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Highlights
Advanced facilities for automated phe-
notyping have already been established
but there is a growing demand to inte-
grate additional sensing modalities to
allow deep phenotyping. Ongoing devel-
opments in automated (noninvasive)
metabolomics show great promise.

Approaches to online volatile meta-
bolomics are progressing well although
nonvolatile analyses continue to pose
significant challenges in terms of practi-
cality and cost.
High-throughput (HTP) plant phenotyping approaches are developing rapidly
and are already helping to bridge the genotype–phenotype gap. However, tech-
nologies should be developed beyond current physico-spectral evaluations
to extend our analytical capacities to the subcellular level. Metabolites define
and determine many key physiological and agronomic features in plants and
an ability to integrate a metabolomics approach within current HTP phenotyping
platforms has huge potential for added value. While key challenges remain on
several fronts, novel technological innovations are upcoming yet under-
exploited in a phenotyping context. In this review, we present an overview of
the state of the art and how current limitations might be overcome to enable
full integration of metabolomics approaches into a generic phenotyping pipeline
in the near future.
Integration of multiple sensors such
as optical molecular spectroscopy,
imaging, and mass spectroscopy
in automated phenotyping facilities
shall provide enhanced complemen-
tary insights into the dynamics of
plant phenotype.

In the domains of metabolomics,
chemometrics, transcriptomics, and
imaging, recent data fusion tech-
niques such as statistical multiblock
data analysis, network and pathway
modelling, and deep learning are begin-
ning to realize systems-type approaches.
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The growing desire for deeper plant phenotyping
Considerable recent progress has been made in the development of large-scale, HTP (see
Glossary) plant phenotyping facilities – now also for large crop plants [1,2] (Figure 1, Key figure).
The main characteristics of these facilities are advanced automation, combined sensing technolo-
gies, and high-end computing facilities to handle and process the large-scale data generated [3–6].
However, most phenotypic characteristics which can be rapidly and repeatedly monitored, relate
either to physical properties (plant height, leaf size, shape) or spectral properties such as chloro-
phyll fluorescence, near-infrared (NIR) reflectance, and color [4,7–9]. Such analyses are relatively
easy to perform in a nondestructive, automated fashion and permit following the same plants
repeatedly in time. However, there is now an increasing demand to expand upon these noninvasive
technologies to deepen analyses to the substructural level.

Plant metabolites can be the cause and/or the consequence of plant phenotype. Therefore, there
would be great value in being able to combine extensive physical and spectral data with additional
chemical data across time. This is especially relevant when the aim is to decipher key features such
as the biochemical dynamics of plant response to (a)biotic stress, product (leaf, fruit) quality, or to
follow organ development such as fruit ripening [10,11]. Integrating a generic metabolomics
platform would be ideal, but this brings with it a set of technical, temporal, scalability, and data
management challenges. Progress on each of these fronts is being made, and in this review, we
combine state-of-the-art descriptions of the relevant components as well as some emerging
innovations, with predictions and foresights into the future integration of metabolomics in HTP
phenotyping (HTPP) pipelines.

Current state of the art: metabolomics
Over the past 20 years, significant developments have occurred in the different fields of HTP
omics technologies. Specifically for metabolomics, remarkable progress has been made, and
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Key figure

An example of a state-of-the-art automated and modulated plant
phenotyping facility installed at The Netherlands Plant Eco-phenotyping
Centre (NPEC)
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Figure 1. Together, six modules currently form an unbroken chain of phenotypic analyses from themolecular level through to
micro-phenotyping and physiological phenotyping. This chain aims to translate mechanistic outputs from controlled
conditions to open field situations, as well as feeding back results from the field into more controlled conditions where
fundamental mechanisms can be unraveled.
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many new tools have been implemented that offer clearer mechanistic insights by enabling the
correlation of (bio)chemical changes with phenotype [12,13]. Unlike genes, transcripts, and
proteins, metabolites are less easy to define and are chemically highly diverse [14]. Nevertheless,
the focus of metabolomics studies is increasingly shifting from the categorization of chemical
structures – feature annotation – to finding biochemical narratives.

Metabolomics is an integrative platform of competences from different disciplines, ranging from
analytical chemistry, statistics, signal processing to (bio)chemical expertise. There are two main
550 Trends in Plant Science, June 2022, Vol. 27, No. 6
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Glossary
Canonical correlation analysis
(CCA): a statistical method for inferring
information from cross-covariance
matrices.
Direct injection (DI): a rapid method
for MS-based analyses where no
separation method (gas chromatogra-
phy or liquid chromatography – see later)
is used and so analysis times can be
greatly reduced but with significant loss
of resolution.
Flux balance analysis (FBA): a
mathematical approach for analyzing the
flow of metabolites through a metabolic
network.
Gas chromatography–mass
spectrometry (GC-MS): a dedicated
separation and detection technique for
the analysis of volatile compounds, often
present in complex mixtures as typified
by flower perfumes, fruit odour, and
degradation or fermentation processes.
High throughput (HTP): an approach
referring to the execution of many repeat
measurements in a relatively short time.
HTP phenotyping (HTPP): an
approach where an integrated set of
equipment is used in parallel and/or in
series to evaluate rapidly specific
physical or spectral parameters of a
substantial number of whole plants in
situ. Measurements usually should only
take a few seconds to 1–2 min and are
repeated at appropriate time intervals
(hours – days – weeks) according to the
goals of the experiment.
Interdependent component
analysis (ICA): a statistical and
computational technique for revealing
hidden factors underlying sets of
random variables.
Ion mobility spectrometry (IMS): an
analytical technique used to separate
and identify ionized molecules in a gas
phase based on their mobility in a carrier
buffer gas.
Liquid chromatography–mass
spectrometry (LC-MS): a dedicated
separation and detection technique for
nonvolatile, usually semi-polar
metabolites such as plant secondary
metabolites (phenolics, alkaloids, etc.) or
for example, lipids or fatty acids
(lipidomics).
Metabolomics: the technology
designed to provide unbiased analyses
of the biochemical composition of
complex biological extracts.
Near-infrared spectroscopy: in the
wavelength range from 780 nm to 2500
nm.
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categories: targeted (hypothesis-driven) and untargeted (data-driven) studies. Untargeted
studies focus on the profiling of the total complement of molecules (‘fingerprint’) in a sample –

and is often a valuable starting point – while targeted approaches focus on the quantification of
groups of molecules once preselection is possible and appropriate. However, it is often more
productive to study an entire system following an integrated approach (untargeted), rather than
to apply a reductionist approach by analyzing its parts (targeted). In both cases, the main
challenges are chemical complexity and heterogeneity, extraction efficiency, analytical dynamic
range, and measurement throughput [13].

Current HTP analytical techniques result in complexmetabolomics data sets which are challenging
to visualize and interpret. Analytical success is dependent not only on the performance of specific
hardware but also on the subsequent treatment of data using advanced modelling approaches
[15]. Univariate and multivariate analysis techniques, chosen appropriately on the basis of experi-
mental design and biological question, are routinely used to extract relevant information from the
data and convert this into chemical knowledge. However, such approaches lack the systematic
environment of metabolites and their interdependencies [16]. Irrespective of the techniques used
for data acquisition, unequivocal metabolite identification remains a crucial technical challenge as
it is only after biomarker identification that biological significance can be fully determined.

In metabolomics, five levels of molecular identification have now been established by the
Metabolomics Society [17] and much effort is currently being extended to advance our skills in
computational metabolomics and develop novel workflows for peak annotation [18,19]. All avail-
able data mining options need to be exploited for the most robust annotation strategy. Putative
metabolite identification can be made based on mass-to-charge ratio (m/z) of the mass spectral
ion and options for complementary approaches for further annotation: mass spectral database
searching, in silico fragmentation tools, and orthogonal coupled techniques including retention
time matching and ion mobility spectrometry (IMS) are advancing [17,19]. Particularly, in a
HTPP context, new ultrafast separation approaches giving shorter retention times coupled to
high-resolution mass spectrometry (MS) are potentially valuable. Several IMS variants have so far
been poorly exploited for crops [20]. However, for certain applications, IMS could potentially
replace, or be used in parallel to, liquid chromatography (LC)-MS methods since IMS-MS
has advantages relating to increased resolution and analysis speed and has greater potential to
separate and annotate structurally similar (isomeric) metabolites not possible with standard LC-MS
[21]. There are also indications the technology may be more suited for portable devices [20]. The
most recent variant, structures for lossless IM (SLIM), using a highly advanced form of IMS may
become orders of magnitude faster and could make it highly attractive in a HTPP context [22].

The chemical space of small molecules is currently spread across multiple databases, and
the number of compounds reported exceeds 120 million. Current estimations of the number
of metabolites in living organisms is approaching 1 million [13], yet the majority of detected
metabolites remains unknown. Standardization practices are also still lacking although increasing
efforts are being made to rectify this [13,23]. The first significant steps have already been taken
but there is still some way to go before we reach an automated approach towards fully annotated
metabolite profiling [19,24].

Current state of the art: automated plant phenotyping
Just a few decades ago, plant phenotyping tasks were considered as particularly taxing, requiring
laborious human interventions – from germinating seeds andmonitoring plant growth to measuring
final yield [25]. Through recent advancements in sensing technologies, automation and machine
learning, and artificial intelligence approaches, the task of plant phenotyping has become fully
Trends in Plant Science, June 2022, Vol. 27, No. 6 551
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Orthogonal partial least squares
(OPLS): a statistical modelling tool
variant of PLS which uses orthogonal
signal correction.
Partial least squares (PLS): a
statistical modelling tool used to find the
fundamental relations between two
matrices.
Partial least squares-discriminant
analysis (PLS-DA): a statistical
modelling tool variant of PLS.
Principal component analysis
(PCA): a statistical modelling tool giving
insights into separations between
experimental groups.
Proton transfer reaction mass
spectrometry (PTR-MS): a technique
for sensitive, online measurements of
trace amounts of volatile organic
compounds (VOCs) in air.
Solid-phase microextraction
(SPME): it uses an adsorbent fiber
(various materials are available) to trap
volatiles mainly in a static system after
which the fiber is directly desorbed
within the GC.
Time-of-flight mass spectrometry
(TOF-MS): used for the measurement
of accurate atomic masses.
Two-way orthogonal partial least
squares (O2PLS): a statistical model-
ling tool which is a symmetric method,
modeling both predictive and systematic
variation.
Ultra-high-performance liquid
chromatography (UHPLC): used to
reduce runtimes during chromato-
graphic separation and increase molec-
ular resolution.
Volatile organic compounds (VOCs):
metaboliteswhich are usually in gaseous
form at room temperature and which
can be naturally released (or induced)
into the atmosphere. Many can be bio-
active in that they react with aroma
receptors (on the human tongue, insect
antennae, etc.) and can lead to behav-
ioral effects related to, for example,
repellence (toxicity), attractance, taste,
off-flavor, etc.
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automated, requiring minimal human intervention [3,4,6,26]. Automated phenotyping is now
a widely desired approach for whole-plant analysis [27] and can be performed both in the
uncontrolled environment of the open field using, for example, aerial imaging or automatic robotic
vehicles, as well under greenhouse-controlled conditions using fully automated HTP setups [28]
(Figure 1). The primary aim of automated phenotyping is to track the physicochemical changes
throughout growth as plants interact with their environment. Although open field phenotyping is
widely executed for the assessment of plant performance under true crop conditions, often before-
hand, significant time will have been spent using greenhouse-based systems and controlled
environments. By exploiting greenhouse-based conclusions, thousands of genotypes can be
narrowed down by preselection, yielding only a small number to be carried forward to field trials.
Greenhouse and open field trials are thus components of a complementary process. Recently,
all around the world, there has been massive development of new HTP greenhouse phenotyping
facilities at research institute level such as the European centers: PKH facilityi in Gatersleben,
Germany; Phenovisionii in Ghent, Belgium [2]; NEPCiii in Wageningen, The Netherlands [7]; and
PhenoArchiv at INRAE, France [29]. Beyond Europe, there are now also key local or national cen-
ters, for example, in the USA (Danforthv), Australia, (APPFvi), and Chinavii. Industrial facilities, such
as at Bayer CropScience, Germany [30,31], depict not only scientific but also commercial interest
in automated HTPP.

In the current state of the art, recent applications of HTPP suggest that automation can be
performed for a wide variety of traits including drought tolerance [2,32], salt tolerance [33], and
biotic stress [34,35] as well as for assessing the efficiency of plant protection agents [30]. Further-
more, facilities are not only used for phenotyping small model plants such as Arabidopsis thaliana
[36,37] but also can be used for large plants such as Zea mays [2,32] and even, tree species [38].
Currently, the main sensors integrated into HTP setups are vision-based sensors for tasks such
as 3D shape estimation which allows morphological monitoring of features such as height, width,
leaf area, and leaf development, along with general plant growth parameters. There is also a
developing trend of integrating spectral sensors such as fluorescence imaging and visible and
NIR spectral imaging to monitor the dynamics of certain physicochemical processes [7,39,40].
Here also the technology choice is determined both by the biological question and current
technological limitations. There is recently also a growing interest in the integration of, for exam-
ple, volatile sensors since these can play a key role in understanding metabolites released by
plants particularly during (a)biotic stress. However, currently, there is no automated HTP
setup that offers the possibility to measure volatiles at frequencies matching those of imaging
sensors. There are some reports that have correlated visible and NIR spectroscopy data with
secondary metabolites [41]. However, applications are still lacking from the perspective of
HTPP experiments.

Developments in rapid, online, microscale volatile metabolomics
Volatile organic compounds (VOCs) play a multitude of roles during the plant life cycle.
They can be continuously present, having a protective function through anti-insect or antimicrobial
bioactivity [42,43]. However, their release can also be exogenously induced or developmentally
regulated. Plants under attack often respond by releasing specialized volatiles to reduce herbivory
(e.g., α, β-pinene and limonene in conifers; myrcene, carene, and ocimene, in Citrus spp.), attract
tritrophic predators [e.g., (S)-(+)-linalool in Nicotiana spp.] or inhibit microbial growth such as
multiple monoterpene derivatives in thyme (Thymus vulgaris) [43–45]. The attacker itself may also
release detectable volatiles thus betraying its presence. Volatiles including many monoterpene
derivatives are powerful harbingers of the arrival of developmental stages such as flowermaturation
and fruit ripening as well as the onset of senescence [46]. Consequently, particular volatiles can be
exploited as markers for a specific plant development or health status.
552 Trends in Plant Science, June 2022, Vol. 27, No. 6
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One advantage of targeting VOCs for in vivo phenotyping is their natural release from the plant,
making nondestructive analytical approaches relatively straightforward. Minimum handling
gives minimum damage, yielding true in vivo profiles. Sampling could be performed using small
pumps to suck air away from the organ of choice, driven by positioning robots (Figure 2) to a
precise location for dynamic headspace trapping using for example, Tenax tubes. A tube-
switching station could be used to enable sampling to be done on a plant-by-plant basis after
which the adsorbent tubes could be analyzed using a laboratory gas chromatography (GC)- MS.
Although laborious, this would overcome a key logistical issue. While sampling times could be
kept short and held in line with the timing typically needed for the other phenotypic analyses, analysis
times for a standard GC approach are usually much longer (15–45min). Uncoupling these two steps
provides a workable solution. Solid-phasemicroextraction (SPME) fibers and stir-bar (Twister®)
systems [43] could also be considered for VOC trapping. The former is available with a range of
adsorbents (and hence chemical specificities) but has very limited trapping volume while the latter
has a much larger adsorbent volume and hence would be more appropriate for trace compound
trapping. However, expense (SPME fibers) and practical limitations (Twisters®) may limit automated
application strategies. Even with these options, for true HTP approaches, GC-MS analyses should
ideally happen in situ and online.

Real-time VOC analysis is possible using direct injection (DI) approaches such as proton
transfer reaction (PTR)-MS [43] or by using an electronic nose [47]. Both are fast as they
require no separation time and have a broad chemical detection range. The former also has
TrendsTrends inin PlantPlant ScienceScience

Figure 2. Conceptualization of an online VOC analysis pipeline within a standard automated plant phenotyping facility. All the technologies are principally
available but have yet to be installed and integrated in such a setup to test for feasibility and applicability. (1) Standard conveyor-belt system for circulating plants through a
greenhouse as is typical of most plant phenotyping facilities; (2) Programmable, image-driven robot arm used to (re)locate specific organs on each plant for localized
collection of naturally released volatiles; (3) Mobile GC-MS device for rapid VOC analysis; (4) Laboratory-based data analysis and interpretation. Abbreviations: GC-MS,
gas chromatography-mass spectrometry; VOC, volatile organic compounds.
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excellent broad sensitivity in the low ppt range [48]; for a full review see [49]. Mozaffar et al.
successfully used PTR-MS to follow the dynamics of young to senescing Z. mays leaf VOC emis-
sions [50,51] which were found to comprise 31%methanol, 30% acetic acid, and 11% aldehyde.
Using PTR-MS cycle times of 45 sec, a fivefold methanol emission difference across the day was
observed for young maize leaves (3–26 μg/gDW/h) and for developing and senescing leaves,
emission rates differed <400 fold (1.4–570 μg/gDW/sec) depending on the metabolite and
developmental stage [50,51].

PTR-MS can rapidly detect and quantify mass features but cannot assign structural identity
unless they are equipped with a high-resolution time-of-flight (TOF)-MS. Consequently, it is
usually used to screen for preidentified compounds or following the dynamics of unannotated
mass features [43,49]. The same limitation applies to E-nose instruments [47], as both rely on
the separate use of GC-MS for full annotation. E-nose instruments are portable, but current
PTR-MSmethods are cumbersome, making them inappropriate for a HTPP facility. Furthermore,
the glass chambers resembling large bell jars, regularly used to enclose the plants fully to confine
the VOCs, are impractical and have the disadvantage of creating an artificial environment, as
pointed out for the VOC-SCREEN system [48]. However, as the imaging cabins in HTPP facilities
are often sealed for light exclusion, this may offer concomitant trapping opportunities. VOC-
SCREEN is an excellent example of what has become possible with online volatile phenotyping,
but our desire is to go further. Alternative methods, including fastGC [52], can enable separation
(and hence identification) and shows great potential. Near-to-real-time separation of six isomeric
monoterpenes, α- and β-pinene, limonene, 3-carene, camphene, and myrcene, was achieved
with high sensitivity [1.2 parts per billion (ppb)] in a separation taking just 80 sec [52].

The goal is to have rapid, online, in situ, high sensitivity, and high-resolution VOC analyses with full
annotation capacity using a small-scale, mobile instrument (Figure 2). Recent innovative develop-
ments in portable GC-MS instruments could already make this possible for plant-based applica-
tions. Various instrument makers have products on the market including Teledyne FLIR (G510),
Bruker (E2M), and PerkinElmer (T-9). Philips also have a micro-GC prototype under development
(personal communication). Advances including low vacuum operation, capillary GC, and minia-
turized iontrap MS have enabled the design of small instruments weighing less than 15 kg. Detec-
tion in the low parts per million–ppb range is possible. Envisaged primary users are however,
‘first responders’, the military and crime officers, so unfortunately, no reports of these instruments
being tested for plant applications are yet available. Success will depend not only on instrumen-
tation but also on sensitivity as natural volatile emission rates can vary extensively [43,50] entailing
that some online applications will be easier to implement than others.

The challenges of nonvolatile metabolomics
The nonvolatile metabolome represents rich information reflecting past (e.g., slow turnover
metabolites accumulated in response to past stress), present (e.g., high turnover metabolic
intermediates), and future (e.g., precursors of biomass under construction) events. Accordingly,
a growing number of top-down studies have shown that this metabolome can be correlated
with performance in panels of genetic diversity [53,54], and when metabolic traits are obtained
from plants grown under controlled conditions, it becomes possible to predict yield [55] or stress
resistance in the field [56]. Information with high predictive value, capable of competing with
genomic selection, can be obtained nondestructively with spectral methods such as NIR [57].
However, such noninvasive methods are limited to certain polymers and abundant molecules
[58]. It would be attractive to integrate a destructive analysis using limited, targeted tissue
sampling, to give maximum coverage of the nonvolatile metabolome. Until recently, cost issues
limited metabolomics applications in large-scale phenotyping. However, high-resolution MS
554 Trends in Plant Science, June 2022, Vol. 27, No. 6
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[TOF-MS, Orbitrap, and Fourier transform ion cyclotron resonancemass spectrometry (FT-ICR-MS)],
enabling one to distinguish different structures with the same nominal mass, using ultrafast
chromatography now makes it possible to combine HTP with high resolution [59]. Systems
biology approaches and working with large sample numbers (Figure 3) have become possible
and increased observation numbers will enable the development of new prebreeding strategies
based on predictive models [60].

Sampling is critical – several factors need to be addressed, including (i) the stage of development
of the plant or organ, (ii) the position on the organ if it is not sampled entirely, (iii) the time of day
because the metabolome fluctuates [61] and therefore (iv) the duration of the sampling step,
and (v) the necessity to quench biochemical reactions. Manual sampling is constrained and
often a source of error [62] and automation is rarely envisioned. However, agricultural robots
are under development, particularly for harvesting fruit [63]. Similar robots, equipped with 3D
cameras and capable of taking leaf samples, could soon pave the way for destructive observa-
tions [64]. For sample preparation, lyophilizing is a slow step but is possible on a large scale
while still preserving sample quality [65] and facilitates the grinding and weighing steps. Grinding
andweighing robots have been under recent development [66] but are rarely used routinely. Such
sampling approaches are appropriate to deliver samples for both subsequent metabolomics and
transcriptomics applications.

The most widely used extraction method, giving a wide metabolome coverage and acceptable
polarity compromise, uses methanol-water [65]. Less toxic ethanol could replace methanol
making HTP extraction easier to implement [67]. A robot station equipped with a 96-channel
head can extract hundreds of samples per day – exceeding the current throughput of a mass
spectrometer – so the challenge is to increase analysis throughput. For liquid chromatography,
the development of ultrafast ultra-high-performance liquid chromatography (UHPLC) can
reduce runtime by a factor of 10, to a few minutes, but requires mass spectrometers with rapid
data acquisition rates [59]. If the goal is to screen for known markers (as opposed to profiling),
direct injectionmethods (DI-MS) potentially offer huge time savings thusmaximizing sample through-
put. However, DI methodsmay also entail technical limitations related to ion cosuppression,isomeric
or isobaric structural similarities, and annotation confidence. However, Sarvin et al. [68] describe a
method for human application, where the trade-off between analysis time and sensitivity has allowed
TrendsTrends inin PlantPlant ScienceScience

Figure 3. Current sample harvesting and LC-MS-based analysis capacities with indications of where
additional developments are required to meet the needs for integration into an in vivo HTP (molecular
phenotyping facility. Abbreviations: HTP, high throughput; LC-MS, liquid chromatography-mass spectrometry.
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reproducible detection of 19,000 m/z features in a total run time of 0.45 min. LC miniaturization
strategies also offer potential for increased (cost) efficiency [69]. However, the challenges for
miniaturisation of sampling/extraction of plant materials, compared with plasma or urine, cannot
be underestimated.

Annotation, the recurring pet peeve of nonvolatile metabolomics, has made tremendous progress
in recent years, with algorithms using artificial intelligence capable of naming thousands of
metabolites in hundreds of samples per day [70,71]. However, perhaps the biggest challenge is to
achieve interoperability of metabolomic data [72,73]. Measurements are not easily repeatable from
one analytical pipeline to another or even from day to day on the same pipeline, concerning both me-
tabolome coverage and metabolite (semi) quantification [74]. As stated previously, it is evident that
most steps of such ‘full-range phenotyping’ can be automated, from the cultivation of plants to the
processing of metabolomic data. However, there is no turnkey solution that combines all these
steps into one pipeline. The time has therefore come to move on to the technological demonstrator
stage by building or adapting platforms for the full range of procedures, which will make it possible
to identify and solve the bottlenecks that would arise in such a pipeline in a step-wise manner.

Metabolomics data analysis and integration challenges
Metabolomics is much more than a new provider of proxies for performance predictions and has
the potential to facilitate deep insights into the genotype–phenotype interconnection. While there
is a plethora of data being collected over a multitude of omics-based approaches in plants, the
higher-level integration of these data still requires a set of strategies and approaches spanning
various disciplines. To better grasp this challenging task of combining multiple data sets in a
biologically relevant context, it is critical to describe fundamentally, three levels of data integration:
conceptual, statistical, and model-based methods [75]. Conceptual integrations are where omics
data sets are analyzed separately, and the results are compared and matched to reach biologically
relevant conclusions. Statistical integration is commonly used for transcriptomic and metabolomic
data analysis. These methods include correlation-based, concatenation-based, and multivariate-
based methods (Figure 4A–C). This also leads to more advanced network-based (Figure 4D)
TrendsTrends inin PlantPlant ScienceScience

Figure 4. Alternativemethods of transcriptomic andmetabolomic data integration being (A) correlation based; (B) concatenation based; (C) multivariate
based; (D) network based; (E) machine learning based and (F) pathway based.
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andmachine learning approaches (Figure 4E). Themodel-basedmethod includes some integrative
tools for pathway analysis and reaction flux modelling (Figure 4F and Box 1). Regardless of further
downstream analyses, the first step of integration of transcriptomics, proteomics, and metabolo-
mics data is data processing. This step implements quality checks (e.g., removing outliers, absent
values, unification of gene and metabolite symbols or names) and statistical normalization and
transformation procedures [76].

How does one correlate the up/downregulated transcript profile of a plant tissue with changing
metabolite levels? Here, correlation-based methods, that can address these questions, include
the Pearson’s or Spearman’s correlation test and the more advanced correlation measuring
methods: the Goodman and Kruskal's gamma test, partial correlation, linear models, or canonical
correlation analysis (CCA) [75]. All these methods focus on the relationships between paired
transcripts –metabolite levels to find pairs either positively (both variables increased) or negatively
(one increased and one decreased) correlated. Perez de Souza et al. [77] used Pearson’s correlation
for integration of metabolites with transcripts to identify genes in the common bean participating in
specialized metabolism. These types of calculation are supported by the R package IntLIM, which
utilizes a linear model-based approach (Tools 1–3, Table 1). A simple method of data integration is
the concatenation-based approach, which applies random forest, self-organizing maps, and
k-means clustering to combine two data matrices (see Tools 4–6, Table 1). Glaubitz et al.
[78] employed self-organizing maps to identify clusters of genes and metabolites connected
to high temperature tolerance in rice.

Omics approaches generate large quantities of variables (metabolite features, proteins, and
genes). Many experimental questions do not focus initially on one variable, but aim to understand
how multiple constituents are related. Multivariate latent space-based integration resolves these
problems by using statistical methods such as principal component analysis (PCA), consen-
sus PCA, independent component analysis (ICA), partial least square (PLS), orthogonal
two-way PLS (O2PLS), multiblock PLS, PLS-discriminant analysis (DA), or orthogonal
PLS-DA (OPLS-DA) [79]. However, O2PLS is often used for integration, because it employs a
joint variation model to describe the connections between for example, genes and metabolites
[80,81]. This approach was applied for integrating membrane lipid data with transcripts from
Arabidopsis [82] and has also been used to connect soybean (Glycine max) primary metabolism
Box 1. Towards an in silico plant model

In silico plant modelling relies upon a computational model that links gene networks, metabolic pathways, and cellular,
tissue and organ compartments and enables simulations that range from metabolite flux to plant development. The
creation and development of in silicomodels is the subject of large international projects [92]. To achieve the goal of a vir-
tual plant, models are constructed using two components: analytical data (transcripts, proteins, metabolites) alongside a
computational component. The model may include parametric metabolic networks for the plant, which can be used to
study the reaction flows based on flux balance analysis (FBA) [93]. The curated and accurate models for FBA can be
deposited as SBML files in repositories such as PlantSEED. This repository currently contains models for 39 organisms
[94] and can be used by anyone wishing to build their own models. The FBA methods use the COBRA (constraint-based
reconstruction and analysis) approach implemented in the MATLAB or Python software environment [95]. In contrast to
tools requiring one to master programming languages, MetExplore [96] and Escher-FBA [97] are user-friendly online
platforms for calculating fluxes, their visualizations and sharingwith other users. FBA could be used to discover the alternative
pathways or identify mutations of genes involved in metabolomic pathways [93]. The number of plant organisms with recon-
structed metabolism models or pathways is limited [94]. Moreover, a vast number of metabolites, particularly specialized
metabolites and lipids, do not currently have annotated predicted biosynthetic pathways. In order to address this issue,
network-based integration can assist in connecting the metabolites with enzymes or genes in pre-existing networks,
enabling their further analysis and visualization [98]. Networks can be constructed using constraint-, correlation-,
and co-expression-based models [99,100]. Network analysis was used to discover a gene cluster associated with
anthocyanin biosynthesis and potato pigmentation [101], phenolic biosynthesis [55,102], or genes/metabolites
involved in tomato resistance to pathogens [103]. Network-based integration is part of several online and R-based
tools including Tools 16, 18–25 (Table 1) or implemented in the CytoScape environment [99].
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Table 1. Main software tools designed and currently in use for the integration of omics data sets

Tool # Software Omicsa Functionalities Comments Repositories Refs

1 IntLIM T, M Linear models Identification of gene-metabolite pairs in relation
to phenotype

R/GitHub [104]

2 integrOmics T, P,
M, R

Multivariant analysis Selection of variables using CCA, PLS, and
machine learning tools

R/CRAN [105]

3 mixOmics
ggmixOmics

T, P,
M, R

Multivariant-based framework
(PCA, CCA, PLS-DA, etc.)

Dimensions reduction, extraction of variable
subgroups connected with traits and visualizations

R/CRAN [106]

4 MarVis T, M Self-organizing maps and
pathway enrichment analysis

Identification of profiles and markers connected
with experimental conditions, output visualization

Matlab/app [107]

5 SOMbrero T, P, M Tools for self-organizing maps Identification of profiles connected to traits R/CRAN [108]

6 MetaGeneAlyse T, M Concatenation and
multivariant-based tools

Statistical approach for normalization, clustering,
and PCA/ICA

online [109]

7 omicade4 T, R Multivariant approach (cPCA,
MICA)

Integration of data from multiple platforms,
independent of annotation feature selections,
visualization of output

R/BioC [110]

8 GO2PLS T,R Implementation of multivariant
analysis

Creating the O2PLS analysis and their validation
and visualization

R/CRAN [80]

9 OmicsPLS T, M R/CRAN [81]

10 xMWAS T, P, M Multivariant and network-based
framework

Application for paired and unpaired study R/GitHub [111]

11 metaboGSE T, M Connection of network-based
approaches and gene set
enrichment analysis

Creation of subnetworks in the context of
experimental condition

R/CRAN [112]

12 multiGSEA T, P, M Enrichment analysis Supporting many pathway databases, combined
multiomics enrichment test

R/GitHub [113]

13 FELLA M Network-based enrichment
analysis of metabolites lists

Supporting KEGG database R/BioC [114]

14 GAIT-GM T,M Galaxy tool for mapping genes and
metabolites data into KEGG
pathways

Text-mining algorithm improved annotation;
metabolite abundance as a function of gene
expression

Python/
Online

[115]

15 RaMP T, M Enrichment analysis for genes and
metabolites

Clustering of over-represented pathways by
pathway similarity

R/GitHub [85]

16 MetaboAnalyst T, M Pathway-based analysis for
metabolite and gene list using
enrichment analysis (hypergeometric
or Fisher’s exact tests)

Support limited to a number of plant species
(Arabidopsis thaliana and Oryza sativa)

Online/R [116]

17 MapMan4 T,P,M Pathway-based software
supported by enrichment analysis

Annotation of transcripts and proteins Online [117]

18 PaintOmics 3 T, P,
M, R

Pathway-based visualization and
analysis of multiomics data
including regulatory and
region-based omics

Matching the metabolite annotations with KEGG
names, mapping to KEGG pathways, creating
the multiomics pathway interaction network and
visualization

Online [118]

19 MetExplore T, P, M Network-based analysis, pathway
mapping, flux balance modelling
and analysis

Easy way for network creation, visualization,
curation, and metabolite mapping

Online [96]

20 OmicsAnalyst T, P, M Univariant, partial, and multivariant
analysis and visualization

Data processing (normalization, filtering),
differential analysis, creation of correlation
network, and reduction of network
dimensionality, data visualization

Online [119]

21 OmicsNet T, P,
M, R

Network and pathway-based
approach

Building, visualization, and exploration of
biological networks in 3D space

Online [120]

22 MiBiOmics T, P, M Correlation-based tool for
creating, dimensionality reduction,
and exploration of networks

Provide the tools for data processing (filtration,
normalization, and transformation)

Online [121]
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Table 1. (continued)

Tool # Software Omicsa Functionalities Comments Repositories Refs

23 NetMet T, M Graph-based predicting metabolic
capacities for microbial species

A useful tool for experiments with microbial
systems

Online [122]

24 MetaBridge T, M Network-based pathway mapping Identification of connections between metabolites
and enzymes, visualization of data and results

R/online [123,124]

25 NetPathMiner T,M Framework for network and
pathway exploration and
management

Summarized the metabolic pathway using
machine learning approach, visualization of data

R/BioC [125]

26 Escher-FBA T,P,M Flux analysis and visualization Possible implementation of other models,
simulation of different environmental scenario,
and knockouts of genes

Online [97]

27 OmicsTIDE T, P, M Clustering and visualization The comparing between trends in the omics
experiments

Online [126]

28 COBRA T,P,M ‘Constraint-based reconstruction
and analysis’ environmental for FBA

Creating, administrating, calculating, and
visualization of flux models and analysis

Python/
Mathlab

[95]

29 DTW4Omics T, M Approach for time series alignment Improving correlation analysis by the matches
between time points

R/CRAN [75]

30 MultiDataSet T, P,
M, R

Multiomics data management
framework

Assists in the administration of omics data sets in R R/BioC [127]

31 mixKernel T,P,M Machine learning approach for
data integration

Pattern discovery and phenotype predictions R/CRAN [90]

aOmics type: T, transcriptomics; P, proteomics; M, metabolomics; R, regulatory omics (e.g., TF, μRNA, epigenetics).
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and transcripts after exposure to pathogen attack [83]. These methods are implemented in the
free software tools 6–10 (Table 1).

In contrast to statistically based data integration, pathway-basedmethods provide information about
the metabolites and enzymes localized in those pathways. This type of integration is valuable
because it is similar to gene set enrichment analysis and returns annotated biochemical maps.
Integrated metabolomics and transcriptomics analysis of infected soybean showed upregulation of
the phenylpropanoid pathway [84]. Pathway repositories such as KEGG, MetaCyc, BioCyc, Reaxys,
or WikiPathways are commonly used in pathway enrichment analysis [85]. This methodology is now
used by multiple software packages (Tools 11–18, Table 1). These tools use the Fisher’s or
Wilcoxon’s test for calculating p values for each pathway and for generating conclusions about the
up- or downregulated or over-represented pathways. Validation is necessary using knock-out or
overexpression mutants followed by a more detailed and targeted analysis.

In the current state-of-the-art HTP facilities, one of the widely integrated sensors for real-time
physicochemical analysis of plants is optical molecular spectroscopy such as NIR. Optical
molecular spectroscopy sensing provides complementary information to that of metabolomics
approaches, particularly the physicochemical properties. In future developments where several
sensing modalities are also integrated, it will be of crucial importance to analyse jointly the spectra
and metabolite data to understand the complementary and distinct information generated by the
different sensing modalities. Furthermore, several of the metabolites may carry a direct or indirect
correlation to the optical molecular spectroscopy signal of the plant [41]. Hence, for efficient explo-
ration of spectroscopy data with (non)volatiles, advanced data integration techniques such as
multiblock data analysis has recently been advised [86].

The application of machine learning methods is the future of multiomics data integration and
systems biology. Two papers describe many methods for use when applying machine learning
Trends in Plant Science, June 2022, Vol. 27, No. 6 559
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Outstanding questions
The key outstanding questions relate to
the need for feasibility studies regarding
already available instrumentation which
is yet untested for the types of
application proposed here.

Are the existing mobile GC-MS units
already appropriate for application?
Do the sensitivity and measurement
speedmatch the release rate of marker
VOCs?

Similarly, tissue sampling robots have
already been designed for seedling
genotyping – can these already be imple-
mented in a HTP metabo-phenotyping
facility, or do they require significant
redesign?

Additional research and data analysis
tool development will also be needed
before we can fully integrate all
data types coming in from spectral,
chemical, imaging, and potentially
other especially, environmental data
sources in what must become a
true systems biology approach to
phenotypic analysis. How can we
ensure that experts from the different
disciplines find a common goal to work
towards?

How can the new artificial intelligence
tools such as deep learning support
the understanding and integration
of multimodel data generated with
diverse sensors integrated in a HTP
metabo-phenotyping facility?

Plant breeders are accustomed to work
with (DNA) markers of unknown
composition and could potentially apply
metabolite ‘unknowns’ in a similar way.
However, chemical annotation would
greatly advance our capacity for

Trends in Plant Science
OPEN ACCESS
approaches to plant-based studies [87,88]. The application of machine learning and network
analysis has already been able to predict accurately biochemical pathways in tomato using
metabolite data [89]. The free R package mixKernel is one example that implements machine
learning methods for use in data integration [90]. For example, Knoch et al. [91] compared the
canola phenotype predictability for different data sets (genes, transcripts, metabolites) and their
combinations. The metabolomics data showed low prediction accuracy. However, combining
metabolomics and transcriptomics data improved prediction.

Concluding remarks and future perspectives
Following on from HTP molecular genotyping which has revolutionised plant breeding and plant
physiology research, performing whole plant physicochemical phenotyping is the next key target.
Techniques for noninvasive imaging have already been successful but we now need to develop
our capacities further and initiate the implementation of molecular deep phenotyping for integration
into the pipeline for a true systems analysis. Recent analytical developments show great promise
while many have yet to be rigorously tested in the context of (crop) plant analysis. Key challenges
do remain (see Outstanding questions) but developments are progressing at a rapid rate.
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Resources
iwww.ipk-gatersleben.de/en/research/molecular-genetics/automated-plant-phenotyping
iiwww.psb.ugent.be/phenotyping/phenovision
iiiwww.npec.nl/
ivwww.youtube.com/watch?v=BOGbWw58YJ0
vwww.danforthcenter.org/our-work/core-facilities/phenotyping/
viwww.plantphenomics.org.au/about-us/#about-the-appf
viihttps://pprcen.njau.edu.cn/PPRC/About_PPRC.htm
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