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Highlights 34 

MIR provided a better discrimination of puree variability than other techniques.  35 

MIR gave the best prediction of puree textural and rheological properties. 36 

HSI technique had a better ability to assess puree quality and variability than NIR. 37 

Raman spectroscopy could not provide sufficient assessment of puree quality.  38 



4 

Abstract 39 

Near-infrared (NIR), mid-infrared (MIR), Raman spectroscopy and hyperspectral 40 

imaging (HSI) were comprehensively compared for their capacity to evaluate the 41 

composition and texture characteristics of apple purees issued from a large variability 42 

(cultivar, fruit thinning, post-harvest mealy texture and processing). NIR, MIR and HSI 43 

techniques had a good ability to estimate puree composition such as soluble solids 44 

(RPD > 2.5), titratable acidity (RPD > 2.4) and dry matter (RPD > 2.3). Raman 45 

spectroscopy was less accurate to determine puree biochemical (RPD < 1.8) and 46 

textural parameters (RPD < 1.4) than the other techniques. MIR was the best tool to 47 

identify aforementioned factors (> 91.7 % of correct classification) and to satisfactory 48 

predict the puree average particle size (RPD = 2.9), viscosity (RPD ≥ 2.1) and 49 

viscoelasticity (RPD > 2.3). Consequently, NIR, MIR and HSI should be prioritized as 50 

process analytical technologies to detect the variability of purees and assess their 51 

texture and taste. 52 

 53 

Keywords: 54 

Malus x domestica Borkh.; Infrared spectroscopy; Raman; Process analytical technique; 55 

Puree quality.  56 
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1. Introduction 57 

Apple puree is the basic ingredient of many fruit-based products, such as jams, 58 

preserves or compotes, yogurts and pie fillings for food industry (Defernez, Kemsley, 59 

& Wilson, 1995). It appears to be particularly suitable to test candidate process 60 

analytical techniques (PATs) as there are clear levers to introduce controlled variability 61 

in a sample set either from raw material or from process conditions (Lan, Jaillais, Leca, 62 

Renard, & Bureau, 2020). Today, apple purees are predominantly analyzed by 63 

chromatography and specific rheometers to determine their biochemical (Keenan, 64 

Brunton, Butler, Wouters, & Gormley, 2011) and rheological properties (Buergy, 65 

Rolland-Sabaté, Leca, & Renard, 2020; Espinosa-Muñoz, Renard, Symoneaux, Biau, 66 

& Cuvelier, 2013). These methods provide accurate quantifications, but they are time-67 

consuming, expensive and not suitable for fast and numerous characterizations. 68 

Developing highly efficient, economic and reliable PATs is a key point for food 69 

quality control in industrial and scientific works. Spectroscopic and imaging techniques 70 

have been considered to be some of the representative PATs for the rapid qualification 71 

of agricultural commodities and processed food (Cullen, O’Donnell, & Fagan, 2014). 72 

In particular, near-infrared (NIR), mid-infrared (MIR), Raman and hyperspectral 73 

imaging (HSI) offer the advantages of a minimal sample preparation and a rapid data 74 

acquisition.  75 

 NIR technique has been widely applied for the safety inspection and quality 76 

assessment of apple fruits at the wavelength range from 780-2500 nm (Nicolai, et al., 77 

2007; Pissard, et al., 2013). The broad bands of NIR contain the overlapping absorption 78 
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bands corresponding mainly to overtones and combinations of vibrational mode C-H 79 

and O-H bonds of fruit components (Osborne, 2006). Several internal attributes of apple 80 

purees, such as soluble solids content (SSC), dry matter content (DMC) and titratable 81 

acidity (TA), can thus be evaluated from a single spectrum, with acceptable precisions 82 

(Lan, Jaillais, Leca, Renard, & Bureau, 2020). 83 

 MIR spectroscopy on fresh and processed apples gives a good estimation of SSC, 84 

DMC, TA, malic acid and some individual sugars (Bureau, et al., 2013; Lan, Renard, 85 

Jaillais, Leca, & Bureau, 2020). Compared to the low structural selectivity in the broad 86 

bands of NIR spectra, more resolved fundamental bands of MIR spectra allow to better 87 

elucidating the chemical and structural information of samples. However, the lower 88 

energy of MIR radiations and the strong water interactions in fruit suspensions prevent 89 

the sensitive evaluation of chemical compositions and structural properties (Lan, 90 

Renard, et al., 2020). 91 

 Raman spectroscopy can provide a complementary interpretation of molecule 92 

vibration changes in polarizability, which is distinct from the vibration used in MIR by 93 

the changes in dipole moment (Pistorius, 1996). For highly hydrated products, such as 94 

fresh and processed fruits, Raman presents two advantages in comparison with infrared: 95 

a weak scattering of the polar O-H group and more intense bands of homo-nuclear 96 

molecular bonds (C-C, C=C, etc.). To date, no detailed study has compared the 97 

differences and limitations of Raman and infrared spectroscopy (NIR and MIR) to 98 

determine the structural and rheological properties of fruit purees. 99 

 Hyperspectral imaging (HSI) is an emerging platform technique that integrates 100 
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imaging and spectroscopy to provide both spatial and spectral information (Baeten & 101 

Dardenne, 2005). Several applications of HSI were carried out on fresh fruits to 102 

estimate their external and internal quality (Baeten & Dardenne, 2005; Mendoza et al., 103 

2011; Ma et al., 2018). For fruit processed purees, no work has been done on HSI to 104 

detect their biochemical composition, structural and rheological properties. 105 

 To date, the comprehensive comparison of these techniques to determine chemical 106 

(SSC, TA, DMC, individual sugars and malic acid), structural (particle sizes) and 107 

rheological (viscosity and viscoelasticity) characteristics of fruit puree products stays 108 

limited. Therefore, identifying the most efficient spectroscopic method to assess quality 109 

of processed fruit purees is a crucial point to prioritize further developments.  110 

 In this work, four different spectroscopic and imaging techniques, namely NIR, 111 

MIR, Raman and HSI, were applied on the same set of diverse (cultivar, fruit thinning 112 

practice, fruit texture, processing) apple puree samples in order to: i) evaluate their 113 

potential to detect the puree variability; ii) compare their performance to predict 114 

chemical, structural and rheological characteristics of purees and then iii) identify 115 

signals specific of the puree properties. 116 

2. Materials and methods 117 

2.1 Apple purees 118 

2.1.1 Apples 119 

A large variability of apples has been introduced in this work, in order to explore 120 

the potential of different spectroscopic techniques to detect the variability of the 121 
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processed apple purees. Around 50 kg of Apples of four cultivars: ‘Golden Delicious’ 122 

(GD), ‘Granny Smith’ (GS), ‘Royal Gala’ (GA) and ‘Braeburn’ (BR, BM) were 123 

harvested at a commercial maturity in 2018 from the La Pugère Experimental Orchard 124 

(Chambre d’Agriculture des Bouches du Rhône) (Mallemort, Bouches du Rhône, 125 

France).  126 

Fruit thinning generates significant differences of apple cell numbers during 127 

growth (Link, 2000), and results in intensive variations of puree structural and chemical 128 

properties (Buergy, Rolland-Sabaté, Leca, & Renard, 2020; Lan, Jaillais, et al., 2020). 129 

In this study, GS, GA, BR, BM and half of GD apples were grown under a standard 130 

chemical fruit thinning practice (Th+) with 50-100 fruits / tree. The other half of GD 131 

apples was non-thinned (Th-) with 150-200 fruits / tree.  132 

After harvesting, different storage conditions (temperature, time, humidity etc.) can 133 

strongly influence apple physical, structural, and biochemical properties (Tu et al., 134 

2000). Four apple groups (GD Th+, GD Th-, GS, GA) were stored at 4 °C in normal 135 

atmosphere to ensure starch regression (customised phytotron, Froid et Mesures, 136 

Beaucouzé, France). As post-harvest storage is known to particularly affect the texture 137 

of Braeburn apples (Tu et al., 2000), two different storage conditions were applied 138 

specifically on Braeburn apples, resulting either in crunchy Braeburn apples (BR; 139 

stored at 4 °C in normal atmosphere), or mealy Braeburn apples (BM; kept for 11 days 140 

at 23 °C and at around 90% relative humidity).  141 

Totally, six apple groups (GD Th-, GD Th+, GS, GA, BR and BM) were used for 142 

puree processing (Fig. 1).  143 
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2.1.2 Purees processing 144 

For all apple groups, three replicates of apple purees were processed from 3 kg of 145 

apples each. After sorting and washing, apples (3 kg) were cored, and sliced into 12 146 

portions, then processed under vacuum by a multi-functional processing system 147 

(RoboQbo Qb8-3, Bentivoglio, Italy), following two different processing recipes:  148 

- I) ground at 3000 rpm for 202 s during the increase of temperature and heated at 149 

70 °C for 15 min, then pasteurized at 95 °C for 2 min;  150 

-II) ground at 3000 rpm for 360 s during the temperature increase step, followed 151 

by 400 rpm at 95 °C for 17 min.  152 

Afterwards, half of each processed puree was refined at 0.5 mm using a Robot 153 

Coupe C80 automatic refiner (Robot Coupe C80, Robot Coupe SNC, Vincennes, 154 

France) and the other was not refined. Finally, all processed apple purees were 155 

conditioned in hermetically sealed cans, then cooled at 23 °C before the measurements 156 

performed the day after. In total, 72 puree samples (6 apple groups × 2 processing 157 

recipes × 2 refining levels × 3 processing replicates) were obtained (Fig. 1).  158 

2.2 Determination of quality traits 159 

2.2.1 Rheological and structural analyses 160 

The puree rheological measurements, consisting in rotational (flow curve) and 161 

oscillatory (amplitude sweep) tests, were carried out using a Physica MCR-301 162 

controlled stress rheometer (Anton Paar, Graz, Austria) equipped with a vane measuring 163 

system with a 3.46 mm gap (CC27/S cup and FL100/6W bob, Anton Paar), at 22.5 °C. 164 
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The flow curves were performed after a pre-shearing period of 1 minute at 50 s-1 165 

followed by 5 minutes at rest. The viscosity was then measured at a controlled shear 166 

rate range of [10; 250] s-1 on a logarithmic ramp, at a rate of 1 point every 15 seconds. 167 

The complete flow curves were fitted with a power law model according to the previous 168 

works (Lan, Jaillais, et al., 2020), as described by Eq. (1). 169 

𝜂 = 𝐾 𝛾̇𝑛−1                    (𝐸𝑞1) 170 

where η is the apparent viscosity (Pa.s), 𝛾̇ the shear rate (s-1), K the consistency 171 

parameter, and n-1 the flow parameter. 172 

Amplitude sweep tests were performed at an angular frequency of 10 rad.s-1 in the 173 

deformation range of [0.01; 100]%, in order to determine the linear viscoelastic range 174 

of the purees and the yield stress, defined as the crossing point between the storage 175 

modulus (G’) and the loss modulus (G’’) curves. The damping factor tan 𝛿 = 𝐺" 𝐺′⁄  176 

of purees was calculated. 177 

The particle sizes were measured according to our previous work (Lan, Jaillais, et 178 

al., 2020). Puree samples were diluted in distilled water to separate particles and stained 179 

with calcofluor white at 0.1 g/L and highlighted with a 365 nm UV lamp. A high-180 

resolution digital video camera (Baumer VCXU31C, Baumer SAS, Fillinges, France) 181 

with a macro lens (VSTech 0513, VS Technology Corporation, Tokyo, Japan.) was used 182 

to visualize the distribution and dispersion of puree particles. The particle sizes 183 

averaged over volume d(4:3) (de Brouckere mean) and over surface area d(3:2) (Sauter 184 

mean) were measured with a laser granulometer (Mastersizer 2000, Malvern 185 

Instruments, Malvern, UK). 186 
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2.2.2 Biochemical analyses 187 

Several biochemical analyses were performed on apple purees based on the 188 

previous works (Bureau et al., 2013; Lan, Jaillais, et al., 2021). SSC was determined 189 

with a digital refractometer (PR-101 ATAGO, Norfolk, VA, USA) and expressed 190 

in °Brix at 23 °C. TA was determined by titration up to pH 8.1 with 0.1 mol/L NaOH 191 

and expressed in mmol H+/kg of fresh weight (FW) using an autotitrator (Methrom, 192 

Herisau, Switzerland). Individual sugars and malic acid were quantified using 193 

colorimetric enzymatic kits, according to the manufacturer’s instructions (R-biopharm, 194 

Darmstadt, Germany). The content of glucose, fructose, sucrose and malic acid were 195 

expressed in g/kg of FW. These measurements were performed with a SAFAS flx-196 

Xenius XM spectrofluorimeter (SAFAS, Monaco) at 570 nm for sugars and 450 nm for 197 

malic acid. DMC was estimated from the weight of freeze-dried samples upon reaching 198 

a constant weight (freeze-drying for 5 days). Cell wall materials (AIS) of purees were 199 

isolated using the alcohol insoluble solids method proposed by Renard (2005) and the 200 

cell wall contents (AIS contents) were expressed in FW. 201 

2.3 Spectral and image data acquisition 202 

2.3.1 NIR spectroscopy 203 

NIR spectra were collected with a multi-purpose analyzer (MPA) spectrometer 204 

(Bruker Optics®, Wissembourg, France) at 23 °C. Puree samples were transferred into 205 

10 mL glass vials (5 cm height ×  18 mm diameter) which were placed on the 206 

automated sample wheel of the spectrophotometer. Logarithmic transformed 207 
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reflectance spectra (log (1/R)) were acquired with a spectral resolution of 8 cm-1 from 208 

12500 to 4000 cm-1 (corresponding to wavelengths from 800 to 2500 nm). Each 209 

spectrum corresponded to the average of 32 scans. The spectral acquisition and 210 

instrument adjustments were controlled by OPUS software Version 5.0 (Bruker 211 

Optics®, Ettlingen, Germany). A reference background measurement was 212 

automatically acquired before each data set acquisition using an internal Spectralon 213 

reference. Each puree sample was measured randomly three times on different aliquots. 214 

The mean of three replicate scans for each sample was calculated, and finally 72 NIR 215 

spectra of different apple purees (6 apple groups × 2 processing recipes × 2 refining 216 

levels × 3 processing replicates) were used in subsequent chemometric analysis.  217 

2.3.2 MIR spectroscopy 218 

MIR spectra of purees were acquired at 23 °C using a Tensor 27 FTIR spectrometer 219 

(Bruker Optics®, Wissembourg, France) equipped with a horizontal attenuated total 220 

reflectance (ATR) sampling accessory and a deuterated triglycine sulphate (DTGS) 221 

detector. The purees were placed at the surface of a zinc selenide (ATR-ZnSe) crystal 222 

with six internal reflections. Spectra with 32 scans each were collected from 4000 cm-223 

1 to 800 cm-1 with a 4 cm-1 resolution and were corrected against the background 224 

spectrum of air. Three replications of spectral measurement were performed randomly 225 

on each puree, and these averaged MIR spectra of the 72 samples were used for further 226 

analysis.  227 

2.3.3 Raman spectroscopy 228 
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 Raman spectra were acquired on a Confocal Raman Microscope Senterra II 229 

spectrometer (Bruker Optics, Ettlingen, Germany) with a 785 nm diode laser and a 230 

thermoelectrically cooled CCD detector, operating at -65 °C. For spectra collection, 231 

each puree sample was manually placed and compacted in 36 holes (those in the middle) 232 

of a 96 well aluminium plate (12 × 8) with an inner diameter of 6 mm each. After 233 

removing the water of purees by evaporation at the ambient temperature (~20 °C), 234 

spectra were accumulated with a bleaching of 20 s, an integration time of 2 s and 7 235 

coadditions using a 100 mW laser. Raman intensity were recorded from 50 to 3650 cm-236 

1 with a spectral resolution of 4 cm-1 intervals. OPUS 7.8 Software (Bruker Optics, 237 

Ettlingen, Germany) was used for spectral data acquisition. Each sample was 238 

independently and randomly scanned six times. The final spectrum of each puree was 239 

the average of these 6 replicates, resulting in 72 Raman spectra. 240 

2.3.4 HSI acquisition 241 

The hyperspectral images of apple purees were acquired on a pushbroom (a line-242 

scanning type) near infrared hyperspectral imaging system (SPECIM, Oulu, Finland), 243 

which consisted of a SWIR camera (SWIR-CL-400-N25E, SPECIM) covering the 244 

spectral range of 900-2500 nm with a spectral resolution of about 12 nm, an OLES 56 245 

camera lens (SPECIM), an illumination source (halogen lamps) and a translating 246 

scanner. Before measurements, the reflectance calibration was performed based on our 247 

previous work (Lan, Jaillais, et al., 2021). All the image acquisition parameters 248 

(exposure time of camera, scanning speed etc.) were controlled by the LUMO® 249 

software from SPECIM. Each puree sample was placed on a hole (with an inner 250 
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diameter of 3 cm) of the standard white plate (nine holes totally). All images were 251 

acquired in the reflectance mode and the final image size for each kernel is 387 × 127 252 

× 288, the two first values representing pixel dimensions in the x and y directions (field 253 

of view of 9.5 × 3.1 cm, with a spatial resolution of 245 µm) and the third value 254 

accounting for the number of spectral channels. As the beginning and ending 255 

wavelengths contained noise caused by the instrument itself, the 258 bands from 990 256 

to 2450 nm were selected for further spectral analysis. The averaged HSI spectrum of 257 

each puree sample was calculated and finally 72 HSI spectra were used for further 258 

discrimination and regression analyses.  259 

2.4 Statistical analyses of reference data 260 

After checking for normal distribution with a Shapiro-Wilk test (α=0.05), the 261 

reference data of processed purees are presented as mean values and the data dispersion 262 

within our experimental dataset expressed as standard deviation values (SD) (Table S1). 263 

Analysis of variance (ANOVA) was carried out to determine the significant differences 264 

due to the different apple cultivars, process recipes and mechanical refining treatments 265 

(Table S1) using XLSTAT (version 2018.5.52037, Addinsoft SARL, Paris, France) data 266 

analysis toolbox. Principal component analysis (PCA) was carried out on all reference 267 

data of processed purees to evaluate their discriminant contributions using Matlab 7.5 268 

software using the SAISIR package (Cordella & Bertrand, 2014). 269 

2.5 Chemometric analysis 270 
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NIR, MIR, Raman and HSI spectra were pre-processed with Matlab 7.5 software 271 

using the SAISIR package (Cordella & Bertrand, 2014). The discriminant analysis and 272 

multivariate regression were performed with several packages of the R software 273 

(version 4.0.2) (R Core Team, 2019), as detailed in our previous work (Lan, Bureau, et 274 

al., 2021).  275 

Several different preprocessing methods have been performed on NIR, MIR, 276 

Raman and HSI spectral metrics. Particularly, smoothing (Savitzky Golay algorithm 277 

with a window size of 3, 13, 23 variables) referred to the numerical operations on puree 278 

spectra in order to reduce the noise. Standard normal variate (SNV) performed a 279 

normalization of all puree spectra that consists in subtracting each spectrum by its own 280 

mean and dividing it by its own standard deviation. Savitzky-Golay derivates (the first 281 

or second derivatives with gap sizes of 11, 21, 31, 41) were used to resolve overlapping 282 

puree spectral signals and enhance signal properties. All these methods and their 283 

combinations (smoothing + SNV, SNV + first derivation, SNV + second derivation, 284 

smoothing + SNV + first derivation, smoothing + SNV + second derivation, as well as 285 

the direct processing of the raw spectra) were used to pretreat the spectra for 286 

discrimination and regression, to compare and obtain the best results. 287 

After several pretests, smoothing (Savitzky Golay algorithm with a window size of 288 

13 variables) with SNV transformed NIR data in 800-2500 nm; the SNV pre-processed 289 

MIR spectra in 1800-900 cm-1; the smoothing with SNV (a window size of 13 variables) 290 

of Raman in 1800-800 cm-1 and the SNV with 3 windows (a window size of 3 variables) 291 
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smoothed HSI data in 990-2450 nm had the best performances to classify and assess 292 

the puree quality and were retained for further analysis. 293 

Partial least squares (PLS) regression, a typical linear algorithm, combines 294 

principal component analysis and canonical correlation analysis (Geladi & Kowalski, 295 

1986). In short, PLS models maximize the covariance between Y- matrix (reference 296 

datasets) and X- matrix (spectra dataset) in a way to have better predictions of Y- matrix 297 

by maximizing the variance of X-matrix. It has been successfully used to determine the 298 

global quality parameters of apple purees using NIRS information (Lan, Jaillais, Leca, 299 

Renard, & Bureau, 2020).  300 

Random forest (RF) is an ensemble of learning methods for classification, 301 

regression and other tasks that operates by constructing a multitude of decision trees at 302 

training time (Ho, 1995). For classification tasks, the output of RF is to identify a class 303 

selected by most trees. For regression tasks, the mean or average prediction of 304 

individual trees is returned. 305 

Support vector machine (SVM) has been introduced for predicting numerical 306 

property values. SVM can efficiently perform a non-linear classification using what is 307 

called the ‘kernel trick’, implicitly mapping their inputs into high-dimensional feature 308 

spaces. Besides, SVM regression models can resolve nonlinear relationships in original 309 

feature spaces through dimensionality extension (Noble, 2006). 310 

These two machine learning approaches (RF and SVM) have been specially 311 

constructed to address large and complex nonlinear systems (Liu, Wang, Wang & Li, 312 

2013) and have provided satisfactory estimation of puree rheological properties (Lan, 313 
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Bureau, et al., 2021). In this study, PLS, SVM and RF algorithms were used to 314 

discriminate purees (Part 3.2) and predict their quality traits (Part 3.3). The 10-fold 315 

full cross-validation was applied to the 72 spectra of NIR, MIR, Raman and HSI 316 

datasets, respectively.  317 

For discrimination models (PLS-DA, SVM-DA and RF-DA), the discrimination 318 

accuracy (acc) was used to describe the discriminating ability of the different 319 

spectroscopic techniques (Table 2 and Table 3). The ability of the four different 320 

techniques coupled with PLS-DA, SVM-DA and RF-DA was compared to classify 321 

different factors: (a) cultivars (48 purees from (Th+) GD, GA, GS and BR apples), (b) 322 

process recipes (72 samples of processes I and II), (c) refining treatments (72 NR and 323 

Ra), (d) fruit thinning practices (24 GD purees from Th+ and Th-) and (e) fruit stress 324 

treatments (24 Braeburn purees with crunchy BR and mealy BM). The main vibrational 325 

bands observed in NIR, MIR, Raman and HSI datasets, which contributed to the best 326 

discrimination models are shown for all factors (a-e) (Table 3). 327 

Prediction of puree rheological (K, n, G’, G’’, yield stress and tan δ), structural 328 

(d4:3 and d3:2) and biochemical properties (SSC, DMC, TA, malic acid, fructose, 329 

glucose, sucrose, AIS) were compared according to the four spectroscopic techniques 330 

(NIR, MIR, Raman and HSI) (Tables 4 and 5). For regression models (PLS-R, SVM-331 

R and RF-R), the prediction performances were assessed by the determination 332 

coefficient of cross-validation (Rcv
2), the root mean square error of cross-validation 333 

(RMSEcv) and the residual predictive deviation (RPD). Particularly, the RPD values 334 

from 2 to 2.5 indicate the possibility for approximate qualitative predictions, whereas 335 

from 2.5 to 3 or above correspond to good and excellent prediction accuracy (Nicolai, 336 

et al., 2007). The optimal numbers of latent variables (LVs) were obtained from 337 

developed PLS-DA and PLS-R models. Besides, the main attributed vibrational bands 338 
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were selected based on the beta-coefficients of PLS models (Lan, Bureau, et al., 2021), 339 

and the variable importance (VIP) of SVM and RF models using the ‘varImp’ function 340 

by ‘caret’ package in R software (Kuhn, 2015). Particularly, the VIP method here was 341 

based on the mean square error of developed models using all the spectral variables 342 

(MSE0) and the mean square error of new models (MSEn) by permuting each spectral 343 

variable. Afterwards, the VIP score for each spectral variable was calculated by the 344 

increase of mean square error (IncMSE), following Eq (1):  345 

𝐼𝑛𝑐𝑀𝑆𝐸 = (
𝑀𝑆𝐸𝑛−𝑀𝑆𝐸0

𝑀𝑆𝐸0
) ∗ 100%            (1) 346 

A larger IncMSE indicates a greater importance for a spectral variable. The main 347 

correlated spectral signals of the best developed models are shown in Tables 3, 4 and 348 

5. 349 

3 Results and discussion 350 

3.1 Characteristics of apple purees 351 

After puree processing, the different purees provided a large variability of chemical, 352 

textural and rheological properties (Table S1). In the PCA, the first principal 353 

component (PC1) and the second principal component (PC2) explained respectively 354 

48.6% and 19.5% of the total variance. This PCA allowed to mainly represent the strong 355 

differences due to apple cultivars taking into account all the characterized parameters 356 

of the total 72 different purees after processing (Fig. 2). 357 

‘Granny Smith’ (GS) purees (C) were clearly discriminated from the other puree 358 

groups along the PC1. The GS purees presented a significantly (p < 0.001) higher 359 

viscosity (K and n) and elasticity (yield stress, G’ and G’’), particle size d(4:3) and 360 

volume d (3:2), TA, malic acid and AIS content than the others (Fig. 2b and Table S1). 361 

Remarkable higher values (p < 0.001) for SSC and DMC allowed the separation of 362 
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‘Golden Delicious’ (A and B) and ‘Royal Gala’ purees (D) along the second principal 363 

component (Fig. 2a and 2b). Thinning practice (Th+) on GD apples (B) resulted in a 364 

less viscous purees than non-thinned GD purees (A) (Table S1), which is in line with 365 

our previous research (Lan, Renard, et al., 2020). For all non-refined (NR) purees, 366 

‘Royal Gala’ had the lowest viscoelastic moduli (G’ < 934.0 ± 35.4 Pa, G’’< 194.3 ± 367 

7.2 Pa), titratable acidity (TA < 3.8 ± 0.2 meq/kg) and cell wall contents (AIS < 128.4 368 

± 9.5 mg/g). However, the overlapping of the two kinds of ‘Braeburn’ purees (E and F) 369 

(Fig. 2a) revealed the difficulty to produce different purees after processing and 370 

refining of either, crunchy (puncture linear distance of 14.0 ± 1.2 Newton) and mealy 371 

(puncture linear distance of 11.7 ± 0.7 Newton) apples. 372 

The two different processing recipes used here (Processes I and II) led to significant 373 

(p < 0.01) changes of puree rheological behaviors (K, n, G’, G’’, yield stress and tan δ) 374 

and particle distributions (d4:3 and d3:2), but not of chemical attributes (SSC, DMC 375 

and AIS; p > 0.05) (Table S1). Particularly, purees processed at 95 °C and 400 rpm 376 

(Process II) had a soft solid-like behavior. They were more viscous (K and n) with 377 

higher G’ and G’’ and larger particles (d4:3 and d3:2) than the purees processed at 70 °C 378 

and 3000 rpm (Process I).  379 

Moreover, as expected, the refining treatment generated a significant (p < 0.01) 380 

decrease of puree viscosity and elasticity (K, n, G’, G’’ and yield point), particle sizes 381 

(d4:3 and d3:2) and cell wall contents, but did not impact (p > 0.05) chemical attributes. 382 

3.2 Discrimination of variability of apple purees  383 
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Generally, PLS-DA models developed using NIR, MIR, Raman and HSI spectra of 384 

purees had the best performances to discriminate the cultivars (a), processes (b), fruit 385 

thinning (d) and stress treatments (e) (Table 2). However, specifically for refined purees, 386 

MIR technique coupled with machine learning (RF-DA and SVM-DA) gave a higher 387 

discrimination accuracy (acc > 90.3%) of purees than PLS-DA (acc = 84.7%) (Table 388 

2). 389 

NIR technique coupled with PLS-DA models gave a correct discrimination of the 390 

four cultivars (acc = 88.8%, 4 LVs), the two GD fruit thinning purees (acc = 86.7%, 2 391 

LVs) and the two Braeburn storage impacts (acc = 95.8%, 3 LVs). The specific NIR 392 

spectral regions at 818-850, 1849, 1880 and 2145-2155 nm mainly contributed to 393 

cultivar discrimination (Table 3). Particularly, the spectral area at 800-1000 nm, which 394 

is known as the absorption of apple carbohydrates and water variations (Giovanelli, 395 

Sinelli, Beghi, Guidetti, & Casiraghi, 2014; Zude, Herold, Roger, Bellon-Maurel, & 396 

Landahl, 2006), has been used for the apple cultivar classification (Bobelyn, et al., 397 

2010). The absorption bands around 1880 nm are explained by the O-H combinations 398 

of water contents in apples (Camps, Guillermin, Mauget, & Bertrand, 2017). The broad 399 

band at 2100-2200 nm corresponds to the first combination band of C-H bonds of 400 

sugars and acids, and has already been highlighted in our previous work (Lan, Jaillais, 401 

et al., 2020). Besides, the wavelengths around 1400 nm (1345, 1392 and 1379-1384 402 

nm), related to the soluble solids variations in apple juices (Kaur, Künnemeyer, & 403 

McGlone, 2020), were one of the major contributors for the discriminations of apple 404 

thinning (Th+ and Th-) and stress treatments (crunchy BR and mealy BM). However, 405 
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NIR technique was not able to well classify (acc < 55.6%) the processing recipes and 406 

refining levels, which nevertheless induced intensive structural and rheological 407 

variations of purees (Table S1 and Table 3). 408 

MIR technique provided a better discrimination of all studied factors (Table S-2) 409 

than NIR. Particularly, three different discrimination models (PLS-DA, SVM-DA, RF-410 

DA) (Table 2) allowed to classify the four puree cultivars with the acc values of 100%. 411 

The specific spectral wavenumbers at 1723-1718, 1107, 1061 and 1022 cm-1
 (Table 3), 412 

attributed to the stretching bonds of C=O of malic acid, and the C-O and C-C of glucose, 413 

fructose and sucrose (Bureau, Cozzolino, & Clark, 2019), were consistent with the 414 

measured differences of purees coming from different cultivars (Fig. 2 and Table S-2). 415 

Compared to NIR results, the satisfactory classifications by MIR of processing recipe 416 

(acc = 100 %) and refining (acc = 91.7%) were mainly based on the overlapped region 417 

between 1750 and 1650 cm-1 (1749 cm-1, 1730-1715 cm-1 and 1640-1628 cm-1 in Table 418 

3), related to the organic acids, soluble polysaccharides, pectins, phenolics and 419 

absorbed water (Lan, Renard, et al., 2020). MIR was able to highlight the 420 

physicochemical modifications of apple purees generated by different processing 421 

strategies (heating temperature and grinding speed) and mechanical refining treatments. 422 

Besides the aforementioned spectral signals, the excellent PLS discriminations of apple 423 

thinning (acc = 100%) and stress treatments (acc = 100%) were linked to three specific 424 

wavenumbers at 1084, 1056 and 998 cm-1, corresponding to the variations of glucose 425 

and sucrose in fruits (Bureau, et al., 2019). 426 

For Raman spectroscopy, PLS-DA models developed over the range of 800-1800 427 
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cm-1 had a lower discrimination accuracy and more LVs to discriminate puree cultivars 428 

(acc = 81.3%, 7 LVs), thinning practices (acc = 75.0%, 6 LVs) and stress treatments 429 

(acc = 70.8%, 6 LVs) than the models obtained with NIR and MIR (Table 3). The main 430 

vibrational bands responsible for these discriminations were related to the variations of 431 

major sugars and acids in apple purees, which have been highlighted in honey products 432 

(Pompeu, et al., 2018) and soft drinks (Ilaslan, Boyaci, & Topcu, 2015). In particular, 433 

were observed the C-C stretching and C-H deformation vibrations of glucose at 840-434 

842 cm-1 (Özbalci, Boyaci, Topcu, Kadılar, & Tamer, 2013); the stretching of C-O-C at 435 

872 cm-1 and the deformation of C-OH of fructose at 872, 939, 944 and 1054 cm-1 436 

(Cerchiaro, Sant’Ana, Temperini, & da Costa Ferreira, 2005; Mathlouthi & Luu, 1980; 437 

Özbalci, et al., 2013); the C-O and C-OH vibrations of sucrose at 1126 cm-1 (Ilaslan, et 438 

al., 2015; Pierna, Abbas, Dardenne, & Baeten, 2011) and the C=O stretching of malic 439 

acid at 1734 cm-1 (Barańska, Kuduk-Jaworska, Szostak, & Romaniewska, 2003). 440 

Interestingly, Raman spectra discriminated different puree processing conditions with 441 

the acc value of 82.3%. Besides the aforementioned wavenumbers, the specific Raman 442 

bands at 845 and 1433-1436 cm-1 were observed to discriminate puree processing 443 

changes. These wavelengths are known to represent the C-O-C and COO- 444 

antisymmetric stretching of pectins during the clarification of apple juice (Camerlingo, 445 

et al., 2007).  446 

 HSI technique coupled with PLS-DA showed a relatively higher discrimination 447 

accuracy of puree cultivars (acc = 100%, 7 LVs), processing recipes (acc = 86.1%, 10 448 

LVs), fruit thinning practices (acc = 91.6%, 6 LVs) and stress treatments (acc = 100%, 449 
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4 LVs) than the conventional NIR spectroscopy, but using a higher number of latent 450 

variables. Besides the similar aforementioned wavenumber regions as in NIR around 451 

1400, 1880 and 2100-2300 nm, specific spectral areas at 1048-1088 and 1106-1145 nm 452 

were observed, corresponding to the SSC and DMC variations in fruits (Lan, Jaillais, 453 

et al., 2021; Wang, Peng, Xie, Bao, & He, 2015). Comparing to NIR, PLS-DA on the 454 

averaged HSI puree spectra gave an impressive improvement of the discrimination of 455 

puree processing recipes, from 51.4% to 86.1%. However, both NIR and HSI spectra 456 

had a limited ability to discriminate the different refining levels (< 58.3% correct 457 

identification). These two techniques had the potential to detect puree variability 458 

(cultivar, fruit thinning, process) involving significant differences in composition 459 

(Table S-1), but not to estimate puree textural changes (refining) (Table S-1). 460 

3.3 Prediction of apple puree quality traits 461 

 According to the RPD values described by Nicolai et al. (2007), NIR showed a 462 

poor prediction (Rcv
2 < 0.52, RPD < 1.4) of puree rheological (K, n, G’, G’’, yield stress 463 

and tan δ) and structural parameters (d4:3 and d3:2) (Table 4). However, it gave a good 464 

prediction of puree composition, such as DMC (Rcv
2 = 0.82, RPD = 2.3), SSC (Rcv

2 = 465 

0.83, RPD = 2.5), TA (Rcv
2 = 0.83, RPD = 2.4) and pH (Rcv

2 = 0.85, RPD = 2.6). 466 

Particularly, the specific wavebands in the intervals 937-1050, 1180-1210 and 1290-467 

1330 nm, corresponding to O-H and C-H vibrations of water and carbohydrates 468 

(Giovanelli, et al., 2014; Zude, et al., 2006), highly contributed to the DMC and SSC 469 

models,. Besides the aforementioned absorbance regions, NIR wavenumbers between 470 

2208 and 2254 nm, corresponding to the combination bands of C-H and O-H (Wang, et 471 
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al., 2015), were also considered in the puree DMC prediction. The wavelengths located 472 

around 1600 nm (1534-1607 nm for TA models) and 1850 nm (1835-1873 nm for TA 473 

and pH models) were used to estimate puree acidity, already described to correspond to 474 

the C-O vibration of COOH and O-H combinations (Camps, et al., 2017; Wang, et al., 475 

2015). The prediction of puree individual compounds was acceptable only for malic 476 

acid (Rcv
2 = 0.80, RPD = 2.1). Generally, NIR spectra coupled with PLS gave a better 477 

estimation of puree quality than SVM and RF regression.  478 

 MIR technique was potentially able to estimate the rheological parameters (K, n, 479 

G’, G’’ and tan δ) with acceptable Rcv
2 (> 0.81) and RPD (> 2.0) values (Table 4). 480 

Particularly, PLS and RF models obtained acceptable predictions of the consistency (K) 481 

(Rcv
2 > 0.81, RPD > 2.1) and flow (n) (Rcv

2 > 0.80, RPD > 2.0) parameters of the power-482 

law viscosity model of apple purees. PLS models gave the best predictions (Rcv
2 > 0.82, 483 

RPD > 2.3) of the viscoelastic parameters G’ and G’’ of purees but were less accurate 484 

for the yield stress (Rcv
2 = 0.77, RPD = 1.7). Impressively, MIRS coupled with PLS 485 

showed an excellent prediction of tan δ (Rcv
2 = 0.96, RPD = 5.1), corresponding to the 486 

integrative assessment of both elastic and viscous contributions of apple purees 487 

(Espinosa-Muñoz, et al., 2013). The spectral region at 1500-1750 cm-1 was highly 488 

relevant to estimate puree viscosity and viscoelasticity. It corresponds to the C=O and 489 

C-O stretching of carboxylic acids at 1745-1740 cm-1 and the C=O vibration of pectic 490 

methyl ester at 1628-1634 cm-1 (Liu, Renard, Rolland-Sabaté, Bureau, & Le Bourvellec, 491 

2020). Concerning the puree structural properties, RF model was the best to predict 492 

particle sizes over volume d(4:3) (Rcv
2 = 0.88, RPD = 2.9) and over surface area d(3:2) 493 



25 

(Rcv
2 = 0.82, RPD = 2.2). For composition, acceptable to good PLS predictions were 494 

obtained for SSC, DMC, TA, pH, malic acid and sucrose, giving RPD from 2.2 to 3.9 495 

(Table 5). The specific spectral signals related to the acids at 1736-1718 cm-1 and to the 496 

fructose and sucrose at 1065-1055 cm-1 and 1024-1016 cm-1 (Bureau, et al., 2019), were 497 

the major contributors of SSC and DMC models. The excellent predictions of TA and 498 

pH, with RPD values of 3.6 and 3.9, respectively, depended on the particularly strong 499 

absorptions bands between 1736-1715 cm-1. However, a lower RPD (RPD = 2.2) and a 500 

higher LVs were obtained for malic acid than for TA. For individual sugars, an 501 

acceptable PLS prediction was obtained for fructose (Rcv
2 = 0.85, RPD = 2.6) based on 502 

its typical fingerprints at 1155, 1056 and 980 cm-1 (Bureau, et al., 2019; Lan, Renard, 503 

et al., 2020), but neither for sucrose (Rcv
2 < 0.78, RPD <1.9) nor for glucose (Rcv

2 < 504 

0.49, RPD <1.4). 505 

Raman spectroscopy showed a limited ability to estimate the rheological and 506 

structural properties of apple purees with low Rcv
2 (< 0.48) and RPD (< 1.4) values 507 

(Table 4). These results were in line with the lower ability of the aforementioned Raman 508 

model to distinguish between non-refined and refined purees (acc = 56.9%) (Part 3.2). 509 

Moreover, none of the developed Raman models gave acceptable predictions of the 510 

global (SSC, DMC, TA and pH) and individual biochemical compositions (sugars, acids 511 

and cell wall contents) of apple purees. The best Raman model had a Rcv
2 of 0.71 and 512 

a RPD value of 1.8, indicating a possible application only to distinguish puree samples 513 

presenting a large variation of titratable acidity (TA). 514 
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The models based on HSI data could not predict rheological (K, n , G’, G’’, yield 515 

stress, tan δ) (Rcv
2 < 0.48, RPD < 1.4) and structural (d4:3 and d3:2) (Rcv

2 < 0.47, RPD 516 

< 1.4) properties. Acceptable PLS predictions were obtained for SSC (Rcv
2 = 0.86, RPD 517 

= 2.7), DMC (Rcv
2 = 0.84, RPD = 2.4), TA (Rcv

2 = 0.83, RPD = 2.4) and pH (Rcv
2 = 518 

0.85, RPD = 2.6). Particularly, the most contributing wavelengths, located at around 519 

1180-1219, 1282-1327 and 2179-2207 nm, were the same as described with the NIR 520 

spectroscopy (Table 5). However, none of the models could predict individual sugars 521 

(fructose, glucose and sucrose) (Rcv
2 < 0.74, RPD < 1.8) and AIS contents (Rcv

2 < 0.42, 522 

RPD < 1.3). 523 

3.4 Comparison of NIR, MIR, Raman and HSI performances 524 

NIR spectroscopy, the easiest to apply and cheapest spectroscopic techniques in 525 

this work, showed an acceptable ability (2.3 < RPD < 2.6) to predict puree major 526 

chemical composition, including SSC, DMC, TA and pH. Such good NIR predictions 527 

will probably contribute to the development of the rapid routine evaluation of the 528 

composition of fruit-based products. For individual components, a good estimation was 529 

only obtained for malic acid, depending on its positive correlation with TA (R2 = 0.78) 530 

and pH (R2 = 0.76). However, NIR could not provide acceptable estimations of puree 531 

textural changes, in line with our previous conclusions (Lan, Jaillais, et al., 2020). 532 

Compared to NIR, MIR technique had the potential to assess puree rheological 533 

properties, including both, viscosity and viscoelasticity. However, the predictions 534 

shown in this paper were less accurate (RPD > 2.0) than our previous ones (RPD > 2.4), 535 

which concerned purees presenting a larger range of rheological behaviors (Lan, Jaillais, 536 
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et al., 2020). Interestingly, among puree viscoelastic parameters, tan δ was the best 537 

estimated by MIR (RPD = 5.1). Compared to machine learning models (SVM and RF), 538 

PLS regressions generally showed a better ability to predict puree rheological and 539 

biochemical properties. However, for the puree particle structure (size and volume), RF 540 

regression provided the best predictions. The informative wavenumber regions at 1500-541 

1750 and 900-1200 cm-1 should be considered for rheological and structural 542 

assessments of apple purees, which was in line with previous works (Ayvaz, et al., 2016; 543 

Lan, Renard, et al., 2020). MIR coupled with PLS regression provided the best 544 

prediction of the global quality traits of purees (SSC, DMC, TA and pH) with the 545 

possibility to evaluate some individual components (malic acid and sucrose). The lower 546 

prediction of malic acid than of TA was probably due to its relatively low concentration 547 

(3.0 - 7.5 g/kg of malic acid and 3.5 – 11.1 g/kg of TA) and limited variations (SD = 548 

1.0 g/kg of malic acid, SD = 2.2 g/kg of TA). For individual sugars, the higher internal 549 

correlations between fructose and SSC (R2 = 0. 78) than between sucrose and SSC (R2 550 

= 0. 51) probably explained the better prediction of fructose than of sucrose. 551 

In this study, Raman spectroscopy showed a potential to discriminate different 552 

purees, according to cultivar and processing recipe (acc > 81.3%), but it was not able 553 

to predict puree rheological, structural and chemical parameters. However, Raman 554 

gives excellent biochemical predictions on homogeneous samples, such as commercial 555 

tomato purees (Baranska, et al., 2006) and honey products (Özbalci, et al., 2013; Pierna, 556 

et al., 2011). It has also been used to detect the rheological changes of monotonous 557 

mixed food matrices (Nawrocka, Miś, & Szymańska-Chargot, 2016; Ngarize, Adams, 558 
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& Howell, 2004). In this work, the unsatisfactory predictions using Raman 559 

spectroscopy could be due to i) the very weak spectral signals corresponding to the 560 

biochemical variations in apple purees (even after water evaporation before spectrum 561 

acquisition) and ii) the variable heterogeneity according to the puree refining and 562 

grinding, which make a barrier against an efficient light diffusion.  563 

The models based on the averaged NIR-HSI spectra of apple purees provided a 564 

significant improvement of puree discrimination (Table 3) and a slight increase in 565 

quality prediction (Table 4 and Table 5) in comparison with the results issued from a 566 

measurement of a limited sample area (~2 cm2) by NIR spectroscopy. The averaged 567 

NIR-HSI spectra, which contained a richer spectral information of puree heterogeneity 568 

than the local NIR spectra, might explain the better model performance and relative 569 

higher numbers of LVs (Cheng & Sun, 2017). However, both NIR spectroscopy and 570 

HSI technique had a limited ability to detect puree differences after refining and to 571 

predict their rheological and structural properties. Strangely, the PLS-DA models using 572 

the full number of HSI spectra of each puree had a relatively lower discriminating 573 

accuracy than their corresponding averaged spectra. Previous works noticed the 574 

heterogeinity of tested samples usually affected the NIR and HSI determination 575 

precisions (Prieto, Roehe, Lavín, Batten, & Andrés, 2009). The large heterogeneity, 576 

including irregular particle size and shape and the high water content on puree surface, 577 

could introduce a strong diffuse reflection and spectral noise during the HSI image 578 

acquisition. Although NIR-HSI on purees slightly improved the prediction of SSC and 579 

DMC over the NIR results, the much larger volume of dataset and the longer time 580 
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needed for image pre-processing limited its use in comparison with NIR local 581 

measurements. 582 

Further, the AIS, which contributes to the rheological properties of processed puree 583 

products, was not well evaluated in this study whichever the spectroscopic technique 584 

or chemometric method used directly on puree samples. 585 

4. Conclusion 586 

 This study provided a first comprehensive assessment to choose the best technique 587 

among NIR, MIR, Raman spectroscopies and HSI for evaluating apple puree variability 588 

and quality. MIR had the best performance to provide an accurate identification of puree 589 

properties due to apple variability (cultivar, fruit thinning and postharvest stress) and 590 

processing conditions (heating, grinding and refining). It gave also a reliable evaluation 591 

of puree rheological and structural characteristics and composition (RPD values from 592 

2.1 to 5.1). NIR and HSI techniques can be more easily adapted to routine 593 

characterization of the more global parameters in purees (soluble solids, titratable 594 

acidity and dry matter), but not of their textural changes. Raman spectroscopy offered 595 

an insufficient information to evaluate apple puree variability and quality. Clearly, 596 

Raman spectroscopy should not be prioritized in further studies on the characterization 597 

of apple purees. 598 

 The current study also enables considering future applications with NIR, NIR-HSI 599 

and MIR according to the industrial or research needs (speed of data acquisition and 600 

presentation of the sample). These techniques are very suitable for the development of 601 
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Process Analytical Technology in order to trace samples and optimize conditions during 602 

processing.  603 
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Figure captions 768 

Fig. 1. Experimental scheme of apple puree processing, quality characterization and 769 

spectral acquisition. 770 

Fig. 2. Principal component analysis on chemical, structural and rheological parameters 771 

of six puree groups (A: GD Th-; B: GD Th+; C: GS; D: GA; E: BR; F:BM): (a) the 772 

scores plot of the two first components (PC1 and PC2); (b) the correlation plot of the 773 

PC1 and PC2. 774 
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Fig. 1  776 
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Fig. 2 778 
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Table 1. The common names and their abbreviations used in this study 779 

Common names Abbreviations 

process analytical techniques  PATs 

near infrared spectroscopy NIR 

mid infrared spectroscopy MIR 

Raman spectroscopy Raman 

hyperspectral imaging HSI 

‘Golden Delicious’ GD 

‘Granny Smith’ GS 

‘Royal Gala’ GA 

Crunchy ‘Braeburn’ stored at 4 °C BR 

Mealy ‘Braeburn’ stored at 23 °C BM 

fruit thinned / non-thinned apples Th+ / Th- 

non-refined / refined NR / Ra 

partial least square PLS 

random forest RF 

support vector machine SVM 

the storage modulus of purees  G’ 

the loss modulus of purees G’’ 

𝐺" 𝐺′⁄  of purees tan δ 

puree particle sizes averaged over volume d4:3 

puree particle sizes averaged over surface areas d3:2 

dry matter content DMC 

soluble solid content SSC 

titratable acidity TA 

alcohol insoluble solids AIS 

standard deviation value SD 

principal component analysis PCA 

fresh weight FW 

standard normal variate SNV 

determination coefficient of cross validation Rcv
2 

root mean square error of cross validation RMSEP 

the number of latent variables LVs 

residual predictive deviation RPD 

780 
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Table 2. Discrimination using 10-fold full cross-validation PLS-DA, SVM-DA and RF-DA models of apple purees according to (a) cultivars, (b) processes, (c) 781 

refining levels, (d) fruit thinning practices of Golden Delicious apples, (e) stress treatments of Braeburn apples, using NIR, MIR, Raman and HSI data. 782 

Spectral techniques NIR 
 

MIR 
 

Raman 
 

HSI 

Spectral ranges 800- 2500 nm 
 

900- 1800 cm-1 
 

800- 1800 cm-1 
 

990-2450 nm 

Models PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 

(a) Cultivar (GD/GS/BR/GA) 
             

  

No. of samples 48 48 48 
 

48 48 48 
 

48 48 48 
 

48 48 48 

Correct discrimination rate 88.8 % 81.25 % 84.6 % 
 

100.0 % 100.0 % 100.0 % 
 

81.3 % 50.0 % 60.4 % 
 

100 % 72.9 % 72.9 %. 

LVs 4 - - 
 

3 - - 
 

7 - - 
 

7   

(b) Process (I/ II) 
             

  

No. of samples 72 72 72 
 

72 72 72 
 

72 72 72 
 

72 72 72 

Correct discrimination rate 51.4 % 31.9 % 44.4 % 
 

100 % 97.2 % 93.1 % 
 

82.3 % 67.7 % 67.7 % 
 

86.1 % 41.7 % 47.2 % 

LVs 4 - - 
 

5 - - 
 

8 - - 
 

10   

(c) Refining levels (NR/ Ra) 
             

  

No. of samples 72 72 72 
 

72 72 72 
 

72 72 72 
 

72 72 72 

Correct discrimination rate 51.4 % 38.9 % 55.6 % 
 

84.7 % 90.3 % 91.7 % 
 

56.9 % 40.3 % 45.8 % 
 

55.1 % 51.4 % 58.3 % 

LVs 5 - - 
 

4 - - 
 

7 - - 
 

6   

(d) Fruit thinning (Th+/ Th-) 
            

   

No. of samples 24 24 24 
 

24 24 24 
 

24 24 24 
 

24 24 24 

Correct discrimination rate 86.7 % 53.3 % 82.5 % 
 

100.0 % 100.0 % 100.0 % 
 

75.0 % 16.7 % 45.8 % 
 

91.6 % 79.2 % 87.5 % 

LVs 3  - - 
 

3 - - 
 

6 - - 
 

6   

(e) stress treatments (BR/ BM) 
             

  

No. of samples 24 24 24 
 

24 24 24 
 

24 24 24 
 

24 24 24 

Correct discrimination rate 95.8 % 63.3 % 87.5 % 
 

100.0 % 100.0 % 100.0 % 
 

70.8 % 25.0 % 54.2 % 
 

100.0 % 58.3 % 87.5 % 

LVs 3 - - 
 

3 - - 
 

6 - - 
 

4   

Note: ‘Cultivar’: (four varieties of ‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’); ‘fruit thinning’: different fruit thinning practices for Golden Delicious apples (50 783 

- 100 fruits/ tree or 150-200 fruits/ tree); ‘stress’: two different textures of Braeburn apples (11 days at 24 °C or 2 months at 4 °C); ‘processing’: two processing recipes (70 °C for 15 784 
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mins with 3000 rpm grinding or 95 °C for 17 mins with 400 rpm grinding); ‘refining’: two refining conditions after puree processing (refined at 0.5 mm or not refined).  785 
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Table 3. The main attributions for vibrational bands of the best overall discrimination models developed for puree samples. 786 

Spectra Spectral ranges Factors No. samples Model LVs acc (%) 
Key frequencies 

NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) 

NIR 800-2500 nm 

cultivar 48 PLS-DA 5 88.8 818-850, 1849, 1880, 2145-2155 

process 72 PLS-DA 4 51.4 / 

refining 72 RF-DA - 55.6 / 

fruit thinning 24 PLS-DA 2 86.7 904, 1392, 1864 

stress  24 PLS-DA 3 95.8 913, 1345, 1379-1384 

MIR 1800- 900 cm-1 

cultivar 48 PLS-DA 4 100.0 1723-1718, 1107, 1061, 1022 

process 72 PLS-DA 5 100.0 1730-1715, 1640-1628, 1138, 1084, 1001-998 

refining 72 RF-DA - 91.7 1749, 1636, 1061, 1018, 995 

fruit thinning 24 PLS-DA 3 100.0 1772, 1593, 1084, 1022, 998 

stress 24 PLS-DA 3 100.0 1658-1608, 1056, 1018, 1001 

Raman 800-1800 cm-1 

cultivar 48 PLS-DA 7 81.3 842, 873, 1064, 1126, 1266, 1433, 1610  

process 72 PLS-DA 8 82.3 816-818, 845, 939, 972, 1362-1367, 1433-1436, 1734 

refining 72 PLS-DA 7 56.9 / 

fruit thinning 24 PLS-DA 6 75.0 842, 1054, 1077, 1427, 1608, 1675 

stress 24 PLS-DA 6 70.8 840, 904, 944, 1059-1063, 1334, 1734 

HSI 990-2450 nm 

cultivar 48 PLS-DA 7 100.0 1106-1145, 1259, 1338, 1406, 1869-1874, 1931-1964  

process 72 PLS-DA 10 86.1 1048-1088, 1191, 1242, 2117, 2274-2387, 2437 

refining 72 RF-DA / 58.3 /  

fruit thinning 24 PLS-DA 6 91.6 1065-1088, 1338-1367, 2145, 2331-2342, 2376-2398, 2426 

stress 24 PLS-DA 4 100.0 1048, 1134, 1389, 1947, 2409 

Note: acc: discrimination accuracy; PLS-DA: partial least square discrimination; RF-DA: random forest discrimination. ‘Cultivar’: four apple varieties of ‘Golden Delicious’, ‘Braeburn’, 787 

‘Granny Smith’ and ‘Royal Gala’ ; ‘fruit thinning’: different fruit thinning practices for Golden Delicious apples (50 - 100 fruits/ tree or 150-200 fruits/ tree); ‘stress’: two stress 788 

treatments of Braeburn apples (11 days at 24 °C or 2 months at 4 °C); ‘processing’: two processing recipes (70 °C for 15 mins with 3000 rpm grinding or 95 °C for 17 mins with 400 789 
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rpm grinding); ‘refining’: two refining conditions after puree processing (refined at 0.5 mm or not refined).  790 
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Table 4. Prediction of rheological and structural properties of apple purees using the full cross-validation PLS, SVM and RF regression based on their NIR, MIR, 791 

Raman and HSI spectra. 792 

Parameter Spectra Ranges SD 
PLS-R  SVM-R  RF-R Key frequencies  

NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) Rcv
2 RMSECV RPD LVs  Rcv

2 RMSECV RPD  Rcv
2 RMSECV RPD 

Viscosity- K 

NIR 

6.6 - 46.8 8.7 

0.41 6.8 1.3 6  0.31 8.2 1.1  0.32 7.7 1.1 / 

MIR 0.81 4.1 2.1 7  0.71 5.5 1.6  0.81 4.1 2.1 1712, 1682 - 1668, 1539, 1152, 1094, 1061, 998 

Raman 0.37 6.95 1.3 6  0.31 7.4 1.3  0.31 7.2 1.2 / 

HSI 0.54 6.1 1.4 10  0.27 7.5 1.2  0.36 6.6 1.3 / 

Viscosity- n 

NIR 

0.19 - 0.34 0.04 

0.52 0.03 1.4 6  0.30 0.04 1.0  0.35 0.03 1.2 / 

MIR 0.81 0.02 2.2 8  0.80 0.02 2.1  0.80 0.02 2.1 1745 - 1740, 1712 - 1710, 1539, 1140, 1081, 1065-1059,1036, 980 

Raman 0.48 0.03 1.4 8  0.36 0.03 1.4  0.44 0.03 1.3 / 

HSI 0.42 0.03 1.3 7  0.25 0.03 1.1  0.33 0.03 1.2 / 

G' (Pa) 

NIR 

617 - 1962 322 

0.32 270 1.2 6  0.11 320 1.0  0.27 282 1.1 / 

MIR 0.82 140 2.3 8  0.80 156 2.1  0.83 139 2.3 1745-1740, 1707, 1634, 1558 - 1537, 1140, 1078, 1063, 1036, 980 

Raman 0.10 326 1.0 6  0.11 303 1.0  0.25 276 1.2 / 

HSI 0.38 263 1.2 9  0.21 298 1.1  0.26 273 1.2 / 

G'' (Pa) 

NIR 

114 - 593 92 

0.36 77 1.2 6  0.21 92 1.0  0.26 84 1.1 / 

MIR 0.84 36 2.5 6  0.77 62 1.5  0.81 42 2.2 1745-1740, 1709, 1634-1628, 1558 - 1537, 1139, 1065, 1034, 980 

Raman 0.12 100 0.9 6  0.22 82 0.9  0.20 82 1.1 / 

HSI 0.41 74 1.3 10  0.16 84 1.1  0.19 85 1.1 / 

yield stress 

NIR 

6.4 - 27.7 5.2 

0.36 4.2 1.2 6  0.21 5.2 1.0  0.34 4.5 1.2 / 

MIR 0.77 3.0 1.7 7  0.73 2.8 1.8  0.67 3.0 1.8 / 

Raman 0.33 4.3 1.2 8  0.26 4.5 1.2  0.27 4.4 1.2 / 

HSI 0.47 4.0 1.3 11  0.27 4.4 1.2  0.36 4.3 1.2 / 

tan δ 

NIR 

0.18 - 0.30 0.03 

0.22 0.03 1.1 5  0.16 0.03 1.0  0.15 0.03 1.0 / 

MIR 0.96 0.01 5.1 7  0.95 0.01 3.7  0.96 0.01 4.5 1749, 1537, 1109 - 1105, 1040 - 1038, 1018 - 1016, 980 

Raman 0.44 0.02 1.3 5  0.45 0.02 1.3  0.42 0.02 1.3 / 

HSI 0.24 0.03 1.1 6  0.14 0.03 1.1  0.15 0.03 1.1 / 

d4:3 NIR 239 - 777 130 0.47 95 1.4 6  0.21 130 1.0  0.32 106 1.2 / 
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MIR 0.85 50 2.6 8  0.81 60 2.2  0.88 45 2.9 1745, 1626 - 1620, 1539- 1510, 1151, 1099 - 1092, 1061, 1001, 922 

Raman 0.47 93 1.4 6  0.17 117 1.4  0.19 117 1.1 / 

HSI 0.59 85 1.5 9  0.22 114 1.1  0.30 107 1.2 / 

d3:2 

NIR 

170 - 402 53 

0.42 41 1.3 6  0.22 53 1.0  0.29 47 1.1 / 

MIR 0.66 31 1.7 8  0.70 30 1.8  0.81 24 2.2 1745, 1699, 1626-1620, 1151, 1099 - 1092, 1061, 1001, 975, 922 

Raman 0.43 41 1.3 6  0.14 49 1.3  0.14 50 1.1 / 

HSI 0.50 40 1.3 9  0.26 46 1.2  0.29 44 1.2 / 

Notes: Puree spectra and reference data from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’) with different fruit thinning practices for Golden Delicious 793 

apples (50 - 100 fruits/ tree or 150-200 fruits/ tree), stress treatments for Braeburn apples (11 days at 24 °C or 2 months at 4 °C), two processing recipes (70 °C for 15 mins with 3000 794 

rpm grinding or 95 °C for 17 mins with 400 rpm grinding) and two refining conditions (refined at 0.5 mm or not refined). All results corresponded to 10-fold full-crossed validation 795 

tests. Rcv
2: determination coefficient of the full-crossed validation test; RMSEcv: root mean square error of full-cross validation test; RPD: the residual predictive deviation of full-crossed 796 

validation test, LVs: the optimal numbers of latent variables. PLS-R: partial least square regression; RF-R: random forest regression; SVM-R: support vector machine regression.  797 
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Table 5. Prediction of biochemical properties of apple purees using the full cross-validation PLS, SVM and RF regression based on their NIR, MIR, Raman and HSI spectra. 798 

Parameter Spectra Ranges SD 
PLS-R  SVM-R  RF-R Key frequencies 

NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) Rcv
2 RMSECV RPD LVs  Rcv

2 RMSECV RPD  Rcv
2 RMSECV RPD 

DMC (g/g) 

NIR 

0.16 - 0.23 0.01 

0.82 0.01 2.3 7  0.73 0.01 1.9  0.78 0.01 2.1 937, 946, 1139, 1180 - 1210, 1307 - 1330, 2208 - 2254 

MIR 0.85 0.01 2.7 5  0.76 0.01 1.8  0.78 0.01 1.9 1734 - 1718, 1655 - 1637, 1084, 1061, 1024 – 1016 

Raman 0.20 0.01 1.0 8  0.02 0.01 1.0  0.01 0.01 1.0 / 

HSI 0.84 0.01 2.4 7  0.70 0.01 1.6  0.79 0.01 2.1 1037-1065, 1145, 1180-1219,1305-1338, 2286, 2421 

SSC (°Brix) 

NIR 

11.6 - 15.8 1.1 

0.83 0.4 2.5 6  0.50 0.8 1.4  0.57 0.7 1.5 944 - 946, 992, 1180- 1210, 1239, 1290 - 1330 

MIR 0.88 0.4 2.9 3  0.78 0.5 2.2  0.82 0.4 2.4 1736 - 1718, 1065 – 1055, 1022 - 1016 

Raman 0.39 0.9 1.2 9  0.18 1.0 1.2  0.15 1.0 1.1 / 

HSI 0.86 0.4 2.7 8  0.66 0.7 1.5  0.76 0.6 1.9 1048-1071, 1140-1151, 1180-1219,1290-1338  

TA (meq/kg) 

NIR 

3.5 - 11.1 2.2 

0.83 0.9 2.4 7  0.43 1.7 1.3  0.72 1.2 1.8 1017, 1049, 1167, 1374, 1534 - 1607, 1835 - 1873 

MIR 0.92 0.6 3.6 5  0.92 0.6 3.6  0.91 0.6 3.4 1736 - 1718, 1605 - 1601, 1042 - 1030, 1001 - 995 

Raman 0.71 1.2 1.8 9  0.58 1.6 1.8  0.58 1.4 1.6 / 

HSI 0.83 0.9 2.4 7  0.66 1.3 1.7  0.76 1.1 2.0 1054-1071, 1085-1214, 1293-1316, 2179-2207 

pH 

NIR 

3.4 - 4.3 0.2 

0.85 0.09 2.6 7  0.71 0.13 1.8  0.73 0.13 1.9 912, 1018, 1178, 1280 - 1305, 1835 - 1875 

MIR 0.93 0.06 3.9 5  0.91 0.07 3.6  0.91 0.07 3.6 1718 - 1715, 1094, 1065, 1034, 998, 968 

Raman 0.59 0.2 1.5 9  0.43 0.2 1.5  0.37 0.2 1.3 / 

HSI 0.85 0.1 2.6 7  0.66 0.1 1.7  0.73 0.1 1.9 1054-1065, 1185-1280,1282-1327, 2179-2207 

malic (g/kg) 

NIR 

3.0 - 7.5 1.0 

0.80 0.5 2.1 8  0.61 0.7 1.4  0.66 0.7 1.5 912, 1018, 1178, 1365, 1384, 1843 - 1860, 1908 

MIR 0.81 0.5 2.2 6  0.79 0.6 1.6  0.78 0.6 1.8 1730 - 1715, 1095 - 1082, 1001 - 995, 968 - 962 

Raman 0.27 0.9 1.2 9  0.15 0.9 1.2  0.13 1.0 1.1 / 

HSI 0.80 0.5 2.0 7  0.65 0.7 1.5  0.70 0.6 1.7 1134, 1185-1280, 1338-1367, 1843-1860, 2196-2246 

fructose (g/kg) 

NIR 

18.7 - 84.4 13.6 

0.73 7.2 1.9 8  0.51 9.7 1.4  0.52 9.8 1.4 / 

MIR 0.85 5.2 2.6 6  0.79 7.2 1.9  0.84 5.4 2.5 1155, 1094, 1065, 1056, 1034, 980 

Raman 0.66 8.5 1.6 7  0.25 8.5 1.6  0.39 10.5 1.3 / 

HSI 0.74 7.1 1.9 7  0.43 9.6 1.4  0.57 9.2 1.5 / 

sucrose (g/kg) 

NIR 

11.0 - 81.9 17.8 

0.53 11.9 1.5 7  0.40 12.3 1.4  0.41 10 1.3 / 

MIR 0.78 9.4 1.9 8  0.76 8.9 1.7  0.75 9.8 1.8 / 

Raman 0.47 12.7 1.4 5  0.33 15.5 1.1  0.35 14.8 1.3 / 
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HSI 0.61 11.1 1.6 7  0.15 16.3 1.1  0.27 15.1 1.2 / 

glucose (g/kg) 

NIR 

10.0 - 22.5 2.9 

0.35 2.3 1.2 4  0.31 2.6 1.1  0.39 2.2 1.3 / 

MIR 0.44 2.2 1.3 7  0.43 2.2 1.3  0.49 2.0 1.4 / 

Raman 0.11 2.9 1.0 8  0.03 2.8 1.0  0.09 2.8 1.0 / 

HSI 0.41 2.2 1.3 4  0.27 2.4 1.2  0.37 2.3 1.3 / 

AIS (FW) 

NIR 

16.0 - 26.7 2.7 

0.34 2.3 1.2 5  0.36 2.2 1.3  0.31 2.5 1.1 / 

MIR 0.42 2.2 1.2 10  0.57 1.8 1.5  0.51 1.9 1.4 / 

Raman 0.10 2.9 1.0 6  0.10 2.7 1.0  0.11 2.90 0.9 / 

HSI 0.35 2.3 1.2 6  0.21 2.5 1.1  0.30 2.4 1.1 / 

Notes: Puree spectra and reference data from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’) with different fruit thinning practices for Golden Delicious apples (50 - 100 799 

fruits/ tree or 150-200 fruits/ tree), stress treatments for Braeburn apples (11 days at 24 °C or 2 months at 4 °C), two processing recipes (70 °C for 15 mins with 3000 rpm grinding or 95 °C for 17 mins 800 

with 400 rpm grinding) and two refining conditions (refined at 0.5 mm or not refined). All results corresponded to 10-fold full-crossed validation tests. Rcv
2: determination coefficient of the full-crossed 801 

validation test; RMSEcv: root mean square error of full-cross validation test; RPD: the residual predictive deviation of full-crossed validation test, LVs: the optimal numbers of latent variables. PLS-R: 802 

partial least square regression; RF-R: random forest regression; SVM-R: support vector machine regression.  803 
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Table S1. Chemical, structural and rheological characteristics of studied apple purees. 804 

Groups Process Refining 
Viscosity G' G'' Yield stress tan δ d4:3 d3:2 SSC DMC pH TA malic acid fructose sucrose glucose AIS 

K n Pa Pa  - - - (°Brix) (g/g)  (meq/kg) (g/kg) (g/kg) (g/kg) (g/kg) mg/g 

GD Th- 

I 
NR 15.4 0.24 1245.9 247.4 12.8 0.20 267.4 174.5 14.4 0.21 3.8 5.4 4.9 67.7 73.3 17.5 138.3 

Ra 14.6 0.24 1158.8 222.5 12.6 0.19 264.5 172.4 14.1 0.20 3.7 5.5 4.6 67.2 66.4 17.1 117.8 

II 
NR 23.1 0.21 1601.3 341.6 20.1 0.21 397.0 230.7 14.4 0.21 3.8 4.9 4.0 60.5 55.2 17.0 141.8 

Ra 20.1 0.21 1351.1 273.9 17.4 0.20 384.0 226.2 14.1 0.20 3.8 5.0 4.6 70.6 65.3 17.5 115.5 

GD Th+ 

I NR 11.4 0.27 984.4 190.7 9.7 0.19 262.9 177.4 15.3 0.22 3.7 5.9 5.5 78.7 73.0 16.3 145.2 

 Ra 10.4 0.27 922.1 172.3 9.4 0.19 256.5 174.4 14.8 0.22 3.7 6.2 5.7 81.9 72.3 16.2 119.4 

II NR 20.0 0.22 1390.7 290.9 16.9 0.21 382.1 228.5 14.7 0.21 3.7 5.5 5.1 76.2 60.8 17.5 141.1 

 Ra 17.8 0.22 1200.4 241.5 15.0 0.20 371.4 223.8 14.5 0.21 3.7 5.7 5.2 71.6 63.1 17.6 118.3 

GS 

I NR 32.0 0.21 1835.5 385.9 25.4 0.21 598.5 314.2 12.3 0.19 3.4 10.7 7.2 44.1 29.7 20.5 182.5 

 Ra 22.3 0.22 1131.7 227.5 15.6 0.20 545.1 287.4 11.7 0.19 3.4 10.6 6.7 41.6 28.9 19.2 147.8 

II NR 44.8 0.20 1794.5 543.2 25.8 0.30 774.4 399.5 12.2 0.19 3.4 10.4 6.4 42.8 25.5 19.9 169.7 

 Ra 23.8 0.22 944.1 280.0 14.4 0.30 488.2 256.4 12.2 0.18 3.4 10.4 4.7 25.9 13.9 13.4 145.5 

GA 

I NR 7.3 0.33 720.2 137.8 7.6 0.19 383.1 226.6 12.6 0.19 4.0 3.8 4.1 60.7 72.3 13.5 128.4 

 Ra 7.1 0.32 675.6 125.6 7.4 0.19 372.6 223.0 12.4 0.19 4.1 3.9 4.2 65.8 71.6 13.6 119.7 

II NR 12.4 0.27 934.0 194.3 10.5 0.21 440.3 261.1 12.5 0.18 4.3 3.7 3.6 53.8 57.0 12.5 124.5 

 Ra 11.3 0.27 810.1 160.6 9.7 0.20 431.2 256.8 12.2 0.18 4.3 3.7 3.5 47.8 50.8 11.7 122.7 

BR 

I NR 11.2 0.28 1080.3 215.7 12.5 0.20 421.7 227.5 12.9 0.19 3.6 6.7 5.6 54.7 43.0 17.1 156.1 

 Ra 9.8 0.29 987.8 192.6 11.6 0.20 412.5 223.8 12.7 0.19 3.6 7.8 5.7 61.4 39.5 18.2 132.8 

II NR 22.6 0.23 1508.8 323.3 19.8 0.21 537.8 283.5 13.3 0.20 3.5 6.7 5.7 61.9 37.4 18.7 154.5 

 Ra 15.9 0.24 1054.8 210.1 13.7 0.20 499.8 267.8 13.1 0.19 3.5 6.9 5.7 61.8 41.2 18.4 122.7 

BM 

I NR 8.0 0.29 965.1 200.2 7.7 0.21 241.7 172.1 12.6 0.19 3.7 5.8 4.1 51.5 36.0 16.5 145.4 

 Ra 8.0 0.28 957.8 195.8 8.0 0.20 240.1 170.7 12.4 0.19 3.7 5.7 4.4 55.6 38.0 17.9 125.7 

II NR 13.9 0.24 1373.1 309.9 12.3 0.23 292.6 212.1 13.2 0.18 3.8 5.5 4.7 59.0 39.4 21.1 142.7 

 Ra 13.7 0.23 1288.3 278.7 12.0 0.22 286.7 199.8 12.7 0.18 3.7 5.5 4.9 69.2 39.8 20.8 117.8 

SD  8.7 0.04 321.7 92.5 5.2 0.03 129.7 53.2 1.1 0.01 0.2 2.2 1.0 13.6 17.8 2.9 18.3 

F-value and significance 
Cultivar 192.0 120.5 50.9 73.3 74.9 1071.5 394.5 386.2 117.1 58.8 1285.8 215.0 43.4 154.9 218.1 30.4 2.8 

 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * 
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Process 110.1 98.6 13.3 52.1 35.4 1609.1 218.6 303.4 0.02 0.4 47.2 52.6 16.1 21.4 54.9 1.8 1.6 

 *** *** ** *** *** *** *** *** ns ns *** *** *** *** *** ns ns 

Refining 70.7 4.3 66.8 77.2 54.3 107.3 82.5 114.1 5.8 1.2 5.7 1.7 2.4 2.3 2.5 2.2 120.9 

 *** * *** *** *** *** *** *** ns ns ns ns ns ns ns ns *** 

Note: GD Th-: non-thinned Golden Delicious; GD Th+: thinned Golden Delicious; GS: Granny Smith; GA: Royal Gala; BR: crunchy Braeburn, stored at 4°C; BM: mealy Braeburn, 805 

stored at 24 °C. G’, G’’: storage and loss modulus, at an angular frequency of 10 rad/s; AIS: Alcohol insoluble solids. Data expressed in Fresh weight (FW) values correspond to the 806 

mean of 3 lots x 10 apples. Two processing strategies: Process I of 70 °C, 3000 rpm and Process II of 95 °C, 400 rpm. Processed purees with non-refining (NR) or refined at 0.5 mm. 807 

In grey, ANOVA results of puree cultivar, process and refining conditions. ns, *, **, ***: Non-significant or significant at P < 0.05, 0.01, 0.001 respectively. 808 


