
HAL Id: hal-03604836
https://hal.inrae.fr/hal-03604836

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unraveling negative biotic interactions determining soil
microbial community assembly and functioning

Sana Romdhane, Aymé Spor, Julie Aubert, David Bru, Marie-Christine
Breuil, Sara Hallin, Arnaud Mounier, Sarah Ouadah, Myrto Tsiknia, Laurent

Philippot

To cite this version:
Sana Romdhane, Aymé Spor, Julie Aubert, David Bru, Marie-Christine Breuil, et al.. Unraveling
negative biotic interactions determining soil microbial community assembly and functioning. The
International Society of Microbiologial Ecology Journal, 2022, 16 (1), pp.296-306. �10.1038/s41396-
021-01076-9�. �hal-03604836�

https://hal.inrae.fr/hal-03604836
https://hal.archives-ouvertes.fr


ARTICLE OPEN

Unraveling negative biotic interactions determining soil
microbial community assembly and functioning
Sana Romdhane1,5, Aymé Spor 1,5, Julie Aubert 2, David Bru1, Marie-Christine Breuil1, Sara Hallin 3, Arnaud Mounier1,
Sarah Ouadah2, Myrto Tsiknia 1,4 and Laurent Philippot 1✉

© The Author(s) 2021

Microbial communities play important roles in all ecosystems and yet a comprehensive understanding of the ecological processes
governing the assembly of these communities is missing. To address the role of biotic interactions between microorganisms in
assembly and for functioning of the soil microbiota, we used a top-down manipulation approach based on the removal of various
populations in a natural soil microbial community. We hypothesized that removal of certain microbial groups will strongly affect the
relative fitness of many others, therefore unraveling the contribution of biotic interactions in shaping the soil microbiome. Here we
show that 39% of the dominant bacterial taxa across treatments were subjected to competitive interactions during soil
recolonization, highlighting the importance of biotic interactions in the assembly of microbial communities in soil. Moreover, our
approach allowed the identification of microbial community assembly rule as exemplified by the competitive exclusion between
members of Bacillales and Proteobacteriales. Modified biotic interactions resulted in greater changes in activities related to N- than
to C-cycling. Our approach can provide a new and promising avenue to study microbial interactions in complex ecosystems as well
as the links between microbial community composition and ecosystem function.

The ISME Journal (2022) 16:296–306; https://doi.org/10.1038/s41396-021-01076-9

INTRODUCTION
Microbial communities in nature exist in complex and dynamic
consortia of populations that are not only central to all major
biogeochemical cycles, but also influence plant, animal, and
human welfare [1–3]. These communities assemble through
neutral processes, as well as through abiotic and biotic filtering
[4]. While a large body of research has focused on the importance
of abiotic factors [5, 6], there have been relatively less investiga-
tions on the importance of biotic factors, and in particular on the
interactions between microorganisms, to explain the composition
of microbial communities in the environment [7]. Understanding
the different processes involved in the assembly of such complex
communities is currently receiving attention due to the great
potential of translating such knowledge into practical outcomes,
e.g., in agroecosystems to increase soil fertility and improve crop
production [8, 9].
Various types of positive and negative interactions between

microorganisms, ranging frommutualism to competition, have been
identified [10–12]. For example, in cooperative interactions, micro-
organisms can divide labor, whereby some individuals specialize to
carry out tasks that benefit other individuals [13]. On the other hand,
competition can be fierce between microorganisms, with evidence
of both indirect exploitative competition, in which an individual
consumes the resources required by another member, and
direct interference competition, in which an individual inhibits the

growth of another through the synthesis of harmful products
[12, 14, 15]. Negative interactions between microorganisms
also comprise parasitism and predation with diverse predatory
viruses, protists, and even bacteria described from a variety of
environments [16–19].
To date, efforts to experimentally identify biotic interactions

between microorganisms have typically relied on bottom-up
approaches based on synthetic-assemblage experiments con-
ducted in vitro with culturable strains [20–22]. These co-culture
experiments are based on the assumption that if there is an
interaction between two microbial species, the fitness of at least
one of them is different when grown together than when grown
in the absence of the other species [14]. Such approaches have
provided insights into underlying mechanisms by which micro-
organisms interact, but do not reflect the complexity of natural
microbial communities or of their natural habitat. There is
therefore little empirical data regarding the extent to which biotic
interactions are shaping the composition of complex microbial
communities in natural settings.
Here, we take an alternative top-down approach based on

microbial community manipulation by targeted removal of various
microbial groups in a native soil community to test the role of
biotic interactions for microbial community assembly. Specifically,
soil microbial communities were first subjected to different
biocidal and filtration treatments before being reinoculated in
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their native, but sterilized soil to allow them to assemble during
recolonization. Such removal treatments are intuitively predicted
to cause changes in the fitness of the microorganisms interacting
with those being depleted by the treatment. We hypothesized
that manipulation of the microbial community will lead to
changes in the community assembly during the soil colonization
process in ways that can unravel the importance of biotic
interactions, and their consequences for soil functions.
We show here that 39% of the dominant bacterial taxa across

treatments were subjected to competitive interactions during soil
recolonization, therefore experimentally showing for the first time
the importance of negative interactions between microorganisms
for community assembly in a complex environment. This removal
approach can also provide a new framework to study microbial
interactions in ecosystems as well as links between microbial
community composition and ecosystem function based on the
analogy to gene-knockout procedures in genomics.

MATERIALS AND METHODS
Soil sampling and experimental design
The soil was collected from the Epoisses site in France (47° 30′ 22.1832′′ N,
4° 10′ 26.4648′′ E) in March 2017. The soil properties were 41.9% clay,
51.9% silt, and 6.2% sand, pH 7.2, and C and N content 15.5 and 1.4 g kg−1

dry soil, respectively. Twenty-five soil subsamples were kept at −20 °C
to characterize the initial microbial species pool. The collected soil was
sieved through 4mm before preparing soil suspensions by mixing 100 g
equivalent dry mass soil with 150ml sterile distilled water with a waring
blender under sterile conditions. Soil suspensions were diluted ten times,
centrifuged at 1000 × g for 2 min and supernatants were then filtrated at
10 µm in order to remove larger microbial communities. Soil suspensions
were subjected to ten different treatments aiming at removing
various microbial groups: three types of biocidal antibiotics (gentamicin,
ramoplanin, and ciprofloxacin), an antimicrobial peptide (RW4), four
filtration treatments based on cell size (F ≥ 3 µm, 0.8 ≤ F < 3 µm, 0.4 ≤ F <
0.8 µm, and F < 0.4 µm), a heat shock (0 °C for 5 min/70 °C for 15min/0 °C
for 5 min), and oxidative stress treatments (H2O2 at a final concentration of
50mM). Each treatment was replicated on 25 soil suspensions and 4.5 mL
from each treated soil suspensions was inoculated into 147mL plasma
flasks containing 30 g of the same gamma-sterilized soil (two times 35 kGy;
Conservatome, Dagneux, France). All of the 275 soil microcosms were
closed with sterile lids and incubated at 20 °C at a soil moisture ranging
between 60 and 80% of the soil water-holding capacity for 45 days. Soil
microcosms inoculated with non-treated soil suspensions and incubated
45 days (NT control) were used as controls (n= 25; Fig. 1).

Assessment of microbial community composition and
diversity
After 45 days of incubation, soil microcosms were used for analyses of total
bacterial and fungal diversity and composition by sequencing the 16S rRNA
and ITS genes via Illumina Miseq 2 × 250 bp paired-end analysis. First, DNA
was extracted from 250mg from each of the 275 soil microcosms as well
as the 25 original soil subsamples using the DNeasy PowerSoil-htp 96-well
DNA isolation kit (Qiagen, Hilden, Germany). Amplicons were generated for
all 300 DNA extracts in two steps. In the first step, the V3-V4 hypervariable
region of the bacterial 16S rRNA gene was amplified by polymerase chain
reaction (PCR) using the fusion primers U341F (5’-CCTACGGGRSGCAGCAG-3’)
and 805R (5’-GACTACCAGGGTATCTAAT-3’), with overhang adapters
(forward: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, adapter: GTCTCGTG
GGCTCGGAGATGTGTATAAGAGACAG) to allow the subsequent addition of
multiplexing index-sequences. Fungal ITS was amplified using the primers
ITS3F (5’-GCATCGATGAAGAACGCAGC-3’) and ITS4R (5’-TCCTCSSCTTATTGA-
TATGC-3’). Thermal cycling conditions of the first step PCR were as follows:
98 °C for 3min followed by 98 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s (25
and 30 cycles for 16S rRNA and ITS genes, respectively) and a final extension
for 10min at 72 °C. Duplicate first step PCR products were pooled and then
used as template for the second step PCR. In the second step, PCR
amplification added multiplexing index-sequences to the overhang adapters
using a unique multiplex primer pair combination for each sample. Thermal
cycling conditions were as follows: 8 °C for 3min followed by 98 °C for 30 s,
55 °C for 30 s, and 72 °C for 30 s (8 and 10 cycles for 16S rRNA and ITS genes,
respectively) and a final extension for 10min at 72 °C. Duplicate second step

PCR products were pooled then visualized in 2% agarose gel to verify
amplification and size of amplicons. The amplicons were cleaned-up and
pooled using sequalPrep Normalization plate kit 96-well (Invitrogen, Carlsbad,
CA, USA). Sequencing was performed on MiSeq (Illumina, 2 × 250 bp) using
the MiSeq reagent kit v2 (500 cycles). Demultiplexing and trimming of
Illumina adaptors and barcodes was done with Illumina MiSeq Reporter
software (version 2.5.1.3).

Sequencing and bioinformatic analysis
Sequence data from the 300 soil samples were analyzed using an in-house
developed Python pipeline (available upon request). Briefly, 16S rDNA and
ITS sequences were assembled using PEAR [23] with default settings.
Further quality checks were conducted using the QIIME pipeline [24] and
short sequences were removed (<400 bp for 16S and <300 bp for ITS).
Reference-based and de novo chimera detection, as well as operational
taxonomic units (OTUs) clustering were performed using VSEARCH [25]
and the adequate reference databases (SILVA representative set of
sequences for 16S rRNA and UNITE’s ITS2 reference dynamic dataset for
ITS). The identity thresholds were set at 94% for 16S rRNA based on
replicate sequencing of a bacterial mock community [26] and 97% for ITS.
A total of 4,307,710 bacterial 16S rRNA gene and 15,077,367 fungal ITS
region sequences were obtained. Representative sequences for each OTU
were aligned using PyNAST [27] and a 16S rDNA phylogenetic tree was
constructed using FastTree [28]. Taxonomy was assigned using UCLUST
[29] and the SILVA reference database 132 [30]. For ITS, the taxonomy
assignment was performed using BLAST [31] and the UNITE reference
database (v.7-08/2016 [32]). Raw sequences were deposited at the NCBI
under the BioProject PRJNA542862.
Bacterial and fungal α-diversity metrics (i.e., observed species, Simpson’s

reciprocal, Shannon, and for bacteria also Faith’s Phylogenetic Diversity PD
[33]) and Net Relatedness and Nearest Taxon indices [34] were calculated
based on rarefied OTU tables (5000 sequences per sample for 16S rDNA
and 8000 sequences per sample for ITS). To assess the contribution of
deterministic and stochastic processes to the bacterial community
structure, the normalized stochasticity ratio index (NST) was calculated
[35]. Weighted UniFrac distance matrix [36] and Bray–Curtis dissimilarity
matrix were also computed to detect variations in the structure of
microbial communities for 16S rDNA and ITS, respectively.
Low-abundance OTUs were discarded by keeping OTUs with at least

0.5% relative abundance across all samples (353 and 1370 OTUs for 16S
rDNA and ITS, respectively). Due to the high proportion of zero counts,
fungal OTUs with low prevalence (present in less than 70% of replicates
per treatment) were removed (305 OTUs).

Quantification of microbial communities
The abundances of total bacterial and fungal microbial communities as
well as that of N-cycle microbial guilds were estimated by real-time
quantitative PCR (qPCR) assays. For each treatment, the 25 DNA extracts
were used to prepare 5 equimolar DNA mixtures (each corresponding to
five different DNA extracts), which were added as templates for the qPCR
assays (n= 5). Total bacterial and fungal communities were quantified
using 16S rDNA and ITS primers described by Muyzer et al. [37] and White
et al. [38], respectively. The nitrification gene amoA and the denitrification
genes nirK and nirS were used as molecular markers to quantify the
bacterial (AOB) and archaeal (AOA) ammonia-oxidizing and the denitrifying
communities, as described previously [39]. qPCR reactions were carried out
in a ViiA7 (Life Technologies, Carlsbad, CA, USA) in a 15 µL reaction volume
containing 7.5 µL of Takyon Master Mix (Eurogentec, Liège, Belgium), 1 µM
of each primer, 250 ng of T4 gene 32 (MP Biomedicals, Santa Ana, CA, USA),
and 1 ng of DNA. Two independent runs were performed for each real-
time PCR assay. Standard curves were obtained using serial dilutions of
linearized plasmids containing appropriated cloned targeted genes from
bacterial strains or environmental clones. PCR efficiency for the different
assays ranged from 77 to 101%. No-template controls gave null or
negligible values. Inhibition in qPCR assay was tested by mixing soil DNA
extracts with either control plasmid DNA (pGEM-T Easy Vector, Promega,
Madison, WI, USA) or water. No inhibition was detected in any case.

Assessing soil functions related to carbon and nitrogen
cycling
Causal effects of microbial community manipulations on soil functioning
were assessed by measuring a range of activities related to C and N cycles
in replicate soil samples from each treatment (n= 5). The MicroResp
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method was used to measure microbial respiration rates of different C
substrates across different treatments as described by Campbell et al. [40].
Eleven substrates were used: D-(+)-galactose, L-Arginine, Citric acid, L-
Alanine, L-Malic acid, L-(+)-Arabinose, N-Acetyl glucosamine, Glucose
phosphate, D-(-)-Fructose, D-(+)-Trehalose, and Gallic_acid. Soil nitrogen
pools (NO3

– and NH4
+) were extracted using 50mL of 1 M KCl that was

added to ca. 10 g fresh soil, shaken vigorously (80 rpm for 1 h at room
temperature), filtered and kept frozen until quantification according to ISO
standard 14256-2. Quantification was performed by colorimetry in a BPC
global 240 photometer.

Statistical analyses
Statistical analyses were conducted using R statistical software version
3.4.1 [41]. Differences between treatments in gene copy abundances (16S
rRNA, ITS, bacterial and archaeal amoA, nirK, and nirS), ammonium and

nitrate concentrations, microbial respiration measurements (n= 5) and the
microbial α-diversity indices (n= 25) were tested using ANOVAs followed
by Tukey’s honestly significant difference test (p value < 0.05) using the
agricolae package [42]. Normality and homogeneity of the residual
distribution were verified and log-transformations were performed when
necessary.

Evaluating the impact of the removal treatments on beta-
diversity. Permutational multivariate analysis of variance (PermANOVA)
was carried out on the weighted UniFrac and the Bray–Curtis
dissimilarity distance matrices to detect significant differences between
treatments (n= 25) in community composition using adonis function
implemented in the vegan package [43]. Principal coordinates analysis
(PCoA) visualizations were created using the plot3D package using
scatter3D function [44].

Fig. 1 Schematic illustration of the experimental design. a Design of the microcosm experiment to manipulate the soil microbial
community by subjecting soil suspensions to a range of removal treatments (three antibiotics, one antimicrobial peptide, four size filtration,
one heat shock, and one oxidative stress), targeting various microbial groups (n= 25). Pie charts are symbolizing the composition of microbial
communities. Values in parenthesis indicate the number of replicates. b Summary of possible ecological interactions between different
species (A, B, and C) in the community (before) and consequences in each case for the other two species (increased or decreased relative
fitness represented by the size of the symbols) when species A is depleted by a removal treatment (after). In examples 1–3, depletion of
species A caused a decrease in relative fitness of species B, which it is not possible to distinguish from a decrease in relative fitness caused by a
direct effect of the removal treatment. Only examples 4–6 causing an increase in the relative fitness are detected in our approach.

S. Romdhane et al.

298

The ISME Journal (2022) 16:296 – 306



Identification of OTUs significantly affected by the removal treatments.
Differential abundance analysis of microbial community composition was
performed by comparing the count matrices between each treatment
(n= 25) and the NT control (n= 25) using the default parameters of
DESeq2 Bioconductor package (v.1.30.1), which allows for testing for
changes in count matrices between conditions based on negative binomial
generalized linear models [45, 46]. Significant OTUs result from
Benjamini–Hochberg adjusted p values (BH-adjusted p value < 0.00001).
Because of the high variability in the distribution of fungal sequences
across replicates, only OTUs having a coefficient of variation lower than
200% within a given treatment and within NT control were kept for the
DESeq2 analysis.
Bacterial OTUs exhibiting significant changes were used to build pruned

trees using the ape package [47] and the trees were visualized using the
Interactive Tree of Life [48].

Co-occurrence networks construction. Bacterial networks were constructed
based on OTU count data (353 OTUs) using both all treatments plus the NT
control for the global network (275 samples). Microbial inter-domain
network was constructed using filtered bacterial and fungal OTU tables
(353 and 305 OTUs, respectively) from all treatments plus the NT control
(275 samples). For the original soil samples (25 samples), raw read count
tables of both bacteria and fungi were used after removing OTUs that are
not present in all replicates. Networks were inferred using a sparse
multivariate Poisson log-normal (PLN) model with a latent Gaussian layer
and an observed Poisson layer using the PLNmodels package [49]. The best
network was selected using a Stability Approach to Regularization
Selection [50]. An inter-domain-specific normalization with the GMPR
(geometric mean of pairwise ratios) method was performed to take into
account the heterogeneity of sequencing depth [51]. For visualization
purpose, only partial correlations with |ρ| > 0.1 were considered. Networks
were visualized using the Cytoscape software [52]. Nodes corresponding to
the OTUs that showed significant changes in relative abundance based on
the DESeq2 analysis were identified using the merge function in R and
colored in the network according to log2-fold changes (positive, negative,
or both depending on the treatment).

Multivariate integration of microbial activities, gene copy abundances, and
community composition. Integration and visualization of bacterial OTUs
(353), gene copy abundances (16S rRNA, bacterial, and archaeal amoA, nirK,
and nirS), and microbial activity measurements were realized using the
mixOmics package [53] using DIABLO (Data Integration Analysis for
Biomarker discovery using a Latent component method for Omics studies)
in order to identify correlated variables between different data sets
(Pearson’s correlation |r| > 0.7) [54].

RESULTS AND DISCUSSION
Experimental manipulation of microbial community assembly
The experiment takes advantage of the enhanced interactions
occurring between microorganisms during their recolonization of
sterile soils [55, 56] and we manipulated these interactions using
various removal approaches (Fig. 1a). Removal treatments cause
depletion of different OTUs, of which some are assumed to have
positive or negative interactions with the remaining OTUs. It is
therefore expected that the relative fitness of the remaining OTUs
that are competing or cooperating with the depleted ones will be
modified in the removal treatments during soil recolonization. In
this study, it was not possible to distinguish a decrease in relative
fitness due to changes in positive interactions from a direct effect
of the removal treatment (Fig. 1b). We therefore only focused on
negative interactions that caused an increased relative fitness of
OTUs that were previously impaired by the depleted ones. Hence,
cases of negative interactions for which both competing strains
were affected by the removal treatments or causing a decreased
relative fitness (example 3, Fig. 1b) could not be determined in our
analysis.
A total of 5551 bacterial and 6949 fungal OTUs were found

across the different treatments and the original soil samples. To
capture the effects of our removal approach on bacterial and
fungal communities, differentially abundant OTUs were tested
after soil recolonization by pairwise comparisons between the

removal treatments and the control without removal treatment
(NT control) using DESeq2 [45]. The removal approach effectively
led to the depletion of bacterial groups (i.e., with significant
decrease in relative abundances in a removal treatment compared
to the NT control, BH-adjusted p value < 0.00001) that were
different between treatments (Fig. 2). For example, we found that
members of the Actinomycetes and Bacteroides were affected by
the ramoplanin, which is an actinomycete-derived antibiotic. By
contrast, ciprofloxacin mostly affected members of the Proteo-
bacteria. Proteobacteria and Bacteroides were also the groups that
exhibited the sharpest decline after the oxidative stress and the
heat shock treatments. Overall, the depleted OTUs represented
between 0.02 and 25% of the total bacterial community in the NT
control (and <0.0003–2.3% in the original soil samples in which
the five most abundant OTUs represented <5% of the commu-
nity), which indicates that the selected treatments successfully
affected both dominant and rare taxa (Supplementary Fig. 1).
Phylogenetic diversity of OTUs that declined significantly in any

of the removal treatments compared to the NT control had a
higher degree of relatedness than the total bacterial community
(Tukey’s test, p value < 0.05; Supplementary Fig. 2). This shows
that, as expected, bacterial taxa were mainly non-randomly
depleted. UniFrac analyses demonstrated that our manipulation
experiment resulted in differences in bacterial community
structure between treatments with various degrees of dissimilarity
to the NT control (PermANOVA, p value < 0.01; Fig. 3a). Major
changes were observed in the heat shock and oxidative stress
treatments and to a lesser extent in the ciprofloxacin treatments,
while the bacterial community structure remained more similar to
the control in the ramoplanin and two filtration treatments (Fig. 3
and Supplementary Figs. 3 and 4; Tukey’s test, p value < 0.05). The
strong clustering by treatment suggests a limited stochasticity
during bacterial community assembly despite a few treatments
exhibiting more random effects than others (Fig. 3a). This was
supported by a NST below 8% for all treatments and NRI/NTI
indices higher than 2, which indicates that the coexisting OTUs
within treatments were phylogenetically more closely related than
expected by chance (Supplementary Figs. 5 and 6). Since the
manipulated communities were inoculated in identical soil
microcosms, differences in bacterial community assembly were
mainly governed by the deterministic effects of the removal
treatments in combination with altered species interactions rather
than abiotic filtering (i.e., soil properties) or stochastic processes.
By contrast, a high variability in the distribution of fungal OTUs
was observed between replicates for the manipulated commu-
nities, but not in the original soil samples (Supplementary Fig. 7).
This was likely due to the breakdown of hyphae during the
experimental procedure causing the stochastic distribution of
fungal OTUs. We found weak to non-significant effects of the
removal treatments on fungal communities with only zero to two
fungal OTUs depleted in all treatments but the heat shock
treatment, in which nine OTUs mostly belonging to the
Hypocreales significantly decreased. Therefore, even if fungi are
not excluded, we consider that our experimental approach mainly
allows detection of interactions involving bacteria.
Changes in bacterial community composition were concomitant

with an increase in bacterial abundance, as determined by qPCR,
by at least 1–2 orders of magnitude during soil recolonization.
Thus, using the 16S rRNA gene copy number in the original soil to
calculate a maximal bacterial density in the inoculum before
treatment, we estimated that the inoculation level was less than
107 16S rRNA gene copies g−1 dry soil, while we detected at least
5 × 108 16S rRNA gene copies g−1 dry soil after 45 days
(Supplementary Fig. 8). Ecological theory suggests that expansion
competition, in which strains race to utilize resources and occupy
uninhabited space, is the dominant process determining the
outcome of colonization of the sterile soil microcosms by the
inoculated communities [57]. Accordingly, the three over-
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dominant OTUs that were the best at recolonizing the sterile soil
in absence of biocidal treatment (NT control) belonged to
Bacteroidetes and γ-Proteobacteria, which have previously been
reported as copiotrophs (i.e., fast growing in nutrient rich
environments) [58–60]. These fast-growing OTUs represented
53% of the total bacterial community in the NT control, but only
2% in the original soil samples despite being among the 25 most
dominant OTUs (out of 4057). By contrast, members of the
Acidobacteria were common in the original soil, but incapable of
thriving in the sterilized soil. Given that soil sterilization by gamma
irradiation causes release of organic carbon compounds [61], the
disappearance of Acidobacteria supports their proposed oligo-
trophic lifestyle [58, 59].

Ecological importance of biotic interactions for microbial
community assembly
The successful removal treatments should result in an increased
relative abundance of the microorganisms that were subjected to
negative interactions with the depleted ones. Due to the
compositional nature of the community data, the depletion of
certain taxa is also expected to result in an increase in the relative
abundance of the other OTUs; with the proportional increase
being the same for all the remaining OTUs and corresponding to
the fraction of OTUs depleted. However, we observed fold
increase in relative abundance that spanned over orders of
magnitude for the same removal treatment, which indicates that
the relative fitness of some OTUs was stimulated by the depletion
of others. Thus, to identify the OTUs showing a significant increase
in relative fitness after recolonization compared to the control NT

(i.e., higher increase than what would be expected based on just
the fraction of OTUs depleted following the removal treatment), a
differential abundance analysis of microbial community composi-
tion was performed with DESeq2 (negative binomial generalized
linear model, BH-adjusted p value < 0.00001) (Fig. 1b). Although
differential abundance analysis can result in the identification of
false positives, DESeq2 has been shown to be conservative and to
control well the false positive rate [45]. Furthermore, having 25
replicates per treatment as well as including OTUs with at least
0.5% relative abundance across all samples and removing fungal
OTUs with low prevalence, and thereby reducing zero counts, also
helped minimizing the number of false positives. Only four fungal
OTUs, all belonging to the genus Trichoderma, showed a
significantly increased relative fitness across the heat shock and
oxidative stress treatments. In contrast to fungi, we found a
greater number of negative interactions during bacterial commu-
nity assembly. Thus, out of the 353 most abundant bacterial OTUs
across all treatments (i.e., relative abundance of at least 0.5% in
any sample), the relative fitness of 139 OTUs was significantly
stimulated in at least one of the removal treatments with 3- to
more than 5000-fold changes compared to the NT control.
Because larger microorganisms were eliminated by filtering all

soil suspensions at 10 μm before treatment and no known
bacterivore bacterium was identified among the depleted OTUs,
it is likely that exploitative or interference competition was
responsible for the inferred negative interactions even though
predation and parasitism cannot be ruled out [62]. Some of these
bacterial OTUs were abundant in one or more removal treatments,
whereas they were barely detected in the NT control (Fig. 2). For

Fig. 2 Phylogenetic relationships and distribution of the dominant 353 OTUs. Log2-fold change, as calculated by DESeq2 analysis, of
significantly increasing and decreasing bacterial OTUs in the removal treatments when compared to the NT control are represented by the
blue-to-red color gradient. The white color indicates OTUs that are not affected by the treatments. The affiliation of OTUs at the phylum or
class levels is indicated by different colors on the internal ring. Bootstrap values >80 are indicated by black circles.
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example, a quarter of the most dominant OTUs in the oxidative
stress treatment belonged to the Bacillales, which accounted for
21% of the bacterial community, whereas Bacillales were rare in
both the NT control and the original soil samples (0.57% and
0.14%, respectively). This was the case even when considering that
the total bacterial abundance was two to six times lower in the
oxidative stress treatment than in the original soil samples or in
the NT control (Supplementary Fig. 8). This increase in the
proportion of Bacillales in the community, usually a low-
abundance taxa in soils [63], supports the idea that microbial
rank abundance curves may be highly dynamic and that even rare
subordinate species can become dominant when conditions turn
out to be more favorable [64, 65]. Given that environmental
factors and resources were the same for all microcosms before
inoculation, our findings indicate that competitive exclusion rather

than abiotic constraints prevents the rise of rare populations
during soil recolonization. One interesting question is why high
fitness inequalities have not driven the weak competitors to
extinction in the original soil samples, a contradiction known as
the biodiversity paradox. In the case of the Bacillales, it is likely
their ability to enter a dormant state as spores and therefore to
persist in a non-interactive state that explains their coexistence
over time via the soil spore bank as previously suggested using
theoretical models [64]. Overall, our findings in complex soil
systems show that 39% of the dominant bacterial taxa across
treatments were subjected to competitive interactions during soil
recolonization. Although our approach may have inflated biotic
interactions, for example by depriving bacteria from their natural
shelters, the results extend previous evidence from in vitro and
theoretical studies suggesting that competition is a common type

Fig. 3 Differences in bacterial community composition across treatments. a Principal coordinates analysis (PCoA) of the weighted UniFrac
distance matrix of 16S rRNA gene amplicons showing shifts in the bacterial community structures between the original soil, NT control, and
removal treatments. The different treatments are represented by different colors as specified in the legend. b Bacterial community
composition between the original soil samples, NT control, and the different treatments. Relative abundances are shown at the phylum and
class levels and expressed as a percentage of the total number of OTUs.
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of biotic interaction between bacteria [22, 62, 66]. Despite being
beyond the scope of this work, efforts to characterize the
mechanistic forces behind the observed interactions will allow
deciphering whether exploitative or interference competition was
prevalent in the studied soil microbiota.

Ecological network inference recapitulates biotic interactions
We reconstructed different networks, to infer significant associa-
tions between microorganisms, using a recently developed sparse

multivariate PLN model [49]. First, the inferred global network
across domains from all manipulation treatments and the NT
control shows no association between bacteria and fungi, while
significant edges between both domains were observed in the
original soil samples (Supplementary Fig. 9a, b, respectively). This
supports the results of the DESeq2 analysis, suggesting that
bacteria rather than fungi were engaged in interactions unraveled
by our removal approach. Next, we inferred a bacterial network
including all treatments. To identify bacterial OTUs whose

Fig. 4 Bacterial network inferred using all treatments and NT control samples. The nodes represent individual OTUs with the
corresponding phylum. The nodes are also colored according to the DESeq2 results: green nodes represent OTUs with decreasing fitness, blue
nodes represent OTUs with increasing fitness, gray nodes represent OTUs with both increasing and decreasing fitness (depending on the
treatment), and orange nodes represent OTUs that were neither increasing nor decreasing. Edge thickness is proportional to partial
correlations between nodes and represents associative (black, ρ > 0.1) or exclusionary relationships (red, ρ <−0.1).
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Fig. 5 Data integration analysis for the identification of highly correlated variables across data sets. a Visualization of associated bacterial
OTUs (blue nodes), N- and C-cycling activities (green nodes), and abundances of microbial groups (red nodes). The taxonomic identities of the
OTUs are indicated at the phylum or class level. The N- and C-cycling activities are based on inorganic N pools and respiration rates of
different substrates, respectively. Abundances of microbial groups are corresponding to the total bacterial community abundance (16S), the
proportion of ammonia-oxidizing bacteria, and denitrifiers in the total bacterial community (AOB/16S, nirK/16S, and nirS/16S, respectively).
Edges indicate positive (blue) or negative correlations (red) as defined by Pearson’s correlation r > 0.7 or r <−0.7, respectively. Different
modules are represented by different colors and numbered (I–V). Correlation matrices of variables across data types in b modules I and II
(green and yellow) and c within module III (purple).
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depletion actually leads to a significant increased relative fitness of
the remaining ones, the nodes were colored according to the
results of the DESeq2 analysis (Fig. 4). Out of the 180 OTUs present
in this network, 90 were among those that significantly increased
in at least one of the removal treatments compared to the NT
control. Moreover, 50 out of 55 negative edges in the network are
connecting depleted OTUs to OTUs with increased relative fitness.
Thus, the interactions unraveled by our microbial community
manipulation approach closely matched the inferred nodes and
edges, which provides a cross-validation of our network analysis.
Using a removal approach allowed going beyond simply testing
significant associations in natural communities, as we could
determine which OTUs were outcompeted. Thus, we found
conserved negative interactions indicating that Bacillales were
capable to grow only when α− and/or γ- Proteobacteria were
depleted by the removal treatments (e.g., heat shock and
oxidative stress; Figs. 2 and 4). Similar antagonistic patterns have
been observed in previous studies showing segregated spatial co-
occurrences or checkerboard patterns between Firmicutes and γ-
Proteobacteria [55, 67]. Interestingly, in the global bacterial
network, several γ-Proteobacteria (Xanthomonas sp.) have nega-
tive edges with another γ-Proteobacteria (Burkholderia sp.) and
two Bacillus hubs, which were themselves connected by negative
edges. Since the fitness of these Bacillus and Burkholderia strains
was significantly increased by a removal treatment, this suggests
that these strains were thriving, but in competition when their
competitors were depleted. Altogether these findings can be
interpreted as evidence for predictable rule of bacterial commu-
nity assembly. Such understanding of what govern community
assembly would be instrumental for steering the soil microbiome
toward a community that enhance ecosystem services [9, 20].

Shifts in soil functions associated with microbial community
manipulation
Soil functions related to the C and N cycles were investigated
using microbial respiration rates of different C substrates
(MicroResp), inorganic nitrogen pools as well as the abundance
of ammonia-oxidizer and denitrifier genes as proxies for these
specific processes. We found significant differences in the
emergent functions of the manipulated soil microbial commu-
nities (Tukey’s test, p value < 0.05; Supplementary Fig. 10). Notably,
microbial communities that were subjected to ciprofloxacin
exhibited a significantly higher ability to respire glucosamine
and fructose than all other removal treatments and controls
(Tukey’s test, p value < 0.05; Supplementary Fig. 11), whereas
respiration rates of many C substrates were lower in microbial
communities that assembled after heat shock and oxidative stress
treatments. Among the soil functions assessed, the greatest
changes were observed for N cycling. The soil nitrate content
declined in all treatments except one (0.8 µm filtration) when
compared to the original soil samples (Tukey’s test, p value < 0.05;
Supplementary Fig. 10b), which is in accordance with a previous
manipulation experiment [55].
To further explore the relationship between the composition of

the manipulated microbial community membership and soil
functions, we used a multivariate dimension reduction discrimi-
nant analysis method that builds on Projection to Latent Structure
models [54] (Fig. 5). The red and blue modules are showing OTUs
(mostly Firmicutes and Actinobacteria and Actinobacteria, Chloro-
flexi and α-Proteobacteria, respectively) that were highly corre-
lated with each other and with the total bacterial abundance but
without any correlation to a soil function. However, several
correlations that emerged in the other modules agreed with
empirical knowledge. For example, Actinobacteria, which have a
well-described role in carbon cycling [68], are representing three
out of the five bacterial OTUs that were grouped in the module
containing all the C-substrate respiration rates but gallic acid. In
line with previous studies describing soil nitrification—the

oxidation of ammonia to nitrate—as usually limited by its first
step performed by ammonia oxidizers [69], the nitrate pool was
correlated with the proportion of ammonia-oxidizing bacteria in
the total bacterial community (AOB/16S rRNA). The proportion of
AOB was included in a fully connected module comprising the
proportion of nirK- and nirS-denitrifiers and eight OTUs, one of
them belonging to the Nitrospiracea, a well-known group of nitrite
oxidizers [70]. Interestingly, the nitrate pool was also correlated
with another module of seven OTUs, one of them belonging to
the Chloroflexi, which have been identified as a novel group of
nitrite oxidizing bacteria [71] (Fig. 5). Since the nitrate pool and the
abundance of AOB were the highest both in the original soil
samples and in the 0.8 µm filtration treatment, while 16S rRNA
gene sequences from known bacterial nitrifiers (Nitrospira and
Nitrosomonas) in the 0.8 µm filtration treatment was about eight
times lower than in original soil samples, one can speculate that
one or several of these OTUs in this module could be also be
capable of ammonia oxidation.

CONCLUSIONS
By exploring biotic interactions within a community of naturally
co-occurring soil microorganisms during the recolonization of
their original habitat, we demonstrated that 39% of the dominant
bacteria across treatments were subjected to negative interactions
during community assembly. The approach used here allowed us
to tie correlation patterns inferred by network analysis to
ecological interactions revealed by experimental manipulation of
the microbial community. We found evidence for competitive
interactions between members of the low-abundance Bacillales
and the dominant Proteobacteriales and suggest that
competition-driven niche segregation rather than habitat features
prevents the rise of rare populations in soil. Differences in the
emergent functions of the manipulated communities were
detected, with more pronounced shifts in functions related to N-
rather than C-cycling. Thus, microbial community manipulation by
removal, in addition to being informative about biotic interactions
during assembly, may represent an alternative avenue to better
understand the links between microbial community composition
and ecosystem functioning based on the analogy to gene-
knockout procedures in genomics [72]. Overall, our results suggest
that some simple rules of bacterial community assembly can be
identified, which has potential for predicting and steering the soil
microbiota to promote or suppress certain functions in managed
ecosystems. However, whether these empirically observed inter-
actions can be generalized to other environments remains to be
elucidated.
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