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f Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 L5.07.16, 1348 Louvain-la-Neuve, Belgium 
g AgroBioSciences Department, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco 
h INRAE EMMAH, UMR 1114, 84914 Avignon, France   

A R T I C L E  I N F O   

Keywords: 
Precision agriculture 
PROSAIL 
Vegetation indices 
Maize within-field variability 
Digital farming 

A B S T R A C T   

Mapping crop within-field yield variability provide an essential piece of information for precision agriculture 
applications. Leaf Area Index (LAI) is an important parameter that describes maize growth, vegetation structure, 
light absorption and subsequently maize biomass and grain yield (GY). The main goal for this study was to 
estimate maize biomass and GY through LAI retrieved from hyperspectral aerial images using a PROSAIL model 
inversion and compare its performance with biomass and GY estimations through simple vegetation index ap-
proaches. This study was conducted in two separate maize fields of 12 and 20 ha located in north-west Mexico. 
Both fields were cultivated with the same hybrid. One field was irrigated by a linear pivot and the other by a 
furrow irrigation system. Ground LAI data were collected at different crop growth stages followed by maize 
biomass and GY at the harvesting time. Through a weekly/biweekly airborne flight campaign, a total of 19 
mosaics were acquired between both fields with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400 
to 850 nanometres (nm) at different crop growth stages. The PROSAIL model was calibrated and validated for 
retrieving maize LAI by simulating maize canopy spectral reflectance based on crop-specific parameters. The 
model was used to retrieve LAI from both fields and to subsequently estimate maize biomass and GY. Addi-
tionally, different vegetation indices were calculated from the aerial images to also estimate maize yield and 
compare the indices with PROSAIL based estimations. The PROSAIL validation to retrieve LAI from hyperspectral 
imagery showed a R2 value of 0.5 against ground LAI with RMSE of 0.8 m2/m2. Maize biomass and GY estimation 
based on NDRE showed the highest accuracies, followed by retrieved LAI, GNDVI and NDVI with R2 value of 
0.81, 0.73, 0.73 and 0.65 for biomass, and 0.83, 0.69, 0.73 and 0.62 for GY estimation, respectively. Further-
more, the late vegetative growth stage at V16 was found to be the best stage for maize yield prediction for all 
studied indices.   

1. Introduction 

Maize (Zea mays) is one of the major food crops over the world, 
cultivated on more than 182 million ha and producing over 1400 million 
ton of grain in 2018 with an average grain yield of 7.7 ton/ha (FAO, 
2020). The demand for food is increasing worldwide and climate change 

aggravates the volatility of yield (Cogato et al., 2019). Crop yield varies 
between seasons, countries, fields, varieties and even within the same 
field due to diverse management practices and environmental condi-
tions. Monitoring this within-field variability in season and from pre-
vious seasons provides a piece of essential information for farmers, land 
rentals and insurance companies for decision making. Furthermore, 

* Corresponding author at: Lincoln Agritech Ltd, Lincoln University, Lincoln CP 7674, New Zealand. 
E-mail address: francelino.rodrigues@lincolnagritech.co.nz (F.A. Rodrigues).  

Contents lists available at ScienceDirect 

Field Crops Research 

journal homepage: www.elsevier.com/locate/fcr 

https://doi.org/10.1016/j.fcr.2022.108449 
Received 29 April 2021; Received in revised form 5 December 2021; Accepted 19 January 2022   

mailto:francelino.rodrigues@lincolnagritech.co.nz
www.sciencedirect.com/science/journal/03784290
https://www.elsevier.com/locate/fcr
https://doi.org/10.1016/j.fcr.2022.108449
https://doi.org/10.1016/j.fcr.2022.108449
https://doi.org/10.1016/j.fcr.2022.108449
http://creativecommons.org/licenses/by/4.0/


Field Crops Research 282 (2022) 108449

2

within-field variability of yield from previous season is one of the 
fundamental inputs for site-specific crop management recommenda-
tions, such as fertilizer and seed rates (Kayad et al., 2021) through the 
delineation of management zones. 

A common practice for site-specific crop management is to collect 
information with remote and proximal sensing to investigate within- 
field variability of different factors that drive crop yield and quality. 
Acquired images through this approach require a proper analysis with 
specific algorithms, in order to generate the appropriate information 
layers for subsequent decision making and calculation of optimal input 
rates. Use of unmanned aerial vehicles is increasing rapidly in agricul-
ture. They provide images with a high spatial resolution covering up to 
hundreds of hectares in a single flight (Caballero et al., 2020; Lan et al., 
2010). These images can also be used as a tool for proving concepts at 
experimental plot scale for later being upscale through satellite imagery, 
which can cover regional areas. 

Leaf Area Index (LAI) is an important biophysical variable for 
monitoring maize growth and estimating yield (Su et al., 2019a). LAI is a 
dimensionless (m2/m2) variable that describes the canopy structure and 
is related to the vegetation photosynthetic activity and plant health. It 
can be considered as a potential proxy for crop biomass, harvest index 
and grain yield (Baret et al., 1989; Haboudane et al., 2004; Jonckheere 
et al., 2004; Weiss et al., 2004). Crop LAI measurements are based on 
different techniques that can be split between direct and indirect 
methods (Strachan et al., 2015). Direct methods require plant leaves 
collection to be measured by leaf scanner instrument. Indirect methods, 
e.g. close range detection techniques, such as ceptometers, digital 
hemispherical photography (fish-eye), smartphone applications and 
remotely sensed data (Confalonieri et al., 2013; Jonckheere et al., 2004; 
Weiss et al., 2004) which measure the reflectance from incident-diffuse 
and/or the direct illumination, are also widely recognized for such 
measurements (Facchi et al., 2010; Francone et al., 2014). Destructive 
methods are more accurate, however more labouring and time 
consuming as compared to indirect methods. Furthermore, direct 
methods and close range techniques are both limited in terms of spatial 
sampling, while remotely sensed techniques allow for an exhaustive 
characterization of the fields of large spatial extent. 

Estimating LAI with remote sensing (RS) data provides a non- 
destructive, rapid and cost-effective method over large areas, allowing 
also frequent measurements. Two main approaches for LAI estimation 
from RS data are commonly used. First, the empirical approach is based 
on fitting relationships between remotely sensed canopy reflectance 
through spectral vegetation indices (VIs) and in situ LAI measurements 
(Haboudane et al., 2004; Qiao et al., 2020; Towers et al., 2019). The 
second approach exploits the knowledge of the physics of the interaction 
between electromagnetic radiation and vegetation surfaces, developed 
using radiative transfer theory (Campos-Taberner et al., 2016; Danner 
et al., 2019; Delloye et al., 2018; Duan et al., 2014; Houborg et al., 2009; 
Jacquemoud et al., 2000; Mananze et al., 2018; Punalekar et al., 2018). 
Radiative transfer models (RTM) allow for the simulation of reflectance 
from a set of biophysical variables. Inverting these models from reflec-
tance measurements then allow for estimating these biophysical vari-
ables (Darvishzadeh et al., 2008; Mananze et al., 2018). The empirical 
approach through VIs is simple and fast, while it cannot be easily 
generalized as it depends on the season, location, crop density, plant 
species, growth stage and specific spectral sensor resolution (Rivera 
et al., 2014; Su et al., 2019a). Furthermore, it does not allow for 
exploiting all the relevant spectral information compared to RTM, as 
only two or three bands are mostly used for VIs calculation (Baret and 
Buis, 2008; Berger et al., 2018). On the other hand, the RTM inversion is 
more robust as the physical laws governing the radiative transfer model 
within the canopy are not site or date specific but depend on the 
observation and illumination geometry, besides the biochemical and 
structural properties of the vegetation elements that are described by the 
input biophysical variables to be estimated (Darvishzadeh et al., 2008; 
Mananze et al., 2018). However, RTM may require a fairly complex 

process to well represent the canopy structure related to a given crop 
while the accuracy of the model estimation depends on the predefined 
model parameters and natural uncertainties of the model, which is 
commonly referred to by the ill-posed inverse problem (Combal et al., 
2003; Houborg et al., 2015). 

VIs play an important role in monitoring variation in vegetation and 
are defined as the arithmetic combination of two or more spectral bands, 
which allows for enhancing vegetation while minimizing background 
effects (Matsushita et al., 2007). Leaf reflectance in the visible spectral 
range is mostly affected by the leaf chlorophyll content. Chlorophyll 
shows a higher reflectance in the green (G) spectrum region compared to 
red (R) and blue (B) regions (Barnes et al., 2015). At canopy level in the 
near-infrared (NIR) region, the reflectance is much greater than in the 
visible due to light scattering caused by interactions between leaf in-
ternal structure and the incident radiation (Knipling, 1970). The narrow 
portion between R and NIR regions is called Red-Edge (RE), where 
vegetation reflectance increases dramatically compared to a smaller 
increase in the case of soils and other terrestrial objects (Corti et al., 
2018; Scotford and Miller, 2005). Vegetation indices exploit such dif-
ferences in leaf and canopy reflectance properties in the visible and 
near-infrared spectrum according to the variable of interest. 

The use of remotely sensed data and its derived VIs (Kayad et al., 
2019; Schwalbert et al., 2018) or assimilation in crop growth models for 
monitoring crop growth (Huang et al., 2019a) and yield estimation is 
already well established (Bala and Islam, 2009; Bouman, 1995; Gao 
et al., 2018; Mkhabela et al., 2011; Monteith, 1972; Rodrigues et al., 
2018; Schulthess et al., 2013). Many VIs provide a good estimate of the 
accumulated absorbed photosynthetically active radiation (APAR) 
which in turn controls biomass accumulation (Akitsu et al., 2017; 
Monteith, 1972). For instance, the normalised difference vegetation 
index (NDVI) (Hasegawa, 1976) is widely used for crop growth and yield 
estimations, however it is limited by some saturation for medium to high 
LAI values (Hatfield et al., 2008; Peralta et al., 2016; Rembold et al., 
2013). Other VIs show better sensitivity for high LAI values such as the 
green normalized difference vegetation index (GNDVI) (Gitelson et al., 
1996) or the normalized difference red-edge (NDRE) (Hatfield et al., 
2008). Several studies investigated the possibility of estimating maize 
biomass and grain yield (GY) through VIs (Kayad et al., 2019; Madu-
gundu et al., 2017; Schulthess et al., 2013; Schwalbert et al., 2018; 
Venancio et al., 2020) due to their high correlation with several bio-
physical variables and simplicity (Ji and Peters, 2007; Lambert et al., 
2018). 

Kayad et al. (2019) investigated the possibility to monitor maize GY 
using Sentinel-2 satellite images through different VIs and machine 
learning techniques. Their results showed that GNDVI was the best index 
to describe within-field GY variability at the R4-R6 growing stage with 
R2 values of up to 0.48 for GNDVI and up to 0.6 from random forest 
correlation based model. Shanahan et al. (2001) suggested GNDVI at the 
mid-grain filling stage for maize GY prediction in plot experiment. 
Furthermore, Schwalbert et al. (2018) reported in a recent study that 
NDRE, GNDVI and NDVI showed high performance in maize yield pre-
diction from Sentinel-2 images collected ± 20 days from the flowering 
stage. In general, monitoring crop yield variability through empirical 
models derived from VIs is already well investigated while it is only 
valid under specific conditions, requires field measurements concurrent 
to remote observations and tends to have spatial and temporal limita-
tions (Berger et al., 2018; Hatfield et al., 2008). 

In this study, we explored the inversion of the PROSAIL RTM (Jac-
quemoud et al., 2009), which is a combination between the leaf optical 
properties model (PROSPECT) with the scattering by arbitrary inclined 
leaves model (4-SAIL). PROSPECT is a key model to simulate leaf 
reflectance over the whole optical domain and comes with different 
versions, such as PROSPECT 4, 5 and D (Baret et al., 1992; Jacquemoud 
and Baret, 1990). The 4-SAIL model was proposed by Verhoef (Verhoef, 
1985, 1984) to simulate bidirectional reflectance of a canopy (Jacque-
moud et al., 2009). Previous studies on PROSAIL investigated its ability 
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to retrieve biophysical and biochemical variables such as LAI and 
chlorophyll from maize, wheat, rice, sugar beet, potato and grassland 
(Atzberger et al., 2015; Baret et al., 2007; Darvishzadeh et al., 2012, 
2008; Duan et al., 2014; Herrmann et al., 2011; Punalekar et al., 2018; 
Richter et al., 2011, 2009; Sehgal et al., 2016). In some cases, LAI and 
chlorophyll retrievals were followed by yield or nitrogen content esti-
mations using empirical equations or crop-growth models (Cheng et al., 
2016; Huang et al., 2019b; Jay et al., 2017; Punalekar et al., 2018; Zhang 
et al., 2016). Comprehensive systematic reviews were done by Jacque-
moud et al. (2009) and Berger et al. (2018) reporting PROSAIL theory, 
applications and evaluation for future capabilities. 

Although several studies focused on maize LAI, biomass and GY 
estimation through different remote sensing approaches, there is a need 
to evaluate the use of the PROSAIL approach on actual maize farmer 
fields dealing with natural field spatial variability for commercial ap-
plications. Furthermore, comparing PROSAIL with simple empirical VI 
approach is needed to understand their relative strengths and weak-
nesses. This study has the following specific objectives:  

(1) perform PROSAIL model inversion for maize LAI retrieval at 
different crop growth stages;  

(2) assess maize biomass and GY relationships with retrieved LAI 
from PROSAIL;  

(3) compare the relationships between selected VIs and retrieved LAI 
with maize ground biomass and GY. 

2. Materials and methods 

2.1. Study area and ground data collection 

This study was conducted in two separate fields (23 km distance) 
located in the Yaqui Valley near Ciudad Obregón (Sonora), in north- 
western Mexico (Fig. 1). Those fields were cultivated with the same 
maize variety (Caribú) during the same growing season 2014–2015. The 
first field (27◦17’N, 109◦57’W) named F1 which has an area of 20 ha. It 
was sown on October 4th, 2014 with a seed rate of 10 seeds / m2. The 
second field (27◦26’N, 110◦07’W) named F2 has an area of 12 ha and 
was sown on September 20th, 2014 with a seed rate of 9 seeds / m2. Row 
distance was 0.8 m. F1 was irrigated by a furrow irrigation system 
(flood), while for F2, a linear pivot irrigation system was used. Residues 
from the previous crop of F1 were burned (maize), while they were 
incorporated into the soil using a conventional tillage for F2 (potato). 
Climate in the study area is semi-arid with an average rainfall of 280 mm 
per year and soil types are clayey and alluvial soils at 3:2 ratio (Meisner 
et al., 1992; Rodrigues et al., 2018). 

Leaf Area Index (LAI) were measured on the ground using the LAI 
ACCUPAR LP-80 developed by METER Group, Inc. USA. Measurements 
were made at five different maize growth stages between 40 and 157 
days after sowing (DAS). The LAI data were collected at 12 fixed ground 
points which resulted in a total of 60 ground LAI observations for F1. 
Each observation consisted of three readings made perpendicular to the 
two central rows along the sampling area, which is described in the next 
paragraph. For the subsequent analyses, the averages of the three 
readings were used. The LAI measurement considered the solar zenith 
angle at each field location, observation date and time calculated from 
the National Oceanic and Atmospheric Administration (NOAA) website 
(https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). 

Biomass and GY were sampled at the harvesting time at 26 and 25 
sampling points from F1 and F2 fields, respectively, including the 12 LAI 
ground points above mentioned from F1 field (Fig. 1). Biomass and GY 
were sampled from the 2 rows adjacent to the centre of each sampling 
point. Sampling distance for each row was 5 linear metres, resulting in a 
sampling area of 8 m2. The final observations were calculated in dry tons 
ha-1. Biomass refers to the whole above ground plant material harvested 
per unit area while grain yield refers to weighted harvested grain per 
unit area. 

2.2. Hyperspectral airborne flight campaign and image processing 

Aerial hyperspectral images were collected from the two fields at 12 
different dates - varying from V7 to R6 growth stages (GS) (Hanway, 
1963). A total of 9 images from field F1 and 10 images from field F2 
were collected. From those, five images for F1 had simultaneous mea-
surements of ground LAI. Table 1 show dates of observations with the 
corresponding DAS and GS from each field. 

The aerial hyperspectral imagery flight campaign was carried out 
with a push-broom micro-hyperspectral imaging sensor model, Micro- 
Hyperspec VNIR (Headwall Photonics, Bolton, MA, USA). This sensor 
measures the reflectance within the spectral region of 400–850 nm, split 
into 250 channels. The sensor was mounted on a manned airplane flying 
at 350 m above ground yielding images of 0.7 m ground sampling 

Fig. 1. Study fields from north-west Mexico and location of ground measure-
ments: F1 and F2. 

Table 1 
Collected data from study fields.  

I Date 
F1 F2 

Image LAI DAS GS Image DAS GS 

1 24/10/2014      ✓  34 V7 
2 07/11/2014      ✓  48 V8 
3 13/11/2014 ✓ ✓  40 V7   54 V9 
4 26/11/2014 ✓ ✓  53 V9 ✓  67 V16 
5 10/12/2014 ✓   67 V16 ✓  81 V18 
6 17/12/2014 ✓ ✓  74 V16 ✓  88 V18 
7 05/01/2015      ✓  107 R1 
8 10/01/2015 ✓   98 V18 ✓  112 R1 
9 19/01/2015 ✓ ✓  107 VT ✓  121 R2 
10 04/02/2015 ✓ ✓  123 R2 ✓  137 R3 
11 25/02/2015 ✓   144 R4 ✓  158 R6 
12 10/03/2015 ✓   157 R6     

* DAS: Day After Sowing. 
*GS: Growth Stage. 
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distance. We used crosses, made of 3 m long sheets of polyethylene 
coated with aluminium foil, as ground control points and placed them 
around the study sites and measured their coordinates with a real-time 
kinematic (RTK) GNSS model, Trimble R4 GNSS system (Trimble, CA, 
USA). They were subsequently used for geo-referencing of the hyper-
spectral images. The root mean square error of georeferencing was less 
than the pixel size (0.7 m). During the processing, the geolocation of 
each image was done using ENVI 5.6 version (ENVI, Research Systems 
Inc., Boulder, CO, USA). 

Based on the methodology described by Rodrigues et al. (2018), the 
hyperspectral sensor had been radiometrically calibrated in the labo-
ratory using an integrating sphere, CSTM-USS-2000 C Uniform Source 
System (LabSphere, NH, USA) at six integration times and four levels of 
illumination. Hyperspectral imagery was atmospherically corrected 
using the total incoming irradiance at 1 nm intervals simulated with the 
SMARTS model hosted by the National Renewable Energy Laboratory, 
US Department of Energy (Gueymard, 2005, 1995). The aerosol optical 
depth was measured at 550 nm with a Micro-Tops II sun photometer 
model (Solar LIGHT Co., Philadelphia, PA, USA) at the time of the 
flights. The SMARTS model computes clear sky spectral irradiance, 
including hemispherical diffuse, direct beam, circumsolar and total 
irradiance on a tilted or horizontal plane for specified atmospheric 
conditions. The algorithms were developed to match the output from the 
MODTRAN complex band models to within 2%, using aerosol optical 
depth as an input. The spectral resolution was 1 nm for the 
400–1750 nm and 0.5 nm for the 280–400 nm ranges of the electro-
magnetic spectrum. This radiative transfer model had been previously 
used for the atmospheric correction of narrow-band multispectral im-
agery in several studies (Berni et al., 2009; Calderón et al., 2015, 2013; 
Zarco-Tejada et al., 2016, 2012). 

Spectral binning was performed on each mosaic into 7.5 nm FWHM 
(Full Width at Half Maximum) to decrease noise effects, resulting in 61 
wavelengths. From those, the 751, 759, 766, 773, 810 and 818 nm 
wavelengths were removed due to oxygen absorption by the sensor and 
noise effects. Finally, 55 wavelengths were used for subsequent ana-
lyses. All mosaics were used for data extraction based on the ground 
measurements locations (26 points from F1 and 25 from F2) with a 
buffer of 3 m diameter from the centre of the geocoordinates. This buffer 
distance allowed for averaging of about 7 pixels from each point. 
Finally, all spectral data were associated with the corresponding maize 
biomass, GY and matched ground LAI observations for further analyses.  
Fig. 2 shows the spectral data acquired across five hyperspectral images, 
which corresponds to the 60 ground LAI measurements. 

2.3. PROSAIL inversion for LAI retrieval 

To build the PROSAIL model, a combination between the 
PROSPECT-4 and 4-SAIL models was used. In the PROSPECT-4 model, 

four leaf parameters are required to build the model: leaf structure (N), 
chlorophyll a+b content (Cab), water thickness (Cw) and dry matter 
content (Cm). Whereas the 4-SAIL model requires the following param-
eters: leaf reflectance and transmittance (PROSPECT output), LAI, 
average leaf inclination angle (ALIA) of an ellipsoidal leaf angle distri-
bution function (Campbell, 1990; Duan et al., 2014), hot spot parameter 
(Hot), soil brightness (αsoil), sun zenith angle (θs), observer zenith angle 
(θv) and relative azimuth angle (φSV) (Berger et al., 2018). 

Maize biophysical parameters to feed PROSAIL model were obtained 
from the literature (Berger et al., 2018; España et al., 1999; Richter et al., 
2009; Verrelst et al., 2016). Rather wide, but also narrow ranges were 
found for some of the parameters. For instance, N ranged between 1.2 
and 2, Cab ranged between 20 and 80 µg/cm2, LAI ranged between 0.5 
and 7 m2/ m2 and ALIA ranged between 30̊ to 90̊. Whilst, other crop 
related parameters such as Cw and Cm were in a narrower range. The 
remaining PROSAIL model parameters are not related to the crop bio-
physical variables such as: αsoil, θs, θv and φSV. Soil brightness (αsoil) 
values ranged between 0 and 1. This parameter depends on soil type and 
moisture content. Sun zenith angle (θs) depends on the location of the 
study area and the day of the year the study is presented. θs values were 
calculated from the NOAA as described in Section 2.1 for the whole 
growing season, with values ranging between 42̊ to 52̊. Additionally, 
information about viewing geometries such as θv and φSV depends on 
the sensor and flight information which in our case have the ranges 
between − 24̊ to 24̊ and 0̊ to 180̊, respectively. Global sensitivity anal-
ysis (GSA) and preliminary analysis were done to examine different 
combinations of PROSAIL model parameters and the influence of each 
parameter simulated in the final look up table (LUT). Based on this 
preliminary analysis and GSA, we decided to change only the most 
sensitive parameters which were the ones having the wide range of 
magnitude and sensitivity, while other parameters were kept constant. 
This decision seems to be reasonable considering the required compu-
tational power and the fact that this study focused on one crop within 
the same region. 

The ARTMO software package (Rivera et al., 2014) was used to 
simulate a maize spectral reflectance training dataset and to perform the 
GSA at different leaf and canopy parameters through the PROSAIL 
model. Building the PROSAIL based model consisted of three steps: First, 
setting up the sensor characteristics, which include the number of 
wavelengths (55 bands), its spectral range (400–850 nm) and FWHM 
(7.5 nm). Second, adding maize biophysical parameters, field and flight 
conditions to the PROSPECT-4 and 4-SAIL models as shown in Table 2 
and described previously. Finally, running the PROSAIL simulations for 
specified maize parameters to simulate its spectral reflectance. The 
parameter θs was fixed at 49̊ which is the median value at the study area 
through the growing season. Additionally, Cm and CW were fixed at 
0.005 g/cm2 and 0.02 cm, respectively, which are in line with literature 
range values (Berger et al., 2018). The GSA analysis results showed that 
no influence of these parameters in visible and NIR regions, while θv and 
φSV were sampled within the predefined range to cover the different 

Fig. 2. Spectral data corresponding to the 60 ground LAI measurements at 
different DAS from field F1. 

Table 2 
Maize parameters values for PROSAIL model.  

Parameter Symbol Units Range 

Leaf model: PROSPECT-4 
Mesophyll structure index N Unit less 1.2–2 
Chlorophyll a + b Cab µg/cm2 30–80 
Dry matter content Cm g/cm2 0.005 
Equivalent water thickness CW Cm 0.02 
Canopy model: 4-SAIL 
Leaf area index LAI m2/ m2 0.5–7 
Average leaf inclination angle ALIA ◦ 35–90 
Hot spot parameter Hot m/m 0 – 0.28 
Soil brightness Аsoil Unit less 0–1 
Sun zenith angle θs ◦ 49 
Observer zenith angle θv ◦ -24–24 
Relative azimuth angle φSV ◦ 0–180  
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observation scenarios. The PROSAIL spectral dataset was generated for 
five free variables N, Cab, LAI, ALIA and hot spot sampled within the 
predefined ranges using a uniform distribution function except for LAI 
where a latin hypercube distribution function was used. As a result, a 
total of 60750 simulations were obtained for the dataset. 

Finally, the cost function was used to find the best match between the 
simulated data set and the available ground LAI data with the corre-
sponding spectral data (Weiss et al., 2004). The least square error (LSE) 
cost function was used to select the solution of the inverse problem and 
the best 10% of the solutions corresponding to the smallest LSE values 
were averaged to calculate the modelled estimates of free parameters. 
Such approach were reported by several studies to reduce the influence 
of the ill-posed problem caused by measurement errors and model in-
adequacies (Duan et al., 2014). The 60 ground LAI data (12 ground 
sampling points from F1 time five images) were used to validate the 
retrieved LAI from PROSAIL. Fig. 3 illustrates the maize LAI retrieval 
flowchart based on PROSAIL and LUT inversion approach. The validated 
model was used to retrieve LAI from all remaining available ground 
sampling points where GY and biomass were measured, across all 
hyperspectral time series from both field locations. LAI data retrieved 
from PROSAIL model inversion will be referred as ‘retrieved LAI’ 
hereafter. 

2.4. Calculated VIs 

In order to compare the estimation of biomass and GY by the 
retrieved LAI from PROSAIL inversion with a simpler approach as VIs, 
three VIs were calculated; NDVI, GNDVI and NDRE (Eqs. 1–3). These VIs 
were chosen based on their simplistic forms and previous results shown 
in the literature (Kayad et al., 2019; Peralta et al., 2016; Schwalbert 
et al., 2018). VIs were calculated from all acquired aerial hyperspectral 
images from both study fields and extracted using the 51 ground point 
locations from both study fields (Fig. 1). 

NDVI =
NIR − R
NIR + R

(1)  

GNDVI =
NIR − G
NIR + G

(2)  

NDRE =
NIR − RE
NIR + RE

(3)  

Where: NDVI, is the normalized difference vegetation index, GNDVI is 
the green normalized difference vegetation index, NDRE is the 
normalized difference red-edge, NIR is the reflectance at the near 
infrared band (832 nm), R is the reflectance at the red band (663 nm), G 
is the reflectance at the green band (560 nm) and RE is the reflectance at 
the red-edge band (722 nm). 

2.5. Data analysis 

To build empirical models between the retrieved-LAI and studied VIs 
versus maize biomass and GY, different regression models were tested, 
including linear, exponential, power and logarithmic. As per this step 
results and the distribution of data points, regression models were fitted 
between maize biomass and GY versus retrieved LAI and vegetation 
indices. This step considered only the 12 sampling points corresponding 
to the ground LAI measurements from F1 (Fig. 1). A time series analysis 
through coefficient of determination (R2) values was used to assess the 
best crop growth stage for maize biomass and GY estimation. The sub-
sequent analyses were done using only the best crop growth stage 
selected. 

The empirical equations fitted in the previous analysis were retrieved 
by considering only the ground 12 observation points from F1, and 
applied to the remaining dataset. The remaining dataset, totalling 39 
observations across both fields (14 from F1 and 25 from F2), was used 
for the cross-validation of the empirical equations. Furthermore, com-
parisons of the performance achieved by the different proxies – retrieved 
LAI and VIs – were done by assessing statistical metrics of each cross- 
validation. R2 values, root mean square error (RMSE) and mean abso-
lute error (MAE) where calculated for this purpose. 

3. Results 

3.1. Field ground data 

Ground LAI data were collected at different crop stages starting from 
40 to 123 DAS. Boxplots for ground LAI data from F1 are shown in Fig. 4. 

Fig. 3. The development flowchart for Maize LAI retrieval model based PROSAIL.  
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Ground LAI data showed an average of 1.3 at 40 DAS and subsequently 
increased to above 3 at 74 DAS. The average LAI values across crop 
stages from F1 was 2.7 and reached a maximum of 4.9 at 123 DAS. 

Fig. 5 shows the boxplots from maize biomass and GY. F2 produced 
an average of 20.5 and 9.8 ton/ha while F1 produced 11.7 and 5.4 ton/ 
ha for maize biomass and GY, respectively. F2 yield was higher than F1 
with a narrow range of variability to both, maize biomass 
(14.8–26.7 ton/ha) and GY (8–12 ton/ha). Whilst F1 showed a higher 
range variability on both, maize biomass (4.4–20 ton/ha) and GY 
(1.4–9.2 ton/ha). The narrow range of variability observed for F2 in-
dicates that it was more homogeneous as compared to F1. Across both 
fields, the range of GY was between 1.4 and 12.0 ton/ha and for 
biomass, it was between 4.4 and 26.7 ton/ha. This range is quite wide, as 
compared to other studies (Kayad et al., 2021, 2019) and global reports 
(FAO, 2020). 

3.2. Retrieved LAI from PROSAIL inversion-based model 

The PROSAIL model yielded 60750 synthetic spectral signatures 
using the model input parameters as per Table 2. These simulations were 
used through the LUT inversion approach with the LSE cost function to 
retrieve maize LAI from both study fields. Fig. 6, shows the 60750 
synthetic spectral signatures, the measured reflectance data overlapped 
with the range of synthetic data and the bare soil reflectance from 
ARTMO library. The 60 ground LAI data points across different growth 
stages were used to validate the retrieved LAI from PROSAIL. Validation 
results showed an R2 value of 0.5 with a mean absolute error (MAE) of 
0.7 and RMSE of 0.8 (Fig. 7). Specific maize growth stages R2 values 
were 0.63, 0.64, 0.59, 0.4 and 0.37 for 40, 53, 74, 107 and 123 DAS, 
respectively. This model was used to retrieve LAI from all acquired 
hyperspectral images where ground sampling measurements from both 
study fields took place, which were considered for further analysis. 

Fig. 4. Box-plot of ground LAI observations at different crop ages for F1.  

Fig. 5. Boxplot for maize GY and biomass.  

Fig. 6. PROSAIL 60750 synthetic spectral reflectance signatures (a) and the 
available reflectance data at different DAS with the synthetic data range and 
bare soil reflectance curve from ARTMO library (b). 

Fig. 7. Cross-validation between ground LAI vs PROSAIL retrieved LAI at 
different DAS. 
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3.3. VIs and retrieved LAI vs maize yield and biomass 

Calculated vegetation indices and retrieved LAI from the 12 selected 
ground sampling points were correlated with maize biomass and GY to 
describe their relationship through maize growth stages from F1. The 
time-series of R2 values between NDVI, GNDVI, NDRE and retrieved LAI 
versus maize biomass and GY are shown in Fig. 8a and Fig. 8b, respec-
tively. In general, all VIs and retrieved LAI have the same trend over 
different growth stages. R-square started with high values (>0.65) be-
tween 40 and 98 DAS for both, biomass and GY, then declined gradually 
at advanced crop growth stages. At 40 DAS, retrieved LAI showed the 
lowest correlation values compared to the other VIs for both biomass 
and GY, while all indices showed very low correlations starting from 144 
DAS. At 123 DAS, GNDVI and NDRE showed a higher accuracy than 
retrieved LAI and NDVI. 

As both, VIs and LAI, showed the same temporal trend with maize 
biomass and GY according to the R2 time series, it can be concluded that 
the same late vegetative growing stage V16 (74 DAS at F1 and 67 DAS at 
F2) is most suitable for maize biomass and yield assessment. Equations 
4–11 describe the empirical relationship between maize biomass and GY 
versus retrieved LAI, NDVI, GNDVI and NDRE at the V16 growth stage, 
as described in Section 2.5. These equations were applied on the 
remaining 39 observations points as part of the cross-validation process, 
assessing maize biomass and GY from both fields and evaluating model 
accuracies.  

Retrieved LAI GY= 2.43 ×LAI-0.47 R2 = 0.83 (4) 
Biomass= 4.57 ×LAI+ 0.35 R2 = 0.85 (5) 

NDVI 
GY= 0.035e6.45NDVI R2 = 0.92 (6) 
Biomass= 0.2725e4.79NDVI R2 = 0.88 (7) 

GNDVI GY= 42.81 ×GNDVI-25.78 R2 = 0.82 (8) 
Biomass= 80.33 ×GNDVI-47.13 R2 = 0.83 (9) 

NDRE GY= 40.71 ×NDRE-8.11 R2 = 0.79 (10) 
Biomass= 78.47 ×NDRE-14.67 R2 = 0.85 (11) 

Where biomass and GY in ton/ha and all p-values were ˂0.001. 

Fig. 9 shows the XY graphs resulting from the cross-validation pro-
cess, where maize biomass and GY were estimated from the VIs and 
retrieved LAI empirical models at V16 growth stage generated in the 
previous step. Estimated maize GY and biomass through NDRE showed 

the highest R2 values (0.83 and 0.81, respectively) in comparison with 
all tested indices, with RMSE of 1.11 and 2.36 ton/ha for maize GY and 
biomass, respectively. Retrieved LAI and GNDVI showed the same 
biomass estimation accuracy of 0.73 R2 value and 3.78 and 3.72 ton/ha 
RMSE, respectively. While GNDVI showed a slightly better performance 
for GY estimation. Moreover, NDVI produced the lowest estimation ac-
curacies with R2 values of 0.62 and 0.65 and RMSE of 2.09 and 4.99 ton/ 
ha for GY and biomass, respectively. Considering R2 values from each 
field, showed a quite low values from F2 due to the narrow range of 
variability. In F1, retrieved LAI showed the highest R2 values followed 
by NDRE and mostly equal values from GNDVI and NDVI. 

4. Discussion 

Ground LAI increased until V16 and then remained stable (Fig. 4). 
Feng et al. (2013) reported similar maize LAI behaviour across growth 
stages under drought experiments. Meanwhile, ground yield measure-
ments from both fields showed a clear difference between them 
regarding spatial variability and average measurements. F2 produced 
75% and 83% higher biomass and GY than F1, respectively. Further-
more, the range in variability for GY in F1 was between 1.4 and 9.2 
ton/ha and 4.4–20 ton/ha for biomass. In contrary, F2 was more ho-
mogenous. Its production levels were also higher, as they ranged from 
15 to 26 and 8–12 ton/ha for biomass and GY, respectively (Fig. 5). 
Kayad et al. (2019) reported an average maize GY of > 13.5 ton/ha in a 
highly productive field for continues three seasons while the FAO (2020) 
reported a global average of 7.7 ton/ha. These yield differences are most 
likely due to the different irrigation systems: F2 had more frequent 
post-planting irrigations and they were more evenly distributed thanks 
to the pivot irrigation system, whereas F1 was irrigated by a furrow 
irrigation system. 

In this study, a total of 60750 LUT simulations based on PROSAIL 
input parameters were used to estimate maize LAI. This number was 
based on combination of different input values of N, Cab, LAI, ALIA, Hot, 
αsoil, θv, φSV and constant values for other model parameters according 
to previous studies, field and measurement conditions (Table 2). The use 
of identical parameters for both fields is reasonable, considering that the 
two fields were planted with the same hybrid and experienced the same 
weather conditions. Image acquisition also took place under almost 
identical conditions. The number of LUT simulations is in agreement 
with many previous studies in this field of research (Darvishzadeh et al., 
2012; Duan et al., 2014; Richter et al., 2009). Duan et al. (2014) 
investigated different LUT sizes between 50, 100 and 250 thousand 
simulations to estimate LAI for sunflower, potato and maize fields and 
reported no significant difference between the retrieved LAI accuracies 
using different LUT sizes. Similar results were reported by Darvishzadeh 
et al. (2012) for rice chlorophyll estimations and by Richter et al. (2009) 
for sugar beet and maize LAI estimations. Furthermore, preliminary tests 
were carried out to investigate different LUT sizes by decreasing the 
number of steps within each parameter, reaching up to 120 thousand 
simulations. It was found that 60750 simulations provided reasonable 
results. 

Retrieved LAI from PROSAIL inversion showed reasonable accuracy 
against ground LAI measurements where R2 value was 0.5 and RMSE 
was 0.8. This result is in agreement with previous studies from different 
experiments and platforms. Kimm et al. (2020) used different fused 
satellite datasets acquired by MODIS, Landsat and CubeSat to estimate 
maize LAI in the US corn belt through a PROSAIL RTM inversion. Their 
results showed R2 values of 0.69 and 0.76 while RMSE was > 1 m2/m2 

between ground measured LAI and estimated LAI from STAIR fusion 
(MODIS-Landsat fusion) and CubeSat data, respectively. Su et al. 
(2019b) retrieved maize canopy LAI and chlorophyll at county scale by 
fusing Sentinel-2 and MODIS images through PROSAIL at four different 
maize growth stages. Their results showed R2 values of about 0.6 be-
tween ground measured and estimated LAI and chlorophyll. Su et al. 
(2019a) retrieved maize LAI using PROSAIL with leaf angle distribution 

Fig. 8. Time series of R2 values between VIs, LAI against maize biomass (a) and 
GY (b). 
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functions generated from terrestrial laser scanning points resulting in a 
strong and significant correlation (R2 value = 0.82) between ground and 
estimated maize LAI. 

Additionally, the retrieved versus ground LAI were relatively well 
distributed around the 1:1 line (Fig. 7). However, the retrieved LAI was 
slightly overestimated at early crop growth stages and slightly under-
estimated at late crop growth stages. Such a trend of over and under-
estimation of retrieved LAI through PROSAIL inversion was observed 
from previous studies (Adeluyi et al., 2021; Bacour et al., 2006; Si et al., 

2012). The PROSAIL model does not take into account the shading effect 
of row crops (Berger et al., 2018; Dorigo, 2012; Richter et al., 2011). 
Duan et al. (2014) used hyperspectral images acquired by UAV in 
different flight directions to estimate LAI through a PROSAIL inversion. 
Their results showed that shading enhanced reflectance in the backward 
scattering direction and reduced in the forward scattering direction. 
Similar results were reported from multi-angular compact high resolu-
tion imaging spectrometer (CHRIS) data to estimate LAI (Verrelst et al., 
2012). Another assumption could be the fact that maize is a typical row 

Fig. 9. XY cross-validation graphs of estimated vs ground maize biomass and GY based on retrieved LAI and VIs empirical models.  
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crop and affected by leaf clumping in row direction while the PROSAIL 
model assumes that leaves are randomly distributed within the canopy 
volume (Duan et al., 2014; Jacquemoud et al., 2009). Yao et al. (2008) 
proposed a row structure model for early maize growth stage and ho-
mogeneous canopy model for later stages to reduce the effect of row 
structure on LAI estimation. Moreover, in this study the spectral 
reflectance was extracted from each sampling point with a buffer of 3 m 
diameter, which is almost 7 pixels. The sampling area covers almost 4 
rows which could be reasonable for reducing the row effects, especially 
at early stages. 

According to the time series analysis for R2 values between Biomass 
and GY against retrieved LAI and VIs, the maize vegetative growth stage 
at V16 resulted in the highest accuracies for yield estimations. This 
result is in accordance with previous studies for late vegetative stages 
(Peralta et al., 2016; Schwalbert et al., 2018) while other studies sug-
gested to use the grain filling stages R2-R4 for maize yield prediction 
(Aguate et al., 2017; Kayad et al., 2019). The difference between the 
studies reporting on the most suitable time for maize yield prediction 
could be due to the difference in experimental conditions such as maize 
hybrids, sensors, methodologies, scale and environmental conditions. 
However, most of the literature suggests the range between late vege-
tative to early reproductive growth stages for maize yield prediction 
through remotely sensed data, which is in agreement with results found 
in this study. 

Maize biomass and GY estimation through VIs and retrieved LAI 
showed different accuracy levels at different growth stages. Fig. 8 shows 
R2 values up to 0.88 for biomass and 0.87 for GY at early stages till 97 
DAS, then they declined gradually to < 0.2 before harvest. In general, all 
indices followed the same trend of high correlations at early stages, 
decreasing at later growth stages, while NDRE and GNDVI showed better 
performance than other indices at 123 DAS. This result is in agreement 
with Kayad et al. (2019), who suggested GNDVI for maize yield esti-
mation at R4-R6 growth stage between 105 and 135 DAS. However, 
their study didn’t consider early growth stages. The lower correlation 
from NDVI at this specific stage could be explained by the fact of NDVI 
saturation at medium to high LAI values (Hanna et al., 1999; Kayad 
et al., 2016; Nguy-Robertson et al., 2012; Trotter et al., 2008). Addi-
tionally, for the retrieved LAI, the low range of variability at this stage 
could explain the low correlation at 123 DAS as shown in Fig. 4. 

The selected growth stage of V16 (late vegetative stage) for yield 
estimation provides a balanced decision considering the findings of 
previous studies. Although, the R2 values were almost the same for the 
selected growth stage at 73 DAS for all studied indices except NDVI 
(Fig. 8), yield estimation accuracies changed as shown in Fig. 9. It is 
worth mentioning that in Fig. 9, NDRE estimations trend line were 
mostly overlaid with the 1:1 line, compared to higher deviation in case 
of other studied indices, which prove the robustness of NDRE approach 
compared to other approaches. Kayad et al. (2019) reported same 
indices for within-field maize yield prediction with Sentinel-2, while 
their R2 value was ˂0.5 and reached 0.6 when using machine learning 
techniques. Schwalbert et al. (2018) reported that NDRE retrieved from 
Sentinel-2 images was the most sensitive VI for maize yield prediction, 
followed by GNDVI and NDVI with R2 values ranging between 0.32 and 
0.68. Additionally, NDRE outperformed GNDVI and NDVI for maize 
yield prediction at mid-season from high resolution RapidEye satellite 
imagery with R2 value ranging between 0.29 and 0.70 (Peralta et al., 
2016). NDRE could avoid the saturation issues at medium to high LAI 
(Schwalbert et al., 2018). Furthermore, the higher spatial and spectral 
resolution of the aerial hyperspectral images used in this study could 
explain the better estimation accuracies than those achieved with 
Sentinel-2 and RapidEye satellite images. 

In general, NDRE, retrieved LAI and GNDVI showed high accuracy 
for maize yield estimation, while NDRE outperformed the retrieved LAI 
for two reasons. Firstly, LAI is a biophysical variable that determines the 
photosynthetic active radiation (PAR), better describing the vegetative 
canopy structure and its photosynthetic activity. However, other 

biophysical variables such as chlorophyll content are also important for 
describing the whole canopy vigour and subsequently crop yield, 
whereas NDRE could provide a better proxy for the combination of both. 
Secondly, PROSAIL is a physically-based approach that has many ap-
proximations to simulate the biological canopy properties. Such ap-
proximations may face many challenges especially to assess within-field 
variability of the same crop/variety and considering the previously 
explained limitations of row and shading effects. 

It is worth mentioning that the spatial and temporal constraints to re- 
apply VIs based on empirical models were reported by many previous 
studies (Báez-González et al., 2002; Lobell, 2013; Schwalbert et al., 
2018). Although VIs showed high correlations in this study, these cor-
relations may decrease when such empirical equations are applied to a 
data set that represents a wide range of conditions (Peralta et al., 2016; 
Schwalbert et al., 2018). On the contrary, retrieved LAI based on RTM 
inversion, can be applied in different fields for LAI estimation, subse-
quently allowing for more robust yield estimations and potentially 
reducing the number of in-situ measurements to a regional level 
assessment. Having said so, retrieving LAI from RTM inversion applied 
into RS imagery show its potential for accessing good crop biomass and 
yield proxies. However, absolute yield values will always require in-situ 
measurements specially from different crop varieties. The advantage of 
using RTM inversion is to derive an accurate and robust estimation for 
biophysical variables such as LAI and once calibrated, being potentially 
applied to different fields of the same calibrated crop for subsequently 
crop yield estimation. 

Finally, research applying physically based radiative transfer models 
and testing their transferability at different spatial scales, from plot 
experiments to farmers’ fields, are needed to demonstrate the robustness 
of this approach for plant biophysical attributes retrieval. At plot 
experiment scales, low altitude remote sensing platforms used for high 
throughput phenotyping can make use of RTM models for plant traits 
retrieval, such as canopy chlorophyll content (Delloye et al., 2018) and 
carotenoids (Berger et al., 2018; Jiang et al., 2018), which can be used as 
proxies for resistant genotype selection under biotic and/or abiotic 
stresses. At farmers’ field scales, the use of such biophysical plant var-
iables can potentially open unprecedented opportunities for within-field 
variability assessment of yield and quality of the product, besides sup-
porting crop management practices related to fertilizer 
recommendations. 

5. Conclusions 

A field study was conducted in two different maize fields located in 
north-western Mexico to investigate the potential of PROSAIL model 
inversion to estimate LAI, for subsequently biomass and GY assessment. 
Maize ground LAI measured at different growth stages along with 
hyperspectral imagery signals were used to calibrate and validate 
PROSAIL and through its inversion, to retrieve LAI. Finally, retrieved 
LAI and VIs were used for maize biomass and GY estimations. The main 
findings can be summarized as follows: 

1. PROSAIL model inversion was capable to retrieve maize LAI, pre-
senting reasonable R2 value (0.5) and considerably low RMSE value 
(0.8); 

2. maize yield estimation showed better performance at the late vege-
tative growth stages (V16), around 73 DAS;  

3. maize biomass and grain yield estimations through NDRE showed 
higher performance in comparison with retrieved LAI, GNDVI and 
NDVI, when applied to an independent dataset. 
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