in a client-server context
	Deployment of the virtual environment

	APPLICATION TO THE V-MANGO MODEL
	Modularity and redesign of the V-Mango processes
	Estimating carbon fluxes from a distance matrix
	Customization of the modelling workflow
	Distributed simulations and visualization
	Study case: investigating source–sink relationships on measured architecture

	Discussion
	Notebooks for FSPM
	Continuous delivery
	FSPM modelling
	Collaborative design of workflows
	Data representation
	Improvements brought to the V-Mango model by the virtual modelling environment
	Conclusion

	SUPPORTING INFORMATION

