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Abstract

Measuring enteric methane (CH4) produced by cattle is central for the

construction of national greenhouse gas inventories and for devising

strategies to mitigate the environmental footprint of ruminant livestock.

Efforts to estimate or measure enteric CH4 emissions in cattle include

techniques such as the Green-Feed system, laser detectors, respiration

chambers, and the SF6 technique. However, using these tools on a large

scale is complicated and expensive. Therefore, it is necessary to develop

alternative methods to estimate CH4 emissions from cattle. The objective of

this work was to evaluate the potential use of intake time (IT) to estimate

enteric CH4 emissions in cattle. The CH4 emissions of seven steers were



measured in respiration chambers. A computer vision technique, called

Object Detection (OD), was used to estimate IT. The images recorded from

the top of the feeder were used for OD. Additionally, the dry matter intake

(DMI) was measured by the difference between the offered and rejected

food each day. CH4 emissions were predicted by two linear equations using

DMI or IT as explanatory variables. The equation using IT versus that one

using DMI presented lower root mean square error (RMSE, 13.8 vs. 20.2

g/d), relative prediction error (RPE, 9.1% vs. 13.3%) and RMSE to standard

deviation of observed values ratio (RSR, 0.38 vs. 0.56), respectively. Our

results indicated that, under our experimental conditions, IT is a potential

predictor of enteric CH4 emissions in cattle. However, more experimental

data are needed to validate our findings.

Keywords: Greenhouse gasses inventories, modelling, Object Detection

technique, Precision Livestock Farming

1. Introduction

Methane (CH4) emitted from livestock contributes substantially to global

warming (Gerber et al., 2013). To establish the amount of CH4 emitted from

livestock, and specifically from cattle, several methods have been

developed: open-circuit respiration chambers (Pinares and Waghorn, 2012),

sulfur hexafluoride tracer (SF6) (Zimmerman, 1993) and GreenFeed

(C-Lock Inc. Rapid City, SD, USA). Unfortunately, the implementation of
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those methods on a large scale is hampered by their high cost and the need

for advanced equipment. Farms and animal lab facilities around the world,

with few exceptions, are not equipped to measure cattle CH4 emissions

because these devices require advanced instrumentation, expensive

maintenance, and highly skilled labor.

Complementary to experimental-based techniques, mathematical models

have been accepted by IPCC (Shukla et al., 2019) to estimate the total

amount of CH4 emitted by cattle. Predictive models of enteric CH4 emissions

are mainly based on feed intake and chemical composition (Sauvant et al.,

2011; Ramin and Huhtanen, 2013; Benaouda et al., 2019). Under the

assumption that food composition is well known, the estimation accuracy of

the models will depend mainly on the accuracy of feed intake determination.

Dry Matter Intake (DMI) is the primary predictor of enteric CH4 emissions

(Appuhamy et al., 2016; Charmley et al., 2016; Hristov et al., 2018).

However, the individualized measurement of DMI, especially for grazing

animals or in group-housing systems, is an expensive task (Seymour, et al.,

2019). As an alternative to the direct measurement of DMI, new

technologies based on sensors and Machine Learning algorithms allow the

DMI to be inferred satisfactorily using the time that animals spend eating

(Intake Time, IT), both indoors (Barker et al., 2018) and grazing (Mattachini

et al., 2016).

Taking into account that IT has a close relationship with DMI, and that this in

turn has a close relationship with CH4 emissions, it is possible to infer that
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IT has the potential to infer CH4 emissions in a similar way as DMI. Based

on this premise, Muñoz-Tamayo et al. (2019) evaluated theoretically the use

of IT as CH4 emissions predictor. The authors found that the accuracy of

enteric CH4 predictions using IT was similar to the accuracy obtained when

DMI is used as a predictor in a dynamic model. The application of

mathematical models using IT as predictors can be useful to improve the

ruminant's enteric CH4 inventories, in particular in countries lacking

advanced experimental infrastructures. The objective of this work was to

evaluate the potential of IT as a predictor of CH4 emission.

2. Material and methods

2.1. Location and animals

Seven Angus x Brahman crossbreed steers (body weight: 240.7 +/- 23.1 kg;

age: 477 +/- 42 days) were housed at the calorimetry laboratory of

Universidad de Antioquia (Antioquia, Colombia). This laboratory is located

at an altitude of 2480 m, with 16oC average temperature and coordinates

6°26'43.1"N 75°32'43.0"W. During 60-days before the measurement of CH4

emissions, the animals were individually housed in 2.5-m2 covered pens

(Figure 1) and adapted to the diet and to the respiration chamber facility.
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Figure 1. Calorimetry laboratory, Universidad de Antioquia. A. Monitoring room. B. Two

respiration chambers for CH4 measurements. C. Individual pens.

2.2. Diet and feeding

The diet consisted of hay grass (Digitaria decumbens Stent.) and

supplement (corn-cottonseed-soybean meal) in a 60:40 ratio. Animals were

fed ad libitum twice a day, at 09:00 and 15:00 h, throughout the

experimental period. The daily amount offered was adjusted such that the

rejected food was 10% of the offer. Diet composition is presented in Table 1.

2.3. CH4 emissions

The calorimetry laboratory has two respiration chambers made in

galvanized steel (Figure. 1). Internal dimensions of the chambers were 2.6

m wide, 3.7 m length, 2.3 m height, resulting in 22.1 m3 total volume. The

chambers have side windows (1.40 x 1.30 m) to allow visual contact

between animals, and are provided with feeder, automatic drinker, fan to
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ensure gas mixing, air conditioning and dehumidifier to guarantee

thermoneutrality and welfare conditions.

Table 1. Chemical composition of hay grass (Digitaria decumbens Stent) and

supplement.

Nutrient (%)1 Hay Concentrate supplement2

DM 89.0 87.8

CP 6.0 24.5

NDF 59.0 13.8

Ash 8.7 10.6

GE (kcal/kg DM) 4200 4450
1 Composition expressed as percentage of the dry matter (DM); CP= Crude protein; NDF=

Neutral detergent fiber; Ash= Inorganic matter; GE= Gross energy (kcal/kg DM).
2 Supplement: corn (35.4%), soybean meal (35%), cotton seed (15%), urea (0.6%)

molasses (8%) and mineralized salt (6%).

During the measurement of CH4 emissions, the air was removed from the

chambers at 500 L/min using a mass-flow system (Flowkit 2000, Sable

Systems International, Las Vegas, NV, USA). CH4 concentration in the

extracted air column was measured every second with an infrared analyzer

(MA-10, Sable Systems International, Las Vegas, NV, USA). The

Expedata-UI2 software (Sable Systems International, Las Vegas, NV, USA)

automatically calculated CH4 emissions as liters per minute . The results

were corrected for standard temperature and pressure. Figure 2 shows the

respiration chamber design and the sampling for CH4 quantification.
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Figure 2: Methane analyzer and respiration chamber design: 1. Air inlet. 2. Air outlet. 3.

Metallic pen. 4. Feeder and drinker. 5. Air conditioning. 6. Fan. 7. Dehumidifier

Before measuring the CH4 produced by the animals, the analyzer was

calibrated with commercially prepared gas of known concentration

(0.098%). The animal's CH4 emissions were adjusted according to the

Recovery Factors (RF) of each chamber. To estimate the RF in each

chamber, pure CH4 was injected at a known rate (0.25 L/min) for 2 h. The

amount of gas injected was determined gravimetrically. RF were 0.87 and

0.90 for chamber 1 and 2, respectively. CH4 emissions from each animal

were measured for three consecutive days.

2.4. Intake time (IT) measurements

To identify eating activity, a video camera was placed over the feeder inside

each chamber (Figure 3). It was assumed that animals only visit the feeder

to eat. To establish if the animal was eating or not, the object detection

model YOLOv5x was used (Jocher et al., 2020). This model is a
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convolutional neural network (CNN, or ConvNet), based on the YOLO

model (AlexeyAB/darknet) that, in simple terms, divides an input image into

multiples grids, and use some of these cells for object detection if the center

of an object falls into a grid cell. In general, the YOLO-based models have

been trained using several image databases (e.g COCO dataset) to detect

80 different classes of objects, including horse, sheep, and cow. Given that

in this work just one object class was necessary (i.e. cow), the model was

fine-tuned to increase the cow detection accuracy.

Considering that all the video monitoring was taken under the same

environmental conditions (e.g. illumination, distance from the feeder), the

images data set extracted from the videos (>2 million) was visually

inspected to find 1000 images with eating animals. This image sub-set was

randomly selected from both chambers and all measured days. In each

selected image, the software LabelImg (Tzutalin, 2018) was used to find the

area where the object of interest (steer head) is located. This process is

named “Image Labelling” and as result, 1000 text files with the object

coordinates were obtained. The images, their corresponding labeling

information, and the free resources in Google Colab were used to re-train

the YOLOv5x following the Jocher et al. (2020) instructions. Finally, the

re-trained YOLOv5x was used to calculate the IT per animal per day in the 2

chambers. 
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Figure 3: Example of eating activity detection in the chamber.

2.5. Dry matter intake (DMI)

Simultaneously with the quantification of CH4 emissions, the DMI was

determined. The DMI was daily calculated as the difference between the

feed offered and rejected. Samples of food offered and refused were

collected daily, and stored at -10oC for subsequent dry matter analysis

(AOAC 930.15, 1990).

2.6. Model equations and performance indicators

We developed two linear equations to estimate CH4 emission. The impact of

the feed intake was either represented by the DMI or IT. The model

performance was assessed by the calculation of the following statistical

indicators:
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The root mean square error :𝑅𝑀𝑆𝐸
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The RMSE to standard deviation of observed values ratio :𝑅𝑆𝑅

𝑅𝑆𝑅 =  𝑅𝑀𝑆𝐸
𝑆𝑜

where is the standard deviation of the observed values.𝑆𝑜

The coefficient of determination :𝑅2
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The Lin’s concordance correlation coefficient (Lin, 1989):𝐶𝐶𝐶
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3. Results and discussion

Table 2 shows the summary of the experimental data used for model

construction. The mean DMI was 6.3 kg/d and the average CH4 emissions

per animal was 152.0 g/d. The mean IT recorded by image analysis was

5.4 h/animal/day. We observed that some animals eat food that falls outside

the image area, which can have a negative impact on the precision of IT

determination with image analysis in our experimental framework.

Table 2. Dry matter intake (DMI), intake time (IT) and CH4 emissions data

used for model construction.

Animal DMI (kg/d) IT (h/d) CH4 (g/d)

1 6.3 6.3 179.1

2 5.9 3.7 132.7

3 6.1 5.6 148.3

4 6.7 6.5 189.3

5 6.0 5.0 141.6

6 8.6 7.0 184.8

7 4.6 3.7 88.3

Mean±SD1 6.3±1.2 5.4±1.3 152.0±36
1SD= standard deviation

3.1. CH4 emission

Figure 4 shows a typical pattern of the IT and CH4 emission for an animal in

our facility. CH4 emission starts to increase when feed is offered. Compared
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with other studies reporting experimental data on the dynamic emissions of

CH4 (Crompton et al., 2011; Troy et al., 2015; Moate et al., 2018;

Muñoz-Tamayo et al., 2019), our data suggest a possible buffer effect of the

respiration chamber that hampers to capture the fluctuation pattern of CH4

missions.

Figure 4. Example of intake time and CH4 emission patterns. The line represents CH4

emissions pattern (gr per minute) and the bars represent intake time pattern (minutes in 20

minutes intervals)

3.3. Performance of mathematical models

Table 3 shows the resulting linear equations obtained when using DMI and

IT as predictors and the respective statistical performance indicators. For

the model with DMI as predictor, the estimated slope is 12% higher than the

slope estimated for Angus steers and 23% higher than the slope estimated

for Brahman steers in the work of Charmley et al. (2016).
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As observed, IT is a better predictor than DMI under our experimental

conditions for all statistical performance indicators. Models with higher CCC

and lower RPE, MAPE and RSR present better predictive performance. The

RPE for IT (9.1) indicates satisfactory predictability (Fuentes-Pila et al.,

1996). Likewise, the MAPE value for IT (8.2) is associated with a high

predictive capacity (Mayer and Butler, 1993). Based on these parameters, it

is observed that the model that incorporates IT for CH4 estimations presents

superior performance compared with DMI.

Table 3. Statistical indicators of model performance.

Statistical

indicator1

Models2

CH4 = 24.07*DMI CH4 = 27.95*IT

RMSE 20.2 13.8

RPE 13.3 9.1

MAE 16.9 10.9

MAPE 11.5 8.2

RSR 0.56 0.38

R2 0.63 0.84

CCC 0.78 0.92
1 : root mean square error; : relative prediction error, : mean absolute error;𝑅𝑀𝑆𝐸 𝑅𝑃𝐸 𝑀𝐴𝐸

: mean absolute percent error; : RMSE to standard deviation of observed values𝑀𝐴𝑃𝐸 𝑅𝑆𝑅

ratio; : coefficient of determination; : Lin’s concordance correlation coefficient.𝑅2 𝐶𝐶𝐶
2CH4: methane (g/d); DMI: dry matter intake (kg/d); IT: Intake time (h/d).
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Hristov et al. (2018), using DMI as an independent variable, obtained CCC

between 0.69 and 0.74 and RSR between 0.64 and 0.67. In the present

work, both models resulted in higher CCC and lower RSR. McBride’s (2005)

indicated that CCC values lower than 0.90 and fluctuating between 0.90 and

0.95 are associated with poor and moderate predictive capacity,

respectively. Accordingly, the model with IT had a better predictive capacity

than the model with DMI.

Although it is widely accepted that DMI can be used to predict CH4

emissions, the association between these variables depends on the DMI

range used to establish the relation. Higher ranks are associated with higher

coefficients of determination (R2) (Hristov and Melgar 2020). Hristov et al.

(2018) revealed that the relationship was higher for the respirometric

chamber (R2 = 0.58), with DMI ranges between 3.9 and 33.5 kg/d.

Benaouda et al. (2019) evaluated the performance of various CH4 prediction

models in dairy cattle, including the Charmley et al. (2016) model, which

includes DMI as predictor. This model occupied a medium position, with root

mean square prediction error (RMSPE), RSR and CCC of 22.8%, 0.81 and

0.68, respectively. In the present work, the best performance parameters for

the model including IT are explained by the lower RMSE and the higher

Pearson correlation coefficient between CH4 emissions and IT (R = 0.92),

with respect to DMI (R = 0.80).

Figure 5 displays the comparison of the experimental data against the

model predictions and the respective residuals. Determination of IT in the
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field fulfills the characteristics of low cost and individual level accuracy

discussed by Negussie et al. (2017). Accordingly, our work suggests that IT

is a potential proxy of CH4 emissions on a large scale. However, more

experimental data are needed to validate our findings.

Figure 5: Experimental data of CH4 emissions are compared against the predictive CH4

production when using DMI (A) and IT (B) as predictor variables. The solid line is the

isocline.

4. Conclusion

Our work indicated the potential of using IT as a predictor of CH4 emissions,

since IT can be estimated using different technologies (e.g. computer

vision). Our result is of great relevance for estimation of CH4 emissions at

large scale, in particular for conditions when accurate estimations of DMI

are not feasible.
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