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A B S T R A C T
Functional–structural plant models (FSPMs) are powerful tools to explore the complex interplays between 

plant growth, underlying physiological processes and the environment. Various modelling platforms dedicated to 
FSPMs have been developed with limited support for collaborative and distributed model design, reproducibility 
and dissemination. With the objective to alleviate these problems, we used the Jupyter project, an open-source 
computational notebook ecosystem, to create virtual modelling environments for plant models. These environ-
ments combined Python scientific modules, L-systems formalism, multidimensional arrays and 3D plant archi-
tecture visualization in Jupyter notebooks. As a case study, we present an application of such an environment by 
reimplementing V-Mango, a model of mango tree development and fruit production built on interrelated pro-
cesses of architectural development and fruit growth that are affected by temporal, structural and environmental 
factors. This new implementation increased model modularity, with modules representing single processes and 
the workflows between them. The model modularity allowed us to run simulations for a subset of processes only, 
on simulated or empirical architectures. The exploration of carbohydrate source–sink relationships on a measured 
mango branch architecture illustrates this possibility. We also proposed solutions for visualization, distant dis-
tributed computation and parallel simulations of several independent mango trees during a growing season. The 
development of models on locations far from computational resources makes collaborative and distributed model 
design and implementation possible, and demonstrates the usefulness and efficiency of a customizable virtual 
modelling environment.

K E Y W O R D S :   Distributed 3D visualization; distributed environment; FSPM; Jupyter notebooks; mango tree.

1 .   I N T R O D U C T I O N
Functional–structural plant models (FSPMs) provide new opportuni-
ties to understand the complex interplays between plant growth, their 
underlying physiological functioning and the environment (Godin and 
Sinoquet 2005; Louarn and Song 2020). To do this, FSPMs combine 

a representation of the 3D structure of a plant with the modelling of 
physiological processes and environmental interactions. The architec-
tural structure of the plant is defined on the basis of a small number of 
types of elementary units that are instantiated on different locations on 
a topological representation. The development of the plant is described 
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as the appearance, growth, ageing and death of the elementary units 
that are affected by physiological and environmental processes. Since 
the state and the number of units change over time, simulating plant 
growth corresponds to a class of problems formalized as dynamic 
systems with dynamic structures (DS)2 (Giavitto and Michel 2001), 
which leads to the definition of dedicated formalisms (Godin et  al. 
2005) such as L-systems (Prusinkiewicz and Lindenmayer 1990).

During the last decades, dedicated modelling platforms (Federl 
and Prusinkiewicz 1999; Barczi et al. 2008; Hemmerling et al. 2008; 
Pradal et al. 2008; Boudon et al. 2012; de Reffye et al. 2021) have been 
developed. They allow the creation of a multitude of models, built 
on a series of specialized tools for the simulation of plant growth and 
functioning. Such integrative platforms usually rely on software com-
ponents composed of multiple computer languages or formalisms. 
Models are created as scripts or as scientific workflows (Pradal et al. 
2008; Lang 2019). Some platforms include a visual representation of 
the workflows in order to give an overview of the modelled processes 
and their interdependencies. However, their reuse by non-experts is 
usually limited to the modification of parameters, and the exploration 
of model outputs (extraction, transformation, export, plotting, etc.) is 
often cumbersome. Extending and customizing the model generally 
requires inputs from the authors of the original model. Furthermore, 
while some efforts have been made to port these tools over multiple 
operating systems, reproducibility and dissemination are hampered by 
the complexity inherent in their deployment and installation on new 
computers with different configurations.

On the other hand, modelling languages such as Python or R for statis-
tical computation propose ready-to-use ecosystems of scientific packages 
(Millman and Aivazis 2011). For instance, the scientific Python ecosystem 
(Oliphant 2007) allows data processing and analysis. At the centre of these 
packages, multidimensional arrays allow the user to characterize sets of enti-
ties. Numerous tools make it possible to manipulate, visualize and perform 
statistical analyses. However, these tools are generally disconnected from 
FSPM simulations where flexible, graph-based structures are used to repre-
sent plants. Dedicated software tools are required for parsing model input/
output and extracting homogeneous views of the data for plotting or analyses.

In a new initiative to alleviate these problems, we explored the 
use of the Jupyter framework (Kluyver et  al. 2016) to create virtual 
modelling environments for plant models. To build the simulation 
environment, we combined and extended the modules of the Python 
scientific ecosystems, namely numpy, pandas, SciPy (Virtanen et  al. 
2020), xarray (Hoyer and Hamman 2017) and xarray-simlab (Bovy 
et al. 2021), based on multidimensional arrays to represent attributes 
of plant units over time. We complemented this with the igraph library 
(Csárdi and Nepusz 2006) to build, validate and visualize the topology 
of the plant using matrices that allow matricial algebraic operations to 
model, e.g. physiological processes involving distance relationships. 
Finally, we integrated the FSPM dedicated tools, L-Py (Boudon et al. 
2012) and PlantGL (Pradal et  al. 2009), into the Jupyter notebooks 
and used them to efficiently model and visualize the 3D architecture 
of the plants. The key points of this environment are: (i) the seamless 
integration into Jupyter that allows the easy collaboration, dissemina-
tion, visualization and introspection of the generated data and model 
processes; and (ii) a full compatibility with the Python scientific stack 
and, therefore, direct access to the vast numpy and SciPy ecosystem 
since the data are almost entirely modelled as multidimensional arrays.

To illustrate this approach, we developed a new implementa-
tion of V-Mango (Boudon et  al. 2020), a model of mango tree 
development and fruit production that is composed of complex 
architectural and fruit growth processes sensitive to environmen-
tal (temperature, light, etc.), temporal and structural factors. The 
new design of the model, based on this environment, allows clear 
modularization of the original model, efficient computation, 
easy exploration of the results and simple, reliable installation for 
the user.

Our contribution can be summarized as follows:

-The definition of a virtual modelling environment based on the 
Jupyter notebooks and the Python scientific ecosystem. The use of 
conda, a software environment manager, or Docker, a virtualization 
service, allows easy deployment of the environment, both locally 
and remotely.
-The development of wrapping and visualization tools of FSPM 
modelling software modules for the Jupyter environment and for 
xarray-simlab-based scientific workflows, offering new possibilities 
to develop models in a modular manner and simulate and visualize 
plant development within notebooks.
-The reimplementation of the V-Mango model within this 
environment to illustrate its use for a complex FSPM.

While planning the requirements for a redesigned mango tree model 
and drawing conclusions from our results within a group of scientists 
with diverse scientific backgrounds, it became apparent that we were 
addressing some issues that were relevant to a wider audience of FSPM 
modellers and users. In particular, we addressed the shortcomings of 
current approaches related to dissemination, reproducibility, complex 
model handling and interoperability, and greater genericity (Louarn 
and Song 2020).

2 .   T H E  V I RT UA L  M O D E L L I N G 
E N V I R O N M E N T

The intent of this project is to propose a virtual software environ-
ment that allows the creation and the execution of FSPM models. As 
reported by Capuccini et al. (2019), the idea of on-demand Web-based 
working environments on virtual infrastructures was envisioned by 
Candela et  al. (2013). These working environments, dedicated to a 
community of practice, were originally referred to as Virtual Research 
Environments. While the Jupyter project and its notebooks provide a 
solid foundation for creating such environments, simulating and ana-
lysing complex modelling scenarios of plant growth create specific 
needs. In particular, specific formalisms such as growth grammar need 
to be integrated. 3D visualization and flexible interaction with 3D 
shapes in a distributed way are required. Workflow formalism, possi-
bly with a multiprocessing computation capability, to gather and run 
a set of processes that define the model, is also necessary. On the basis 
of these concepts, we propose the definition of what we call a virtual 
modelling environment for FSPM. The different components of such 
an environment are described below.

2.1  Notebook-based environment
These last years have seen the emergence of a new way to communicate 
and collaboratively explore scientific computational ideas and data 
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Virtual modelling environments for FSPMs based on Jupyter notebooks  •  3

analysis using notebooks. In these environments, raw code is inter-
spersed with charts, figures, texts and equations. This allows the crea-
tion of a shareable, interactive computational narrative (Perkel 2018) 
where analysis or modelling scenarios can be textually described, with 
visual elements alongside their code. Some interactive features allow 
the manipulation of different parts of a model and its parameters. 
Notebook environments emerged from the concept of literate pro-
gramming originally proposed by Donald Knuth (1984). They were 
first introduced in a number of commercial analysis packages such as 
Mathematica, Maple, Matlab, and later, in open-source software such 
as SageMath.

More recently, the Jupyter project, an open-source computational 
notebook ecosystem, has gained wide popularity. Part of its success 
is due to its clear and open format for its notebook representation. 
Moreover, thanks to a major redesign, it is possible to couple it with 
many programming languages. The foundational languages Julia, 
Python and R inspired the name of the project (Perkel 2018). Each 
language is introduced into the system as a specific computational 
kernel that is responsible for the interpretation of the code (https://
github.com/jupyter/jupyter/wiki/Jupyter-kernels). The Jupyter pro-
ject is based on a distributed infrastructure and thus provides easy 
deployment on the Internet, e.g. with the JupyterHub project. Based 
on this, services such as MyBinder (Auer and Landers 2019) and 
Google Colaboratory (Bisong 2019) provide online services to run 
any public notebook with minimal configuration. Online resources 
for education based on the Jupyter infrastructure have been devel-
oped, like at UC Berkeley (Perez 2018), and modules such as nbgrader 
(Hamrick et  al. 2017) have been developed to build online exams. 
Notebooks are also used to publish books or supplementary informa-
tion on scientific papers.

Notebooks can be imported and run in different applications with 
different styles of the Jupyter project. The standard one is the display 
of the notebook as a simple editable Web page within the browser, 
composed of a sequence of cells for codes and charts, figures, texts 
and equations. An advanced version is the JupyterLab that makes it 
possible to manage different resources and to customize the display by 
arranging cell outputs in different ways so as to create a custom virtual 
modelling environment.

Furthermore, dedicated Web applications can be built from note-
books using the voila project (Voila 2020). Finally, notebooks can also 
be displayed as interactive slideshows for educational purposes, or run 
inside popular IDEs such as Visual Studio Code.

2.2  Integrating L-systems into notebooks
While models built with agnostic modelling languages such as Python 
or Java could be easily integrated within Jupyter notebooks, dedicated 
formalisms such as L-systems have been widely adopted by the mod-
elling community to create FSPMs and require specific integration. 
As a first step to building a useful modelling environment for FSPMs, 
we integrated the L-systems formalism into notebooks. To do this, 
we reused the L-Py framework (Boudon et  al. 2012) that combines 
L-systems constructs with Python. Specific notebook cells can be cre-
ated with L-systems code and are executed by the L-Py interpreter. 
Since this interpreter is built on top of Python, the execution of this 
cell corresponds to the activation of a specific mode of interpretation 

rather than the activation of a different computational kernel. Variables 
are exchanged with any other Python cell. By using specific interface 
modules such as RPy2 (https://rpy2.github.io/), L-system cells can 
even be mixed with code cells from other languages such as R (see illus-
tration in https://nbviewer.org/github/fredboudon/plantgl-jupyter/
blob/isp2022/examples/r_and_py.ipynb).

This L-systems integration is illustrated in Fig. 1, which rep-
resents a notebook (https://nbviewer.org/github/fredboudon/
plantgl-jupyter/blob/isp2022/examples/integration-demo.ipynb) 
composed of a series of cells that combine formatted text, equations 
and both Python and L-systems code. The goal of this model is to 
simulate the growth of a simple growth unit. The first cell gives the 
title of the notebook and mathematical details on the growth func-
tion. The next cell gives its Python implementation. The second cell 
of the code defines the parameters of the L-system that can be graph-
ically controlled by the user. Using the growth function and the pre-
viously defined parameters, some L-systems rules are defined in the 
third cell. The cell is initiated with the magic command %%lpy, which 
makes it possible to write L-systems rules embedded in Python note-
books. Executing this cell directly generates a 3D dynamic plot in 
the browser. Different buttons make it possible to navigate within the 
simulation, allowing, e.g., the display of the entire animation of the 
simulation or forward or backward movement. Graphical parameters 
appear alongside the visualization, and the simulation is automati-
cally updated when these values are edited. For now, parameters of 
the scalar, function and 2D curve type can be defined and manipu-
lated. With such tools, it is possible to directly compare the code and 
its result, interact with the model and thus provide an educational 
experience for the audience.

2.3  The simulation framework
To organize and execute simulations, our environment is based on 
the Python library xarray-simlab (Bovy et al. 2021), a feature-rich and 
robust extension to the xarray library.

The xarray-simlab library provides a framework to compose com-
plex computational models from sets of reusable components, called 
processes. A collection of processes can be combined to form a model, 
and their computational ordering is entirely deduced from process 
dependencies. In essence, those dependencies are created by explic-
itly linking processes via output variables (producing processes) and 
input variables (consuming processes). Variables declared within a 
process class may be annotated with other useful metadata like unit, 
description, validation functions or specific encoding settings. The 
set of variables declared inside a process class describes the process 
interface in terms of computed variables. They may be consumed by 
any other process in the model as long as no circular dependencies 
are created. However, circular dependencies are allowed if a variable 
is consumed with an offset over time, i.e. in the following simulation 
step. For the case of interdependent variables, their evolution should 
be estimated within a common process, for example, using an appro-
priate numerical solver.

The model—the predefined collection of processes—can be 
dynamically altered by plugging in or unplugging other processes, 
or by replacing a particular process with an alternative imple-
mentation. Processes may inherit from a base process class, and 
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derived classes may implement a different model logic and provide 
additional output variables. Models and their processes and vari-
ables can be programmatically inspected, and the computational 
order, i.e. process dependency, can be easily visualized.

In order to execute a particular model, users create a model set-up 
in which they define the basic parameters for each simulation run. The 
most important are the time steps, the values of the model input vari-
ables and the name of the variables to be exported.

Figure 1. Integration of L-systems within a notebook. Cell code that starts with %%lpy contains L-systems rules. At the execution 
of the rules, a 3D visualization widget is displayed below. Graphical parameters are defined in the cell above using Python code 
and displayed on the right of the 3D visualization.
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The xarray-simlab library provides great freedom in the design of 
a model and numerous ways to declare variables. We decided to sepa-
rate three types of numerical data: pure constants like natural physi-
cal constants that are kept directly inside a Python module, variables 
that effectively vary during a simulation, and parameters that are either 
obtained from the literature or after a calibration process and are there-
fore constant within a simulation set-up. Each individual process may 
be parameterized with these separate files stored in the toml format. 
By default, an initialization function is associated with each process 
to load those parameter files and parameterize a process at startup. 
However, it is still possible to inject custom parameter values by reim-
plementing a process initialization function.

Simulation inputs and outputs are mostly composed of xarray data 
structures (i.e. labelled arrays and data sets). All features from xarray 
are therefore readily available for all input and output data: index- and 
label-based selections; interpolation and grouping of data; reshap-
ing and combining data sets; reading and writing files; and advanced 
plotting.

To adapt this framework to FSPMs, we have extended the 
library with new features. L-systems models can be automatically 
integrated as processes, and the simulation runs with associated 
visualization (see following Section 2.4 below). While FSPMs 
simulate structures with a growing number of elements, xarray-
simlab is originally designed to model the dynamics of structures 
with a fixed number of elements. We extended it so that all prop-
erty arrays are automatically and consistently resized when new 
entities are created. The growth of the entity index over time does 
not make it possible to use xarray-simlab built-in parallelism capa-
bilities. We therefore reimplemented the parallel processing of 
multi-model simulations using Python’s standard multiprocessing 
library. Our solution is not as efficient as some GPU-based solu-
tions for L-systems (Lipp et al. 2010), but it offers great flexibility 
and expressiveness to define modelling processes thanks to Python 
and its scientific ecosystem.

2.4  Plant representation
Plants can be seen as a collection of entities of various natures (e.g. 
vegetative and reproductive units). The topological relationship of 
those entities can be expressed as a tree graph, possibly multiscale 
(Godin and Caraglio 1998). Dedicated data structures such as the 
multiscale tree graph (MTG) (Pradal and Godin 2020) or a brack-
eted string representation (Prusinkiewicz and Lindenmayer 1990) 
have been developed to represent and manipulate these structures. 
Those representations have various advantages, like easy traversals 
through the parent–child relationships and the possibility to store 
items with arbitrary structures and properties of various types 
within the tree.

However, this flexibility comes with a cost and has several disad-
vantages that may make it a suboptimal choice, depending on the spe-
cific model structure, the research question and the requirements of 
the model environment. The main disadvantages are:

	 (i)	 No straightforward transformation to and from array structures 
suitable for utilizing features of the standard Python scientific 
stack. By default, the Python scientific stack is based on 

multidimensional arrays (in general, from the numpy library) 
and provides tools to analyse and plot such arrays. Using such 
tools for items stored within flexible structures requires the 
definition of queries to parse the structures and extract values in 
an appropriate order.

	 (ii)	 A lack of control over data consistency. Loosely typed data 
structures such as MTG do not ensure that values for a property 
stored within a tree are of identical types. Type checking needs 
to be introduced to ensure compatibility with standard scientific 
stacks.

	(iii)	 Difficulties to store time series data, which are typical for 
most biological process models. By default, the standard plant 
data structures for FSPM are mainly designed to represent 
the current state of the simulation. Time series of structures 
can be created, but mapping between entities over time is 
challenging. Alternatively, time series of property values can 
be directly stored within a structure. However, trees need to 
be parsed each time one wants to export the time series of the 
properties of different structure entities in order to manipulate, 
analyse or plot them.

	 (iv)	 Possible computational inefficacy if operations need to be 
repeatedly applied on every or on a large subset of entities. 
In particular, structure parsing and type checking creates a 
performance overhead that can be avoided when working 
directly with multidimensional arrays. Moreover, array-based 
operations, optimized at the C level, generally outperform 
equivalent operations built using pure Python.

We therefore explored ways of expressing the properties of plant mod-
els and their topologies in multidimensional arrays by essentially creat-
ing arrays for properties and an adjacency matrix (a standard matrix 
representation of graphs). An additional time dimension may also be 
required for all properties that vary over time. A data structure, referred 
to as a data set, from the xarray library makes it possible to assemble 
the different properties and the topology in a coherent way. A  con-
straint is that all entities have a common set of properties for their rep-
resentation. L-system string representations are made compatible with 
the data set of properties by associating a unique id with each module 
of the L-systems string that represents the position in the arrays of the 
properties of the entities.

The main challenge is to take the growing number of entities over 
the simulation time into account. To do this, we extended the xar-
ray-simlab framework to provide an automatic extension of the data 
structure representing the plant. Every array representing properties 
or topology is extended with new default values upon the appearance 
of new entities. By default, the NaN value is used to express the fact 
that a value is not set (i.e. entities that have not yet appeared or have 
been pruned) and should be determined by the appropriate process. 
As a constraint, the values are all expressed as floating-point values (the 
only nullable data type available).

2.5  Integrating L-systems into the simulation 
workflow

The definition of the processes of a simulation workflow based on 
xarray-simlab requires the precise definition of input and output 
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variables, and an execution function for each process. In the spe-
cific case of L-systems, input and output variables can be directly 
deduced from the model definition. Using L-Py specifications, 
model input variables are defined using the extern command. 
These variables are directly exported onto the process interface. 
As output, an L-system generates topological structures in the 
shape of L-strings, and 3D representations. To be compliant with 
the array-based plant representation of the simulation frame-
work, the parameters of the different modules of the L-strings are 
grouped and stored as individual arrays. For each type of module, 
an index array is also generated. This makes it possible to directly 
access and manipulate all values of the parameters of all entities of 
the same type.

The integration of L-systems within the xarray-simlab scien-
tific workflow is illustrated in Fig. 2 (https://nbviewer.org/github/
fredboudon/plantgl-jupyter/blob/isp2022/examples/lpy-simlab/
lpy_carbon_light.ipynb). In the first cell, the code of an L-system is 
defined. The extern commands (lines 5–7) define the input vari-
ables that control the simulation. Note that the step_delta is a 
custom variable of xarray-simlab that gives the current step duration, 
which is required as input for each step of the L-system simulation. 
The second cell of the code generates an xarray-simlab process from 

the L-system code, automatically exposing in and out variables. For 
the out variables, the lpyprocess function individually exports 
all the parameters of the custom modules as arrays. For instance, the 
Metamer_t variable stores all values for parameter t of all Metamer 
modules. Although it is transparent from the L-system point of view, 
the redirection of the module parameters into arrays is made through 
specific Param structures that are automatically generated for the 
simulation. For each module of an L-string, the Param structure 
mainly stores the id of the module it represents and has the possibility 
of retrieving or modifying its associated parameters within the array 
representation.

The third cell of the code defines a second process that 
simulates a simple carbon allocation procedure. To do this, 
some parameters of the L-system simulation are used, such as 
Metamer_t. Other parameters are filled in by the process, 
such as Metamer_allocation. Another process (code not 
shown) simulates the intercepted light (from a zenithal light 
source in this example). The fourth cell assembles these pro-
cesses into a simulation workflow, defines its set-up and visual-
izes it. The workflow is then run and some of the variables are 
explored and visualized as 2D plots, such as the amount of inter-
cepted light per metamer over time.

Figure 2. Integration of L-systems within a notebook-based scientific workflow.
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2.6  3D visualization of plants in a 
client-server context

Both execution of the model and visualization of the simulation results 
are performed inside Jupyter notebooks using the plantgl-jupyter 
module (Vaillant and Boudon 2021). The Jupyter framework has a 
distributed architecture with a client (Web browser) and a server that 
contains the actual execution of the model. The result of a simulation 
must therefore be communicated by the server to the client using 
Internet protocols and be rendered by the Web client. While stand-
ard protocols for streaming and display of pictures and 2D charts have 
been adopted for a long time, the case of the 3D representation is less 
clear. Different libraries allow the definition and the streaming of 3D 
shapes (pythreejs, k3d, etc.). From the client side, high-level JavaScript 
libraries such as three.js (mrdoob 2021) allow the rendering of 3D 
shapes in the browser using WebGL.

To have interactive visualization, the time necessary to transmit the 
3D representation has to be minimized. This time can be broken down 
into a time to encode the representation into a streamable representa-
tion, the actual time of streaming and the time to decode the represen-
tation, convert it into three.js objects, and the time for the rendering 
itself. Streaming time is proportional to the size of the encoded data, 
while encoding and decoding are proportional to the size of the origi-
nal 3D scene. We tested different procedures to serialize and stream 
3D representations with minimal encoding and streaming time, and 
we evaluated their benefits.

We first tested the pythreejs library (https://pythreejs.readthe-
docs.io/) that wraps three.js in Python and allows the streaming and 
display of 3D objects in a Web browser. The advantage of such an 
approach is that a similar representation is used both by the server and 
the client, minimizing data transformation. However, it does not allow 
a straightforward high-level representation for plants, and it leaves 
too little room for customizations. As such, many objects need to be 
stored with low-level mesh representation. Furthermore, due to its 
architecture, every custom user interaction with the browser’s canvas 
(where the 3D scene is rendered) must be transmitted to the server’s 
Python runtime, which in turn issues a signal to the renderer. This pro-
cess slows down the visualization and user interaction. As an alterna-
tive, we tested the Draco mesh compression library (https://google.
github.io/draco) that proposes an efficient compression algorithm that 
makes it possible to minimize streaming time. The drawback is that it 
requires converting the entire 3D representation into a single mesh, 
thus removing semantic information contained in the 3D scene.

Finally, we tested an alternative method that consists in directly 
using the serialization methods for 3D objects of the PlantGL library 
(Pradal et al. 2009) and combining it with a standard zip compression 
format. PlantGL representation allows the use of massive instantiation 
and high-level primitives with compact representation. From the client 
perspective, a port of the PlantGL API can be created using its original 
C++ code and a WebAssembly transpiler such as Emscripten (Zakai 
2011). With such an approach, server and client share a high-level geo-
metric representation. Discretization of the geometry for rendering is 
made by the client, allowing the server to dedicate its computational 
capability to the simulation. This last approach proved to be efficient 
with minimal coding costs since C++ routines already implemented in 

PlantGL could be made readily available in JavaScript. Nevertheless, 
minimal computational capabilities are required for the client. Our 
approach might be suboptimal for less well-equipped terminals such 
as tablets or smartphones.

2.7  Deployment of the virtual environment
In order to deliver deployable software modules for reproducible sci-
ence, we rely on the conda management system. It allows us to build 
a software environment relatively independent of the host operating 
system. An environment is simply specified using a text file that lists all 
the required software modules and, possibly, their version. An environ-
ment can be created locally or on online services such as binder from 
this file.

To create custom FSPM environments, some of the software mod-
ules we developed, such as PlantGL and L-Py, were packaged for conda 
so as to be easily deployed. To rapidly build and assemble these pack-
ages, we defined a releasing pipeline based on online services for open 
software. Code is managed on the GitHub repository that is now con-
figured to trigger automatic build on continuous integration services 
such as GitHub Actions or AppVeyor. If the build is successful and 
passes the automatic tests, a new version of the package is automati-
cally published on the conda package online database (https://ana-
conda.org/), currently in the fredboudon channel. This allows the 
rapid publication of new features and bug correction, while preserving 
previous versions for reproducibility of previous environments.

3 .   A P P L I C AT I O N  TO  T H E 
V - M A N G O   M O D E L

The integrative FSPM V-Mango was recently developed to simu-
late mango tree growth, phenology and fruit production (Boudon 
et al. 2020). Mango is an important fruit from tropical and subtropi-
cal regions and its cultivation faces several agronomic challenges. In 
particular, it exhibits (i) phenological asynchronisms partly due to 
complex interactions between vegetative and reproductive growth 
(Dambreville et  al. 2013; Normand and Lauri 2018), and (ii) fruit 
heterogeneity at harvest in terms of size, gustatory quality and post-
harvest behaviour. To understand such a complex behaviour, the 
precise modelling of the development of the mango tree architecture 
and its constituents (growth units (GUs), inflorescences and fruits) 
was required. A number of developmental processes were formalized 
and assembled. In the first version of the model, these processes were 
implemented as simple functions or L-system rules with no way to dis-
tinguish them from each other, except by their names. The model was 
implemented using Python, R and the L-Py framework. Glue-code 
between these different technologies was based on code developed 
in-house. In particular, the fruit model was implemented in R and, 
because of the simple interface provided, no interaction with the other 
submodels written in Python was possible.

In the new version of the model, called vmango-lab and published 
at https://github.com/fredboudon/vmango-lab/tree/isp2022 under 
an open-source license, we used the virtual modelling environment 
based on the notebooks presented above to redesign the model and 
reorganize its code. Most of the work consisted in defining processes 
and their inputs/outputs, and assigning corresponding model logic. 
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Code was also adapted to the use of multidimensional arrays to store 
parameter values. This new modular implementation allows the cus-
tomization of the model for new use cases. To illustrate this, we pre-
sent in the following sections the application of vmango-lab for testing 
carbon allocation strategies at the scale of individual GUs, and for 
performing parallel multi-model simulations. For each of the cases 
presented, a notebook with further detail is available at https://github.
com/fredboudon/vmango-lab-demo/tree/isp2022.

3.1  Modularity and redesign of the V-Mango 
processes

V-Mango is a complex model where different processes simulate the 
growth and the phenology of the mango tree and its constituents of 
interest (GUs, inflorescences and fruits). To have a homogeneous and 
simple representation, the model formalizes the tree as a collection of 
GUs with flowering and fruiting attributes to represent information on 
inflorescences and fruits. During the simulation, the variables repre-
senting the different attributes of the GUs are passed between the dif-
ferent processes of the model and their values are updated to simulate 
the development of the mango tree and its constituents of interest. The 
model is now formalized as the sets of processes depicted in Fig. 3.

A first collection of processes, depicted in green in Fig. 3, simulates 
the appearance of the botanical entities in the architecture at differ-
ent time steps. The appearance of these entities is broken down into 
elementary stochastic events that describe the occurrence, the inten-
sity and the timing of their appearance and are modelled by binomial, 
Poisson and ordinal multinomial distributions, respectively. These 
distributions are assembled into a stochastic automaton that simulates 
the number, timing and fate (purely vegetative, flowering or fruiting) 
of new entities appearing on each terminal GU. The different distri-
butions were parameterized from measured architectural data using 

generalized linear models, and probabilities were determined by archi-
tectural and temporal factors (Dambreville et al. 2013; Boudon et al. 
2020). Different automata were formalized for the different types of 
entities (GUs, pure inflorescences and mixed inflorescences). For veg-
etative development, GUs appearing during the same growing cycle 
as their mother GU are distinguished from the ones appearing dur-
ing the following cycle since different factors affect their appearance. 
All of this developmental information is contained in the Integrative 
Developmental process that updates the developmental attributes. 
Finally, the Topological Growth process uses this developmental infor-
mation to extend the plant representation at each time step according 
to the simulated appearance date (feedback represented with a dashed 
arrow on the diagram).

A second set of processes, represented in purple in Fig. 3, simu-
lates the development and growth of the individual entities. To do 
this, potential growth is estimated from empirical distribution (Organ 
Initiation process), thermal time models are run for the development 
and the growth of each entity (Organ Phenology process) and their 
spatial dimensions are increased accordingly (Organ Growth process).

The specific case of fruit growth in terms of dry matter is modelled 
based on carbon exchange. To do this, we extended and modular-
ized the carbon balance model proposed by Léchaudel et  al. (2005) 
for mango fruiting branches (represented in yellow in Fig. 3). First, 
carbon supplies (reserves and assimilation by photosynthesis) and 
demands (maintenance and growth) are estimated by different pro-
cesses. Carbon reserves are estimated for the different GUs as a func-
tion of their size (Carbon Reserve process). Carbon demand for organ 
maintenance and fruit growth are determined in the Carbon Demand 
process as a function of organ size and potential growth for each fruit. 
Carbon assimilated by photosynthesis (Photosynthesis process) is cal-
culated from intercepted light given by the Light Interception process. 

Figure 3. Workflow of the new V-Mango model. The diagram has been directly generated from the code, except for the dashed 
arrow. Explicit names to explain process purposes are used. Abbreviated names for processes are also used in the code (see 
Supporting Information—Table S1 for correspondences).
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At this time, light interception is chosen from microclimate environ-
ments measured within canopies.

Based on the estimations of carbon supplies and demands, and 
on the exchange parameters determined from distances between 
GUs (Carbon Flow Coef process) and allocation rules, the Carbon 
Allocation process performs the allocation of carbon between organs 
and functions. Priority for carbon allocation is as follows: organ main-
tenance is first satisfied with local carbon supply; supplementary 
carbon is then exported to demanding fruiting GUs according to the 
estimated distance-based flow coefficient; and finally, fruit growth in 
dry mass is determined from their allocated carbon.

A last set of processes, represented in red in Fig. 3, simulates fruit 
growth in fresh matter and fruit quality. We integrated the model pro-
posed by Léchaudel et  al. (2007) for mango fruiting branches. The 
amount of soluble sugars, starch, acids and minerals in the fruit is 
empirically linked to fruit age and fruit dry mass (Fruit Composition 
process). Fruit growth in fresh matter is then modelled by water-
related processes (water inflow into the fruit, driven by stem and fruit 
water potentials, and fruit transpiration), and sugar content is calcu-
lated (Fruit Quality process). The Fruit Harvest process calculates a 
ripeness index for each fruit. By default, the index is estimated as a 
threshold on the thermal time sum of the fruit.

3.2  Estimating carbon fluxes from a distance matrix
In the original model, carbon demand (for GU maintenance and 
fruit growth) and supply (from reserves and photosynthesis) were 
globally estimated for all the GUs composing a fruiting branch. As a 
limit, no topological change in the structure was allowed during fruit 
growth. In order to model more detailed exchanges, all GUs are now 
considered separately. Their carbon exchanges with the surrounding 
fruits are explicitly formalized using an exchange matrix (Carbon 
Flow Coef process) based on distances that can be re-evaluated at 
the appearance of each new GU. The distance between two GUs is 
expressed as the number of GUs in the shortest path between the 
two GUs in the tree structure. To reproduce the assessment of the 
level of carbon autonomy of branches according to their size found 
in the original version of the model, only carbon flows between GUs 
at a distance d from a fruit below a given threshold dmax are consid-
ered. The carbon flow coefficient Fij  from a leafy GU i towards a fruit 
borne by GU j, with GU j belonging to the set J of fruiting GUs, is 
calculated as:

Fij =
H(dmax − dij)∑J
j H(dmax − dij)� (1)

where H represents the heaviside step function equal to one when 
distance d is less than or equal to dmax, and zero otherwise. This func-
tion can be seen as a simplified version of the distance-based allocation 
function proposed in previous studies (Lescourret et al. 2011; Reyes 
et al. 2020). The distance between all GUs in the structure is efficiently 
computed using SciPy routines and, in particular, the ‘shortest_
path’ function, from the adjacency matrix representing the tree 
structure. The distance matrix makes it possible to test more complex 
carbon allocation scenarios in the future.

3.3  Customization of the modelling workflow

Thanks to the introduced modularization, alternative processes can 
be easily defined to replace predefined ones. In the following example, 
changes in the Fruit Harvest process are illustrated in Listing 1. A new 
process to test the sucrose content of the fruit is defined. This process 
is defined as a Python class with the @xsimlab.process deco-
rator (lines 1–2). Its run_step function (lines 4–8) first retrieves 
the variable sucrose that represents the sucrose content of each 
fruit with an array. The ripeness index is set to 1 if the sucrose con-
tent exceeds the threshold sucrose_thresh defined as a param-
eter of this process. A new model customized_vmango is then 
instantiated (line 11) as a copy of the vmango model, with removal 
of the geometry process (that computes the geometrical represen-
tation). The harvest process is replaced by the new custom process 
HarvestByQuality. This non-visual, and thus faster, model 
makes it possible to test for an alternative harvesting policy.

Listing 1. Customizing a model by replacing a process and 
unplugging another one (code slightly simplified for clarity).
New modelling workflows can thus be designed by partly reusing the 
default workflows. For instance, in the notebooks https://nbviewer.org/
github/fredboudon/vmango-lab-demo/blob/isp2022/notebooks/1-
0-modularity.ipynb and https://nbviewer.org/github/fredboudon/
vmango-lab-demo/blob/isp2022/notebooks/1-1-arch_dev.ipynb, a 
workflow focussing on the architectural development alone is designed. 
In contrast, in https://nbviewer.org/github/fredboudon/vmango-lab-
demo/blob/isp2022/notebooks/4-use_case_measure_and_simulate.
ipynb, presented in more detail in the Section 3.5, a fixed architecture is 
considered and only phenology and fruit growth are simulated. A variety 
of workflows can thus be designed according to the modelling needs. 
Since workflows are coupled with L-systems, it can also be seen as a way 
to introduce modularity within L-system models.

3.4  Distributed simulations and visualization
The performance of the modelling environment and of the visu-
alization tools is important to provide the user with an interactive 
and intuitive experience of the modelling process. The techno-
logical stack presented in this manuscript already provides many 
excellent solutions to overcome these challenges. However, cer-
tain aspects of our particular model logic and data representa-
tion, such as the inherent dynamic nature of the topology and 
the rendering of its geometric representation, required solutions 
that were not readily available. These solutions had to be imple-
mented, in particular, the visualization of large PlantGL scenes 
in a notebook context and multi-model parallelization. To evalu-
ate the usability and interactivity of the proposed visualization 
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system, we first assessed its performance on complex mango 
models. In a second step, we assessed the possibility to launch, 
display and analyse in parallel simulations with different initial 
conditions. In the model development process, these features 
offer interesting possibilities for calibrating a model or running a 
sensitivity analysis more efficiently.

On the basis of our tests, the rendering engine was able to effi-
ciently transmit and render large scenes with great detail, even 
if the scene was generated on a distant system (Fig. 4). Our test 
machine was a laptop with a Debian GNU/Linux 10 system with 
16 GB of memory and an Intel® Core™ i5-8250U CPU @1.60 
GHz × 8, Intel® UHD Graphics 620. With the model execution 
and the visualization in the Web browser distributed locally, the 
transmission took several milliseconds. The frame rate (FPS) of 
the display varied from 40 to 10 for an average tree with 2000 to 
3000 GUs (approximately 107 triangles), depending on the num-
ber and level of details in associated GU organs like leaves, flow-
ers and fruits. Similarly, large scenes representing orchards (Fig. 4 
and Supporting Information—Video 1) were smoothly visual-
ized, and user interactions like rotation and zoom were seamlessly 
performed.

In a second test, a synthetic mango orchard [see Supporting 
Information—Video 1] was simulated. Each mango tree was initial-
ized with the same structure, but different seed values controlled the 
random number generation used during the stochastic processes of 
tree development (Fig. 4).

Depending on the number of available CPU cores, multiple simula-
tions were run in parallel with only a few lines of code (Listing 2

).

Listing 2 : Creating and running a set-up in batch (parallel) 
mode and plotting of results.
The batch option (line 2) of the vmango-lab run function made it pos-
sible to pass the array of parameters used by the parallel execution. The 
3D view of the parallel simulations was updated by each simulation 
independently, allowing a pleasant interactive view of the develop-
ment and fruit production of the virtual ‘orchard’. Results of the dif-
ferent executions were assembled into a common data set and could 
be directly plotted (line 4), resulting in the diagram shown in Fig. 5.

The performance of a simulation run varied with the size of the ini-
tial tree, the number of time steps, the number of geometries derived 
during the simulation and, last but not least, with the number and fre-
quency of model outputs that needed to be merged into the resulting 
xarray data set. As a test case, we benchmarked the duration of a simu-
lation run, both in sequential (four model runs on a single CPU core) 
and in parallel mode (four model runs, each on a single CPU core), 
over 2 years (daily time steps) with a varying number of GUs in the 
initial tree, and generating 3D visualization every 30 steps or only at 
the end of the simulation. The model was initialized with trees com-
posed of 100–500 GUs. At the end of the simulation, final trees had 
800–5500 GUs, which roughly translated into 4- to 10-year-old mango 
trees. The total simulation time increased linearly with the number of 
GUs of the final trees, with a higher slope for sequential simulation 
and 3D visualization generated every 30 steps (Fig. 6A). A compari-
son between sequential and parallel simulation shows an increasing 
speedup ratio with the number of cores used, and ranging from 1.5 to 
2.2 for 2–8 CPU cores (Fig. 6B). The general performance was reason-
able for a typical simulation set-up run on a personal computer.

However, for very large trees with several thousand GUs, the 
factor limiting computational time could be the available com-
puter memory rather than the number of cores or the capacity of 
CPUs and GPUs. Since square adjacency and distance matrices 

Figure 4. 3D rendering of a tree at selected simulation steps during several successive growing cycles. Simulation steps are from 
leftmost in the back to rightmost in the front.
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grow exponentially with the number of GUs in the tree, the mem-
ory required to hold the data grows likewise. For example, allocat-
ing a single full distance matrix for a tree composed of 20 000 GUs 
requires 1.6 GB of memory (float32 data type). In the future, this 
limitation could be alleviated by integrating sparse implementations 
of multidimensional arrays in xarray-simlab based, for example, on 
a representation defined in the sparse library (https://sparse.pydata.
org). Alternatively, a vmango-lab environment can be deployed on a 
virtual machine with a configurable amount of memory if required 
for large simulations.

3.5  Study case: investigating source–sink relation-
ships on measured architecture

The vmango-lab allows a wide range of uses and applications in 
agronomical research. In this section, we illustrate how the model 
could be used to investigate source–sink relationships, a widely 
studied issue in fruit production, by manipulating the Carbon 
Allocation process through the threshold distance dmax (Equation 
(1)). Model modularity makes it possible to run simulations for 
fruit growth- and fruit quality-related processes (represented in 
yellow and red, respectively, in Fig. 3), using observed architecture 
instead of architecture simulated with architecture-related pro-
cesses (represented in green in Fig. 3). The corresponding note-
book can be found at https://nbviewer.org/github/fredboudon/
vmango-lab-demo/blob/isp2022/notebooks/4-use_case_meas-
ure_and_simulate.ipynb.

The study case consisted in a girdled branch bearing one fruit, 
whose architecture (topology, stem diameter, stem length and leaf 
number of all GUs) was measured in the field and represented with 
a simple drawing (Fig. 7A1 and A2). These data were easily formatted 
into a csv file used as model input. A 3D (mock-up, Fig. 7B) and a 2D 
(igraph, Fig. 7C1) representations of the observed architectural data 
set were generated by the model. Carbon flow between a GU and a 
fruit is controlled by a distance-based allocation function (Equation 
(1)). It was assumed that only leafy GUs, i.e. those producing pho-
toassimilates, located below a threshold distance dmax to a fruit allocate 
carbon to support the growth of this fruit. Carbon flow from a leafy 
GU i to the fruit borne by GU j is proportional to the carbon flow coef-
ficient Fij that depends on the distance dij (Equation (1)). The set of 
leafy GUs supporting fruit growth according to dmax is illustrated in Fig. 
7C1 using an igraph representation of the data, for dmax values of 4 or 
10 GUs. Fruit growth in fresh mass was simulated in these two cases, 

Figure 5. Cumulated number of fruits harvested per tree, 
plotted from the resulting data set of a parallel batch run of four 
simulations (four trees) with different seed values.

Figure 6. Evaluation of simulation performances. (A) Comparison of computational time (seconds) of four simulation scenarios: 
two parallel multiprocessing simulations with four models run on four cores (in red) and two sequential single process (in blue) 
simulations of four model runs, both with either a geometry derived at the end of the simulation (0) or a geometry processed 
every 30 days (30); (B) Speedup ratio: time elapsed for n models in a sequential, single process simulation over time elapsed for n 
workers (cores/processes) in parallel mode with 10 repetitions (mean, minimum and maximum values are displayed).
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and predicted and observed fruit fresh mass at harvest were com-
pared (Fig. 7C2). The light environment was set to an average default 
value for all the GUs of the branch. However, it would be possible to 
use observed values if the light environment was measured. Results 
showed that 10 GUs was certainly a more adequate dmax value than 4 
GUs, indicating that almost all the leafy GUs of the branch might have 
contributed to fruit growth. By varying the value of the input param-
eter dmax, it is possible to explore different source–sink relationships 
within the branch through simulation. The approach developed at a 
local (branch) scale could further be extended at a global (tree) scale, 
as proposed, for example, in peach (Lescourret et al. 2011) or apple 
(Pallas et al. 2016) fruit crops.

4 .   D I S C U S S I O N
4.1  Notebooks for FSPM

The Jupyter-based modelling environment presented in this manu-
script brings together and customizes scientific and modelling tools of 
the Python ecosystem to build robust and shareable FSPMs. Building 
on such an environment makes it possible to benefit from the regular 
improvements of this dynamic ecosystem. At the centre of the Jupyter 
project, the notebook format allows the user to create a computational 
narrative of a modelling scenario. Such an approach is efficient because 
it allows collaborators and users to test a model, as illustrated by the 
notebooks that supplement this manuscript, thus demonstrating the 
reproducibility and ease of dissemination of research work on FSPMs. In 

Figure 7. Protocol of use of the fruit model on measured architecture. (A) Data acquisition in the field: (A1) picture of the original 
branch; and (A2) drawing of the manual measurement of the branch architecture. (B) Reconstruction and 3D visualization of the 
branch (a fake trunk was added for visualization). (C) Fruit growth simulation with a threshold distance (dmax) of 4 and 10 GUs 
for the Carbon Allocation process, and visualization of model outputs: (C1) carbon flow between all GUs and the fruiting GU; 
and (C2) simulated fruit fresh mass dynamics as of the end of fruit cell division (time = 0 d). Red numbers in pictures A1, A2 and 
B and numbers in picture C1 are the GUs’ id. Orange, green and white dots in picture C1 represent the fruiting GU, leafy GUs 
and GUs without leaves, respectively. Red arrows represent the distance between source and sink GUs, with arrow width inversely 
proportional to distance. The red point in picture C2 is the observed fresh mass of the fruit at harvest.
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particular, the use of notebooks and the conda package management sys-
tem make it possible to clearly specify software dependencies, hypoth-
eses of the model and actual parameter values. There is still a possible 
limitation since the link to any external sources of data can be inconsist-
ent over time and create non-reproducible experiments. A solution to 
this problem is to reference only the data distributed in the modelling 
project or to follow the FAIR guidelines (Wilkinson et al. 2016).

Moreover, organizing the code, the descriptive texts and illustra-
tions in a didactic way requires special care. The notebook cells can 
be executed in any order. This has the advantage of allowing flexible 
experiments, but makes it sometimes difficult to assess the exact origin 
of the results. As such, notebook design policy should be followed to 
ensure consistency of the experiments over time (Rule et al. 2019).

4.2  Continuous delivery
Relying on the conda management system to access standard scientific 
tools and to package some of our specific modelling tools proves to be 
efficient and allows easy deployment over different computers with dif-
ferent operating systems or clusters or clouds. The continuous delivery 
pipeline we used, based on online services, allows us to develop new 
features more transparently for collaborators and users since they can 
have a view of the new code produced and its releasing state through 
the pipeline. Based on our experience, this fosters the interaction with 
other groups and the diffusion of the software.

4.3  FSPM modelling
The adaptation of Jupyter notebooks to FSPMs requires the integration 
of specific tools and formalisms such as L-system and 3D visualization 
capabilities. The possibility to mix cells of L-system code with standard 
code and detailed descriptions containing text, equations and figures 
makes it possible to create a modelling narrative, with different cells 
to compute, display and comment on the different results of the nar-
rative. Nevertheless, the L-system code has a non-standard execution 
mode since it generates an entire animation. The visualization inter-
face allows the exploration of this animation by running the model as 
a whole or for a reduced number of steps. Several modes of execution 
are thus nested in such a notebook: the execution of the L-system cells 
and the execution of the steps of the model. This may be particularly 
confusing for the beginner. Our experience revealed that computer 
science Master’s students were at ease with such an approach, while 
plant science Master’s students with little programming experience 
preferred the standard L-system interface provided by L-Py. One rea-
son for that was the limited debugging tools provided by the notebook 
environment, in particular, for the execution of an L-system model. In 
order to improve the tools, it would therefore be important to upgrade 
this feature.

The 3D visualization of the growth of a plant structure mod-
elled with an L-system requires an interactive visualization. The 
existing solutions were considered to be unsatisfactory since they 
may need extensive loading time, which runs counter to the inter-
activity of the tools. The approach we designed relies on transpil-
ing the PlantGL library in WebAssembly. It was relatively simple to 
develop and proved to be efficient to execute for standard comput-
ers. As a drawback, it requires the maintenance of specific tools for 
3D visualization.

The possibility of distributing simulation computation allows the 
efficient computation of multiple models with varying parameters, 
and thus makes it possible to perform efficient sensitivity analysis. As 
it comes natively within our framework, this feature is easy to use. As 
a future step, modelling the growth in parallel of a multitude of plants 
would create interesting possibilities for the study of crop growth. 
However, this would make it necessary to account for plant interac-
tions, and to thus extend the modelling formalism to allow interactions 
between processes computed in parallel.

The virtual modelling environment presented in this manuscript 
is largely based on Python. Some modelling softwares of the FSPM 
community are built using alternative programming languages such as 
C++ or Java (Hemmerling et al. 2008; Griffon and de Coligny 2014). 
Jupyter notebooks are compatible with a large number of languages, 
including Java and C++. Communication between languages is facili-
tated by the Jupyter project but can still be complicated in some cases 
(e.g. Python-Java). As a result, integrating Java-based tools within the 
framework presented here would be difficult. However, similarly to 
what we did with Python, L-Py and PlantGL, integration of Java-based 
FSPM modules into Jupyter can certainly be undertaken in order 
to provide a complementary Java-based modelling environment in 
notebooks.

4.4  Collaborative design of workflows
Rather than maintaining ‘second-order’ documents about processes, 
dependencies, variables and units, we looked for an approach that 
would enable us to directly inspect the model code—as the single 
source of truth—and to visualize the model structure in order to col-
laboratively develop the model and its processes without the need to 
inspect the actual source code itself. Due to the model modularity and 
the choice of process granularity, the model can be easily extended and 
adjusted, even by collaborators with moderate proficiency in the pro-
gramming language. This increases the usability of the model and its 
environment for a larger group of researchers.

With such features provided by xarray-simlab and our customiza-
tions, vmango-lab allows fast model development, interactive model 
exploration and collaborative model design—not least due to its seam-
less integration into the Jupyter framework. However, if required, any 
simulation and model can be run headless (without a Jupyter frontend 
or kernel) as a standard Python module. This is particularly important 
for efficient debugging.

4.5  Data representation
Many aspects of xarray and xarray-simlab have been designed for 
use in the earth sciences and thus have a strong focus on longitude–
latitude grids. These libraries therefore have no generic support for 
modelling topological relations and graphs such as plant entities. 
In particular, they lack support for growing structures (i.e. grow-
ing indices along one or more dimensions), sparse representation 
of topologies and modelling of inherently cyclical biological pro-
cesses. However, we have shown that an approach based on encod-
ing topologies and entity properties into multidimensional arrays is 
viable and computationally efficient, even for large trees with several 
thousand GUs. This enables the user to represent the tree topology at 
a given moment, as well as to represent its evolution and the changes 
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in its property values over time. However, modelling architectures 
with a particularly high number of elements would require extra 
optimization such as the integration of sparse matrix representation. 
Moreover, modelling multiscale structures with GUs and their indi-
vidual organs (inflorescences, fruits and leaves) may become cum-
bersome with multidimensional arrays.

Apart from the obvious advantage of having seamless access to the 
Python scientific stack, we believe that a great benefit of this approach 
is that all Python libraries assembled in the vmango-lab environment 
have excellent documentation and a comparatively large user base. 
This further improves dissemination of models and reinforces training 
and exercises.

4.6  Improvements brought to the V-Mango model by 
the virtual modelling environment

The quality of a model does not only rely on valid and rigorous math-
ematical descriptions of its processes, but on its design and ability to 
enable a rapid exploration of new hypotheses as well. With the rede-
sign and reimplementation of V-Mango within the virtual modelling 
environment, some improvements occur directly in relation to the 
new structure of the model, demonstrating the practical implications 
of such an approach. In particular, splitting the model into multiple 
processes proved to be highly useful since they can be reused, recom-
bined and adapted for different purposes. While the results of the 
original model were successfully reproduced (see https://nbviewer.
org/github/fredboudon/vmango-lab/blob/isp2022/notebooks/
vmango_archdev_evaluation.ipynb), new modelling scenarios can be 
easily built, like the one described in the study case, thanks to the new 
modular design. Changes in topology are efficiently expressed using 
L-system processes. On the other hand, functional processes that 
mainly deal with the evolution of physiological or geometrical param-
eters can now be directly modelled with multidimensional arrays. We 
found such an approach to be efficient in terms of coding and execu-
tion. Exported arrays of properties allow the exploration and visualiza-
tion of the results of the simulation.

Since all processes are able to operate with a common time step of 
1 day, it is possible to conveniently import the results of any process 
into a new process and transform its variables by introducing a new 
logic. For instance, stochastic processes like the forecasting of the fate 
of a GU can now be intercepted by other processes (e.g. future pest 
and disease models) in order to alter, for example, the potential fruit 
number into an effective fruit number per GU.

The computation of carbon exchange between non-fruiting 
and fruiting GUs is now dynamic during the fruit growth season. 
Each fruiting GU may have an individual harvest date. Moreover, 
new GUs that appear during the fruit growth season are included 
in the structure as carbon providers once they have reached their 
final development stage. Fruit removal or the appearance of new 
GUs during the fruit growth season results in a recomputation of all 
source–sink relationships. Carbon exchanges between GUs could 
also be extended to global compartments of the tree, such as fine 
roots, coarse roots and wood. Such a dynamic and flexible model 
could be used and customized to explore carbon exchange within 
the tree in the future.

4.7  Conclusion
Thanks to the Jupyter project, advances in Web browser technologies 
and the development of cluster and cloud computing, new possibili-
ties are now available for modelling locations far from computational 
resources, allowing collaborative and distributed model design and 
implementation. The major limitations for modelling FSPM into note-
books were the lack of FSPM simulation formalisms such as L-systems 
in notebooks, and the limited availability of 3D visualization, for which 
we proposed efficient solutions.

We demonstrated the usefulness and efficiency of a customizable, 
virtual environment used for mango tree growth and production mod-
elling. The environment was assembled and customized from a set 
of high-quality libraries. Reproducibility is enhanced thanks to clear 
specification of processes in the xarray-simlab framework and the 
documentation provided in the notebook to create the simulation nar-
rative. Interoperability was excellent for data provided as multidimen-
sional arrays or in any other compatible container.

Using a standard representation of multidimensional arrays to 
represent plant properties improves the efficiency of modelling and 
the coding process because it requires far less custom codes to extract, 
transform and visualize data. Those features are provided out-of-
the-box by the Python scientific stack. Furthermore, being compli-
ant with standard data representations reduces the risk of a lock-in 
into a specific modelling platform since many libraries/platforms are 
compatible with such representations. The modelling environment 
should ideally be just a set of well-integrated and exchangeable tools. 
Maintaining dedicated FSPM modelling platforms and their com-
prehensive documentation is time-consuming. The FSPM commu-
nity might lack a critical mass to rely on the contributions of source 
codes that include features, bug fixes and documentation from the 
community.

As an application of the virtual modelling environment, a major 
redesign of the V-Mango model was performed and resulted in a 
modular and easily customizable model that can efficiently generate 
complex sets of trees. Different modelling scenarios can be investi-
gated, such as the exploration of source–sink relationships on meas-
ured architectures presented in this manuscript. This new design will 
provide a solid foundation for future modelling experiments on mango 
trees. Additionally, we plan to use this virtual modelling environment 
for other complex FSPMs, such as the MappleT model (Costes et al. 
2008), to enhance the genericity of our approach.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Table S1. Explicit vs. abbreviated names of processes defined in the 
vmango-lab model. File processnames.odt.
Video 1. 3D animation of a process-based parallel simulation of a mango 
orchard. A new representation of each tree is computed every 14 days. 
Video speed is set to be two times faster than the actual model execution.
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