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Abstract: Soil surface characteristics (SSCs) are of high importance for water infiltration 15 

processes in crop fields. As SSCs present strong spatiotemporal variability influenced by 16 

climatic conditions and agricultural practices, their monitor has already been explored by 17 

using UAV images and multispectral remote sensing. However, each technique has 18 

encountered difficulties characterizing this spatiotemporal variability. The objective of this 19 

work was to explore the potential of Sentinel-2 images to assess three SSCs - the green 20 

vegetation fraction, dry vegetation fraction and physical soil surface structure - at several 21 

dates. This work explored two approaches for classifying these three SSCs from five 22 

Sentinel-2 images acquired from August to November 2016. In the “single-date” approach, 23 
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a Random Forest Classifier (RFC) model was trained to classify one SSCj from a dataset 24 

extracted from one Sentinel-2 image i (model noted RF_sdi,SSCj). In the “multi-date” 25 

approach, a RFC model was trained to classify one SSCj from a dataset extracted from the 26 

five Sentinel-2 images (noted RF_mdSSCj). The classification analysis showed that i) the 27 

RF_sdi,SSCj and RF_mdSSCj models provided accurate performances (overall accuracy > 28 

0.79) regardless of the studied SSCj and the tested Sentinel-2 image, ii) the RF_sdi,SSCj 29 

model did not allow the classification of SSC classes that were not observed on the studied 30 

date, and iii) the RF_mdSSCj model allowed the classification of all SSC classes observed in 31 

the five Sentinel-2 images. This indicated that several Sentinel-2 images can favourably be 32 

used to increase knowledge of spatiotemporal representation of SSCs by extending results 33 

of infrequent, localized and cumbersome field work.  34 

 35 

Keywords: Soil surface characteristics; green and dry vegetation; physical soil surface 36 

structure; Sentinel-2; classification. 37 

 38 

1. Introduction 39 

Soil infiltration is one of the most important earth surface processes controlling the water 40 

budget equation. It controls the water cycles among surface-water and allows the soil to 41 

temporarily store water, making water available for uptake by plants and soil organisms. Soil 42 

infiltration may substantially affect a series of ecological processes including water supply 43 

for plant growth and groundwater recharge (Ludwig et al., 2005), solute transport to deep 44 
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soil and groundwater (Jarvis, 2007), and the development of surface runoff and soil erosion 45 

(De Roo et al., 1992). 46 

Soil infiltration characteristics, commonly represented by macroscale parameters such 47 

as soil hydraulic conductivity, sorptivity and infiltration rate can be measured directly on field 48 

(e.g., Mubarak et al., 2010). Nevertheless in-situ infiltration parameters could be difficult to 49 

measure precisely as some environmental factors, such as temperature, humidity and initial 50 

soil water content, could change during the time-consuming infiltration measurements 51 

(Mubarak et al., 2010). Moreover direct measurements of infiltration characteristics are time 52 

consuming, expensive and often involve large spatial and temporal variability (Mishra et al., 53 

2003). Soil infiltration characteristics can be also indirectly estimated using soil surface 54 

characteristics (SSCs; i.e. surface crust development, roughness, vegetation cover, 55 

texture…) as inputs of pedotransfer functions (Ghorbani-Dashtaki et al., 2016), such the 56 

ones developed by Børgesen et al. (2008), Rashidi et al. (2014) or Patle et al. (2019). 57 

The construction of these pedotransfer functions needs to know the strong relations 58 

between SSCs and hydrological processes, but researches reached a consistent conclusion 59 

that the links between SSCs and hydrological processes are site-specific (e.g., Bormann 60 

and Klaassen, 2008). Yimer et al., 2008 showed that principal factors causing the decline in 61 

infiltration capacity in the Bale Mountains National Park in Ethiopia are the changes in topsoil 62 

structure caused by surface soil compaction because of tillage and animal trampling coupled 63 

with a smaller soil organic carbon content. Joshi and Tambe (2010) showed that infiltration 64 

rate in Western India vary from subtle to noteworthy depending on slope angle, grass 65 
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coverage, crop residue and gravels. Neris et al. (2012) showed that infiltration rate in 66 

volcanic island of Tenerife (Canary Islands, Spain) is highly dependent to soil aggregation 67 

and structural stability. Leonard and Andrieux (1998) showed that the major SSCs that drive 68 

infiltration processes in Mediterranean areas are green and dry vegetation coverage, topsoil 69 

structure, surface stone content, and soil texture (i.e., relative contents of particles of various 70 

sizes, such as sand, silt and clay).  71 

Except soil texture which can be characterized by high spatial variability but low 72 

temporal variability and may therefore be considered as a permanent property, other SSCs 73 

that impact soil infiltration (namely, green and dry vegetation coverage, topsoil structure, 74 

surface stone content) are changing in time and space depending on climatic conditions 75 

(Chahinian et al., 2005) and agricultural practices (e.g., tillage, seeding, plant growing, 76 

maturity and harvesting) (Van 1993; Martin et al., 2004; Bormann and Klaassen, 2008). So, 77 

the characterization of soil infiltration processes requires monitoring of the SSCs in both 78 

space and time at the plot resolution. 79 

The need for spatial SSCs characterization could be addressed by the use of visible, 80 

near-infrared and short-wave infrared (VNIR/SWIR) remote sensing data, as this technology 81 

provides synoptic coverage at a single date. VNIR/SWIR multispectral imagery has been 82 

used for mapping SSCs with different degrees of success levels. The green vegetation 83 

fraction is usually successfully mapped by using the normalized difference vegetation index 84 

(NDVI) (e.g., Zhang et al, 2006), which can be calculated using the red and near-infrared 85 

bands measured by the multispectral VNIR/SWIR sensors (e.g., Carlson and Rizile, 1997). 86 
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The dry vegetation fraction has a unique absorption feature near 2100 nm associated with 87 

cellulose and lignin (Daughtry 2001), but most of the multispectral VNIR/SWIR sensors do 88 

not allow the use of this specific absorption feature. The Normalized Difference Tillage Index 89 

(NDTI) was demonstrated to be the best of the Landsat-based tillage indices for estimating 90 

residue cover, exploiting the difference in reflectance between the two Landsat shortwave 91 

infra-red (SWIR) bands centered near 1600 nm and 2300 nm (Deventer et al., 1997). The 92 

ASTER bands have been used with success to compute advanced multispectral residue 93 

indices such as the Shortwave Infrared Normalized Difference Residue Index (SINDRI) (e.g., 94 

Serbin et al., 2019). Finally, the SINDRI was demonstrated to provide better accuracy than 95 

the Lignin Cellulose Absorption Index (LCA) for estimating residue cover, exploiting the 96 

WordView data (Hively et al., 2018). The soil texture influences both the spectral intensity 97 

and absorption band depth at 2200 nm (e.g., Clark et al., 1990; Gomez et al., 2012) and can 98 

be mapped using a linear regression built based on the entire spectra (Vaudour et al., 2019) 99 

or on a spectral index using SWIR bands (Shabou et al., 2015). The topsoil structure may 100 

influence the general shape of the spectrum as crust, cracked clay and roughness may 101 

influence the surface colour, brightness and surface structure (e.g., Matthias et al., 2000; 102 

Ben-Dor et al., 1999); but, from our knowledge, the topsoil structure has not been studied 103 

with VNIR/SWIR multispectral data. Finally, VNIR/SWIR multispectral imagery has been 104 

successfully used to map the typology of the hydrological SSC classes according to a 105 

predefined typology based on the infiltration rates instead of mapping the single SSC 106 
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attributes with multispectral images acquired by unmanned aerial vehicles (e.g., Corbane et 107 

al., 2008). 108 

The need for SSCs monitoring could be addressed by the use of remote sensing image 109 

time series. The remote sensing image time series are mostly used as a chronicle of data in 110 

which the temporal patterns of the spectral response are considered as inputs to 111 

characterize elements of the land surface (e.g., crop type and land use management) (e.g., 112 

Bellón et al., 2017; Wang et al., 2019; Vuolo et al., 2018). Following this approach, Belgiu 113 

and Csillik (2018) took into account the temporal sequences in a time series of Sentinel-2 114 

data (the order of the Sentinel-2 data acquisition dates) to extract the temporal phenological 115 

patterns and then classify the croplands. Their classifier inputs were the NDVI time series, 116 

which were considered temporal phenological patterns, and the outputs were cropland maps 117 

for each study area and for the entire selected period. Another example is the study of 118 

Rapinel et al. (2019), which attempted to map floodplain grassland plant communities using 119 

a time series of Sentinel-2 data (without considering the order of the Sentinel-2 data 120 

acquisition dates) and a random forest method. Another approach consists in using remote 121 

sensing image time series to detect changes between two dates or during a period (e.g., 122 

Navarro et al, 2017), for example based on differences in spectral indices (e.g., NDVI) 123 

between images. Following this approach, Sicre et al. (2016) successfully used a time series 124 

of FORMOSAT and SPOT data for summer crop detection based on a decision tree using 125 

thresholds on NDVI values. Finally, another approach consists in using remote sensing 126 

image time series as a succession of single-date remote sensing images, where each 127 
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remote sensing data acquisition is treated separately. The characterization of earth surface 128 

elements (e.g., green vegetation stages, Vuolo et al. 2018) may be done at each date with 129 

each single-date remote sensing data. From our knowledge about the SSCs that impact the 130 

hydrological processes, only the green vegetation fraction has been studied both in time and 131 

space using time series VNIR/SWIR multispectral data, such as the Chinese GF-1 data used 132 

by Jia et al. (2016) and the LANDSAT data used by Jia et al. (2017). 133 

The objective of this work was to explore the potential of the Sentinel-2 images to assess 134 

three SSCs - the green vegetation fraction, dry vegetation fraction and physical soil surface 135 

structure - at several dates. The study area and data are presented in section 2. The 136 

methodology was described in section 3 based on random forest supervised classification 137 

trained with field data. Finally, the results are presented in section 4 and discussed in section 138 

5. 139 

 140 

 141 

2. Materials and Methods 142 

2.1 Study area 143 

The study area is the Kamech catchment (2.63 km2) located on the Cap Bon peninsula in 144 

north-eastern Tunisia (Figure 1) with a semi-arid climate. The Kamech catchment belongs 145 

to the long-term environmental research observatory OMERE (Mediterranean Observatory 146 

of Water and Rural Environment), which aims to investigate the anthropogenic impacts on 147 

water and sediment budgets at the catchment scale (Molénat et al., 2018). The Kamech 148 

catchment is characterized by rolling hills with a maximum drop of 110 m. The substrate 149 
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within the catchment formed from Miocene marine sediments, and is mainly composed of 150 

alternations of slightly calcareous laminated mudstone and thin hard sandstone layers. The 151 

soils were developed both over and from the Miocene deposits. The main soil types include 152 

Calcil or Chromic Vertisols (52.5%), Clayic Calcisols (22%), Vertic Regosols (17%), 153 

Leptosols (5%) and Colluvic Cambisols (3.5%), according to the FAO classification (WRB, 154 

2015). These soils are characterized by a narrow and low range of soil organic matter 155 

content (from 0.3 to 2 %), a moderate range of soil calcium carbonate (from 0.2 to 19.9 %) 156 

and a large range of clay content (from 12 to 67 %) (Molenat et al., 2018). This area is mainly 157 

rural (> 95%) and is devoted to cereals cultivation in addition to legumes and fodder for 158 

animals. Cultivation practices throughout the Kamech catchment are representative of 159 

traditional agriculture in the relief zone of Cap Bon peninsula.  160 

[Figure 1] 161 

 162 

Within the study area, crop emergence occurs between October and December, depending 163 

on farmers and meteorological conditions. Agricultural practices between the harvest and 164 

the growth of the new crop include several steps: 1) the harvest lets surface dry vegetation 165 

(litter and/or crop stubble) (July to September), 2) a first surface ploughing is conducted after 166 

the first rain (often in October over the Kamech catchment), 3) a second deeper ploughing 167 

is conducted, approximately 15 days after the first ploughing, 4) the crops are seeded and 168 

then 5) the crop is grown. 169 



9 

 

Finally, with inter-annual precipitation of 600 mm a most intense precipitations occur 170 

between September and December (more than 350 mm) and lower precipitations occur 171 

during the remaining months, with a very dry summer. 172 

 173 

2.2 Field data 174 

2.2.1. Field boundaries and land use map 175 

The field boundaries and a land use map for Kamech were produced in 2016 through field 176 

work with a handheld GPS (Figure 1c) (Jenhaoui et al., 2008). The observed land uses were 177 

annual crops, natural vegetation, olive and fruit tree plantations, lakes, urban areas and 178 

roads. The total number of crops over the study area is 384. These 384 fields are 179 

characterized by a minimum, maximum and mean plot area of approximately 0.03, 1.4 and 180 

0.59 ha, respectively (Table 1).  181 

[Table 1] 182 

 183 

 184 

2.2.2. Soil Surface Characteristic (SSC) observations 185 

Starting in 2003, the SSCs were routinely observed in 34 plots of the Kamech catchment 186 

dedicated to annual crops (red, blue and green fields on Figure 1c). The SSCs observations 187 

follow a protocol initially proposed by (Andrieux et al., 2001), then adapted to the Kamech 188 

catchment in Tunisia (Molénat et al., 2018). The protocol was initially based on works 189 

developed by Leornard and Andrieux (1998) dedicated on the Roujan catchment (91 ha), 190 

also belonging to the long-term environmental research observatory OMERE (Molénat et 191 



10 

 

al., 2018), which is located in Southern France about 60 km West of Montpellier, in a 192 

Mediterranean context mostly devoted to vineyard culture. The 34 observed fields were 193 

selected based on hydrological purposes, and the selected SSCs and their associated 194 

ranges were chosen in regard to their effect on hydrological processes such as infiltration 195 

rate and runoff generation (Leornard and Andrieux, 1998; Pare et al., 2011).  196 

The SSCs were routinely observed every 2 weeks on average during the September-197 

July period. As these SSCs field observations are dedicated to hydrological studies, e.g. 198 

runoff and infiltration (Leonard et Andrieux, 1998; Pare et al., 2011), observations timing is 199 

adapted to meteorological conditions and farmers practices. No observations are conducted 200 

in August because all crops are harvested and neither management practices nor rains 201 

occur during this month. The field observations dates result from a trade-off between field 202 

accessibility after rainfall events and known agricultural practices, including harvest 203 

(occurring in July), ploughing (occurring from the first rains around October), and seeding 204 

(occurring after soil ploughing, around November) until crop growth (occurring from mid-205 

November). From beginning of August to end of December 2016, six SSCs field 206 

observations were done by the same operator and five were used in this work (Table 2).  207 

Each SSC was described at field scale by the same operator by visual inspection, where 208 

a field is an area of land used for one specific crop per cultivated season (Figure 1c). Only 209 

one class was written down per field per SSC, regardless of the field size. When a single 210 

field is composed by several classes of SSC, the operator writes down the majority class of 211 

this SSC. First, the operator has to observe elements characterizing the soil, such as 212 
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ploughing, physical soil surface structure and roughness. Second, the operator has to 213 

observe elements characterizing the soil coverage such as vegetation fraction and coarse 214 

elements cover.  215 

Three major SSCs were studied in this work: 1) the green vegetation fraction, 2) the dry 216 

vegetation fraction and 3) the physical soil surface structure. The green vegetation fraction 217 

was observed within the following six classes: green vegetation fraction of 0% (which means 218 

total absence of green vegetation), 0% < green vegetation fraction ≤ 5%, 5% < green 219 

vegetation fraction ≤ 25%, 25% < green vegetation fraction ≤ 50%, 50% < green vegetation 220 

fraction ≤ 75% and 75% < green vegetation fraction ≤ 100%. The dry vegetation fraction was 221 

observed within the following six classes: dry vegetation fraction of 0% (which means total 222 

absence of dry vegetation), 0% < dry vegetation fraction ≤ 5%, 5% < dry vegetation fraction 223 

≤ 25%, 25% < dry vegetation fraction ≤ 50%, 50% < dry vegetation fraction ≤ 75% and 75% 224 

< dry vegetation fraction ≤ 100%. The physical soil surface structure was observed within 225 

six classes: dry soil surface without crust, aggregate or clod, mainly observed after a recent 226 

tillage (noted F0); surface with fine and continuous crust, mainly observed after some 227 

moderate rainfall without water flow (noted F1); surface with crust, mainly observed after a 228 

heavy rain (may happen around October-November) or after a long period of dry climate 229 

(may happen from August to end of September) (noted F2); saturated soil (called saturated); 230 

and two intermediate classes which express transient states (between classes F0 and F1, 231 

noted F0/F1 and between classes F1 and F2, noted F1/F2). 232 
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Among the 34 observed fields, twenty-three fields belong to a sub-catchment highly 233 

observed (network of five hydrometric stations equipped with flumes) because of its high 234 

runoff process and erosion, which is located in the Western side of the Kamech catchment 235 

(red polygons, Figure 1c). Seven fields belong to the Eastern side of the Kamech catchment 236 

(blue polygons, Figure 1c). The remaining four fields are located on the top North of the 237 

Kamech catchment (green polygons, Figure 1c). These 34 observed fields were 238 

characterized by a large diversity of shapes (Figure 1c) and a low diversity of sizes (from 239 

0.07 to 1.27 ha, with a mean of 0.51 ha, Table 1). The SSCs were described by the same 240 

operator along the crop season. 241 

 242 

[Table 2] 243 

 244 

2.3 Remote Sensing data 245 

The ESA’s Sentinel-2A satellite was launched on the 23th of June 2015. The satellite orbits 246 

at an altitude of 786 km and has a swath width of 290 km. In 2016, it acquired multispectral 247 

data with a revisit of 10 days in 13 bands covering the visible, NIR and SWIR spectral domain 248 

with spatial resolutions ranging from 10 to 60 m. The three bands acquired at 60 m spatial 249 

resolution (coastal at 443 nm, water vapour at 945 nm and cirrus at 1380 nm) were only 250 

used to perform atmospheric corrections and cloud detection. For each date, the Level 2A 251 

Sentinel-2 data were corrected from atmospheric effects using the MACCS (Multi-sensor 252 

Atmospheric Correction and Cloud Screening) algorithm (Hagolle et al., 2015; Baetens et 253 
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al., 2019), taking into account adjacency effects and illumination variations due to 254 

topography. MACCS was specifically designed to process time series of optical images at 255 

high resolution, acquired under quasi constant viewing angles. Output data from MAACS 256 

algorithm were orthoimage Bottom-of-Atmosphere corrected reflectance images and were 257 

obtained from the French space agency website (CNES, theia.cnes.fr). The six spectral 258 

bands initially acquired with 20 m spatial resolution were resampled to 10 m. We used the 259 

function "disaggregate" provided in the raster package (Robert, 2019) in R version 3.2.1 (R 260 

Development Core Team, 2015). So the values in the resampled bands are the same as in 261 

the larger original cells. Finally, the natural vegetation, olive and fruit tree plantations, lakes, 262 

urban areas and roads were masked over each Sentinel-2 data using the land use map 263 

(section 2.2.1) to keep only the 384 fields dedicated to annual crops. After this mask process, 264 

the 384 fields which have to be classified represent 199 698 Sentinel-2 pixels over each 265 

Sentinel-2 image. A total of 1264 pixels are associated to observed SSCs, based on the 266 

survey over the 34 cultivated plots of the Kamech catchment. As the 34 observed fields were 267 

characterized by a mean, minimum and maximal size of 0.51 ha, 0.07 ha and 1.27 ha (Table 268 

1), respectively, from around 5 to 120 pixels were considered per field. So depending on the 269 

field size, the SSC observations done at each date of field observation (Table 2) were 270 

representative of 5 to 120 pixels. 271 

The dates of Sentinel-2 images (Table 2) were chosen to fit the period of agricultural 272 

practices realized after the harvest (July) and the summer season and until crop growth 273 

(December). From beginning of August to end of December 2016, fifteen Sentinel-2 were 274 
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acquired over our study area. Among these fifteen acquisitions, five images had less than 275 

10% cloud over the Kamech catchment and were kept. 276 

The Sentinel-2 image acquired on the 4th of August 2016 was considered adequate 277 

to align the field observations acquired on the 1st of September 2016 (Table 2) because 278 

neither agricultural practices nor rainfall happened in August. Additionally, the Sentinel-2 279 

image acquired on the 3rd of October 2016 was considered adequate to align with the field 280 

observations acquired on the 28th of September 2016 (Table 2). The other Sentinel-2 images 281 

were acquired with a maximum delay of 1 day relative to the field observations (Table 2). 282 

 283 

3. Methods 284 

This work explored two approaches to classify the targeted SSCs. Differently from 285 

discrimination that attempts to separate distinct sets of objects, classification attempts to 286 

allocate new objects to predefined groups (labels). A classification model (machine learning 287 

approach) is firstly calibrated on a training set that involves examples already labelled with 288 

class information and, successively it is deployed to perform classification of new unlabelled 289 

data. To summarize, the main objective of a classification task is to categorize unlabelled 290 

data in a predefined set of known classes. This paper explored two approaches to classify 291 

the classes of targeted SSCs:  292 

i) In the “single-date” approach, a Random Forest Classifier (RFC) model is trained 293 

to classify one SSCj, based on pixels extracted from one Sentinel-2 image acquired at ti 294 

(Figure 2A, steps 1 and 2). Once trained, the RFC model was then applied to this Sentinel-295 
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2 image acquired at ti (Figure 2A, step 6). Following this “single-date” approach, a RFC 296 

model was built for classifying each SSCj and trained from each Sentinel-2 image. As three 297 

SSCs have to be classified at the five Sentinel-2 dates, fifteen RFC models were trained in 298 

the “single-date” approach. These RFC models would be noted RF_sdi,SSCj where i is the 299 

Sentinel-2 date (Table 2) and SSCj is the SSC predicted by the model. 300 

ii) In the “multi-date” approach, a RFC model is trained to classify one SSCj, based on 301 

pixels extracted from the five Sentinel-2 images (Figure 2B, steps 1 and 2). Once trained, 302 

the RFC model was then applied to the five Sentinel-2 images (Figure 2B, step 6). Following 303 

this “multi -date” approach, a RFC model was built for classifying each SSCj and trained 304 

from the five Sentinel-2 images. As three SSCs have to be classified, three RFC models 305 

were trained in the “multi-date” approach. These RFC models would be noted RF_mdSSCj 306 

where SSCj is the SSC predicted by the model. In this approach, the five images were used 307 

to train the models without considering the chronological order of images. 308 

 309 

The aim of using the “multi-date” approach compared to the “single-date” approach is to 310 

increase the training data, in term of both number of predictors and number of labelled pixels, 311 

compared to the “single-date” approach. 312 

The classification models were developed in R version 3.2.1 (R Development Core 313 

Team, 2015) using the caret package (Kuhn et al., 2016). 314 

[Figure 2] 315 

 316 
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 317 

3.1 Random Forest 318 

The random forest (RF) takes part of the ensemble machine learning techniques. The 319 

random forest was developed by Breiman (2001) and demonstrated as the best classifier 320 

among 179 classifiers arising from 17 families tested by Fernández-Delgado (2014). Its 321 

effectiveness in remote sensing has been demonstrated due to its robustness (e.g., Ok et 322 

al., 2012). The RF produces a large number of classification trees that contribute via a voting 323 

system to classify data (Kuhn et al., 2016). As part of the ensemble machine learning 324 

techniques, RF has higher accuracy than single classifiers as a group of classifiers performs 325 

more accurately than any single classifier (Ok et al., 2012) and RF is considered as efficient 326 

and effective even with non-normally distributed training data set (Rodriguez-Galiano et al., 327 

2012) which is the case of our datasets. Belgiu and Dragu (2016) proposed a review of the 328 

limitations and advantages of the algorithm.  329 

Two parameters need to be tuned: the number of trees (ntree parameter), which are 330 

created by randomly selecting samples from the calibration samples, and the number of 331 

variables used to split each tree node (mtry parameter). As reported by Belgiu and Dragu 332 

(2016), most studies are performed using an ntree value of 500 because the errors are 333 

stable before this number of classification trees is achieved. So we selected an ntree value 334 

of 500 to fit with the outputs of Belgiu and Dragu (2016). Belgiu and Dragu (2016) also 335 

reported that the mtry parameter is usually set to the square root of the number of input 336 

variables. So we tested 8 values of mtry ranging between 2 and 10, and the optimal value 337 
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was defined for the best overall accuracy obtained when performing a 10-fold cross-338 

validation on the calibration dataset. 339 

 340 

3.2 Calibration and Validation dataset 341 

 In the “single-date” approach, the full dataset is composed of the 1264 pixels extracted from 342 

one Sentinel-2 image acquired at ti (Figure 2A, step 2). The RF_sdi,SSCj models were trained 343 

on a subset of 70% of this full dataset (i.e. 884 pixels), while the remaining 30% (i.e. 380 344 

pixels) was used to test the performance of the model (Figure 2A, steps 3 and 5). The split 345 

between training and test datasets was done following a stratified random sampling. Thanks 346 

to this stratified random sampling, the calibration and test datasets are characterized by a 347 

similar distribution of the targeted SSCj.  348 

In the “multi-date” approach, the full dataset is composed of 6320 pixels extracted from 349 

the five Sentinel-2 images (1264 pixels extracted per Sentinel-2 image) (Figure 2B, step 2). 350 

The RF_mdSSCj model were trained on a subset of 70% of this full dataset (i.e. 4420 pixels), 351 

while the remaining 30% (i.e. 1900 pixels) was used to test the performance of the models 352 

(Figure 2B, steps 2 and 3). The split between training and test datasets was done following 353 

a stratified random sampling, providing a similar distribution of the targeted SSCj in the 354 

calibration and test datasets. 355 

 356 

3.3 Accuracy assessment 357 



18 

 

The overall accuracy and kappa coefficients, calculated on test data, were used to measure 358 

the performance of the RF classifications (Cohen, 1960). Overall accuracy is commonly 359 

measured as the percentage of pixels correctly classified in the validation dataset. The 360 

kappa coefficient compares the observed accuracy with the expected accuracy resulting 361 

from randomness. The kappa statistics are used to assess the proportion of the results that 362 

is due to pure randomness, especially when classes with few individuals occur in the 363 

classification process. A kappa coefficient of 1 indicates perfect classification, and a kappa 364 

coefficient of 0 corresponds to a random classification (Congalton, 1991). Based on 365 

Congalton and Green (1999), kappa values greater than 0.80 represent strong agreement 366 

between the classification results and ground truth data, kappa values between 0.4 and 0.8 367 

represent moderate agreement, and kappa values below 0.4 represent poor agreement. The 368 

95% confidence intervals (95 % CI) of the overall accuracy were also calculated. 369 

Accuracies of individual class were calculated in a similar way than overall accuracy. 370 

The producer's accuracy was used to indicate the probability of a reference pixel being 371 

correctly classified (Story and Congalton, 1986). The producer's accuracy for class A was 372 

calculated as the ratio between the number of pixels correctly classified in class A and the 373 

total number of reference pixels (ground true) for that class A. And user's accuracy was used 374 

to indicate the probability that a pixel classified on the map represents the class on the field 375 

(Story and Congalton, 1986). The user's accuracy for class A was calculated as the ratio 376 

between the number of pixels correctly classified in class A and the total number of pixels 377 

classified in class A. 378 
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The overall, producer's and user's accuracies, 95 % CI and Kappa-coefficient were 379 

calculated with Caret R package (Breiman, 2001) by using confusionMatrix function. 380 

 381 

3.4 Classification mapping 382 

In the “single-date” approach, after validating a RF_sdi,SSCj model on the corresponding test 383 

dataset for predicting the SSCj (Figure 2A, step 5), the RF_sdi,SSCj model was applied to the 384 

entire Sentinel-2 image acquired at date ti (Figure 2A, step 6) providing one classification 385 

map of the targeted SSCj for the date ti.  386 

 In the “multi-date” approach, after validating a RF_mdSSCj model on the test dataset 387 

for predicting the SSCj (Figure 2B, step 5), the RF_mdSSCj model was applied to the five 388 

Sentinel-2 images (Figure 2B, step 6) providing five classification maps of the targeted SSCj 389 

(each classification map corresponding to one date of Sentinel-2 acquisition). 390 

 391 

3.5 Classes aggregation from pixel to field scale 392 

For each classification map, the classes affected to pixels were secondly aggregated at the 393 

field scale using field boundaries (Figure 1c). The class labelling process for a field 394 

intersecting a collection of pixels was fixed as the most frequent pixel class.  395 

As it is expected to get similar class of each SSC at field scale, and as a highest frequent 396 

class of pixels within a field may just result from pure randomness, an indicator of the non-397 

randomness of the most frequent pixel class was computed at field scale. The selected 398 

indicator for a given field j was the probability value (P-value) resulting from a chi-squared 399 
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test, where P-valuej denotes the probability of the chi2 variable under pure random process 400 

(H0) with dl degree of freedom for the given field j. The chi2 variable with one degree of 401 

freedom for any field j composed of n pixels is computed as follows: 402 

𝐶ℎ𝑖2𝑗 =
(𝐹𝑗

2
−𝐹)

2

𝐹2
  (1) 403 

where 𝐹𝑗 is the frequency of the most frequent class for field j and 𝐹 is the theoretical one 404 

resulting from a binomial random law, knowing the overall proportion of this class against 405 

others at the entire image scale. For a given field j, the P-valuej lower than 0.05 indicates 406 

that the observed higher frequency in a field is significant and does not result from 407 

randomness. 408 

 409 

 410 

4. Results 411 

4.1 Preliminary analysis of observed SSCs 412 

The distribution of the observed classes did not follow a normal distribution, regardless of 413 

the date and the SSC (Figure 3). The green vegetation fraction mainly varied because of the 414 

tillage and secondarily the meteorological conditions that drove vegetation growth. Only one 415 

class was observed in August (0%, Figure 3a) as crops were harvested between June and 416 

July, and the dry and hot weather during this period prevented any grass growth. From 417 

September, the number of observed green vegetation fraction classes increased over time 418 

to reach 6 classes in December (Figure 3a) after seeding and crop emergence. During the 419 

selected period, only four classes were represented for the dry vegetation fractions: 5% < 420 

vegetation fraction ≤ 25%, 25% < vegetation fraction ≤ 50%, 50% < vegetation fraction ≤ 421 
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75% and 75% < vegetation fraction ≤ 100% (Figure 3b). The dry vegetation fraction varies 422 

due to vegetation decomposition and the management practices, such as tillage. The four 423 

classes of dry vegetation were never observed on the same date (Figure 3b). From August 424 

to December, the number of dry vegetation fraction classes decreased over time to reach 425 

only one class in December (0%, Figure 3b) after tillage, seedling and crop emergence. The 426 

physical soil surface structure varied mainly due to rainfall and secondarily as a result of 427 

management practices. The six classes of the physical soil surface structure were never 428 

observed on the same date (Figure 3c). Most of the fields were characterized by a transient 429 

state of F1/F2 whatever the date. And numerous saturated fields were observed in 21th of 430 

November and 2sd of December. 431 

Green and dry vegetation fraction were inversely correlated as in August, the absence 432 

of green vegetation is associated to a high proportion of dry vegetation (Figure 3a and b), 433 

and then more the green vegetation fraction increase, more the dry vegetation fraction 434 

decreases. Whereas the soil surface structure was not correlated to the vegetation fraction.  435 

[Figure 3] 436 

 437 

 438 

4.2 Classification models performances 439 

Among the fifteen RF_sdi,SSCj models initially planned to be built, the RF_sd1,green and 440 

RF_sd5,dry models have not enough classes to be trained (only one class was observed, 441 

Figure 3a and 3b) so these two models were not built. The remaining thirteen RF_sdi,SSCj 442 

models were trained from their dedicated training dataset and tested on their dedicated test 443 
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datasets (Figure 2A, steps 2, 3 and 4). Nevertheless, when the training and test datasets 444 

are very unbalanced, the models performances must be considered carefully, as for 445 

RF_sd2,dry, RF_sd3,dry, RF_sd4,dry and RF_sd3,struc (Figure 3b and c; in grey and italics in Table 446 

3). Considering the almost-balanced training and test datasets, only nine RF_sdi,SSCj models 447 

can be explored. The RF_sd2,green and RF_sd1,struct provided the highest performances with 448 

an overall accuracy and kappa of 0.93 and 0.82, respectively, whereas the RF_sd3,green 449 

provided the lowest overall accuracy and kappa of 0.84 and 0.76, respectively (Table 3). 450 

These RF_sdi,SSCj models provided high user's accuracies, such as the RF_sd3,green model 451 

ranging from 77.0 % to 86.2 % (Table 4). The RF_sdi,SSCj models provided also high 452 

producer's accuracy, such as the RF_sd3,green model ranging from 67.6 % to 85.7 % (Table 453 

4). 454 

The three RF_mdSSCj models were trained from training datasets and tested on their 455 

dedicated test datasets (Figure 2B, steps 2, 3 and 4). The classification performances 456 

obtained from RF_mdgreen and RF_mddry on test datasets extracted from S2 images acquired 457 

on 4th of August and 2sd of December, respectively, have to be considered carefully as only 458 

one class was represented on these test datasets (0% and 5-25%, respectively, Figure 3a 459 

and b). These three RF_mdSSCj models provided high user's accuracies, such as the 460 

RF_mdgreen model ranging from 74.2 % to 92.6 % (Table 4). The RF_mdgreen models provided 461 

also high producer's accuracy, such as the RF_mdgreen model ranging from 78 % to 84.5 % 462 

(Table 4). 463 
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Finally, the performances of the RF_sdi,green models were slightly superior to those of 464 

the RF_mdgreen model (Table 3). As well the performances of the RF_sdi,struc models were 465 

slightly superior to those of the RF_mdstruc model (Table 3). Additionally, no difference in the 466 

performance behaviour of the RF_sdi,dry models and the RF_mddry model were underlined 467 

for the classification of the dry vegetation fraction (Table 3). 468 

 469 

 470 

[Table 3] 471 

 472 

 [Table 4] 473 

 474 

4.3 Classification maps 475 

Once the RF models were calibrated following both approaches, they were applied to their 476 

corresponding Sentinel-2 images. The resulting classifications were aggregated at the field 477 

scale using the field boundaries map (Figure 1c), and the majority class was maintained to 478 

label the field. 479 

Only the classes used in the training database can be predicted by the RF_sdi,SSCj 480 

models (Figure 2A). For instance, because only three classes of the green vegetation 481 

fraction were observed throughout the 34 fields on the 3rd of November 2016 (Figure 3a), 482 

the classification map of the green vegetation fraction over Kamech using the RF_sd3,green 483 

model contains only three classes (Figure 4A1). As well, as only two classes of dry 484 

vegetation fraction were observed over the 34 fields on the 3rd of November 2016 (Figure 485 
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3b), the classification map of the dry vegetation fraction over Kamech using the RF_sd3,dry 486 

model contains only these two classes (Figure 4B1). 487 

With the use of the “multi-date" approach, which calibrates a unique classification model 488 

per SSC from the five Sentinel-2 images and field observations (Figure 2b), all the classes 489 

can be predicted. Hence, whereas only three classes of green vegetation fraction were 490 

observed over the 34 fields on the 3rd of November 2016 (Figure 3a), the classification map 491 

obtained from the RF_mdgreen model shows five classes (Figure 4A2). As well, whereas only 492 

two classes of dry vegetation fraction were observed throughout the 34 fields on the 3rd of 493 

November 2016 (Figure 3b), the classification map obtained from the RF_mddry model 494 

contained three classes (Figure 4B2). Moreover, whereas all classes could be predicted as 495 

they were represented in the calibration dataset, the classification maps for each date that 496 

were obtained using the “multi-date" approach do not contain all the classes (Figures 4A2, 497 

B2 and C2). 498 

[Figure 4] 499 

 500 

 501 

4.4 Significance of classifications 502 

The frequency of the majority class within a field may reflect the variability of the 503 

classifications at the field scale and thus may give information on the classifications 504 

uncertainty at this scale given that the fields are expected to show limited internal variability. 505 

The significance of the majority class was studied based on the chi-squared test, which 506 

determined whether there was a significant difference between the i) expected frequency of 507 
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the class due to the random and ii) observed frequency of the majority class in each field. 508 

The P-valuej was calculated for each field j, at each date and for each SSC (Figures 5 and 509 

6). The field j associated to P-valuej lower than 0.05 indicates that the observed higher 510 

frequency in this field j is significant and does not result from randomness. 511 

A majority of fields are associated to a low variability of classifications (P-value < 0.05) 512 

(example in Figures 5a and b, Figure 6). The median of the P-values was near 0, and the 513 

third quartile was lower than 0.2 regardless of the SSC, date and approach (Figure 6). The 514 

p-values obtained for green vegetation were higher than the p-values obtained for other 515 

SSCs, except on the 4th of August 2016 and 3rd of October 2016 with the “multi-date” 516 

approach (Figure 6b). Finally, regardless of the SSC, approach or date, no spatial pattern 517 

appeared in the p-value mapping (Figures 5a and b), as fields associated to high variability 518 

of classifications (P-value > 0.05) are not the same from one approach to the other (example 519 

in Figures 5a and b).  520 

[Figure 5] 521 

[Figure 6] 522 

 523 

 524 

4.5 Classification comparisons between both approaches 525 

The maps obtained by both approaches for the same SSCj and date ti may present some 526 

classification differences. These classification differences between the both approaches for 527 

the same SSC and date were calculated at the field scale as the percentage of fields 528 
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classified differently from one approach to the other one for each SSCj and each date ti 529 

(Table 5). The most important difference in classification between both approaches was 530 

obtained for the green vegetation fraction classification on the 22nd of November (Table 5). 531 

A less important difference in the classifications between both approaches was obtained for 532 

the dry vegetation fraction classification, still on the 22nd of November (Table 5). 533 

Large differences in classification between both approaches and for the three SSCs 534 

were observed on the 3rd of October. This could be explained by the interval of 5 days 535 

between the field observation date (28th of September 2016) and Sentinel-2 acquisition date 536 

(3rd of October 2016). Some agricultural practices may have happened during these 5 days 537 

and changed the SSCs, which may have caused flawed associations between the image 538 

and the ground information, which may have caused misclassification. Moreover, as this 539 

image was slightly cloudy (less than 5% and outside of our study area), these 540 

misclassifications may also have been related to flawed atmospheric corrections. 541 

Finally, no correlation was observed between the number of observed classes on 542 

field at t_i and the percent difference of the classification between both approaches (Table 543 

5). 544 

[Table 5] 545 

 546 

5. Discussion 547 

Models performances analysis 548 

From the overall accuracy and kappa values, our results showed that both the RF_sdi,SSCj 549 

and RF_mdSSCj models provided correct classifications for the three SSCs (Table 3). The 550 
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good performances obtained for dry vegetation fraction classification are in agreement with 551 

the ones obtained with LANDSAT data by Van Deventer et al. (1997) and the ones obtained 552 

with ASTER data by Serbin et al. (2009). The good performances obtained for green 553 

vegetation fraction classification are in agreement with the ones obtained with Sentiel-2 data 554 

by Wang et al. (2018) and the ones obtained with LANDSAT data by Jia et al. (2017).  555 

Nevertheless, as our validation and calibration sets were not completely independent, 556 

our overall accuracy and kappa values may have been over-estimated as the pixels in the 557 

validation dataset belonged to the same fields as the pixels in the calibration dataset. To be 558 

absolutely independent, the validation dataset should be composed of pixels from other 559 

fields than those used to calibrate the classification model. However, this perfect 560 

independence can be ensured only when the number of observed fields is large enough to 561 

be divided into calibration and validation fields, which is rarely the case as field observations 562 

are time consuming and costly, especially in case of time series. 563 

 564 

Advantages and limitations of both approaches 565 

The “single-date” approach consists in training a RFC model RF_sdi,SSCj from a calibration 566 

database extracted from one Sentinel-2 image ti, to be applied to a test database extracted 567 

from the same image ti and then to be applied to the entire image ti (Figure 2A). The “multi-568 

date” approach consists in training a RFC model RF_mdSSCj from a calibration database 569 

extracted from our five Sentinel-2 images, to be applied to a test database extracted from 570 

the five Sentinel-2 images and then to be applied to each image (Figure 2B).  571 

Compared with the “single-date” approach, the use of five Sentinel-2 images in the 572 

“multi-date” approach for classifying SSCs allowed to increase the calibration dataset in term 573 

of both number of calibration samples and number of observed classes. So the “multi-date” 574 

approach allowed predicting a class A of an SSC at a date i, even if this class A was not 575 

observed by the operator on this date i.  576 
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However, the use of these five Sentinel-2 images in RF_mdSSCj models provided 577 

slightly lower performances compared with the RF_sdi,SSCj models (Table 3). As the 578 

calibration datasets used in RF_mdSSCj models were based on five Sentinel-2 images (Figure 579 

2B), the calibration datasets may contain some slight reflectance heterogeneity due to 580 

differences in acquisition dates of Sentinel-2 images and so in atmosphere conditions and 581 

corrections which may impact the RF_mdSSCj models. Slight reflectance differences have 582 

been observed between Sentinel-2 spectra acquired on same targets but corrected by 583 

different atmospheric methods (Martins et al., 2017; Sola et al., 2018). As well, it can be 584 

guess that slight reflectance differences may be observed between Sentinel-2 spectra 585 

acquired on same targets, corrected by same atmospheric method, but acquired on different 586 

dates.  587 

Finally, whereas most publications have studied dynamic multispectral signals for one 588 

final classification (such as Lenney et al. (1996) or Bagan et al. (2005), who used multi-589 

temporal NDVI from LANDSAT and MODIS data, respectively, for land cover classification), 590 

whatever our approach applied on the time series of Sentinel-2 images, both the spatial and 591 

temporal information of the SSCs were obtained. 592 

 593 

Other approach for future 594 

Another approach in future experiments may use some Sentinel-2 images for calibration and 595 

an independent Sentinel-2 image for testing, all images acquired over the same study area. 596 

This approach would allow the temporal extension of SSCs classifications to other dates. 597 

Nevertheless, the potential of this approach might be affected due to soil characteristics 598 

differences (e.g., differences of soil humidity) or atmospheric effects differences between 599 

calibration and test images. This approach would require i) a calibration from Sentinel-2 600 

dataset images associated with field observations that include all classes of the SSCs and 601 

ii) focusing on how to manage such surface directional effects radiometric and seasonal 602 
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shifts in the classification process. From our knowledge, this approach was never tested, 603 

whatever the target (SSCs, land use, etc.). 604 

 605 

Classification uncertainties 606 

Calibration of the classification models required the collection of ground truth data and 607 

remote sensing images to be as close together as possible, as the SSCs are highly variable 608 

both in space and time, depending from punctual anthropic actions. Without this close 609 

acquisition, there is uncertainty in the match between ground truth data and spectral 610 

information, which may negatively impact the classification results. Indeed, when field-611 

observed data are collected before remote sensing images, some agricultural practices 612 

(e.g., ploughing, weeding and seeding) that occur between the data collections may change 613 

the reflectance signal, causing the field-observed data to not correspond with the recorded 614 

signal. In addition, when remote sensing images are collected before field-observed data, 615 

some agricultural practices that occur between the data collections may be recorded in the 616 

field observations but not in reflectance signals. A good field expertise is necessary, as it 617 

may help to estimate an acceptable interval between field observations and remote sensing 618 

data acquisition. 619 

In our case, the uncertainties in the classification obtained on the 4th of August were 620 

estimated as null, as no agricultural practices happened between the Sentinel-2 acquisition 621 

on the 4th of August and the field observations on the 1st of September. Inversely, the 622 

uncertainties in the classification obtained on the 3rd of October may be present, as 623 

agricultural practices may have occurred between the Sentinel-2 acquisition on the 3rd of 624 

October and the field observations on the 28th of September. 625 

As the SSCs presented strong spatial and temporal variability, each class of SSCs was 626 

not represented in the same manner at each observation date (Figure 3). This unbalanced 627 

distribution of classes may have produced high uncertainties in the classification results. For 628 

example, only two classes of dry vegetation were observed on the 3rd of November, and 629 
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among both classes, the class 5-25% was overrepresented. Therefore, the classifications 630 

obtained by the “single-date” approach with this highly unbalanced distribution of classes 631 

must be exploited very carefully. 632 

 633 

 634 

6. Conclusions 635 

The spatiotemporal monitoring of SSCs is still one of the major challenges for soil infiltration 636 

processes modelling, as it is a costly and time-consuming procedure. The successful recent 637 

deployment of the Sentinel-2 satellites created a unique opportunity to address the need for 638 

the characterization of the earth surface elements both in space and time, including the soil 639 

surface characteristics. This study suggested that the proposed approaches applied on a 640 

time series of Sentinel-2 images provided spatiotemporal information on three SSCs linked 641 

to soil infiltration processes: the green vegetation fraction, dry vegetation fraction and 642 

physical soil surface structure. Futures works may focus on combining these SSC maps 643 

obtained at each date by the time series remote sensing data, to produce maps of infiltrability 644 

classes using pedotransfer functions or typology of the hydrological SSC classes as 645 

suggested by Andrieux et al. (2001). Another future study could test a direct mapping of the 646 

infiltration classes, following Corbane et al. (2008), who demonstrated that several 647 

hydrological SSC classes could be distinguished on the basis of spectral and spatial 648 

information collected with aerial RGB photographs over Mediterranean vineyard areas. 649 

Finally, although the multispectral remote sensing data acquisition is still increasing and 650 

although the data are free and shared thanks to the ESA Copernicus programme, one 651 

remaining issue may arise from the limitations in the field data, still necessary for calibrating 652 

the classification models. Thus, concurrently with this remote sensing data acquisition and 653 

sharing, a special effort could be made on field data acquisition and sharing.  654 

 655 
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Figure 1: a) Location of Tunisia in Africa, b) Location of the Kamech catchment on Cap Bon 

peninsula and c) Field boundaries in the Kamech catchment, plotted over a Sentinel-2 image 

acquired on the 4th of August 2016 (the 34 observed fields are indicated in red, blue and 

green depending on their location). 

 

Figure 2: Workflow of the SSC classification using the A) “single-date” and B) “multi-date” 

approach, where Rti,h,k is the reflectance value acquired over the pixel h (h varying from 1 to 

1264) at the spectral band k (k varying from 1 to 10) for the Sentinel-2 image acquired at ti (i 

varying from 1 to 5). 

 

Figure 3: Distribution of the a) green vegetation, b) dry vegetation, and c) physical soil 

surface structure classes observed in the field over 34 agricultural plots on five dates (Y-

M-D). 

 

Figure 4: Majority class at the field scale, obtained with the Sentinel-2 image acquired on the 

2nd of November 2016 using A1) the RF_sd3,green model, A2) the RF_mdgreen model, B1) the 

RF_sd3,dry model and B2) the RF_mddry model C1) the RF_sd3,struc model and C2) the 

RF_mdstruc model. 

 

Figure 5: P-values of the chi-squared test obtained from the Sentinel-2 image acquired on 

the 2nd of November 2016 using the a) RF_sd3,green and b) RF_mdgreen model. In clear purple: 

P-values < 0.005 referring to a significant frequency. In dark purple: P-values > 0.005 

referring to frequency close to randomness. 

 

Figure 6: P-values of the chi-squared test for green vegetation fraction (green), dry 

vegetation fraction (orange) and physical soil surface structure (blue), obtained by a) the 

“single-date” approach and b) the “multi-date” approach. 

 

Figure Captions



Table 1: Statistics of area (in ha) on fields. 

 
All fields over 

Kamech 

34 fields with observed 

SSCs 

Min 0.03 0.07 

Max 14 12.27 

Mean 0.59 0.51 

Standard 

Deviation 
1.04 0.32 

 

  

Table



Table 2: Acquisition dates of the five Sentinel-2 images and associated field observations 

dates where i is the date number. *There was neither cultural operation nor significant rainfall 

during this time period. 

Date 

Number i 

Date of Sentinel 

2 images 

acquisition 

(Y-M-D) 

Date of field 

observations  

(Y-M-D) 

Number of days 

between images 

acquisition and field 

observation  

1 2016-08-04 2016-09-01 28* 

2 2016-10-03 2016-09-28 5 

3 2016-11-02 2016-11-03 1 

4 2016-11-22 2016-11-21 1 

5 2016-12-02 2016-12-02 0 

 

  



Table 3: Overall accuracy, 95% confidence intervals and kappa calculated from the test 

datasets for each model (RF_sdi,SSC and RF_mdSSC). When no RF_sdi,SSCj has been built because 

of insufficient number of class (i.e., RF_sd1,green and RF_sd5,dry), the cells were darken. The 

values calculated from test datasets composed by two unbalanced observed classes are 

indicated in grey and italics. The performances of RF_mdSSC models calculated from test 

datasets composed by only one observed class are indicated in italics. 

Date of Sentinel 2 
image acquisition  

(Y-M-D) 
2016-08-04 2016-10-03 2016-11-02 2016-11-22 2016-12-02 

Date Number i 1 2 3 4 5 

RF_sdi,green 

Overall 
accuracy  0.93 0.84 0.85 0.88 

95% CI  [0.9 - 0.94] [0.82 - 0.87] [0.82 - 0.88] [0.84-0.91] 

Kappa  0.82 0.76 0.79 0.84 

RF_sdi,dry  

Overall 
accuracy 0.89 0.89 0.99 0.98  

95% CI [0.87 - 0.92] [0.87 - 0.92] [0.99 – 1] [0.97 – 1]  

Kappa 0.8 0.7 0.93 0.9  

RF_sdi,struc 

Overall 
accuracy 0.93 0.88 0.95 0.92 0.89 

95% CI [0.91 – 0.95] [0.85 – 0.9] [0.92 -0.97] [0.89 – 0.95] [0.85 – 0.91] 

Kappa 0.82 0.78 0.83 0.8 0.76 

        

RF_mdgreen 

Overall 
accuracy 1 0.91 0.79 0.8 0.81 

95% CI [0.98 – 1] [0.88 – 0.93] [0.75 – 0.83] [0.76 – 0.84] [0.77 – 0.85] 

Kappa 0 0.77 0.69 0.73 0.74 

RF_mddry  

Overall 
accuracy 0.88 0.9 0.94 0.99 1 

95% CI [0.84 – 0.91] [0.87 – 0.93] [0.91 – 0.95] [0.97 – 0.99] [0.99 – 1] 

Kappa 0.78 0.76 0.69 0.95 0 

RF_mdstruc 

Overall 
accuracy 0.93 0.85 0.91 0.91 0.86 

95% CI [0.89 – 0.94] [0.8 – 0.87] [0.87 – 0.93] [0.87 – 0.93] [0.82 – 0.89] 

Kappa 0.82 0.7 0.74 0.79 0.68 

 

 

 

 



Table 4: User's and producer's accuracy obtained on test datasets using the RF_sd3,green 

model (i.e., built from the Sentinel-2 image acquired on the 2nd of November 2016) and the 

RF_mdgreen model. 

    
Classes on the 2nd of November 

2016 (i=3) 

    0% 0 – 5 % 5 – 25 % 

RF_sd3,green 

user's 
accuracy (%) 

86.2 77.0 80.7 

producer's 
accuracy (%) 

67.6 85.7 83.4 

RF_mdgreen 

user's 
accuracy (%) 

74.2 78.4 92.6 

producer's 
accuracy (%) 

80.2 84.5 78 

 

 

  



Table 5: Percentage of classification differences, calculated at the field scale, between maps 

obtained from RF_sdi,green and RF_mdgreen, from RF_sdi,dry and RF_mddry and from RF_sdi,struc 

and RF_mdstruc. When no RF_sdi,SSCj has been built because of insufficient number of class 

(i.e., RF_sd1,green and RF_sd5,dry), the comparison was impossible so the cell was darken. 

Date of images acquisition tim_i  
(Y-M-D) 

2016-08-04 2016-10-03 2016-11-02 2016-11-22 2016-12-02 

Date Number i 1 2 3 4 5 

Green 
vegetation 

fraction 

Number of observed 
classes 

1 2 3 5 6 

% of mapping 
differences obtained 
between RF_sdi,green 
and RF_mdgreen 

  19.5 41.9 42.7 11.7 

Dry 
vegetation 

fraction 

Number of observed 
classes 

3 3 2 2 1 

% of mapping 
differences obtained 
between RF_sdi,dry 
and RF_mddry  

18.0 32.0 9.4 0.3   

Physical 
soil 

surface 
structure 

Number of observed 
classes 

2 4 4 3 5 

% of mapping 
differences obtained 
between RF_sdi,struc 
and RF_mdstruc 

13.3 39.3 18.5 3.6 2.1 

 

 

 

 


