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Compared to sole crops, intercropping—especially of legumes and cereals—has great 
potential to improve crop yield and resource use efficiency, and can provide many other 
ecosystem services. However, the beneficial effects of intercrops are often greatly 
dependent on the end use as well as the specific species and genotypes being 
co-cultivated. In addition, intercropping imposes added complexity at different levels of 
the supply chain. While the need for developing crop genotypes for intercropping has 
long been recognized, most cultivars on the market are optimized for sole cropping and 
may not necessarily perform well in intercrops. This paper aims to place breeding targets 
for intercrop-adapted genotypes in a supply chain perspective. Three case studies of 
legumes and cereals intercropped for human consumption are used to identify desirable 
intercrop traits for actors across the supply chains, many of which are not targeted by 
traditional breeding for sole crops, including certain seed attributes, and some of which 
do not fit traditional breeding schemes, such as breeding for synchronized maturity and 
species synergies. Incorporating these traits into intercrop breeding could significantly 
reduce complexity along the supply chain. It is concluded that the widespread adoption 
and integration of intercrops will only be successful through the inclusion and collaboration 
of all supply chain actors, the application of breeding approaches that take into account 
the complexity of intercrop supply chains, and the implementation of diversification 
strategies in every process from field to fork.

Keywords: breeding strategies, crop mixtures, intercrop-adapted genotypes, legume–cereal intercropping, 
participatory breeding, species synergy, supply chain actors

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.844635&domain=pdf&date_stamp=2022-03-01
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.844635
https://creativecommons.org/licenses/by/4.0/
mailto:lpk@plen.ku.dk
https://doi.org/10.3389/fpls.2022.844635
https://www.frontiersin.org/articles/10.3389/fpls.2022.844635/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.844635/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.844635/full


Frontiers in Plant Science | www.frontiersin.org 2 March 2022 | Volume 13 | Article 844635

Kiær et al. Supply Chain Perspectives on Intercrop Breeding

INTRODUCTION

The practice of intercropping legumes and cereals is predicted 
to drive the sustainable intensification of food supply chains 
(Finckh, 2008; Finckh et al., 2021; Li et al., 2021a,b). Compared 
with sole crops, intercrops have great potential to improve 
yields and enhance land use efficiency (Yang et  al., 2019; Li 
et  al., 2020, 2021a,b; Weih et  al., 2021). Additionally, legume–
cereal intercrops can provide ecosystem services, such as (i) 
improved resource use efficiency (Li et al., 2021b; Zhang et al., 
2021), particularly for nitrogen (Jensen, 1996; Bedoussac and 
Justes, 2010a; Naudin et  al., 2010), (ii) greater biodiversity, 
including beneficial insects (Brandmeier et  al., 2021); (iii) pest 
and pathogen regulation (Finckh and Wolfe, 2015; Zhang et al., 
2019; Finckh et  al., 2021); (iv) enhanced soil health (Yang 
et  al., 2019; Uwase et  al., 2021; Zhang et  al., 2021); and (v) 
healthy and nutritious food products (Dwivedi et  al., 2017). 
Although legume-based intercrops are not practiced widely in 
modern farming systems, they can contribute toward national 
and EU policy targets for reducing pesticide use, minimizing 
fertilizer losses, reversing biodiversity declines, and delivering 
secure and resilient food systems (Iannetta et  al., 2021).

Each legume–cereal intercrop is part of a dedicated supply 
and value addition chain (referred to here as supply chains) 
with different end uses and actors requiring different outcomes 
and breeding targets. The major functions of legume–cereal 
intercrops from industrialized agriculture are animal feed in 
the form of grain, whole-crop forage, or silage. Their use for 
wholegrain and processed food products is currently small 
scale, although this is changing rapidly (Hamann et  al., 2019), 
and legume species in addition to pea and faba bean are 
expected to become increasingly popular (Magrini et  al., 2019; 
Mamine and Farès, 2020).

The benefits of intercrops for crop yields and other outcomes 
are often dependent on the specific genotypes used (Ajal et  al., 
2021), emphasizing the importance of breeding for mixtures. 
Cultivars that contribute specifically to optimizing intercrop 
benefits represent an emerging market opportunity for breeders 
and seed producers. However, while the need for developing 
intercrop-adapted genotypes has long been recognized (e.g., 
Finlay, 1976; Finckh, 2008; Lamichhane et  al., 2018), and even 
occurred historically before pure-line breeding became popular 
(e.g., pea cultivars were selected and bred in species mixtures 
until the end of the 19th century: Zohary and Hopf, 1973), 
most cultivars on the market are optimized for sole cropping 
and might not perform well in intercrops (Kammoun et  al., 
2021). Recently, a few innovative breeders have initiated small-
scale breeding programs for intercrop-adapted genotypes with 
specifically selected traits and characteristics (Hoppe, 2016; 
Adams, 2018; Starke, 2018; KWS, 2019; Raaphorst-Travaille, 
2019). The lack of optimized cultivars is, however, one of several 
bottlenecks limiting a wider use of intercropping (Rosa-Schleich 
et  al., 2019; Bonke and Mußhoff, 2020; Trivett et  al., 2021).

Intercropping currently imposes added complexity at different 
levels of the supply chain (Tippin et al., 2019; Mamine and Farès, 
2020), which is a key reason for the low demand for intercrop-
adapted genotypes. The many challenges associated with 

diversification strategies, such as intercropping, could be overcome 
through the integration of all actors within the supply chain from 
plant breeders to consumers (Lammerts van Bueren et  al., 2018; 
Wolfe et  al., 2021). The breeding of intraspecific mixtures for 
disease control is an example where close collaboration along the 
supply chain has been successful (Finckh and Wolfe, 2015). In 
rare cases, breeders might engage with mixture breeding to promote 
their own cultivars for novel uses (Labarthe et al., 2021). However, 
a key actor for trait selection is farmers, whose choice of intercrop 
traits depends on many factors, including pedoclimate, end use, 
market quality requirements, crop rotation considerations, and 
availability of farm equipment (Verret et al., 2020). Where intercrop 
products require downstream processing, aggregators and processors 
are likely to focus on traits affecting mixed seed separation (e.g., 
seed size), product purity, and nutritional quality (including anti-
nutritional factors), and/or other physico-chemical properties that 
affect processing efficiency (e.g., for milling, fermentation, extrusion). 
Growing societal expectations and consumer demands for agriculture 
to support biodiversity, environmental sustainability, and more 
nutritious products (e.g., Lienhardt et  al., 2019a; Mamine and 
Farès, 2020; Marette, 2021) will influence trait selection by breeders 
and actors along the supply chain.

Here, three case studies of intercrop supply chains were 
used to: (i) determine challenges at each level of the supply 
chain, (ii) identify relevant trait categories to help overcome 
these challenges, and (iii) suggest potential breeding targets 
for “intercrop-adapted” genotypes. Finally, approaches and 
methods with potential to improve breeding for intercropping 
and increase supply chain acceptance are discussed.

DESIRABLE BREEDING TRAITS IN 
INTERCROP SUPPLY CHAINS

The three case studies draw on input from relevant stakeholder 
groups, including breeders, crop scientists, farmers, and 
processors. This was compiled from authors’ experience, exchange 
with relevant stakeholders in Germany, France, Scotland, and 
Denmark, and a workshop held at the first European Conference 
on Crop Diversification (Budapest, Hungary, September 2019). 
Cases were selected among several candidates based on the 
criteria that they (i) be currently relevant legume-based intercrops 
for human consumption in an author’s country, (ii) represent 
different types of supply chains, and (iii) reveal some experience 
with supply chains actors.

Case study 1: Winter wheat intercropped with pea in Germany. 
While traditionally grown for fodder, this combination is gaining 
attention for its potential to improve wheat baking quality. Many 
farmers are currently reluctant to grow this intercrop due to 
lack of expert advice and experience within farmer networks, 
as well as suitable pea cultivars for mixing with winter wheat.

Case study 2: Pea–barley intercropping in Scotland, using barley 
for distilling and pea protein by-products as a food ingredient. 
Barley is grown on over 60% of the arable land in Scotland and 
is used for brewing and distilling and animal feed, which are 
critically important to Scotland’s economy and culture. Pea 
intercropping creates an opportunity to diversify the arable system.
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Case study 3: Lentil intercropped with cereals for human 
consumption based in France, Denmark, and Germany. Lentil 
is a high-value food crop and intercropping with cereals in 
organic systems provides weed suppression and structural support 
resulting in increased lentil height and more efficient harvest.

Crop traits desirable to each supply chain actor were compiled 
for each case study (Table 1), revealing four overall trait categories. 
While breeders are an essential part of the supply chain our 
initial focus is on the other supply chain actors, who create 
the primary demand for specific intercrop traits and properties.

General Agronomic Traits
Several of the breeding traits identified as relevant within the 
supply chain for these intercrops (Table 1) are equally important 
for sole crops, including yield, stress tolerance/resistance, pest 
and disease resistance, weed suppressiveness, lodging resistance, 
root vigor, winter hardiness and quality traits, such as low 
levels of anti-nutritional factors (Gupta, 1987).

Selection of these traits for intercrops is particularly challenging 
due to the added complexity of managing crop species interactions 
(Brooker et al., 2015; Litrico and Violle, 2015), and their responses 
to crop agronomy, soil conditions, and climate (Allard, 1999; 

Lithourgidis et  al., 2011; Saxena et  al., 2018). For example, 
selection for yield in an intercrop should aim to maximize 
complementary resource use and minimize asymmetrical 
competition, as the overall yield of intercrops often depends 
on the yield of the less-competitive component (Harper, 1977; 
Kammoun et al., 2021). This stresses the importance of selecting 
for competitive ability of less-competitive crop partners 
(Annicchiarico et al., 2021), particularly when the less-competitive 
species is also more economically valuable, which is often the 
case for legumes (Hamann et  al., 2020).

Species Synergy Traits
The main advantage of intercrops is often described as being 
the result of the “4C effects” (Justes et al., 2021) corresponding 
to three positive interactions (complementarity, cooperation, 
and compensation) and one negative interaction (competition) 
occurring simultaneously and dynamically between species 
over the whole cropping cycle. Positive legume–cereal 
interactions are underpinned by mechanisms of niche 
differentiation, such as for soil mineral nitrogen vs. biological 
nitrogen fixation (Bedoussac et  al., 2015; Cowden et  al., 
2021), and facilitation, such as soil phosphate release by 

TABLE 1 | Compiled breeding targets that were assessed as important for each actor in the supply chain in each of the three intercrop case studies.

Actor Case study 1

Winter wheat—Pea (food)

Case study 2

Barley—Pea (alcohol and food protein)

Case study 3

Lentil—Cereal (food)

Plant breeders All of the below All of the below All of the below

Seed multipliers and 
merchants

Abiotic and biotic stress tolerance/resistance

Seed quality

Abiotic and biotic stress tolerance/resistance

Seed quality

Abiotic and biotic stress tolerance/resistance

Seed quality

Farmers Yield

Resource use efficiency

Abiotic and biotic stress tolerance/resistance

Lodging resistance

Increased root vigor

Wheat baking quality

Resistance to pod shattering in legume*

Resistance to seed splitting in legume*

Seed size and color differentiation*

Synchronization of ripening times*

Species synergy+

Yield

Resource use efficiency

Abiotic and biotic stress tolerance/resistance

Synchronization of ripening times*

Species synergy+

Yield

Resource use efficiency

Abiotic and biotic stress tolerance/resistance

Lodging resistance

Increased root vigor

Resistance to pod shattering in legume*

Increased lentil pod harvest height*

Seed size and color differentiation*

Synchronized crop ripening times*

Species synergy+

Aggregators Seed size and color differentiation*

Resistance to seed splitting in legume*

Seed size and color differentiation*

Resistance to seed splitting in legume*

Seed size and color differentiation*

Resistance to seed splitting in legume*

Processors Wheat baking quality

Less anti-nutritional factors

Resistance to seed splitting in legume*

Ease-of-use of protein-rich co-product*

Low N content in barley grain

Starch-rich pea

Wholesalers and 
Retailers

Quality, nutrition and sensory characteristics§ Quality, nutrition and sensory characteristics§

Consumers Quality, nutrition and sensory characteristics§ Sensory characteristics§ Quality, nutrition and sensory characteristics§

Traits only relevant for intercrop breeding are in bold, while the rest are general agronomic traits relevant for both sole crop and intercrop breeding (see section “General 
Agronomic Traits”). Traits related to synergistic plant–plant interactions are marked with “+” (see section “Species Synergy Traits”). Traits important for  
technical issues related to cultivation and post-harvest handling of intercrops are marked with “*” (see section “Traits Related to Technological Challenges”). Traits related to 
seed quality, nutrition, and sensory characteristics are marked with “§” (see section “Quality, Nutritional, and Sensory Characteristics”).
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legume root exudates (Homulle et  al., 2021) and physical 
support to prevent lodging. One of the main challenges for 
improving intercrops is characterizing the trait combinations 
that maximize these positive interactions while minimizing 
negative interactions (Brooker et  al., 2021; Homulle et  al., 
2021; Justes et al., 2021). The intercrop ideotypes that optimize 
these processes will vary with the intended outcome, whether 
to increase fertilizer use efficiency, minimize lodging, improve 
weed control, or promote biodiversity (Brooker et  al., 2015; 
Gu et  al., 2021; Homulle et  al., 2021). Identifying clear goals 
to be  achieved by intercropping is crucial when choosing 
candidate germplasm in the selection process, as different 
goals may necessitate separate breeding programs or simply 
the correct selection of existing genotypes.

Selection for “species synergy” (Table  1), that is, traits and 
trait combinations that optimize complementary interactions 
above and belowground, is expected to “force the positive 
relation between diversity and yield” (Litrico and Violle, 2015). 
Aboveground traits include plant morphology, physiology, 
phenology, and developmental trajectories (Lithourgidis et  al., 
2011; Isaacs et  al., 2016; Saxena et  al., 2018; Bourke et  al., 
2021; Nelson et  al., 2021). Belowground traits (summarized 
in Homulle et al., 2021) include rooting patterns and architecture 
(Lithourgidis et  al., 2011; Streit et  al., 2019; Bourke et  al., 
2021; Timaeus et  al., 2021), nutrient-releasing or pathogen-
suppressive root exudates, and associations with beneficial 
microbes including common mycorrhizal networks (Barto et al., 
2012; Brooker et  al., 2015; Bourke et  al., 2021). A positive 
effect of increased plant diversity on soil communities and 
plant microbiomes (Strecker et  al., 2015; Tiemann et  al., 2015; 
Saleem et  al., 2020) can act as a driver for the diversity–
productivity relationship (Raynaud et  al., 2021).

Traits Related to Technological Challenges
Many of the breeding targets identified within legume–cereal 
supply chains (Table  1) have implications for technical issues 
and the additional costs associated with intercropping. Improving 
these traits could increase the efficiency of mechanical and 
technological processes embedded within intercrop supply chains, 
aided by precision technologies for crop agronomy and harvesting 
(Banfield-Zanin et  al., 2021).

Resistance to seed splitting in legumes, for example, is 
important for both sole crop and intercrop production (Endres 
et  al., 2016), but the separation of split legume grains from 
cereal grains of similar color and size is particularly challenging 
(Tippin et  al., 2019). Selection for crop differences in seed 
size and color may increase seed sorting efficiency, reduce the 
number of seed separation cycles and improve final product 
purity and quality, while reducing costs (Viguier et  al., 2018; 
Bonke and Mußhoff, 2020). Conversely, differences in seed 
size might be  an undesirable feature during sowing, leading 
to seed segregation in the drill hopper, which interferes with 
sowing both species simultaneously as a blend.

Synchronization of ripening times between species and the 
reduction of pod shattering and seed splitting in legumes are 
important not only to improve harvesting and seed sorting 

efficiency, but also to reduce additional post-harvest handling, 
such as drying (Tippin et  al., 2019; Trivett et  al., 2021).

Selection for increased lentil canopy height would improve 
mechanical pod harvesting efficiency (Viguier et  al., 2018), 
while also raising the combine header off the ground and 
reducing abrasion damage from stones. This has the added 
benefit of reducing soil and stone contamination of the grain, 
improving product quality and purity, and thereby increasing 
marketable yields and gross margins (Viguier et  al., 2018).

Quality, Nutritional, and Sensory 
Characteristics
While quality, nutritional, and sensory characteristics are breeding 
targets that are important in sole crops as well as intercrops, 
intercropping will often influence quality parameters. Cereal 
grain protein can be  improved through intercropping with 
legumes (Hauggaard-Nielsen et al., 2001; Bedoussac and Justes, 
2010b; Bedoussac et al., 2015), although desirable protein levels 
depend on the end use (Black et al., 2021) and could be mitigated 
by higher grain starch contents of barley or the intercrop 
(Lienhardt et  al., 2019a,b). Conversely, quality characteristics 
might be  negatively affected by intercropping. For example, 
differential ripening and inefficiencies in sorting and drying 
intercrop grains can lead to higher grain moisture content 
and favor mycotoxin production (Daou et  al., 2021), which 
could be addressed by improving traits related to technological 
challenges. Product purity will also be  a key consideration for 
removing allergens related to favism and gluten allergy.

Although the benefits of diversified diets are well known 
(Dwivedi et  al., 2017), highlighting the need for diversified 
crop products for human consumption, the improvement of 
nutritional and sensory characteristics for intercrops are not 
well explored. The development of heterogeneous cereal 
populations with unique sensory characteristics (Vindras-
Fouillet et al., 2014, 2021) demonstrates potential opportunities 
for creating novel and innovative food products using  
intercrops.

DISCUSSION

Our assessment has identified several desirable intercrop traits 
for actors across supply chains, including several seed attributes 
not targeted by modern breeding for sole crops, including 
synchronized maturity and species synergies. Dedicated crop 
improvement strategies and collaborations are evidently needed 
for intercropping to support the sustainable intensification of 
food and feed supply chains.

Crop breeding priorities are often set by the dominant 
industry demands for characteristics, such as disease resistance, 
ease of harvest, or processing quality. Intercropping requires 
consideration of additional traits; while this might add to 
breeding complexity, it presents opportunities to reduce 
complexity for other supply chain actors and encourage intercrop 
innovations in desirable traits and end products, while 
contributing to agricultural sustainability.
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Taking advantage of potential intercrop innovations will 
require the involvement and empowerment of all supply chain 
actors, including regulators who incentivize farmers to adopt 
legume–cereal intercrops (e.g., by limiting nitrogen inputs or 
by direct payments for crop diversification). Processors might 
be  more willing to challenge purity requirements when there 
is a close working relationship with producers (Tippin et  al., 
2019). Smaller-scale artisan processors often possess the skills 
to adapt to changes in product composition, although investment 
is needed to rebuild lost artisanal and short supply chain 
capacities (Form, 1987; Fitzgerald, 1993; Iannetta et  al., 2021). 
Changes in regulatory procedures could encourage intercrop 
seed production and certification and facilitate intercrop 
placement within field-to-fork contexts (Hamann et  al., 2018). 
Additionally, existing infrastructure will need to be  redesigned 
to ensure the efficient processing and storage of intercrop 
mixtures and their components on regional and national levels 
(Tippin et  al., 2019; Mamine and Farès, 2020). The increasing 
environmental and food literacy of consumers, combined with 
policy targets for reduced agrochemical use, net zero carbon, 
and reversing biodiversity declines, create potential drivers for 
practices, such as intercropping (Vasconcelos et  al., 2020;  
Balázs et  al., 2021a,b).

From the breeder’s perspective, the intercrop traits presented 
above have differing levels of complexity, implying differences 
in genetic background, variable importance of trade-offs between 
traits, and a need for different breeding schemes. We identified 
three categories of traits: (i) general agronomic traits, such as 
disease resistance and grain yield; (ii) specific traits for 
intercropping success due to their role in technical, quality, 
and other downstream processes, including ripening time and 
seed color; and (iii) complementary traits related to species 
synergy during the growth period, for example, “mixing ability” 
and “species compatibility,” which are more complex, not yet 
clearly defined and undoubtedly involve more genes than the 
other categories.

These different breeding targets present novel opportunities 
and challenges for existing breeding programs, especially when 
considering plant–plant and plant–environment interactions 
(Gaba et  al., 2015). Breeding for Category 1 traits fits readily 
into existing breeding programs, although selection in sole 
crops does not necessarily produce genotypes best suited to 
intercrops (Litrico and Violle, 2015; Bourke et  al., 2021). 
Category 2 breeding traits are also likely to be identified within 
existing breeding programs. However, lack of supply chain 
integration means that relevant traits might not be  considered 
important, especially as modern breeding has become driven 
by scientists and breeders (Tveitereid Westengen and Winge, 
2019). Breeding for Category 3 traits related to overall species 
synergy is currently not pursued within mainstream breeding 
programs. The “breeding gaps” for these three trait categories 
present an opportunity for novel “systems-level” breeding 
approaches that involve selection within mixtures.

Recent advances in breeding tools and approaches highlight 
the growing interest in their potential use for intercrop 
breeding. Application of Function-Structural Plant Models 
(FSPM) and process-based minimalistic models could 

significantly reduce the complexity of intercrop breeding, and 
minimize the need for experimental evaluation of multiple 
crop genotype combinations and spatial designs (Berghuijs 
et  al., 2020; Blanc et  al., 2021; Bourke et  al., 2021). While 
simulation has shown the utility of genomic selection for 
intercrop breeding (Bančič et al., 2021), using both phenotypic 
and genomic selection tools is strongly recommended 
(Annicchiarico et  al., 2021; Wolfe et  al., 2021). Additionally, 
methods for estimating both general and specific mixing ability 
correlated with simple-to-measure indicator traits could provide 
a cost-efficient and effective methodological framework for 
intercrop breeding (Haug et  al., 2021). The use of additional 
selection indices, such as cultivar competitive response, can 
significantly improve genotype selection for intercropping 
(Kammoun et  al., 2021). Furthermore, relevant traits can 
be  pooled into a selection index for indirect selection for 
intercrop performance under sole crop conditions 
(Annicchiarico et  al., 2019). Studies of genotype-by-cropping 
system interactions could reveal within-species variation, 
allowing selection of genotypes most suited to intercropping 
(e.g., Moutier et  al., 2021).

Participatory breeding has been successful at increasing 
yields of several crops (Ceccarelli et al., 2001; Sperling et al., 
2001; Desclaux et  al., 2012; van Frank et  al., 2018) and this 
presents an excellent opportunity to engage farmers and 
other supply chain actors in breeding for intercropping, while 
simultaneously encouraging its adoption. Heterogeneous 
populations have also indicated great potential for 
intercropping (Khan, 1973; Annicchiarico et  al., 2019), and 
evolutionary breeding in mixtures (Suneson, 1956) represents 
another valuable approach to on-farm breeding for intercrops, 
especially as breeding for climate resilience becomes more  
important.

While the diversification of agroecosystems through 
intercropping is gaining attention, the widespread adoption 
and integration of intercrops will only be  successful through 
the inclusion and collaboration of all supply chain actors, and 
the application of different breeding approaches. This requires 
challenging the “predominant monoculture agricultural paradigm” 
prevalent in breeding programs (Bourke et  al., 2021), and 
implementing diversification strategies in every process from 
field to fork.
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