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Abstract

We give the explicit solution of the optimal control problem which consists in minimizing the epi-
demic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject
to a L' budget constraint. The optimal strategy is given as a feedback control which consists in an
singular arc maintaining the infected population at a constant level until the immunity threshold is
reached, and no intervention outside the singular arc.
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1 Introduction

Since the pioneer work of Kermack and McKendrick [16], the SIR model has been very popular in
epidemiology, as the basic model for infectious diseases with direct transmission (see for instance [22, 18]
as introductions on the subject). It retakes great importance nowadays due to the recent coronavirus
pandemic. In face of a new pathogen, non-pharmaceutical interventions (such as reducing physical
distance in the population) are often the first available means to reduce the propagation of the disease,
but this has economical and social prices... In [20, 19], the authors underline the need of control strategies
for epidemic mitigation by ”flattering the epidemic curve”, rather than eradication of the disease that
might be too costly. Several works have applied the optimal control theory considering interventions as
a control variable that reduces the effective transmission rate of the SIR model, and studied optimal
strategies with criteria based on running and terminal cost over fixed finite interval or infinite horizon
[4, 7, 8, 15, 21, 5, 9, 12, 17, 6]. However, the highest peak of the epidemic appears to be the highly
relevant criterion to be minimized (especially when there is an hospital pressure to save individuals with
severe forms of the infection). In [20], the authors studied the minimization of the peak of the infected
population under the constraint that interventions occur on a single time interval of given duration. In
the present work, we consider the same criterion, but under a budget constraint on the control (as an
integral cost) that we believe to be more relevant as it takes into account the strength of the interventions
and does not impose an a priori single time interval of given length for the interventions to take place
(although we have been able to prove that the optimal solution consists indeed in having interventions
on a single time interval but with a control strategy different that the one obtained in [20]). Let us also
mention a more recent work [1] that considers a kind of ”dual” problem, which consists in minimizing
an integral cost of the control under the constraint that the epidemic stays below a prescribed value and
an additional constraint on the state at a fixed time. The structure of the optimal strategy given by
the authors in [1] is similar to the one we obtained without having to fix a time horizon and a terminal
constraint. All the cited works rely on numerical methods to provide the effective control. Here, we give
an explicit analytical expression of the optimal control.

Let us stress that optimal control problems with maximum cost are not in the usual Mayer, La-
grange or Bolza forms of the optimal control theory [10], for which the necessary optimality conditions
of Pontryagin’s Principle apply, but fall into the class of optimal control with L criterion, for which



characterizations have been proposed in the literature mainly in terms of the value function (see for in-
stance [3]). Although necessary optimality conditions and numerical procedures have been derived from
theses characterizations (see for instance [2, 11]), these approaches remain quite difficult and numerically
heavy to be applied on concrete problems. On another hand, for minimal time problems with planar
dynamics linear with respect to the control variable, comparison tools based on the application of the
Green’s Theorem have shown that it is possible to dispense with the use of necessary conditions to prove
the optimality of a candidate solution [14]. Although our criterion is of different nature, we show in the
present work that it is also possible to implement this approach for our problem.

The paper is organized as follows. In the next section, we posit the problem of peak minimization
to be studied. In Section 3, we define a class of feedback strategies that we called "NSN”, and give
some preliminary properties. Section 4 proves that the existence of an NSN strategy which is optimal
for our problem, and makes it explicit. Finally, Section 5 illustrates the optimal solutions on numerical
simulations and discusses about the optimal strategy.

2 Definitions and problem statement

We consider the SIR model i
S =-8SI(1—u)
I=8SI(1—u)—~I (1)
R= ~vI
where S, I and R denotes respectively the proportion of susceptible, infected and recovered individuals
in a population of constant size. The parameters 8 and - are the transmission and recovery rates of the
disease. The control u, which belongs to U := [0, 1], represents the efforts of interventions by reducing the
effective transmission rate. For simplicity, we shall drop in the following the R dynamics. Throughout

the paper, we shall assume that the basic reproduction number Ry is larger than one, so that an epidemic
outbreak may occur.

Assumption 1.

R022é>1

v

For a positive initial condition (S(0), I(0)) = (So, Ip) with So+ Iy < 1, we consider the optimal control
problem which consists in minimizing the epidemic peak under a budget constraint

inf I(t 2
ST “

where U denotes the set of measurable functions u(-) that take values in U and satisfy the L' constraint

+o00
/ u(t)dt < Q
0

Remark 1. From equations (1), one can easily check that the solution I(t) tends to zero when t to +o0o
whatever is the control u(-), so that the supremum of I(-) over [0,+00) in (2) is reached.

Equivalently, one can consider the extended dynamics.
S=—BSI(1—u)
i = BSI(1 )~ I (3)
C=-u
with the initial condition (S(0), I(0),C(0)) = (So, Iy, @) and the state constraint
C(t)>0, t>0 (4)

A solution of (3) is admissible if the control u(-) takes its values in U and the condition (4) is fulfilled.



3 The NSN feedback

Let us denote the immunity threshold

Spi=Ry =21 <1

B

Note that S(-) is a non increasing function and that one has I < 0 when S < S}, whatever is the control.
If So < Sp, the maximum of I(+) is thus equal to I for any control u(-), which solves the optimal control
problem. We shall now consider that the non-trivial case.

Assumption 2.
So > S,

Under this assumption, we thus know that for any admissible solution, the maximum of I(+) is reached
for S > Sp. For the control © = 0, one can easily check that following property is fulfilled

S(t) + I(t) — Sulog(S(t)) = So + Ip — Sulog(Sp), ¢ >0 (5)

and the maximum of I(-) is then reached for the value

I =1+ So — Sp, — Splog (?)
h

We define the "NSN” (for null-singular-null) strategy as follows.

Definition 1. For I € [Iy, I1,], consider the feedback control

— 5 fI=Tand S>S
wfu,S):{ s YI=Tand 5> 5

0 otherwise

We denote the L' norm associated to the NSN control
£(D) = / Wi(t)dt, T e [Io, In]
0

where u¥1(-) is the control generated by the feedback (6).
This control strategy consists in three phases:
1. no intervention until the prevalence I reaches I (null control),
2. maintain the prevalence I equal to I until S reaches S, (singular control),

3. no longer intervention when S > Sy, (null control)

Remark 2. There is no switch of the control between phases 2 and 3, because u(t) tends to zero when
S(t) tends to Sy, according to expression (6).

One can check straightforwardly the the following properties are fulfilled.
Lemma 1. For any I € [Iy,,], the mazimal value of the control u¥1(-) is given by

= Sh
maz(l) i =1— — 1
Umaz (1) S<

where S is solution of - - -
S —SplogS =5y+ Iy — SplogSy — 1
Moreover, any solution given by the NSN strategy verifies

It)y=1
e



4 Optimal strategy

We first show that the function £ can be made explicit.

Proposition 1. One has

o) = . Tl h] (7

Proof. Note first that whatever is I, S(-) is decreasing with the control (6). One can then equivalently
parameterize the solution I(-), C(-) by
o(t) == 8y — S(t)

instead of t. Posit oy, := o(tn) = So — Sh.

As long as I < I, one has u = 0 which gives

dI Sh

e —1_

do 1(o) So—a>0
dC

%—0

Remind, from the definition of I, that the solution I(-) with u = 0 reaches I}, in finite time. Therefore,
one can define the number B
g:=inf{c >0, I(c) =1} <oy,

which verifies

[ orde =114 0
For o € [7,04], one has u =1 — S, /S, that is
2o
£ ok o-s) -
One then obtains ) R
£ = C0) = Clo) = 557 | G

and with (8) one can write

o) = 5slhf ( /0 " bV do + I — 1)

On another hand, one has

Oh Sh
/ f(O')dO’ZO'h-i-Sthg <S) =1, — I
0

0

which finally gives the expression (7). O

Then, the best admissible NSN control can be given as follows.

Corollary 1. When Q < é’jgﬁz , the smallest I € [Iy, I1,] for which the solution with the NSN strategy is

admissible is given by the value

- o I,
MR =088, 41

and one has

LIM(Q)) =@ (10)

We give now our main result that shows that the NSN strategy is optimal.



Proposition 2. Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal with

I:{N@,Q<%$
IO7 Q 2 ﬁ}:gh,fg

where I*(Q) is defined in (9), and I is the optimal value of problem (2).

Proof. When @ > é’ﬁgﬁg, the NSN strategy is admissible and the corresponding solution verifies

max [(t) = I

t>0

which is thus optimal.

Consider now @ < 2’19753 Let (S*(-), I*(+), C*(-)) be the solution generated by the NSN strategy with

I = I*(Q), and denote u*(-) the corresponding control. Let

S := S*(f) where = inf{t > 0, I*(t) = I}

and
ty = 1inf{t > t, S*(t) = Sn},

We consider in the (5, I) plane the curve
Cr = {(57(1), I"(1)); t € [0, £3]}
For S > S, the control (6) is null and a upward normal to C* is given by the expression

(S, 1) = { ﬁség_]ﬂ } . (S,1) € C* with S € [, 5]

On another hand, the vector field in the (5, ) plane of any admissible solution is

—BSI(1—u)

(8, 1, u) = { BSI(1—wu)—~I

Then, one has B
7(S, I).0(S, I,u) = —ByST?u < 0, (S,I) € C* with S €[S, So]

which shows that any admissible solution is below the curve C* in the (S, I) plane for S € [S, Sp]. For
S € [Sh, 5], the curve C* is an horizontal line with I = I. Therefore, if there exists an admissible solution
(S(),I(-),C(+)) with max; I(t) < I, its trajectory in the (S,I) plane has to be below the curve C* for
any S € [Sy, So]. Let

th = inf{t >0, S(t) = Sh}

One has thus I(t;) < I. Define

1 I
7=t 4+ 1o <>>t*
Ty 8 I(ty) g

and consider the (non-admissible) solution (S(-), I(-), C(-)) of (3) on [0, T] defined by the control

(t):{u*(t), te0,t5)

1, telty,T]
One can straightforwardly check with equations (3) that the solution is

2o o (ST, (), CH (1)), te(0,t})
(5(2), 1(2), €10)) = {(Sh,IeXp(’y(t —t3)),C*(t},) +t;, = 1), tel[ty, T

Remind, from Corollary 1, that one has C*(t;) = 0 by equation (10)). Clearly, one has (S(T), I(T)) =
(Sh, I(tr)) and C(T) < 0. We consider now in the (S, /) plane the simple closed curve I' which is the
concatenation of the trajectory (S(-),I(:)) on forward time with the trajectory (S(-),I(-)) in backward
time:

I:={(S(r),I(r)), T € [0, T} U{(S(T +tn — ), (T + tn — t)), 7 € [T.T + t;]}



that is anticlockwise oriented by 7 € [0,T + ¢5]. Then one has

C(T) — C(ty) = fg dc

From equations (3), one gets

CdS . dS dS+dl (. S\dS dI
C=gsr"="psit T 4 = (1 S) T
and thus
C(T) = C(ty) = 7§ P(S,1)dS + Q(S, I)dI
N
with

S 1 1
P(S,1) = <1 - ;) I Q@8D=

By the Green’s Theorem, one obtains

C(T) = C(ty) //( (S,1) — ZI(SI))deI—//(1—2‘)71]2de[>0

where D is the domain bounded by I' (see Figure 1 as an illustration). This implies C(t,) < C(T') < 0 and
thus a contradiction with the admissibility condition (4) of the solution (S(-),I(:),C(:)). We conclude
that (S*(-), I*(-),C*(+)) is optimal. O

~
| 73

h

Figure 1: The closed curve I' is composed of the trajectory (S*(-),I*(+)) in blue up to to the point (S, I),

the additional part (S(-),I(-)) in red and an hypothetical better trajectory (S(-),I(-)) in backward time
in green.

5 Numerical illustrations and discussion

We have considered the same parameters and initial condition as in [20] (see Table 1). For these values,

B | v | S0 |10
0.21 ‘ 0.07 ‘ 1-10°6 ‘ 10-6

Table 1: SIR parameters and initial condition

one computes
5 Ih ~ 0.3

Wl =
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Figure 2: Optimal solution for @) = 28.

Figure 2 presents a simulation of the optimal solution for the budget @ = 28, as an example (the minimum
peak is reached for I ~ 0.1015). As a comparison, the optimal strategy obtained by Morris et al. in [20]
for a fixed time duration of interventions without consideration of any budget is quite different (see
Figure 3). It consists in four phases: no intervention, maintain I constant, apply the maximal control
(i.e. u = 1) and stop the intervention. This control presents thus three switches and relies on a full break
of the transmission, differently to the NSN strategy which presents only one switch (see Remark 2) and
does not require a full break (see the maximal value of the control given in Lemma 1). Applying an

same budget same duration
0.12 0.12
—_L1 1 —_—11
014 —— Morris et al 0.1 —— Morris et al
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0 T T T T T T 0 T T T T T T
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Figure 3: Comparison of the time evolution of the infected population I between the optimal NSN
strategy and the optimal one of Morris et al.

NSN strategy appears thus less restrictive to be applied in practice. The strategy proposed by Morris et
al. induces also a second peak: after the third phase, the prevalence I increases again up to a peak which
has to be equal to the level maintained during the second phase if its optimally chosen. But this second
peak turns out to be non robust under a mischoice (or mistiming) of the second phase (see [20] for more
details). Comparatively, the NSN is naturally robust with respect to a bad choice of I: the maximum
value of I is always guaranteed to be equal to I. However, a mischoice of I has an impact on the budget



of the NSN strategy, given by expression (7) and illustrated in Table 2 (for model parameters given in
Table 1 and @ = 28).

T-T* | —10% —5% —1% +1% +5% +10%
ch-Q | +1T% +8% +15% +15% % —14%

Table 2: Variation of the control budget of the NSN strategy under a mischoice of I

In case of a new epidemic among a large population, one can consider that the initial number of
infected individuals is very low, while all the remaining population is susceptible. Therefore, one has
So + Iy = 1 with Iy very small, and the optimal value of I can be well approximated by its limiting
expression for Iy = 0, that is

I_é — 1-— Sh + Sh IOg(Sh) (11)
QBS, +1

From property (5), one also gets an approximation of the value S, of S when I reaches I, with u = 0, as
the solution of the equation

Se+1,— Sy log(gg) =1
and then an approximation of the duration of the intervention is given by
S-S
dy =22t
a2l

(one can easily check that along the singular arc I = I, one has S = —~I). For the parameters of Table
1, one obtains the limiting values given in Table 3. This means that depending on the budget @ only,
one can determine the minimal peak and the optimal strategy to apply, without the knowledge of the
initial size of the infected population, provided that parameters 5 and ~ of the disease are known.

jg ‘ Sz ‘ dy
0.1015 ‘ 0.8406 ‘ 71.39

Table 3: The limiting optimal values for arbitrarily small I (with @ = 28)

The question of parameters estimation in the SIR model from data is out of the scope of the present
work. However, while reaching I = I, without intervention, one may expect refinement of the estimates
and thus an adjustment of the value of I.

Note that if it is rather the height of the peak I that is imposed, the corresponding effort can be
determined with expression (11), that is

_ 1 1-5,
Q‘ﬂsh( T ‘1>

as well with the duration of the intervention.

To have a better insight of the impacts of the available budget @ on the course of the epidemic, we
have considered four characteristics numbers:

~

e t;: the starting date of the intervention,

e d: the duration of the intervention,

~|

: the height of the peak,
® U;,q.: the maximal value of the control,

of the optimal solution, depicted on Figure 4 as a function of Q for Iy = 1076 and Sy + Iy = 1. Let us
note that the maximal budget ) under which it is not possible to immediately slow down the progress
of the epidemic is given, according to Proposition 2, by
I — Iy
BSnlo

Qmam = ~4.3 106
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Figure 4: Characteristics numbers as functions of Q.

which is quite high. Moreover, the maximal value of the control is bounded by the value

- 2
uma;c(l) <1-5,= g

far from the value 1 (that would consists in a total lockdown of the population). On Figure 4, one
can see that the peak I can be drastically reduced under a reasonable budget, and that taking larger
budgets slows down the decrease of the peak, while the duration of the intervention carries on increasing,
almost linearly. Indeed, remind that one has d = (S — S},)/(vI) and for an optimal value of I, one has

Q = (I, — I)/(yI) from (9). Then one gets

S_S’JQ

d:
I, —1

but for large values of @, I is small and S closed to one, which gives an approximation of d as the linear
function of @
1-5
d~ h
I,

This implies that for a long duration, fixing the budget @@ or the duration d tends to be equivalent.
Therefore, for a same large duration, the optimal peak gets closed from the optimal one of the strategy of
Morris et al. which constraints the duration only, but the difference of the budgets of these two strategies
gets increasing with always a lower one for the NSN strategy, as one can see on Figure 5.

Q~2.194Q

Finally, this analysis highlights (as already mentioned in [20, 19]) the importance to do not intervene
too early (unless one has a very large budget) and to choose the "right” time to launch interventions.
We believe that curves as in Figure 4 might be of some help for decision makers.
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