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Abstract
Crop models are useful tools because they can help understand many complex processes 
by simulating them. They are mainly designed at a specific spatial scale, the field. But with 
the new spatial data being made available in modern agriculture, they are being more and 
more applied at multiple and changing scales. These applications range from typically at 
broader scales, to perform regional or national studies, or at finer scales to develop mod-
ern site-specific management approaches. These new approaches to the application of crop 
models raise new questions concerning the evaluation of their performance, particularly 
for downscaled applications. This article first reviews the reasons why practitioners decide 
to spatialize crop models and the main methods they have used to do this, which questions 
the best place of the spatialization process in the modelling framework. A strong focus is 
then given to the evaluation of these spatialized crop models. Evaluation metrics, including 
the consideration of dedicated sensitivity indices are reviewed from the published stud-
ies. Using a simple example of a spatialized crop model being used to define management 
zones in precision viticulture, it is shown that classical model evaluation involving aspatial 
indices (e.g. the RMSE) is not sufficient to characterize the model performance in this con-
text. A focus is made at the end of the review on potentialities that a complementary evalu-
ation could bring in a precision agriculture context.
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Introduction

In many scientific domains, including agronomy, environmental sciences and hydrol-
ogy, models are a way to simplify reality through a series of assumptions and by rep-
resenting processes (Bouman et al., 1996; Sinclair & Seligman, 1996; van Ittersum & 
Donatelli, 2003). These models are often necessary to answer a specific question and 
are designed around this objective. Models come in various forms. Statistical models 
(also called empirical models) use a mathematical relation between different variables. 
The principal drawback of statistical models is that they are designed on observed data 
and are ill suited for use in sites or applications that were not involved in the model 
parameterization and development. They also cannot predict values in an uncertain con-
text (e.g. impact of climate change on crop growth) (Jones et  al., 2017). In contrast, 
purely mechanistic models (also called process-based models) rely on the modelling of 
biophysical processes. They are based on mathematical equations that describe physi-
ological processes (and not on mathematical equations that simply link two variables, 
as in statistical modelling). They can be derived in the absence of any real data as long 
as the process has been described. Mechanistic models can be deterministic, i.e. with-
out random variations within the model and equations, so that for a given set of inputs, 
the result will always be the same. Mechanistic models can also be stochastic, i.e. the 
models and equations include random effects, so that results will change between simu-
lations even if the inputs remain constant. Most of the crop models are a combination 
between process-based and empirical models, resulting in mechanistic deterministic 
models.

Models are useful tools in agro-environmental fields because they can help understand 
many complex processes by simulating them. Indeed, models can be used as a surrogate to 
estimate data that are hard, expensive or cumbersome to measure. Models account for rela-
tionships between crop growth and environmental, management and genetic factors. There-
fore, there is a huge interest in using crop modelling to see how crop growth is impacted 
by these factors or to quantify ecosystem services. In other words, crop models are system-
based models that aim to simulate interactions between the “soil–plant-atmosphere-man-
agement” (Hoogenboom, 2000; Wallach et  al., 2019). To achieve this, multidisciplinary 
approaches are needed and crop models can take into account biological, physiological, 
ecological, physical or economical components. Integrating these approaches in crop mod-
elling has led to the development of large crop models, such as APSIM (Holzworth et al., 
2014), DSSAT (Boote et al., 2019), STICS (Brisson et al., 2003), WOFOST (de Wit et al., 
2019), CropSyst (Stöckle et al., 2003) or AquaCrop (Steduto et al., 2009). Crop models are 
explanatory tools that are typically used in scenarios testing. For example, Asseng et al. 
(2018) used an ensemble of crop models to understand the climate change impact and 
adaptation for wheat protein on a global level.

While crop modelling has become common within agricultural research domains for 
long-term strategic applications, it has traditionally been poorly used in shorter-term 
(single-season) production contexts (Asseng et al., 2013; Cammarano et al., 2020). This 
is changing. Modern agriculture has increasing access to data, including spatial data, 
which is providing increased possibilities to model agricultural systems, particularly 
using statistical modeling coupled to machine-learning approaches. It also provides an 
opportunity to integrate these data into conventional crop modelling platforms and to 
change the way these ‘traditional’ crop models can be used. One of the main ways that 
this is occurring is via the spatialization of crop models.
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Most existing crop models are “point-based models” (Heuvelink et al., 2010). Spatializa-
tion is a way to apply these point-based models spatially across an area, by taking advantage 
of the new data available and applying these models to new scenarios without fundamentally 
changing the underlying model. Spatialization of crop models is of interest to the agricultural 
community as predictive crop modelling, particularly short to medium term predictions at 
field or subfield scales, is becoming an important part of modern site-specific management 
approaches. This is shifting the use of these ‘traditional’ crop models from long-term strate-
gic applications, such as understanding long-term crop production potential under a changing 
climate, to short-term tactical applications and spatial applications. Examples of short-term 
tactical applications would be the determination of local fertilizer requirements given within-
season production potential or generating in-season production estimates across local, regional 
or national scales to inform food security policy and actions.

The concept of model spatialization is not new. Faivre et al. (2004) defined spatializing a 
crop model as “using a crop model over areas larger than those over which it was developed”. 
At this stage, the idea was to upscale crop models from field/farm level modelling to regional 
level modelling. With a push toward precision agriculture, the concept of spatialization has 
evolved and became less restrictive. Within this review, spatialization is more simply defined 
as “using a crop model on another scale than which it was initially designed”. Thus, it could 
be applied at a larger scale or a smaller scale. This review will be focused on crop models but 
it is noted that the concepts developed could be applicable to any environmental models or 
other models in general.

Finally, the difference between spatializing a crop model and a spatial crop model is impor-
tant. Point-based models do not take into account neighboring data or effects to compute 
a result at a point (or unit support) (Heuvelink et al., 2010). So with spatialized crop mod-
els, each point, regardless of its spatial footprint, is an independent simulation. An alterna-
tive would be to create crop models that do take into account spatial interactions between the 
unit supports to compute their results. These would be considered ‘true’ spatial crop mod-
els. However, this would require a fundamental change in the underlying crop model equa-
tions to achieve this and a considerable effort from the crop modelling community. Given the 
investment that has been made in current crop modelling platforms, short-term development 
seems better suited to spatializing crop models rather than redeveloping spatial models. Con-
sequently, this review will focus on model evaluation with an emphasis on spatialized crop 
models, although it is recognized that some aspects in this review will be equally relevant to 
spatial crop model evaluation.

In the context of crop model use, shifting from strategic to tactical applications, model spa-
tialization is expected to increase among agro-environmental models. Therefore, the purpose 
of this article is twofold: (i) to present an overview of different ways to spatialize a crop model 
and characterize more precisely spatialization methods and (ii) to review current ways that the 
outputs from these spatialized model are being evaluated and should be evaluated going for-
ward. The article concludes with a comment on how these emerging spatialized crop models 
can be used in precision agriculture.
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Issues and methods of model spatialization process

Model spatialization: goals and reasons

Crop model spatial footprint

Crop models were designed to understand and explain plant biophysical processes and 
developed with an assumption which considers a homogeneous unit support, i.e. same 
weather, soil and management in the simulated area; so they are point simulations or point-
based models (Heuvelink et al., 2010). Crop models were also initially designed to operate 
at the field scale (van Ittersum & Donatelli, 2003). A common feature of crop models is 
that they have often been designed for a specific scale, and this scale refers to the scale of 
the processes that the models seek to predict. Nevertheless, Sinclair and Seligman (1996) 
highlight that processes described by models need to be described at a finer scale than the 
scale at which the models simulate outputs. Some models, such as DSSAT or STICS, were 
developed as a point represented by a small unit of support, for instance a homogeneous 
plot of one m2, and then scaled to the field scale, and model the crop as a single entity 
grown within a field with homogeneous production conditions (Faivre et al., 2004). Others, 
e.g. the MAPP potato model (MacKerron et al., 2004), are based on small pot trials and 
simulate an individual plant, which is then grown in standard conditions at all points in the 
field. Note that this is not a spatialization of the model as all model inputs and parameters 
are kept spatially constant. Regardless of whether it is modelled at the individual plant or 
the individual field/plot level, the observation implies that the crop model was designed to 
the scale of the specific object or process of study (e.g. leaf, plant, plot, field, watershed, 
region, etc.). For this review, the term spatial footprint of the model is defined as the scale 
of model outputs and conditions model inputs (Fig. 1). Typically, the scale is the same for 
model inputs as for model outputs. Thus, to run a crop model, inputs need to correspond to 
the model spatial footprint and outputs will be obtained at the model spatial footprint scale. 
Therefore, if users need to have a different scale in output than the model spatial footprint, 
they will need to do some modifications, i.e. by spatialization (Ginaldi et al., 2019).

For this review, the spatialization process will not consider changes of scale to the 
molecular level, although the importance of the intersection of the ‘omics’ and the crop 

Fig. 1   Notion of crop model 
spatial footprint. The spatial 
footprint is illustrated here with 
a crop model designed at the 
field scale. Model outputs in 
the native form are at the field 
scale and then spatialization (red 
arrows) can be used to change 
the scale of the outputs (Color 
figure online)
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modelling community, especially using advances in high-throughput phenology platforms 
is noted. However, this intersection is more focussed on advancing genetic improvements, 
rather than for crop management applications.

Reasons for spatialization presented in the agro‑environmental literature

Some users choose to spatialize crop models for specific purposes in order to obtain results 
that were not possible by using the crop model in its native spatial footprint. These reasons 
can be diverse but can be grouped together into several classes depending on the intended 
application (Fig. 2).

Site‑specific crop management applications  Users may aim to shift from strategic to tac-
tical use of crop models with a desire to inform short-term management at finer spatial 
scales (site-specifically within fields). Thus, this refers to the use of crop models for preci-
sion agriculture purposes by aiming to have differential management across the field (Basso 
et al., 2001, 2011; Cammarano et al., 2021; Chen et al., 2017). For example, sensors are 
commonly used to provide variable rate applications of nitrogen (Colaço & Bramley, 2018), 
however, a spatialized crop model could be the main driver for the variable map or to under-
stand spatial variability of soil–plant interactions.

Reveal and understand spatial heterogeneity  Models are often constructed to improve 
understanding of crop development, however, model phenomena and processes, and thus 

Fig. 2   Schematic illustrating the main reasons why users of point-based crop and environment models have 
decide to spatialize their models
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the understanding, are usually restricted to a specific scale (Balkovič et al., 2013). Never-
theless, users could wish to have an understanding on a finer scale of a phenomenon that 
is simulated over a relatively large area, e.g. with climate change simulations (Huard et al., 
2019) and/or to characterize the local spatial heterogeneity (Li et al., 2020) by downscaling 
a variable that was originally too coarse. Therefore, model spatialization is proving to be 
useful for developing an understanding of processes at different spatial scales using both 
upscaling and downscaling methods (Blanchoud et  al., 2020; Domínguez-Álvarez et  al., 
2021).

Complete data sets  As well as an improved understanding of processes, models can be 
used to predict unknown or unsampled points within a population or area. Spatialization 
can provide more accurate model simulations using spatially varying inputs within a known 
domain. When models have been calibrated and evaluated, their outputs can be used instead 
of real observations, thus model spatialization may be desirable to reduce the working time 
and cost of obtaining measurements in the field (Acevedo-Opazo et al., 2008, 2010; Baralon 
et al., 2012). Models can be used to obtain difficult, infeasible or unavailable measurements 
(Constantin et al., 2019).

Methods used for crop model spatialization

In order to spatialize crop models, different methods have been applied according to the 
practitioner’s objectives. These methods can relate to either or both the inputs and outputs 
of the models and will lead to a change of scale in the model input or output variables 
via the use of scaling methods at one particular point in the modelling process or, alter-
natively, scaling methods can be used in succession within a modified framework of crop 
model spatialization. An example of this would be the successive variable transformation 
of model inputs (e.g. to calculate an unknown model variable with a known/measured vari-
able) then a change of scale of the model input/output variables.

Change of scale of model outputs

This is the simplest method of spatialization, whereby the model is run in its native form, 
without any changes to the inputs, model equations or the form of the outputs (i.e. there 
is no change of input/output). Once the output has been computed the scaling is achieved 
via spatial processing (e.g. geostatistical operators) only. The scaling methods (Fig. 3) for 
model spatialization can be classified into different categories depending on whether they 
increase or decrease the resolution: upscaling and downscaling methods (Blöschl, 2005; 
Ewert et  al., 2011; Faivre et  al., 2004). The aim of downscaling methods is to increase 
the variable resolution over a given area. Upscaling methods have the opposite goal, they 
generate a coarser resolution of the variables. Different approaches to up/downscaling have 
different consequences on the data and may lead to a change of extent, change of coverage 
or change of spatial resolution.

Change of extent  Extrapolation is used for this purpose and aims to give a prediction on 
a wider area (e.g. farm, regional, national, etc.) than the inputs. Predictions are made into 
areas outside the spatial coverage of the original observations, i.e. the extent becomes 



Precision Agriculture	

1 3

larger (Acevedo-Opazo et al., 2010; Baralon et al., 2012; Roux et al., 2019), but the qual-
ity of prediction may be uncertain. The inverse process is termed ‘singling out’ to reduce 
the extent of the observations. This is a simple extraction process and the data quality is 
equivalent to the original observation(s).

Change of coverage  Interpolation is used for this purpose and aims to provide estimates 
at locations where input variables are not available. Interpolation is performed over the 
entire area between known locations, for example by inverse distance weighting (IDW), 
kriging, spline functions or modern machine learning techniques. Reducing the coverage, 
or sub-setting the data, is performed using sampling approaches.

Change of spatial resolution  Aggregation aims to give a coarse prediction scale of an 
event or a phenomenon, for example, by averaging the finer scale data to the desired 
coarser scale. Disaggregation is the opposite, obtaining a finer prediction scale of an 
event or a phenomenon that of the basic model pixel, it can be achieved by simply resam-
pling the coarser data, such that a 10 × 10 m pixel could be disaggregated into 100 pixels 
of 1 m2 with the same value, or by trying to differentially partition values spatially across 
the finer scale grid using some form of disaggregation model (Malone et al., 2013).

The lack of fine resolution data for some inputs or low computational capacity rela-
tive to the large quantity of fine resolution data available for other inputs are reasons 
that have led to the use of upscaling in many studies (Grosz et al., 2017). Data aggre-
gation can be useful or even necessary in order to simplify the understanding of the 
processes represented and to be able to draw applicable conclusions (Jankowski et al., 
2001). Some issues are related to the spatialization of models when moving from a local 
scale to a more global scale, in particular when using aggregation. This raises ques-
tions of whether or not to use averaged data, in order to try to quantify heterogeneity, 
or to keep and use very fine resolution data (Allain et al., 2018). For instance, the over-
simplification of the considered process is cited as critical to the use of aggregation and 

Fig. 3   Illustration of scaling methods used for model spatialization. Red processes refer to upscaling meth-
ods and blue processes refer to downscaling methods that use a spatial process. Black processes refer to a 
change of scale via direct extraction without using a spatial process (Color figure online). Adapted from 
Faivre et al. (2004)
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aggregated data (Scholes et  al., 2013), but over-simplification may not be suitable for 
the intended model use.

Change of scale can be used to spatialize input or/and output data of a crop model. 
Thus, a crop model can be spatialized by running independent simulations in each unit (or 
pixel) of the desired area using spatial inputs or based on coarse independent simulations, 
after which the outputs undergo a change in scale.

Spatial alterations of the crop modelling framework

The methods outlined in Fig.  3 aim to manipulate the output data but could equally be 
applied to scale model inputs before running the model. This generates, as highlighted by 
Ewert et al. (2011), other potential methods to manipulate the models to achieve a spatial-
ized crop models. These model manipulation methods correspond for instance to the modi-
fication of model parameters, the simplification of model structures or the use of nested 
models. Note that the processes in Fig. 3 are relevant to scaling inputs or outputs into a 
spatialized (crop) model. It is also potentially relevant even if the crop model framework 
has already been spatialized or a spatial crop model is being used.

In the case of input modification, by rescaling the model inputs to take advantage of 
modern sensing technologies, such as satellite imagery, spatially explicit model input 
data can be generated. This then generates the question of how and when these spatially 
explicit data can be incorporated into the model and at what moment the spatialization pro-
cess takes place in the modelling framework. Given the diversity of crop model types and 
approaches and the diversity in the type and availability of spatially explicit model input 
data, it is not surprising that in a very short time there have been various methods of crop 
model spatialization proposed. The variety of methods include, for instance, studies about 
vine water status at different scales (Acevedo-Opazo et  al., 2010; Baralon et  al., 2012), 
adaption of wheat in a global warming context on a global scale (Asseng et al., 2018) or 
yield prediction at differing scales (Battude et  al., 2016; Claverie et  al., 2012). Figure 4 
presents different crop model spatialization methodologies that have been synthesized from 
studies that have aimed to spatialize crop models.

In Fig.  4, the horizontal bars indicate the stages of the crop modelling process, from 
the collection of available data (top) to final model outputs (bottom), while the vertical 
arrows show potential pathways for modelling and the red arrows specifically indicate 
points where spatialization can occur. Figure 4 is constructed to indicate typical pathways 
for model spatialization. These include (a) a change of scale of model outputs and (b) a 
change of scale of the model inputs. Choosing whether to change the scale of model inputs 
or outputs or both is important because these methods will not have the same impact (Al-
Shammari et al., 2021).

The available spatial variables can be either variables measured in the field, calculated 
data or output data from an upstream model (Fig. 3i). However, these available spatial vari-
ables (Fig. 4ii) may not necessarily be the same as the native variables (data) used as input 
by the original crop model (Fig. 4iv). In some cases, these spatial data/variables are the 
same and can be directly used in the model. However, in a majority of cases, sensing and 
modelling systems do not directly measure the correct model variable at the correct spa-
tial resolution to be usable by the crop model. Therefore, variable transformation may be 
required to obtain the correct variable to run the model (Fig. 4iii). For example, many crop 
models use Leaf Area Index (LAI) but canopy sensors usually return a surrogate of LAI, 
such as a vegetation index (VI), at very high spatial resolutions. These available VI data 
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may be subject to a mathematical relationship, for instance a transfer function, to modify 
and transform the VI values into LAI values for the considered crop. In the example of 
pathway (b), available variables may be subject to a change of resolution before being used 
in the model. Any approaches outlined in Fig. 3 can be applied to the input data to change 
the support, coverage or extent of the model, leading to a change of spatial resolution of 
inputs (Teixeira et  al., 2017) (Fig.  4iii). Often this change of scale is possible by using 
other ancillary data; the available data can be coupled with these ancillary data, such as 
high-resolution remotely-sensed imagery, to try to reduce the uncertainty in the available 
spatial input data (Kasampalis et al., 2018).

Once the scale of usable model inputs has been correctly adjusted (Fig. 4iv), the spatial-
ized crop model can be run (Fig. 4v) and the usual model outputs are computed (Fig. 4vi). 
To reiterate, this is not a spatial modelling approach, but a punctual crop model applied at 
a different spatial resolution than its native design. The obtained output(s) (Fig. 4vi) may 
not necessarily be at the scale desired by the user, as indicated in pathway (a). Thus, the 
output data may also be subject to a change of spatial resolution. The approaches outlined 
in Fig. 3 can be applied to the output data to change the support, coverage or extent of the 
model output. Some studies have compared strategies to aggregating input or output data 
and have highlighted only a few differences between these strategies (Angulo et al., 2013b; 
van Bussel et al., 2011).

Pathways (a) and (b) described in Fig. 4 are the typical and shorter frameworks to spa-
tialized predicted variables from crop models. They present simple versions where the 

Fig. 4   Schematic illustration of pathways, from data collection to final output, to apply spatialization pro-
cesses to classical point-based crop models to obtain spatial model outputs. Common pathways (a and b) 
in the literature are indicated and represent the main spatialization framework, but other methods can be 
used inside these pathways. Red boxes and red arrows correspond to the moment where spatialization really 
occurs in the pathway. Change of spatial resolution refers to methods that change the data resolution by pro-
cesses described in Fig. 3 (extrapolation, interpolation, aggregation, disaggregation). Variable transforma-
tion refers to ancillary data being converted into model input variables. Black arrows correspond to simple 
transfers of data without changing data (Color figure online)
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change in spatial resolution is done either after (a) or before (b) the modelling step. A third 
simple pathway (not shown), could also be considered where changes in spatial resolution 
occur both before and after modelling, i.e. a cross-over approach in Fig. 4 between path-
ways (a) and (b).

These are the simplest representations of model spatialization and more complex 
approaches are possible by adding other methods inside these pathways, because other 
data modifications may need to be done to obtain spatialized variables. For instance, in 
some studies, there is a resolution gap between different types of available data, especially 
weather-based inputs and other crop model inputs. Weather data is often designated at 
low resolutions (between 10 and 200 km), while crop and environmental inputs are desig-
nated at the field scale (Challinor et al., 2009). To bridge this gap, authors usually use scale 
transfer models, i.e. a corrective model on outputs from an upstream model, that involves 
upstream outputs that are generally too coarse in regards to the study area, to debiase them 
using local variables from the area (Choukri et al., 2020; Huard et al., 2019).

An important point is how to perform model calibration when using a model in a spa-
tialized context. The necessity for calibration is well known to improve crop model pre-
dictions, especially for variables estimated over large areas (Jagtap & Jones, 2002). Crop 
model calibration involves several key steps to improve predictions, whereas, practition-
ers do not necessarily have the same approaches (Seidel et al., 2018). Calibration requires 
a large amount of data when crop models are used on a large scale, but these data are 
often difficult to obtain at this scale. To tackle this issue of spatialized calibration, Angulo 
et al. (2013a) tried three calibration strategies in an attempt to calibrate a crop model at the 
continental scale. Defining region-specific crop growth and phenology parameters, without 
considering output correction, improved the accuracy of crop model predictions on a large 
scale and seemed to be the best calibration strategy (Angulo et al., 2013a).

While this review is focused on methods to assess model spatialization, it is important 
to note the growing importance of data assimilation in the development of spatialized crop 
models (Jin et al., 2018). Data assimilation can be a method used inside the pathways (a) 
and (b). It is an approach used to recalibrate or to update a model to generate good short-
term predictions. It is typically used for weather modelling, but is equally applicable to the 
shifting of strategic crop models to short-term tactical applications. To date, data assimi-
lation has been mainly used for upscaling crop models to regional (Battude et al., 2016; 
Claverie et al., 2012) or national scales (for examples see Jin et al., 2018), but there is a 
growing interest in downscaling applications.

Uncertainty and error propagation when spatializing models

The uncertainty of a spatialized model will be a combined result of the model errors and 
the scaling errors, i.e. the uncertainty of the model itself plus the uncertainty of the scaled 
data plus the uncertainty of the spatialization method itself. Model uncertainty itself refers 
to parameter values and equations and will not be presented in this review.

Scaling errors

Scaling errors are linked to the methods used to scale model inputs and outputs. In some 
cases, a succession of scaling methods may be used and their combination will lead to 
an accumulation of uncertainty in the final result, which is often difficult to quantify 
(Ewert et  al., 2011). The data aggregation effect (DAE) is a subject widely discussed in 
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upscaling studies (Zhao et al., 2015) and this effect is linked to uncertainties introduced 
with the methods used to achieve aggregation. Many studies have focused on weather 
DAE (Ewert et al., 2011; Hoffmann et al., 2015, 2016; van Bussel et al., 2011; Zhao et al., 
2015) because weather is an important driver in crop modelling and often observed at a 
large scale, whereas crop models are designed at the field scale. Therefore, using these 
large scale data as an input in crop models could raise questions about the consequences 
of changing scale. Zhao et  al. (2015) showed that DAE on weather inputs increased at 
coarser resolutions and was stronger with a higher spatial heterogeneity. However, some 
studies have shown that weather DAEs on crop yield and development are low (Ewert 
et al., 2011; Hoffmann et al., 2015). Apart from weather, many studies have also focused 
on soil data. For instance, Grosz et al. (2017) showed that for soil organic content (SOC), 
DAE smoothed extreme values. As model inputs were aggregated to higher scales (from 
10 to 100 km), the amount of heterogeneity in the model output(s) decreased. However, 
Grosz et al. (2017) demonstrated that aggregating to 50 km resulted in a higher variabil-
ity than the reference aggregation (the computational scale was 1  km). Hoffmann et  al. 
(2016) showed that, with soil data aggregation only, the bias of yield prediction was below 
15%. However when weather data were aggregated in addition to these soil data, the bias 
increased (Hoffmann et al., 2016). This shows that the scaling may have a significant effect 
and can be complex because some variables can be overestimated at certain scales. Thus, a 
comparison between different aggregation scales could be a good approach to crop model 
evaluation (Al-Shammari et al., 2021).

An important issue to consider is how scaling errors will vary if scaling methods are 
applied on model inputs or outputs (Ewert et al., 2011). For instance, DAE on input data 
can be reduced using a coarse output resolution or aggregating model outputs, whereas 
these methods can only lead to a low reduction of model structure error, i.e. regrouping 
of model parameters and model equations (Grosz et  al., 2017). If model manipulation 
(e.g. modifying model parameters, simplifying model structures or using nested models) 
is used to spatialize a model, using downscaling methods to match between the scale of 
upstream model outputs and the scale of downstream model inputs can increase the quality 
of downstream model outputs (Cammarano et al., 2017). In reality, scaling error impacts 
are a trade-off between a resolution fine enough to represent the spatial variability and an 
acceptable computational time (Grosz et al., 2017; Zhao et al., 2015). In some cases, spa-
tial aggregation can reduce errors from deficient input data or model structure (Heuvelink, 
2002).

Reduce model uncertainty by multi‑model ensembles

Using multi-model ensembles (MMEs) rather than just one model is a quite new 
approach in crop modelling and has been enabled due to international cooperative 
modelling programs (Wallach et  al., 2018, 2019). The more models there are, the 
more the prediction error decreases (Wallach et al., 2018). Studies using crop MMEs 
have shown that using indicators, such as the ensemble mean (e-mean) and ensem-
ble median (e-median) of simulated data, produces better estimates than the use of 
indicators from a single crop model, even if it is the best available model (Martre 
et al., 2015; Wallach et al., 2018). These MMEs allow an increased accuracy of crop 
growth simulations (Martre et  al., 2015) and so are useful to reduce the uncertainty 
introduced by error propagation. Improving the models used in MMEs, for example by 
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re-calibration or incorporating or modifying simulated variables, can lead to a reduced 
number of models in these ensembles while simultaneously reducing uncertainty in the 
MME outputs (Maiorano et al., 2017). Examples of the successful use of small MMEs 
in agriculture include yield prediction and greenhouse gas emissions at the field scale 
(Ehrhardt et al., 2018).

Evaluation of model performances

Aim and importance of evaluating model performances

Model evaluation refers to the question of knowing how well model predictions are 
relevant to real observations, with the aim to ascertain the value computed by models. 
Moreover, this evaluation has to match with the proposed use of the model (Wallach 
et  al., 2019). Model performances are case-dependent, so it is necessary to define at 
the beginning the model purpose (Bennett et  al., 2013). The concepts of crop model 
‘evaluation’ and ‘validation’ are slightly different. Validation refers to the process 
of determining if the model is adequate for its intended purpose or not and refers to 
the processes involved within the models (Tedeschi, 2006; Wallach et  al., 2019). As 
argued by Wallach et al., (2019), crop models are never fully valid because they will 
always describe real world processes with assumptions and simplifications and thus are 
not identical to the real processes. Model evaluation is a black box concept and is not 
a question about the processes within the model but about the relevance of the model 
output (Wallach et al., 2019). Model inputs are subject to sources of uncertainty, such 
as measurement errors and inappropriate sampling resolutions (Crosetto et al., 2000). 
It is possible to consider parameter estimation when model evaluation is carried out; 
however, these are out of the scope of this review, and the focus in this review will 
be on output evaluation. Regarding output, evaluation can be performed qualitatively 
using graphs or quantitatively using indicators. Uncertainty and sensitivity analysis are 
part of the process of model evaluation (Wallach et al., 2019). These analyses aim to 
understand how variations in the output can be explained by variability in the model 
inputs.

To understand model evaluation, it is important to know what should be evaluated. 
To illustrate this, let’s take an example of irrigation decision-making using a water 
stress model compared to a threshold defined outside the model. The model simulates 
plant water stress and can have a wide uncertainty. However, this uncertainty will not 
ultimately change the final decision, which is to irrigate or not, because the decision 
will depend on the model output relative to a threshold value identified by the decision-
maker. So how should the performance of this model be evaluated? Only on the out-
puts from the predictive model? Or on the whole process that culminates with the final 
decision-making, which is ultimately the real action that is of interest to the agronomic 
community? These questions highlight that the method of evaluation has to match with 
the use of the model, i.e. if the model is used to estimate a variable then it is the vari-
able that needs to be evaluated, but if the model is used to make a decision then it is 
the decision that needs to be evaluated, and not just the variable that was taken into 
account for the decision-making. This question is an important one when discussing 
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model evaluation but it will not be detailed or discussed further in this review; indeed, 
this review is focused on evaluation of model output values.

Evaluation of methods used for evaluating spatialized crop model performance

Evaluation based on comparisons between observed and simulated data applied 
to crop models

The most common practice to evaluate a model is to compare observed data versus simu-
lated data (outputs) using a metric or indicator that measures the distance between these 
observed and simulated data (Wallach et  al., 2019). Various metrics exist for models in 
general, and many of these have been transferred for use in evaluating spatialialized crop 
models. Table 1 reviews common metrics that have been reported in the spatialized crop 
model literature to date. In all these cases, model evaluation has been performed aspatially. 
There have been no spatial characteristics taken into account for model evaluation even 
though the crop models were being used in a spatialized context. This simplified utilization 
of aspatial indicators may affect the evaluation of spatialized crop models. Although multi-
ple indicators are shown in Table 1, the indicators are not equally used. The RMSE was the 
most frequently used indicator in published studies.

Uncertainty and sensitivity analysis methods applied to crop models

Uncertainty analysis is used to quantify the global uncertainty in the model outputs in com-
parison to the uncertainty in model inputs (Crosetto et al., 2000). Sensitivity analysis (SA) 
is used to study how the model output variations can be assigned to different sources of 
input variations and how the model depends on its inputs (Crosetto et al., 2000). There are 
different ways of varying inputs: inputs can vary around a reference value, termed a local 
sensitivity analysis (LSA); or inputs can vary through and across a whole feasible domain, 
which is called a global sensitivity analysis (GSA) (Pianosi et al., 2016). SA can be used 
for different purposes, for instance evaluating the consistency of the model behavior or 
evaluating the robustness of model outputs depending on input uncertainty and model 
hypothesis (Pianosi et al., 2016). Thus, SA can be used as a form of model evaluation in 
various ways. For instance, SA can estimate if an input’s impact on the model output is 
acceptable. It can also identify the key inputs with the most influence on the output(s) and 
can prompt users to consider if there is enough knowledge about these inputs to make a 
considered decision (Wallach et al., 2019). SA has been used in crop modelling studies in 
order to have a better understanding of uncertainty propagation and to determine impacts 
on simulated outputs, (Acevedo-Opazo et al., 2010; Adam et al., 2011; Asseng et al., 2013; 
Baralon et al., 2012; Beaudoin et al., 2018; Duchemin et al., 2008; Teixeira et al., 2017). 
However, none of the reviewed literature on crop modelling has considered if there was a 
spatial component to the SA. Some questions arise from this observation such as: Is LSA 
suitable for assessing spatial effects? Should GSA be avoided in all situations?

Some methods accounting for spatial characteristics have been used with environmental 
models. However, GSA was created to explain uncertainty in scalar outputs by variations 
of scalar inputs and so cannot directly be used with spatial models (Saint-Geours et  al., 
2012). To generalize GSA methods on spatial models, Saint-Geours et al. (2012) defined 
two sensitivity indices (SI): one on scalar inputs (i.e. a constant over the extent) and one on 
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spatial inputs. Both are applicable as site SI (depending on an output point) and block SI 
(depending on the size of the spatial support defined by the upscaling process) in the case 
of upscaling process (average or sum of a point-based model) in the model output. This 
approach was applied to a point-based hydrology model. It was shown that the SI depends 
on the size of the spatial support and also that the uncertainty and the influence of the 
inputs on the outputs was spatially heterogeneous (Saint-Geours et al., 2014). Saint-Geours 
et al. (2014) showed that the SI of spatial inputs decreased with an increase in unit support 
size and the SI of aspatial inputs increased if the unit support size increased. Their study 
showed that a ratio of SI can be determined with the unit support size. Uncertainty analysis 
and SA on an environmental model at different scales has also shown that SI varies with 
the modeling scale (Şalap-Ayça & Jankowski, 2018). These results have raised important 
questions such as: Which unit size (and scale) for the output should the user choose to limit 
uncertainty propagation of spatial or aspatial inputs? What level of uncertainty are model 
users ready to accept to make a decision, and how is this uncertainty spatially distributed?

Why is an evaluation of spatialized models different from current model evaluation 
important ?

As shown previously, the evaluation of spatialized crop models is currently done with aspa-
tial indicators. Often, model evaluations are made without either accounting for a change 
of scale or the spatial character of the data. Tedeschi (2006) highlights that statistical anal-
ysis to evaluate predictive models is essential and needs to be appropriate for the model 
use in order to evaluate its precision and accuracy. For instance, there is an issue when 
input or output data are spatially autocorrelated, such that errors (i.e. difference between 
observed and simulated data) are not independent. The presence of this spatial autocorrela-
tion can strongly reduce the reliability of many statistical metrics, including some popular 
ones shown in Table 1. Moreover, a lot of environmental variables present a continuity in 
their spatial structure so those variables are spatially dependent (Zhao et al., 2016).

Saint-Geours et al. (2014) showed that the output variance explained by spatial inputs 
decreases with an upscaling process, due to a data smoothing effect. This result highlights 
that evaluation should take into account changes of scale because model performance can 
depend on the scale at which it is run. The link between uncertainty propagation and scale 
change (upscaling and downscaling) is an area that requires more consideration (Saint-
Geours et al., 2012).

To illustrate the issue and the need for new approaches to spatialized crop model evalu-
ation, a simple case study is presented here. The aim is to demonstrate the limitation of 
aspatial statistics that have been widely used for evaluation of spatialized crop models in 
the recent literature (Table 1). In this case, the RMSE is used as the example statistic. In 
the case study, the intent is to define management zones (MZ) within a vineyard for preci-
sion viticulture. The predicted variable that is used to define these MZs is the predawn leaf 
water potential (PLWP). The purpose of this example is to show that with different theo-
retical spatialized models of PLWP, the outcomes of clustering based on PLWP predictions 
can be variable and independent of the RMSE.

This simulated example is built on observed data of PLWP on a 1.2 ha Shiraz vine-
yard in 2003. This vineyard is located in Pech Rouge (INRAE Gruissan, 43° 08ʹ 47ʺ 
N, 03° 07ʹ 19ʺ E) (See Acevedo-Opazo et al., 2010 for full details of the data set). To 
simulate the output from various theoretical spatialized crop models, three noise models 
were constructed, all built from the same values sampled from a normal distribution 
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with a fixed mean (0) and variance (0.2). Various levels of spatial structure in the simu-
lated PLWP were then obtained by altering how these noise distributions were associ-
ated with the observed PLWP values. Two of the noise distributions were dependent on 
the observed PLWP (some spatial structure), while the third distribution was random 
(i.e. independent from observed PLWP) (Fig. 5). These three noise models were added 
to the original data to simulate the output from three theoretical models. The original 
PLWP data were made into MZs based on a tiertile analysis and the threshold values 
from this analysis was used to create the MZs in the simulated PLWP maps (Table 2). 
The agreement between the MZ maps was determined using Cohen’s Kappa statistic 
(Eq. 1) (Cohen, 1960).

Fig. 5   Attribution of noise depending on observed PLWP values: a Model 1—Noise attributed is positively 
related to the PLWP values, b Model 2—Noise absolute value are positively applied to the observed PLWP 
values, and c Model 3—Noise randomly applied to the observed PLWP

Table 2   Observed field data and three simulated Predawn Leaf Water Potential (PLWP) models classified 
into Management Zones (MZs) based on a 3-class classification of the observed data (and the same thresh-
olds used for the simulated data)

Metrics of model fit are shown as the RMSE between observed and simulated data (n = 49) and Cohen’s 
Kappa value associated with the similarity of the simulated MZ models to the observed MZ model

Observed PLWP Simulated PLWP

Real Data Model 1 Model 2 Model 3

MZ

    
RMSE – 0.16 0.16 0.16
Cohen’s Kappa – 0.64 0.05 0.31
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where P0 is the proportion of agreement observed (i.e. the proportion of agreement 
between MZs of observed and simulated data) and Pe is the proportion of a random agree-
ment (i.e. the proportion of agreement in the case MZ are derived from observed and spa-
tially reorganized data at random).

The RMSE was calculated from the simulated PLWP (i.e. sum of observed PLWP and 
attributed noise) and observed PLWP. Thus, the RMSE should identify which simulation 
is the best. However, because the simulated noise models are built from the same distri-
bution (but different spatial structure) the RMSE in these cases was identical (Table 2). 
Therefore, the conclusion is that all three simulated models were equally good, and the 
defined MZs should be equally good. However, the resulting MZ maps for the three simu-
lated models do not support this, nor do the Cohen’s Kappa values (Table 2). Even though 
the RMSE was constant, the Model 1 spatial pattern was much closer to the original data 
(higher Cohen’s Kappa value) than Model 2 or 3. Model 2 had the least similar spatial pat-
tern to the observed data (lowest Cohen’s Kappa value). Thus, even though the RMSE was 
the same on these three simulations, the derived MZs were significantly different between 
simulations. Selecting the best MZ (i.e. from the best spatialized model) cannot be decided 
with only the RMSE.

Perspectives and needs for crop model spatialization and evaluation in a precision 
agriculture context

Crop model spatialization is currently often used with upscaling methods. Published stud-
ies have aimed to apply traditional point crop models over larger areas, for instance, at the 
field scale (Acevedo-Opazo et  al., 2010), at multiple field scales (Baralon et  al., 2012), 
at the regional scale (Balkovič et  al., 2013; Battude et  al., 2016; Beaudoin et  al., 2018; 
Therond et al., 2011) and at the continental scale (Adam et al., 2011; Teixeira et al., 2017). 
Upscaling crop models to a larger area is more common because crop models can be used 
by land managers and policymakers to make decisions on these large areas (Jones et al., 
2017). In contrast, there are considerably fewer studies that have aimed to use crop models 
at finer scales, i.e. attempting downscaling rather than upscaling. Precision agriculture is 
much more concerned with finer scale predictions and so downscaling approaches applied 
to crop models are of particular interest to the precision agriculture community.

Using crop models in a tactical management way represents a goal of precision agricul-
ture. Nevertheless, to achieve this objective, crop models need to manage a large amount of 
ancillary spatial data (Chen et al., 2017). Chen et al. (2017) identify different kind spatial 
data: relatively stable data (e.g. soil type and depth), constantly changing data (e.g. LAI, 
soil moisture and temperature, solar radiation) and aspatial data (e.g. management activi-
ties, cultivar information). In addition to the nature of these data, the resolution of these 
data has to be taken into account and needs to match with the spatial footprint of the mod-
elling (Adam et  al., 2011). Spatialization, in the context of downscaling crop modelling 
approaches, leans heavily on using these high resolution data to define (relatively homo-
geneous) sub-units on which to apply a crop model (Basso et al., 2011; Cammarano et al., 
2019, 2021; Guo et al., 2018).

If crop modelling using spatialized crop models is to become a common aspect of preci-
sion agriculture then new methods or statistical metrics that take into account the spatial 

(1)kappa =
P
0
− Pe

1 − Pe
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characteristics of the data and models will be needed. Evaluation of spatialized crop mod-
els needs to be improved and evolve beyond aspatial metrics. These new statistical metrics 
could take into account some spatial characteristics of the data. For instance, systemati-
cally using variography to estimate the spatial structure of inputs and outputs could be a 
method to identify if there is an issue in input data, in the model structure or with an inter-
action between both of them. Using geostatistic metrics on residual crop models could be 
a solution to improve the spatialized crop model evaluation. At a minimum, an evaluation 
of spatial autocorrelation should be performed, such as using Moran’s autocorrelation coef-
ficient (Moran, 1948) on the inputs, outputs or residuals to provide quantitative evidence of 
spatial autocorrelation in the data.

Furthermore, due consideration needs to be given as to how these spatial data can be 
best used as both inputs into the model and as data for the calibration and evaluation of the 
models. Spatial ancillary data are often derived data layers themselves with some level of 
error and uncertainty associated with them. The wide variety of gridded high-resolution 
digital soil property maps (https://​esdac.​jrc.​ec.​europa.​eu/​resou​rce-​type/​soil-​data-​maps, 
accessed 24/05/2021) now available are a good example of this. Soil property information 
is essential for many crop models, and better soil information is critical to expanding the 
uses of crop models. However, these soil property maps are estimates, derived from mod-
elling approaches themselves. They are not directly measured soil properties that can be 
entered with confidence into the models, but the temptation is to treat these spatial ancil-
lary data as ‘true’ data for modelling purposes. This temptation should be avoided and 
robust modelling approaches that explicitly take into account input uncertainty, such as 
Monte Carlo methods, should be routinely used in spatialized modelling applications.

Finally, the evaluation on any spatialized (or spatial) crop model will be affected by 
the number and spatial location of any real observations used for validation. This is true 
for any scale of application. However, for finer scale spatial modelling that is to be used 
for short-term predictive modelling to aid in-season management, the selection of correct 
validation sites is critical as there is limited time to resample before the crop model output 
needs to be used to make (spatial) management decisions. As for any modelling approach, 
if the validation sites do not cover the distribution of both model inputs and outputs then 
model evaluation will be restricted and diminished. In the case of using spatialized (or 
spatial) models, the spatial distribution and relevance of these validation sites must also 
be considered when they are selected. Related to this is the need for any validation data 
to respect the spatial footprint of the model outputs, either in its native form or after scal-
ing. This in turn creates potential issues for crop model validation if the model outputs are 
multi-scalar in nature.

All of this comes back to the type of metric that is best suited to evaluate spatialized 
(and spatial) crop models. None of the metrics in Table 1 were developed for or are suit-
able to address these issues. How would a comparison between a well-performed model, 
with poorly selected spatial validation sites at the incorrect scale, and a poorly-performed 
model, with well selected sites correctly sampled be properly made so that the better model 
was identified? Note that this question is not an issue of the quality of the analysis, but the 
location and the spatial footprint of the sampling. The assumption is that the analysis of the 
validation data is done equally well in both instances.

It is clear from the review of the literature performed here that there has not been a 
lot of consideration so far of spatial issues when applying crop models to precision agri-
culture. Despite precision agriculture being built on spatial data sets, spatial autocorrela-
tion and its implications for statistical analysis, particularly for the assumptions behind 
many statistical methods, are often overlooked (Taylor & Bates, 2013). In many cases this 

https://esdac.jrc.ec.europa.eu/resource-type/soil-data-maps
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is because precision agriculturists do not always fully comprehend the statistical implica-
tions behind spatial data (compared to ‘conventional’ agri-data sets). This is generally true 
across all aspects of agricultural science that are seeking to include spatial data in their 
domain, including the crop modelling domain. To ensure the correct use of these spatial 
data, agricultural scientists and modelers will continue to need the support of the statistical 
community, particularly the geo-statistical community, to develop new metrics to support 
this new area of crop modelling.

Conclusion

Existing crop models are point-based models and spatialization allows the use of these crop 
models to predict spatially across an area. Spatialization of a crop model is realized for dif-
ferent reasons, such as applying site-specific crop management, improving understanding 
of processes or to complete data sets. Most published studies have addressed spatializa-
tion from an upscaling objective to inform regional, national or global decision-making. 
However, in a precision agriculture context, downscaling methods need to be used for the 
spatialization of most crop models and only limited research has been performed in this 
domain so far. In addition to crop model uncertainty itself, scaling methods to spatialize 
models will add uncertainty to the model predictions. The present review raised questions 
about the current approaches to the evaluation of spatialized crop models. Current evalua-
tion methods in published studies have used mainly aspatial indicators. When spatializing 
crop models, spatial autocorrelation should be considered and assessed, otherwise, crop 
model evaluation could be wrong. Additionally, spatialized predictive crop model evalu-
ation will be influenced by the number, location and spatial footprint of validation data. 
To overcome those issues, indicators and coefficients that take spatial autocorrelation in 
account when evaluating the performance of the spatialized (or spatial) crop model are 
urgently needed and should be developed via a collaboration of the crop modelling and 
biometry (statistical) communities.

Glossary

Crop model	� A system-based model that is used to simulate daily dynamic interac-
tions between the “soil-plant-atmosphere” (Wallach et  al., 2019). In a 
broader sense, they complement field experiments and can be used to 
extrapolate/integrate observed data.

Point-based model	�A model designed to predict variables on a point (i.e. an unit support) 
without taking into account neighbouring data or effects to compute the 
variable. This is what is considered a ‘classical’ crop model.

Spatialization 
(or model 
spatialization)	� Means to apply point-based models spatially across an area different 

from the native model area (unit support) on which it was designed.
Spatialized model	� A point-based model that has had a spatialization process applied to it 

(see above).
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Spatial model	� A model designed to compute output variables taking into account 
neighbouring data or/and effects.

Spatial footprint	� The native model spatial area.
Finer scale	� Corresponds to a more accurate resolution (disaggregation method, 

smaller pixels) or the use of a model on a smaller scale than which the 
model was initially designed.

Larger scale	� Corresponds to a more coarse resolution (aggregation method, larger 
pixels) or the use of a model on a larger scale than which the model was 
initially designed.

Processes	�	�  Corresponds to an activity ensemble which are correlated or interactive. 
These activities can be biological, environmental, physical or chemical.

Variable	�	  Variable  is only used to describe a model input or model output.
State variable	� A ‘state variable’ is a variable that is internal (calculated) and not an 

input and is not necessarily expected to be given as a model output.
Parameter	�	� Parameter is only used to describe a part of a model. Parameters can be 

calibrated using different methods.
Calibration	� A process to find the best values of model parameters by using the 

observed data, a consequence of calibration is that simulated data are 
better fitted to observed data.

Resolution	� Refers to the minimum scale of both spatial and/or temporal phenomena 
(i.e. is non-specific). If a statement only refers to a spatial or a temporal 
phenomena, then it will be described as such (i.e. spatial resolution or 
temporal resolution), otherwise it may mean either or both.

Data assimilation	� A suite of methods to combine simulated data from a model and 
observed data. It aims to find an optimal combination between both to 
improve model predictions (e.g. by recalibrating or updating a model) 
(Huang et al., 2019).

Data fusion	� Methods to combine data from different sources into an integrated and 
unified compound with higher quality of information (Bleiholder & 
Naumann, 2009; Oliveira et al., 2021).

Evaluation	� Refers to the question of knowing how well model predictions are rel-
evant with measures collected in real-world situations. The aim is to 
ascertain the value computed by models.
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