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Abstract

In this study, we present a modified Hartwick rule encompassing the dynamics of pandemic, such as
COVID-19. In our setting, the labor productivity gradually improves after the pandemic shock and may
even go beyond its pre-pandemic level due to the remote work and digitalization as also suggested by
the empirical evidence. We demonstrate that a gradual labor productivity increase helps to conserve
natural resources. We provide a theoretical foundation for a“sooner-the-better" strategy to control a
pandemic, and we show that policy maker should implement a “whatever it costs” response to ensure
that the transmission rate of the virus is below the recovery rate from the very beginning of the pan-
demic. Otherwise, the economy cannot have a sustained utility. We also analyze the implications of an
“uncertain” pandemic on the intertemporal dynamics of natural resource and capital accumulation under
the maximin criterion. Another important finding is that there exists a new economic and public health
trade-off since a strong prevention policy is shown to decrease capital accumulation.
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1 Introduction

Many countries have accumulated significant amounts of debt because of the COVID-19 crisis (Kose et al.,
2021). Countries such as Norway that invest natural resource rents into man-made capital, however, have
remained resilient against the COVID-19 crisis thanks to their sovereign wealth funds (SWFs), which have
allowed them to avoid increasing their public debt rates (Bortolotti and Fotak, 2020). In this sense, the
pandemic has intensified the debate around the use of wealth funds for disasters.1 2 The question that
motivates this study is the following: How should an economy build a wealth fund (i.e., capital accumulation)
that helps mitigate economic losses due to harmful events such as pandemics?

A sovereign wealth fund (SWF) can be efficiently created using Hartwick’s rule so as to sustainably manage
national wealth (van der Ploeg, 2017). According to this famous rule pioneered by Hartwick (1977), if an
economy invests the rents stemming from the extraction of natural resources into the net accumulation of
physical capital, it follows an equitable and sustainable growth path by maximizing the utility of the most
deprived one (maximin criterion) (Solow, 1974). Evidence also shows that countries applying Hartwick’s
rule are wealthier than those not following it (Hamilton et al., 2005).

In the context of a pandemic, the question of why Hartwick’s rule is still important is crucial. It is evident
that the pandemic has caused a reallocation of production factors such as labor, natural resources, and
capital (Gromling, 2021). Thus, with the pandemic shock being accompanied by productivity changes, it is
crucial to understand how we should extract natural resources and invest the associated rents in man-made
capital so as to sustain utility and build an efficient wealth fund. Therefore, it is essential to outline a
pandemic-modified Hartwick rule that encompasses the dynamics of the pandemic outbreak. A pandemic-
modified Hartwick rule will provide new prescriptions for how to build a sovereign wealth fund in the context
of a pandemic.

The creation of wealth funds is also motivated by the possibility of uncertain harmful events that can
potentially occur in the future (see p. 48 in World Bank, 2014). Hence, it is important to have an idea of
how the economy should build a wealth fund prior to the occurrence of an uncertain harmful event, with the
aim of increasing the resilience of an economy against uncertain future shocks. In this line, there is a recent
literature on precautionary savings in the context of uncertain harmful events such as droughts, floods, and
hurricanes (van der Ploeg and de Zeeuw, 2016, 2017). However, these studies do not take into account the
dynamics of a pandemic and do not focus on sustainability.

A large strand of the literature, starting with Hartwick (1977), strives to understand the connection between
Hartwick’s rule and sustainable development by ensuring a constant utility level over time (Hartwick, 1978;
Dixit et al., 1980; Buckholtz and Hartwick, 1989; Hamilton, 1995; Asheim et al., 2007; Martinet, 2007;
D’Autume and Schubert, 2008; D’Autume et al., 2010; Hartwick and Long, 2018). However, there are only
a few papers studying uncertainty in the maximin context. Cairns and Long (2006) investigate the maximin
case under uncertainty, with events that stochastically affect the evolution of stock variables. They show
that a constant utility level cannot be guaranteed due to shocks that occur. In the same vein, Butterfield
(2003) concentrates on the uncertainty regarding the future prices of extracted natural resources, presenting
a version of Hartwick’s rule with uncertainty. Van Long and Tian (2003) investigate Hartwick’s rule where
the uncertainty comes from international trade.

1See https://www.ft.com/content/46a6bdf4-c965-48ff-be58-820067b04e81
2see https://bit.ly/3sVkizv
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To provide answers to the questions posed above, we recall the Dasgupta–Heal–Solow–Stiglitz (DHSS) model
under the uncertainty of a pandemic occurring and in which we embed the simple epidemiological susceptible–
infected–removed (SIR) model. Prior to the pandemic, the economy faces the risk of a pandemic occurring.
Once the pandemic takes place, the active population is supposed to be constant but labor productivity
changes over time. Labor productivity depends on the qualitative features of the disease, such as the
transmission rate, the recovery rate (or removal), and prevention policy, which consists of measures such
as lockdowns, social distancing, vaccination, etc. We adopt a similar approach to Bosi et al. (2021) for
the modeling of prevention policy, but the economic literature also includes many recent contributions with
policy instruments to mitigate the impacts of COVID-19 (Nævdal, 2020; d’Albis and Augeraud-Véron, 2021;
Barbier, 2021).

We suppose that labor productivity decreases abruptly due to the pandemic shock but increases gradually
afterwards and may go beyond the pre-pandemic productivity level. At first glance, this may seem unrealistic.
However, the current evidence regarding COVID-19 shows that labor productivity, after decreasing sharply at
the very beginning of lockdowns,3 increases significantly due to the accelerated digitalization and automation
that allowed for remote work (Bloom et al., 2020; Chernoff andWarman, 2020; IMF, 2021; Petropoulos, 2021).
To ensure a robust analysis, in Section 4.1 we also consider the cases where labor productivity decreases, by
relaxing the assumption that labor productivity increases after the pandemic.

The contribution of the current study is threefold. First, to the best of our knowledge this is the first
rigorous framework seeking to understand the connection between sustainability and a pandemic. One of
the main results of the study is that the policymaker should implement a "whatever it costs" policy response
to decrease the ratio of infected/susceptible individuals (i.e., the prevalence rate). Otherwise, Hartwick’s rule
cannot be implemented and utility is not sustained over time. In this sense, our study offers an analytical
basis for a "sooner the better" strategy to control a pandemic. An important result is that the policymaker
should implement a "whatever it costs" policy if the natural resource is an essential and exhaustible input
for production. We show that if there is an available substitute such as solar energy or wind instead of
exhaustible resources, then the utility can be sustained even though the prevalence rate is increasing over
time. In this sense, this result also shows the importance of energy substitutes regarding the sustainability
of an economy.

The second contribution is that we present a new trade-off between public health policies (such as preven-
tion) and capital accumulation in the context of Hartwick’s rule. The mechanism is as follows: When the
policymaker implements a prevention policy, labor productivity increases. This productivity increase natu-
rally leads to lower natural resource extraction. It follows that there is a lower amount of rents stemming
from the extraction of natural resources invested in physical capital accumulation. This result shows that
sovereign wealth funds composed of natural resources rents may be at risk (Bortolotti and Fotak, 2020).4 In
other words, a policymaker faces an important trade-off between constructing a wealth fund and protecting
the public health by a prevention policy. Thus, to get rid of this tradeoff, policymakers should redesign
wealth funds to be built from other sources of revenue such as trade surpluses.

Third, this study is the first to examine the impacts of the probability of a pandemic occurring on man-made
capital and natural resource depletion dynamics under the maximin criterion. To build a resilient economy

3The sharp decrease in labor productivity is mainly due to the lack of adaptation of many firms to remote work.
4Another risk mentioned by Bortolotti and Fotak (2020) is the sharp decrease in oil prices. Our study abstracts from the

price dynamics of oil.
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before a harmful event, it is important to know how an economy under uncertainty should build wealth funds
(i.e., capital accumulation) prior to the occurrence of a pandemic. The probability of a pandemic is shown
to generate precautionary behavior for natural resource conservation. Of course, this leads to lower capital
accumulation since natural resource rents decrease. Again, policymakers should think about how to design a
wealth fund in a world with uncertain harmful events. Last but not the least, we show that the probability of
a harmful event decreases the maximum achievable utility. At this point, a prevention policy that increases
labor productivity may help an economy compensate the decrease in utility due to the pandemic risk if the
cost of the prevention policy is not too high.

The remainder of the paper is organized as follows. Section 2 introduces the economy with the expected
pandemic. Section 3 illustrates the outbreak of a pandemic, where a SIR model is solved analytically, and
the pre-pandemic and post-pandemic regimes are presented. The main analysis and results are given in
Section 4. Section 5 offers some concluding remarks. All proofs are relegated to the end of the paper, in the
Appendix.

2 The economy with an expected pandemic

Denote as T (>) the uncertain future time when a pandemic indeed occurs. Denote as F (t) = Pr{T ≤ t} the
cumulative distribution of epidemics occurring up to time t and as f(t) the corresponding density function.
The instantaneous conditional probability of a pandemic occurring, given its non-appearance in time, is
assumed constant:

θ = F ′ (t)
1− F (t) = f (t)

1− F (t) .

In other words, the probability of a pandemic and its density function is

F (t) = 1− e−θt, (1)

f (t) = θ [1− F (t)] . (2)

For simplicity, we suppose that the pandemic occurs just once,5 entailing a penalty that decreases with the
natural resource stock (Mavi, 2019, 2020; Tsur and Zemel, 1996, 1998, 2015, 2016). The evidence shows that
the incidence of a zoonotic disease is related to many factors such as habitat conversion and biodiversity loss
(see Barbier (2021); Augeraud-Véron et al. (2021)). However, there is no evidence showing that zoonotic
disease becomes a pandemic causing significant economic losses because of the biodiversity loss or the habitat
conversion. Hence, the probability of a pandemic occurring is supposed to be constant.

3 The outbreak of a pandemic

When the pandemic breaks out, the total population (L) becomes the sum of three different types of people
in society: the susceptible x, infected y, and recovered j, thus forming the SIR model (Kermack and McK-

5Obviously, in reality an epidemic or pandemic may happen multiple times, like the seasonal flu, bird flu, plague, and so on,
and different epidemics and pandemics appear all the time, such as SARS 2002–2003, COVID-19, etc. Nonetheless, including
multiple epidemics and pandemics significantly increases the calculation difficulty without commensurate gains in insight. Here,
we use the situation of just one pandemic to illustrate the importance of taking into account a potential pandemic in the study
of Hartwick’s rule.
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endrick, 1927; Gersovitz and Hammer, 2004; Acemoglu et al., 2021). The total population x + y + j = L̄

is assumed to be constant. Denote as b the infection rate and as c the recovery rate if no prevention policy
(lockdown, for example) is imposed. A regulator can impose a lockdown policy that contains a portion
λ ∈ [0, 1] of society. Suppose each individual meets a number of other individuals k per unit of time. Then,
on average, an infective individual meets k x

x+y (1− λ) susceptible individuals. Of course, if there is a total
lockdown λ = 1, an infective individual meets no one. The total number of meetings between infective and
susceptible people is k x

x+y (1− λ) y. The new number of infective people is pk x
x+y (1− λ) y, where p is the

probability of transmission of the diseases during a meeting between a susceptible and an infective person.
Indeed, any action that decreases the probability of contracting the disease (e.g., lockdown, vaccination,
social distancing), p (1− λ), can be considered a prevention policy.

The evolution of the number of susceptible and infected individuals is given by

ẋ = −b̃ xy

x+ y
, (3)

where b̃ = b (1− λ) and b = pk. This dynamic shows that b̃xy
x+y susceptible individuals become infected at

each moment in time. Naturally, the evolution of the infected population is given by

ẏ = b̃xy

x+ y
− cy, (4)

which includes the newly infected minus the recovered and in which c is the recovery rate of the disease.
Consequently, the dynamics of the removed (recovery) individuals is

j̇ = cy. (5)

Following Bohner et al. (2019), the analytical solution for the differential system (3), (4), and (5) (see
Appendix A.1 for calculation details) can be given by the following: the number of susceptible individuals is

x (t) = x0 (1 + κ)
b̃
b̃−c

(
1 + κe(b̃−c)t

)− b̃
b̃−c

, (6)

and the number of infected individuals is

y (t) = y0 (1 + κ)
b̃
b̃−c

(
1 + κe(b̃−c)t

)− b̃
b̃−c

e(b̃−c)t. (7)

The evolution of the number of susceptible, infected, and recovered (removed) individuals can be represented
as in Figure 1.
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Figure 1: The evolution of the number of susceptible x (blue), infected (red) y, and recovered r (black) individuals
over time t, with κ = 7, c = 0.3, b = 0.8, and λ = 0.1.

Denote the infected/susceptible ratio as
z (t) = y

x
.

It is straightforward to have
z (t) = κe(b̃−c)t, (8)

where κ = y0
x0

is the initial value.

In particular, x0 > 0 and y0 > 0 are the initial numbers of susceptible and infected individuals. This in-
fected/susceptible ratio can be considered as the prevalence rate. Given that the share of infected individuals
has a negative impact on labor productivity, the infected/susceptible ratio is an important indicator of the
damaging cost of a pandemic. Hence, controlling the disease through a prevention policy λ is necessary to
increase labor productivity. The choice of an SIR model is also related to its analytical tractability. Note
that in the remainder of the paper, we show that this choice does not have a qualitative impact on our results
(see Appendix A.5.)

3.1 The economy after the pandemic

After the occurrence of the pandemic, economic activities continue. Once the only expected pandemic occurs,
the optimization problem becomes a deterministic one. However, we assume that labor supply, L̄, is a fixed
constant and it is normalized to 1 in the analysis.6 Note that the number of workers does not change but
productivity decreases with the prevalence rate of the pandemic z (t) = y(t)

x(t) , where, as above, x (t) and y (t)
are the number of susceptible and infected people, respectively. Labor productivity f̃ (z (t)) is a function
of the ratio of susceptible people z (t). Similar to d’Albis and Augeraud-Véron (2021), we reformulate the
labor supply as

L (t) = L̄f̃ (z (t))

and impose the following assumption: The number of workers in production does not change. Thus, we can
interpret the function f̃ (z (t)) as a productivity factor.

Assumption 1 The number of workers L̄ is constant, but labor productivity f̃ (z (t)) is a decreasing and
concave function of the prevalence rate z (t) if the transmission rate of the disease b̃ is higher than the recovery

6Obviously, during some pandemics, such as COVID-19, lives are lost and labor supply decreases. Nonetheless, a constant
labor supply with lower average productivity is a reasonable approximation.
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rate c: f̃ (z) > 0, f̃ ′ (z) < 0, and f̃ ′′ (z) < 0.

Assumption 1 indicates that the pandemic has a negative impact on production through a decrease in
the labor supply if the ratio of infected/susceptible people z (t) is increasing. If the economy implements
an efficient prevention policy λ such that the recovery rate c is higher than the transmission rate of the
disease b (1− λ), implying c > b (1− λ), the productivity of labor increases. It is known that European
countries experienced a labor productivity slowdown prior to the pandemic,7 but this has changed after
the pandemic. At first glance, the increase in labor productivity might be considered unrealistic since the
pandemic has caused large economic losses. However, the evidence shows that the pandemic has increased
labor productivity per hour due to greater digitalization and automation in many sectors (Bloom et al.,
2020; IMF, 2021).

For these reasons, we can also interpret the parameter λ as a measure of the level of remote working,
which helps decrease the transmission of the disease b. In addition, the evidence shows that remote work8

is accompanied by digitalization, such as the use of technological devices during lockdown, which increased
labor productivity (Lopez-Garcia and Szorfi, 2021). In other words, λmay be considered as technical progress
that increases labor productivity.

In a world with a pandemic, the social planner still aims to maximize the utility of the most “deprived” min ut
with the condition ut ≥ ū2. Denote consumption as C(t), and capital and non-renewable resources employed
in production as K(t) and R(t), respectively. Consider output function F (K(t), R(t), L(t)) following a
Cobb–Douglas form (Solow, 1974):

Y = F (K,R,L) = KαRβLγ ,

where parameters α, β, γ ∈ (0, 1) are the share of capital, natural resources, and labor, respectively, in the
output.

The pandemic has led to significant economic losses stemming from the destruction of capital by the exit
of vulnerable firms from the market.9 (OECD, 2020) In our specification, we note the economic losses from
capital destruction in the post-pandemic regime, which we explain in more detail later.

The policymaker’s optimal control problem is similar to Van Long (1992), where the Bellman value function
after the occurrence of the harmful pandemic is defined as

max
C

V2(K,S) =
∫ ∞
T

ρū2e
−ρ(t−T )dt = ū2, (9)

7See https://ec.europa.eu/eurostat/databrowser/view/tesem160/default/line?lang=en
8Remote work started just after governments imposed lockdowns in many countries. Higher levels of lockdown (higher λ)

mean a higher level of remote work.
9See also https://voxeu.org/article/lasting-scars-covid-19-crisis
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subject to

K̇ (t) = F (K (t) , R (t) , L (t))− C (t) , (10)

Ṡ (t) = −R (t) , (11)

U2 (C (t)) ≥ ū2, (12)

lim
t→∞

S (t) = 0,

S (T ) = ST > 0, (13)

K (T ) = KT > 0, (14)

where positive parameter ρ is the pure rate of time preference. In the post-pandemic regime, there is capital
destruction and the initial condition KT may even fall below K0, which is the initial capital level in the
pre-pandemic world.

3.2 The economy before the pandemic

Before the pandemic, the economy takes into account the probability of a pandemic occurring and the
disutility associated with the pandemic possibly happening at a future unknown time T (see Barbier (2021)
for similar modeling). We denote the disutility as ψ (S), which depends on the natural capital S which
is supposed to have an amenity value (see D’Autume and Schubert (2008); D’Autume et al. (2010)). The
preservation of natural capital helps to decrease the disutility (penalty) since it has an amenity value. For
example, the preserved natural environments are disrupted by the extraction of productive resource inputs
such as oil (Krautkraemer, 1985). Furthermore, more recent studies, focusing on the link between the natural
resource protection, biodiversity and the epidemic diseases (Augeraud-Véron et al., 2021), shows that the
biodiversity conservation may help to dampen the negative impacts of pandemic. Then, preserving the
natural environment as a source of well-being for individuals helps to decrease the disutility due to a future
harmful event such as a pandemic.

Assumption 2 The penalty rate due to the occurrence of a future pandemic decreases if the natural capital
level is high: ψ′ (S) < 0.

Following Clarke and Reed (1994) and Tsur and Zemel (2016), the post-pandemic value function takes the
following form:

ϕ (K,S) = V2︸︷︷︸
=ū2

− ψ (S) . (15)

Since the economy takes into account the disutility of an event that may possibly happen in the future, the
term ψ (S) presents in this post-value function. Contrary to our specification, the existing literature normally
considers u2 as a minimum utility level u (cmin) (Clarke and Reed, 1994; Bommier et al., 2015; Tsur and
Zemel, 2016; Mavi, 2019) and specifies a post-value function very similar to ϕ (K,S) = u (cmin) − ψ (S),
with an inflicted penalty ψ (S) due to the occurrence of the harmful event. This formulation states that
economic activity stops and the consumption level is reduced to a minimum level. An important difference
in our study is that economic activity continues after the occurrence of the harmful event, and we calculate
the value of u2 instead of just assuming that it is an arbitrary constant minimum utility u (cmin).
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To sum up, the pandemic damage is twofold. On the one hand, the damage goes indirectly through the
production process, and on the other hand, after the occurrence of the pandemic there is a future disutility,
ψ (S). Since the arrival time of the pandemic T is uncertain, the expected utility of the economy before the
pandemic is thus

ET

{∫ T

0
U (C (t)) e−ρtdt+ ϕ (K (T ) , S (T )) e−ρT

}
. (16)

Taking expectations of the expression (16) with respect to the distribution of T and having (1) and (2) yield
the initial value function as (see Appendix A.6 for the proof):

V1 (K0, S0) = max
C(t)

∫ ∞
0

[U (C (t)) + θ (V2 (K (t) , S (t))− ψ (S))] e−(ρ+θ)tdt. (17)

More precisely, the social planner aims to maximize the utility of the poorest generation, min ut, under
technical constraints and the damage due to pandemic in the future. In other words, we can define the
optimal control problem before the pandemic as∫ ∞

0
(ρ+ θ) ū1e

−(ρ+θ)tdt = ū1, (18)

subject to

K̇ = I = F (K,R)− C, (19)

Ṡ = −R, (20)

U (C) + θ (V2 (K,S)− ψ (S)) ≥ ū1, (21)

lim
t→∞

S (t) = 0, (22)

S (0) = S0 > 0, (23)

K (0) = K0 > 0. (24)

In the following, we analyze the impact of the risk of a pandemic occurring on the optimal paths of capital
accumulation and resource extraction when the social planner’s objective is to maximize the “lowest” utility
in society by taking into account the cost of a potential pandemic. The role of the pandemic enters into
the utility through the post-event value function, ϕ (K,S), which we discuss in more detail throughout the
remainder of the paper.

After describing the pandemic in the next section, we present the maximin problem, the constant utility
level, and the optimal paths of physical capital accumulation and natural resource exploitation that sustain
the utility in an economy facing the risk of a pandemic.

4 Analysis and results

The analysis follows backward induction by first investigating the economy after the pandemic shock and
then studying the economy prior to this shock, looking at how the optimal choice of consumption can be
made while taking into account potential pandemic damage.

9



4.1 The economy after the pandemic

In this section, we treat three different cases:

• Knife’s edge, where the social planner should immediately control the pandemic outbreak by ensuring
b̃ = b (1− λ) < c to ensure a sustained utility level.

• Not a knife’s edge, where functional specifications of labor productivity and the evolution of the disease
are relaxed.

• Free of natural resource constraints, where the economy is assumed to have a constant stream of natural
resources, similar to Dasgupta and Heal (1974a).

The ”knife’s edge" case contains a full analytical resolution of the model, which shows that the social planner
should ensure b̃ = b (1− λ) < c. Otherwise, the economy cannot evolve along an optimal maximin path.

The ”not a knife’s edge" case solves the knife’s edge problem without functional specifications for labor
productivity and pandemic dynamics and without presenting analytical results. It is shown that the results
in the knife’s edge case are robust and that the social planner should still control the pandemic to sustain
utility.

The ”free of natural resource constraints" case focuses on an economy where the natural resource constraint
does not exist, due to a constant stream of substitutes (such as solar and wind for energy supply). We
show that the economy can sustain a constant utility level even though the ratio of infected to susceptible
individuals increase over time. Of course, this case is far from the Dasgupta–Heal–Solow–Stiglitz framework
and from Hartwick’s rule. The aim is to show that if there is a substitute for the exhaustible natural
resource stock, then the utility can be sustained even though there is an increasing prevalence rate, implying
b̃ = b (1− λ) > c .

4.1.1 A knife’s edge case

After experiencing the expected one-time pandemic, the economy returns to a deterministic optimal control
problem with the given production function, initial capital KT , and natural resource reserve ST , and labor
expressed in efficiency units is L = L̄f̃ (z (t)) = L̄

z(t) = e−(b̃−c)t
κ , with L̄ = 1 and κ = yT

xT
. Once the pandemic

occurs, the labor supply immediately becomes L = L̄
κ with κ > 1 at time T . Taking COVID-19 as an

example, productivity at the beginning of the outbreak is below the pre-pandemic level, as most firms and
employees were trying to adapt to remote working during the first weeks of lockdown (Al-Habaibeh et al.,
2021). However, if the pandemic is under control, i.e., b̃ < c), labor productivity increases over time and
after some time goes beyond pre-pandemic levels due to digitalization and automation, which increase after
the occurrence of the pandemic, as mentioned above in reference to COVID-19 (see (Bloom et al., 2020;
Chernoff and Warman, 2020; IMF, 2021; Petropoulos, 2021)).

Indeed, when the pandemic is under control through a prevention policy, Increasing labor productivity over
time can be considered technological progress that augments the stock of natural resources and diminishes
the capital stock (D’Autume and Schubert, 2008). The post-pandemic production function is given by

F
(
K,R, f̃ (z)

)
= KαRβLγ = KαRβκ−γe−γ(b̃−c)(t−T ), ∀t ≥ T.

10



The functional specification for labor productivity f̃ (z (t)) and the use of an SIR model is for complete
analytical tractability. In next sections, we show that the results are robust even without functional specifi-
cations.

In order to solve the post-pandemic optimization problem presented in the previous section, we employ
the same argument as Cairns and Long (2006). First, we translate the non-autonomous system into an
autonomous one. To do so, we take time as an extra state variable by defining variable W (t) as

W (t) = t− T, ∀t ≥ T.

Thus,
Ẇ = 1

with initial condition W (T ) = 0. Then, the Hamiltonian of the planner is defined as

H = −p1R+ p2

(
KαRβ (κ)−γ e−γ(b̃−c)W (t) − C

)
+ p3,

where pi (i = 1, 2, 3) are costate variables of natural resources, capital, and time, respectively.

Given the inequality constraint U (C) ≥ ū2, the Lagrangian can be written as

L = H+ Φ · (U2 (C)− ū2) ,

with Φ being the Kuhn–Tucker multiplier.

The first-order necessary condition for the choice variables (where the second-order condition holds as well)
yields that 

∂L
∂R = −p1 + p2FR = 0,
∂L
∂C = −p2 + ΦU

′

2 (C) = 0,

Φ ≥ 0, Φ · (U2(C)− u2) = 0.

(25)

Obviously, the first equation
p1 = p2FR

states that the in situ price of a natural resource, p1, is determined by its rental value employing p2FR,
which is the product of the rental price of capital p2 and the marginal output of resource FR. While the
rental price of capital p2 is given by the second equation

p2 = ΦU
′

2(C),

which is indeed the optimal value of the objective function coming from employing an extra unit of capital.
Furthermore, this value is given by the product of the marginal utility and the shadow value, Φ. Thus, the
rental value p2 takes into account the trade-off between the minimum level of utility, u2, and its consequences
on the marginal utility U ′2(C).

Implicitly, as long as the rental price p2 > 0, which should hold for all times t ≥ T , we must have

Φ > 0,
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given U ′2(C) > 0. In other words, for any t ≥ T along the maximin optimal trajectory, it is necessary that

U2 (C) = ū2.

Furthermore, the first-order condition with respect to the three state variables S, K, and W , yields the
following dynamics of the co-state variables:

ṗ1 = 0, (a)

ṗ2 = −p2FK , (b)

ṗ3 = p2γ
(
b̃− c

)
F, (c)

−p1R+ p2K̇ + p3 = H = 0, (d)

(26)

with transversality conditions lim
t→+∞

p3 = 0 and lim
t→+∞

e−ρtp2(t)K(t) = 0.

The first transversality condition simply indicates that the shadow value of time p3 vanishes when t→ +∞.
The second transversality condition is a standard one stating that the discounted far future value of capital
is zero.

Importantly, equation (a) states that the in situ price p1 is constant over time for any t ≥ T . Equation
(b) indicates that the growth rate of the shadow value of capital, ṗ2

p2
, is negatively related to the marginal

product of capital. Thus, given p1 = p2FR, the growth of marginal product, FR, from employing natural
resources must exactly compensate the growth of price p2 in order for the product, p2FR, to be constant
over time.

The dynamic value of time, p3, is determined not only by the production and rental price of natural resources
but also by the transmission and infection of the pandemic disease, given the time explicitly entering the
production process through the impact on labor efficiency that is damaged partially due to the pandemic.
By using p1 = p2FR, the value of time, p3, can be reformulated via equation (c) as the following:

ṗ3 = p2γ
(
b̃− c

)
F = p2γ

(
b̃− c

) FRR
β

= −p1
γ
(
b̃− c

)
β

Ṡ. (27)

Combining this with transversality condition lim
t→+∞

p3 = 0, integrating (27) over [t,+∞), ∀t ≥ T , yields

p3 (t) = −p1S (t)
γ
(
b̃− c

)
β

. (28)

In other words, the value of time after the pandemic shock is determined by the value of natural resources,
which is the product of the in situ price p1 and the reserve of the resource itself, S, also taking into account
impacts from the pandemic, γ(b̃−c)β . Given the resource reserve S(t)→ 0 as t→ +∞ with p1 being constant,
the transversality condition, lim

t→∞
p3(t) = 0, is then straightforward.

With the above preparation, we are ready to find the optimal consumption, C, and the minimum utility
level, u2, after the pandemic under the maximin principle. To do so, we employ the arguments proposed by
Cairns and Long (2006), guessing a special candidate solution and then checking the necessary conditions
for optimality.

12



The special candidate is defined as follows: (a) take K (t) = K (T ) along the optimal path, ∀t > T ,

thus K̇ = 0; (b) take R(t) = −γ(b̃−c)
β S(T )e

(
γ(b̃−c)
β

)
(t−T )

. In order to ensure that the resource constraint∫∞
T
R (t) dt = ST holds if and only if b̃ = b(1− λ) < c, (c) the candidate maximum achievable consumption

is given by

C̄ = Y (T ) = Y (t) = Kα
TS

β
T

κγ

(
γ
(
c− b̃

)
β

)β
. (29)

As a by-product of the above candidate, from b̃ = b(1 − λ) < c, labor supply L = κe−(̃b−c)(t−T ) must
increase over time after t > T . In other words, the shock from the pandemic diminishes over time and labor
productivity returns to the pre-pandemic level in the long run. The condition b̃ = b(1−λ) < c is essential for
the existence of maximin sustainable consumption. The rest is to show that, indeed, this candidate fulfills
the above first-order necessary conditions, which we present in Appendix A.3.

Proposition 1 For a given infection and recovery rate b and c, and lockdown policy λ, the social planner
should ensure b̃ = b(1 − λ) < c in order to guarantee the constant maximum achievable utility that ensures
equity across generations.

Proof. See Appendix A.2

As shown in Appendix A.2, a social planner cannot implement sustained utility if she is not able (or willing)
to control the pandemic from the very beginning. Thus, this proposition offers a theoretical basis on which
to defend the “sooner the better” strategy, even though it has a cost (see d’Albis and Augeraud-Véron, 2021
for a similar discussion). Note that this proposition is not sensitive to the functional form we use. In sections
(4.1.2) and (4.1.3), we show that the social planner should ensure a decreasing prevalence rate z (t) without
any functional specifications. We also show that the choice of an SIR model does not have a qualitative
effect on Proposition 1. It is shown that even if we use an SIS model, the social planner still needs to ensure
b̃ = b(1− λ) < c (see Appendix (A.5)).

Proposition 2 Assume that the social planner implements b̃ = b(1− λ) < c. Then, if the pandemic occurs
at date T , following the maximin principle the maximum achievable post-pandemic consumption is

C(t) = C̄ = Y (T ) = Y (t) = Kα
TS

β
T

κγ

(
γ
(
c− b̃

)
β

)β
, ∀t ≥ T (30)

and the corresponding sustainable utility is

V2 (K,S) = ū2 = U2
(
C̄
)
. (31)

Furthermore, at T ,

ST = K
1−α
β

T

(
γ(c− b̃)

β

) 1−β
β

κ
γ
β .

The fundamental mechanism for the above proposed sustainable consumption relies on the fact that labor
productivity increases over time after the pandemic shock, which offers the possibility of a decreasing ex-
ploitation rate of natural resources while keeping capital at its pre-pandemic level. In other words, the
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exploitation rate must decrease at the same rate as the growth of labor productivity.

Arguably, this mechanism works by essentially relying on the prevention policy λ. With λ = 0, i.e., no
prevention at all, the pandemic situation reads b > c, meaning the infection rate is higher—even much
higher—than the recovery rate. Thus, the damage from the pandemic will be much greater, such that
sustainable consumption cannot be guaranteed.

From the above proposition, it is straightforward that ∂C
∂λ > 0, meaning that the prevention policy, λ,

increases the sustained consumption level. However, we must be cautious when interpreting this result. The
above findings are based on the assumption that the prevention policy does not damage essential economic
activities such as production, services, and main consumption, etc. In other words, there is no cost of
implementing a prevention policy in terms of economic activity loss (see Section 6 for an extension).

Obviously, with λ = 1, a complete lockdown that shuts down all economic activities, a different story will
unfold. Systematic studies of the impacts of lockdown, in the context of COVID-19, can be found in Bosi
et al. (2020) and Acemoglu et al. (2021).

In the rest of this paper, we focus on the pandemic’s impact on Hartwick’s rule with a relatively low λ,
such that Proposition 1 holds. Thus, we can investigate the impacts of the prevention policy and ignore the
negative effects of prevention policy.

Before further investigation of Hartwick’s rule, we must mention that the proposed candidate for a sustainable
path in Proposition 2 is not the only one. We could easily imagine different combinations of capital and
resources such that the gain from the improvement in labor productivity is shared, by taking into account
the elasticity of substitution between capital and resources. In the next section, we take this into account,
instead of only working on constant capital, by means of numerical simulations.

The pandemic-modified Hartwick rule

Hartwick’s rule states that if the economy invests the rents obtained from the use of natural resources into
man-made capital, the economy stays on a sustainable, constant path of utility, which implies equity across
generations. In other words, if the economy is on a sustainable path, the genuine savings are always zero
and the utility and consumption levels are maintained as constants.

Under the current setting, a new pandemic-modified Hartwick rule can be obtained. To do so, we rely on
the shadow values from the above analysis. We rename the shadow values p1 and p3 in terms of the shadow
price of capital, p2, as

q = p1

p2
and qz = p3

p2
.

By (28), the relative value of time in terms of shadow price, qz, is

qz(t) = −q
γ
(
b̃− c

)
β

S(t). (32)

Furthermore, from (d) in (26), the pandemic-modified Hartwick rule, H = 0, can be rewritten as

K̇(t) = p1

p2
R(t)− p3

p2
= qR(t)− qz = qR+ q

γ
(
b̃− c

)
β

S(t). (33)
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Obviously, without a pandemic, b = c = 0, it follows that K̇ = qR > 0. When there is a pandemic and the
social planner controls it, i.e., b̃− c < 0, capital accumulation slows down or stabilizes if K̇ = 0 for all t ≥ T ,
as a special solution. Arguably, the slowdown process depends on the prevention policy λ. In the special
sustainable constant consumption rule proposed in Proposition 2, the last equation (33) yields

−R(t) = γ(̃b− c)
β

S(t) = Ṡ, ∀t ≥ T.

In other words,
Ṡ

S
= γ(̃b− c)

β
< 0,

and thus,

S(t) = S(T )e
γ(̃b−c)(t−T )

β ∀t ≥ T.

Obviously, the natural resource exploitation rate is lower with a stronger prevention policy. Figure 2 graph-
ically illustrates this analytical expression of S (t).

Strong prevention

Weak 

prevention

10 20 30 40 50
t

2

4

6

8

10

S

Figure 2: Strong prevention (λ = 0.15) (red) vs. weak prevention (λ = 0.1) (blue) - Candidate solution in Proposition
2

Figure 2 shows the optimal path of natural resource stocks over time for the outcome in Proposition 210.
Note that we do not present a graphical illustration for K for the candidate solution since we assume K̇ = 0.

It is clear that a stronger prevention policy lowers natural resource extraction, thus leaving a larger natural
reserve S(t). The reason for this result comes from the fact that the labor productivity is higher with a
stronger prevention policy. In other words, the prevention policy plays the role of an increase in productivity
and substitutes for natural resource extraction.

We can now present the dynamics of the system under maximin in the general case, instead of the constant
capital scenario. Denote X(t) = S(t)L(t)

γ
β as a deflated variable (see Appendix A.4 for details) in order to

10The parameters for the numerical simulation are β = 0.1, α = 0.7, c = 0.15, b = 0.1, κ = 1. For strong prevention; λ = 0.15
and for weak prevention; λ = 0.1
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have an autonomous system. Then, the dynamic system becomes the following:
K̇ = βY − qz,

Ẋ = −Y
1
βK−

α
β κ−

γ
β − γ(b̃−c)

β X,

q̇z = γ
(
b̃− c

)
Y + rqz.

(34)

where r = α YK . Unfortunately, an analytical solution becomes impossible for this general case. Thus, we
rely on numerical analysis to illustrate the main ideas.
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Figure 3: Strong prevention (λ = 0.15) (red) vs. weak prevention (λ = 0.1) (blue)

Figure 3 describes the trajectory dynamics of capital stock K and the reserve of resources S11. It is consistent
with the prediction in Proposition 1 that a strong prevention policy helps prevent the exploitation of natural
resources (with constant capital or not). But the cost is paid by decreasing capital accumulation, i.e.,
a strong prevention policy yields a lower capital stock. Furthermore, as previously mentioned, keeping
consumption—and thus utility—constant over time is possible via the combination of variable capital and
exploiting, instead of only constant capital as in Proposition 1.

In the next subsection, the analysis is conducted without functional specifications on labor productivity
f̃ (z (t)).

4.1.2 Not a knife’s edge case

In this section, we take the same economy but with general functional forms for labor productivity f̃ (z (t))
and for the prevalence rate z (t). Assumption (1) always holds. The labor expressed in efficiency units takes
the form L = L̄f̃ (z). The production function takes the following form, as in the previous section:

F
(
K,R, f̃ (z)

)
= KαRβLγ = KαRβ

(
L̄f̃ (z)

)γ
, ∀t ≥ T.

11The parameters for the numerical simulation are the same as for Figure 2. β = 0.1, α = 0.7, c = 0.15, b = 0.1, κ = 1. For
strong prevention; λ = 0.15 and for weak prevention; λ = 0.1
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Since labor is replaced by productivity f̃ (z), it is convenient to track the evolution of z as a state variable.

ż = g (z)

We do not specify a functional form for the evolution of the pandemic, nor do we impose any condition on
g (z). The Hamiltonian is defined in a different form by taking the evolution of the prevalence rate z (t) into
account, which affects labor productivity:

H = −p̂1R+ p̂2

(
KαRβ

(
L̄f̃ (z)

)γ − C)+ p̂3 (g (z)) . (35)

Given the inequality constraint U (C) ≥ ū2, the Lagrangian can be written as

L = H+ Φ · (U2 (C)− ū2) .

The optimality conditions yield the following canonical system (see Appendix A.5 ii for details):

K̇ = βY − q̂zg (z) ,

Ṡ = −Y
1
βK−

α
β
(
L̄f̃ (z)

)− γβ ,
ż = g (z) ,
˙̂qz = −γY f̃

′
(z)

f̃(z) −
(
g
′ (z)− r

)
q̂z,

(36)

where Y = C̄+q̂zg(z)
1−β and q̂z = p̂3

p̂2
.

With the above system, Appendix A.5 proves the following equivalency.

Corollary 1 The dynamic system (36) is equivalent to (34) if precise functional forms and an SIR model
are used as the knife’s edge case.

Nevertheless, the following non-existence result is straightforward.

Proposition 3 The policymaker cannot ensure a sustained utility level over time if the prevalence rate z (t)
is increasing.

To see the reason behind this result, we can express K̇ = 0 at the steady state, implying βY ∗ = q̂∗zg (z∗)
where variables with an asterisk (*) stand for the steady-state values. Then, we have Y ∗ = 0 if the prevalence
rate ż = 0 at the steady state, which implies g (z∗) = 0. Thus, Y ∗ = C̄−q̂∗zg(z

∗)
1−β = 0 implies C̄ = 0.

To give an example, consider the previous SIS model. Then, ż = g (z (t)) =
(
b̃− c (1 + z)

)
z. At the steady

state, we have ż = 0. Inequality b̃ > c yields z∗ = b̃−c
c . Note that if the policymaker can control the

pandemic by guaranteeing b̃ − c < 0 , we show that the model becomes a standard DHSS model. Then,
sustained utility over time can be achieved (see the SIS model example in Appendix A.5).

This result can be understood by the fact that the natural resources are exhaustible. If there is a productivity
decrease of labor due to an increasing prevalence rate z(t), the economy cannot compensate this decrease
by increasing natural resource extraction R since the natural resource stocks S is exhaustible. In the next
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subsection, we show that when the economy is not constrained by natural resource stocks, the presence of
an increasing prevalence rate does not jeopardize the presence of sustained consumption.

4.1.3 Free of natural resource constraints case

In this section, our aim is to show that the economy can ensure a sustained utility level even when the number
of infected people is increasing over time. We show that this is possible if the natural resource constraint
S is relaxed thanks to the discovery of a substitute. It is evident that we are far from Hartwick’s rule.
However, this section provides important insights regarding the importance of the limited natural resource
stocks when there is a pandemic.

For this, we employ the modeling proposed by Dasgupta and Heal (1974a). Suppose that there is a substitute
(for example, solar or wind for energy supply) entering steadily into the economy and that it relaxes the
resource constraint on S. Instead of having Ṡ = −R, we suppose

Ṡ = m−R,

where m is a constant service provided by the substitute. Integrating Ṡ over [T ;∞] yields
∫∞
T

dS
dt dt =

[mt]∞T −
∫∞
T
R (t) dt, giving an unstable solution that diverges to infinity. Then, similar to Dasgupta and

Heal (1974a), the solution is to jump to the steady state by stating m = R for ∀t. Of course, in this context
the aim is not to have a Hartwick rule but to show that the natural resource constraint impedes sustained
utility.

Labor supply is L = L̄f̃ (z (t)), and productivity decreases with the ratio of infected to susceptible individuals
(i.e., f̃ ′ (z (t)) < 0). Then, physical capital accumulation is

K̇ = Kαmβ f̃ (z (t))γ − C, (37)

where L̄ = 1. The evolution of labor productivity is

ż (t) = g (z (t)) , (38)

where g (z (t)) > 0. The Hamiltonian is

H = p̃2
(
Kαmβ f̃ (z (t))γ − C

)
+ p̃3 (g (z (t))) , (39)

and the Lagrangian with the constraint U2 (C) ≥ ū2 is

L = H+ Φ · (U2 (C)− ū2) .

The first-order condition ΦU ′2 = p̃2 holds as before, and the dynamics of the co-state variables are ˙̃p3 = −p̃2K
αmβ f̃

′ (z)− p̃3g
′ (z) ,

˙̃p2 = −FK p̃2.
(40)
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Denote q̃z = p̃3
p̃2
. Then the dynamics of the economy can be expressed as follows:

˙̃qz = −Kαmβ f̃
′ (z)− q̃zg

′ (z) + q̃zFK ,

K̇ = Kαmβ f̃ (z (t))γ − C,

ż (t) = g (z (t)) .

(41)

From the above system, the following results can be concluded:

Proposition 4 With H = 0, the dynamics of capital accumulation are

K̇ = −q̃zg (z) (42)

and follow a path proportional to the dynamics of the prevalence rate.

Note that the shadow value q̃z can be considered as a shadow cost and has a negative value. Capital
accumulation is proportional to the dynamics of the pandemic g (z) weighted by the relative shadow value of
the prevalence rate q̃z. The economic intuition is that the economy may compensate the disutility stemming
from an increasing prevalence rate affecting labor productivity by accumulating physical capital. Hence, the
utility can be sustained in this manner.

Proposition 5 Even though there is a pandemic with an increasing prevalence rate z (t) over time, the social
planner can sustain the utility level if the natural resource stocks are not limited thanks to the presence of a
substitute.

To understand this result, we rewrite the steady state of this economy as a function of z∗ and ż (t) =
g (z (t)) = 0 as follows: 

q̃∗z = −K
∗(z∗)αmβ f̃

′
(z∗)

g′ (z∗)−α C̄
K∗(z∗)

,

K∗ =
(

C̄
mβ f̃(z∗)γ

)
,

(43)

where FK = α YK . As our aim is not to solve a complete model, the above steady state is sufficient to show
that a meaningful steady state exists with a Y ∗ different from zero and a positive C̄.

To see clearly why q̃∗z is negative, assume that under an SIS model, as in Appendix A.5, z (t) is increasing
over time when b̃ > c and tends to z∗ = b−c

c . Since g (z (t)) =
(
b̃− c (1 + z)

)
z and g

′ (z∗) < 0, it follows
that q̃∗z < 0, as mentioned above.

5 The economy before the pandemic

The economy faces the possibility of a pandemic occurring and the date is unknown. In order to solve the
maximization problem for the pre-pandemic situation, we follow the method proposed by Van Long (1992)
and D’Autume and Schubert (2008). The social planner seeks to maximize the following problem presented
in Section 3.2:

V =
∫ ∞

0
(ρ+ θ) ū1e

−(ρ+θ)tdt = ū1, (44)
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subject to constraints (19) and (20). The production function before the pandemic takes the Cobb–Douglas
form Y = KαRβ , where labor is supposed to be unity.

The current-value Hamiltonian is defined as

H = (ρ+ θ) ū1e
−(ρ+θ)t − π1R+ π2

(
KαRβ − C

)
. (45)

Taking into account the utility constraint U (C) + θ (ū2 − ψ (S)) ≥ ū1, the Lagrangian can then be defined
as

L = H+ Λ[U (C) + θ (ū2 − ψ (S))− ū1],

with Λ being the Kuhn–Tucker multiplier.

The first-order necessary conditions with respect to the choice variables (and the second-order sufficient
conditions being guaranteed) are

∂L
∂R = −π1 + π2

(
βKαRβ−1) = 0,

∂L
∂C = −π2 + ΛU ′ (C) = 0,
∂L
∂Λ = [U (C (t)) + θ (ū2 − ψ (S))]− ū1, Λ ≥ 0, Λ∂L

∂Λ = 0.

(46)

In the above first-order condition, we did not impose the non-negative constraint R ≥ 0. The reason is
twofold: On the one hand, given the Cobb–Douglas form of the production function, natural resources are
an essential input à la Dasgupta and Heal (1974b) and it is not optimal to exhaust them in finite time; on
the other hand, as assumed in the last section, after the outbreak of the pandemic there is still a reserve of
natural resources to be exploited. Thus, imposing the non-negative constraint is redundant.

As in the previous section, the in situ price of natural resources, π1, is equal to the rental value of natural
resources, π2FR, which is composed of the shadow price of the physical capital and the marginal output of
natural resources. The second equation states that the rental price of capital, π2, is given by

π2 = ΛU
′
(C) ,

which is the optimal value of the pre-disease objective function stemming from using an extra unit of capital.
This value is composed of the shadow value Λ of the constraint U (C (t)) + θ (ū2 − ψ (S))− ū1 ≥ 0 and the
marginal utility of consumption U ′ (C). The rental price of capital, π2, accounts for the trade-off between
the minimum utility ū1 and its consequences on the marginal utility U ′ (C). As long as the rental price of
physical capital is π2 > 0, we have Λ > 0, which implies

ū1 = U (C (t)) + θ (ū2 − ψ (S)) .

The dynamics of the co-state are π̇1 = Λθψ′ (S) , (a)

π̇2 = −π2
(
αKα−1Rβ

)
. (b)

(47)

Equation (a) in (47) shows that the dynamics of the in situ price of natural resources depends on the marginal
damage due to the pandemic with respect to the natural resource stocks ψ′ (S) weighted by the probability
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of a pandemic occurring θ and the shadow value Λ of the constraint U (C (t)) + θ (ū2 − ψ (S))− ū1 ≥ 0. In
contrast to the post-pandemic regime, the evolution of the rental price of natural resources, π̇1, depends also
on the probability of a pandemic occurring, θ, and on the marginal damage due to the pandemic. Hence, the
trade-off between the minimum utility ū1 and the marginal utility U ′ (C) is also affected by the uncertainty
regarding the occurrence of a pandemic, through the term π1 = π2FR. As in the previous section, the growth
rate of the shadow value π̇1

π1
is negatively related to the marginal productivity of capital.

Furthermore, from the above optimality conditions (46), Appendix (A.7) shows that the last two terms in
the current-value Hamiltonian, (45) verify that π1R = π2I. More precisely, the relative shadow prices, π1

π2
,

are the same as the investment/extraction ratio I
R , that is,

π1

π2
= I

R
= βKαRβ−1. (48)

Thus, capital accumulation (19) becomes

K̇ = I = βKαRβ = βY, (49)

and natural resource extraction (see Appendix (A.7) for details) is

Ṡ = −R = −Y
1
βK−

α
β , (50)

where output and consumption varify (1− β)Y = C (ū1, ū2, S).

Additionally, if taking a linear pandemic cost function ψ (S) = a− ψ̄S with a > ψ̄S0 > 0 and combining it
with CRRA utility U (C) = C1−σ

1−σ , it follows that the optimal consumption is given by

C(t) = C(S(t)) =
[
(1− σ)

[
ū1 − θ

(
ū2 − (a− ψ̄S(t))

)]] 1
1−σ .

Intuitively, before time t there was no pandemic and pandemic outbreaks had a probability of θ at time t,
where the reserves of resource are S(t). Then, the above equation provides the optimal consumption at time
t and after the occurrence of the pandemic and the optimization enters the second period, which we studied
in the previous subsection. Obviously, this pre-pandemic optimal consumption is a precautionary optimal
policy in that it takes into account the outbreak of a pandemic and its related cost. If θ = 0, the probability
of a pandemic outbreak is almost nil and consumption would reach its maximum level, given 0 < θ < 1.
In addition, it is easy to see that dC

dS < 0, that is, the latter the pandemic happens the lower the resource
reserve will be, and the higher consumption it will yield.

Now we can solve the two-dimensional dynamic system (S,K). To do so, we eliminate the time variable by
dividing equation (50) by equation (49) and rearranging terms. It follows that the resources change in terms
of capital accumulation according to:

dS

dK
= − R

βY
= − 1

β
K−

α
β Y

1−β
β = − 1

β
K−

α
β

(
C(S)
1− β

) 1−β
β

= − 1
β
K−

α
β

[
(1− σ)

[
ū1 − θ

(
ū2 − ψ̄

(
a− ψ̄S

))]] 1−β
β(1−σ)

(1− β)
1−β
β

,

(51)
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which is a non-linear but separable differential equation of S and K. Rearranging terms and taking integrals
on both sides gives the maximum achievable utility ū1 (see Appendix A.7). With the above analysis, we
conclude the following:

Proposition 6 For the above given CRRA utility function, the Cobb–Douglas output function and the linear
pandemic function, let 0 < β < max{α, 1/2} and σ ∈ (0, 1). Then,

1) Hartwick’s rule before the pandemic is given by

K̇ = KαRβ − C = βY ;

2) the maximin consumption before the pandemic is given by

C(t) = C(S(t)) =
[
(1− σ)

[
ū1 − θ(ū2 − (a− ψ̄S(t)))

]] 1
1−σ ; (52)

3) the maximum achievable utility before the pandemic ū1 encompasses the utility level after the pandemic,
ū2, and is given implicitly by the following relationship:

β(1− β)
1−β
β

ψ̄θ

C(S0)β(2−σ)−1 − C(S∞)β(2−σ)−1

−(β(2− σ)− 1) = K
1−αβ
0

α− β
, (53)

where S∞ = 0, C(S0) and C(S∞) are given by (52).

The condition β < 1/2 is in line with Solow (1974) and Van Long (1992) in that although the exhaustible
resources is essential in term of Dasgupta and Heal (1974b), Usually, the share of exhaustible resources in
production is much lower than the share of capital input.

Obviously, the maximum consumption in the above (52) is different from the classical one via the maximin
principle, where consumption is constant over time; see, for example Solow (1974), or Example 9.6.1 in Van
Long (1992), which is the same as our study except that there is no pandemic shock in Example 9.6.1.
Our modified maximin consumption before the pandemic is no longer constant over time. More precisely,
pre-pandemic consumption depends on the reserve of exhaustible resources and it increases over time. This
result essentially comes from the maximin principle that the instantaneous utility should be constant over
time to ensure equity across generations: C1−σ

1−σ + θ (ū2 − ψ (S)) = ū1. Naturally, the pre-pandemic Hartwick
rule is different from the classic idea as well—the genuine savings are no longer zero, and are not even
fixed constant, rather, they increase over time K̇ > 0 without limit, which is in line with the literature,
such as Example 9.6.1 in Van Long (1992). The main reason rests on the precautionary savings by taking
into account the potential uncertain pandemic damage. Arguably, after the pandemic happens constant
consumption is reestablished. Of course, this result also rests on the assumption that the pandemic happens
only once. In a more complete setting where pandemics or other types of shocks happen repeatedly, then
similar but more complicated results would be observed.

Nonetheless, despite the fact that pre-pandemic consumption is not constant, the maximin principle still
implies that the utility, u1, is constant. The maximum instantaneous utility u1 is implicitly given by
equation (53), where the left-hand side is the aggregate consumption over the period until exhaustion of
the initial natural reserves in the long run, assuming no pandemic happens yet, while the right-hand side is
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essentially the initial extraction rate depending on the initial capital level and technology of production. To

see this last point, recall that in (51), output is given by Y = KαRβ , thus R0 =
(
Y0

Kα
0

)1/β
and Y0 = C(S0)

1−β .
Hence, the maximum achievable utility must take into account the consumption of all generations as well as
the initial stock of capital, natural resources, and production technology. The combination of all yields the
optimal maximin choice.

Through direct calculation, given in Appendix A.8, the following properties are proven.

Proposition 7 Under the conditions of Proposition 6,

a) the maximum sustainable utility ū1 increases with the post-pandemic utility: ∂ū1
∂ū2

> 0;

b) a higher probability of a pandemic θ decreases the maximum achievable utility ū1: ∂u1
∂θ < 0;

c) a higher probability of a pandemic θ decreases capital accumulation K and increases the conservation
of natural resource stock S prior to the occurrence of the pandemic: ∂K

∂θ < 0 and ∂S
∂θ > 0;

d) a stronger announced lockdown policy yields a higher maximum achievable utility ū1: ∂ū1
∂λ > 0;

e) lockdown policy has no impact on capital accumulation and natural resource extraction during the
pre-pandemic period: ∂K

∂λ = 0 and ∂S
∂λ = 0.

According to the precautionary policy, the maximum achievable utility ū1 relies on the consequences of post-
pandemic policies. Hence, a strong prevention policy λ, which increases the maximum achievable utility ū2

(as in the previous subsection), will naturally also increase the pre-pandemic maximum achievable utility
ū1. In other words, prevention policy has a positive impact on the maximum achievable utility prior to the
occurrence of the pandemic as well as after the pandemic.
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Figure 4: High probability (θ = 0.15) (red) vs. low probability of a pandemic occurring θ = 0.1 (blue)

Figure (4) clearly shows that natural resource extraction decreases12 with a higher probability of a pandemic
occurring. Recall that the natural resources has an amenity value that helps to alleviate the negative
impact of the penalty ψ. Since a higher probability increases the marginal damage from the pandemic,

12This implies that the natural resource stock S is more conserved with a higher probability θ as shown in Figure (4). Of
course, the natural resource stock S always decreases over time.
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there is a greater incentive to conserve the natural resource stocks. Consequently, this implies a decrease in
the consumption level (and consequently in production) in order to keep the utility constant. Due to the
decrease in production, the economy needs less capital.

The prevention policy increases the maximum achievable utility ū1. This is plausible since the maximum
achievable utility after the pandemic increases due to higher labor productivity. However, the prevention
policy has no effect on capital accumulation and natural resource extraction given the prevention policy has
no effect on the aggregate consumption level prior to the occurrence of the pandemic.

To understand this result, note that the prevention policy increases the utility before and after the pandemic.
In addition, C (S∞) increases with the utility before the pandemic but decreases with the utility after the
pandemic. Therefore, the effect of the prevention policy on the aggregate consumption level vanishes due to
the opposite effects of utility ū1 and ū2 on pre-pandemic consumption. (See Appendix A.8 for the analytical
proof of this result.) Hence, the prevention policy does not affect physical capital accumulation before the
pandemic.

6 Extension: Prevention with cost

In this section, we assume that the prevention policy (vaccination, Prevention of social distancing, mask
production) has a cost in terms of production loss. Denote as ζ the unit cost of the prevention policy. Then,
the post-pandemic production function encompassing the cost of prevention is given by

F (K,R,D (z)) = (1− ζλ)︸ ︷︷ ︸
Cost of the prevention

KαRβκ−γe

Benefit of the prevention︷ ︸︸ ︷
−γ (b (1− λ)− c) (t− T ), ∀t ≥ T.

After doing the same calculations as in previous sections, and supposing a pandemic outbreak at T , then
following the maximin principle the maximum achievable post-pandemic consumption, bearing the cost of
prevention, is

C(t) = C̄ = Y (T ) = Y (t) = (1− ζλ)Kα
TS

β
Tκ
−γ

(
γ
(
c− b̃

)
β

)β
, (54)

and the corresponding sustainable utility is

V2 (K,S) = ū2 = U2
(
C̄
)
. (55)

One may remark that there should be an optimal level of prevention policy.

Proposition 8 The optimal level of prevention policy that maximizes the sustained consumption level is

λ∗ =
b
(
1 + ζβ2)− c
(1 + ζβ2) . (56)
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Obviously, prevention becomes optimal if b
(
1 + ζβ2)−c > 0, meaning that the transmission rate of the virus

is already high. If the transmission rate is sufficiently low to be b
(
1 + ζβ2) − c < 0, then the prevention

policy is not optimal and only decreases the sustained consumption level.
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Figure 5: The effect of prevention policy, λ, on the post-pandemic sustained consumption level

Figure (5) shows that a prevention policy has a threshold beyond which it becomes suboptimal to impose a
stronger prevention policy since it decreases production.

7 Conclusion

This paper illustrates a sustainable economy that follows an equitable growth path under the uncertainty
of a pandemic. We analytically present the intertemporal paths of man-made capital and natural resource
depletion under the maximin criterion. We also present the impact of the probability of a pandemic on
the these optimal dynamics. Moreover, a prevention policy is shown to be beneficial in ensuring a higher
constant sustainable utility and can compensate the decrease in utility due to the probability of a pandemic
occurring.

This paper offers a theoretical foundation for the "whatever it costs" strategy to control an epidemic disease
from the very beginning, in order to guarantee a sustained utility over time. We also show that if there is
an available substitute for the exhaustible resource stock, then the utility can be sustained even though the
prevalence rate increases and there is no control over the disease.

Another important finding is that there exists a trade-off between the public health policy (i.e, prevention)
and the construction of a wealth fund (i.e, capital accumulation) since it is shown that a strong prevention
policy increases the labor productivity and decreases the exploitation of natural resources. Then, the capital
accumulation decreases due to a lower exploitation of natural resources (rents from the natural capital).

One of the limitations of this study is that the prevention policy is an exogenous variable that provides
us analytical results. In future work, endogenous prevention policies are needed to capture the different
phases of the pandemic’s development and its impacts on Hartwick’s rule. Moreover, the prevention policies
also shape production activities, such that a threshold for prevention can be reached. Thus, more complex
dynamics as well policy recommendations can be delivered without analytical results.
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A Appendix

A.1 Dynamics of SIR

Consider equations (3) and (4)
ẋ

x
= b̃y

x+ y
(57)

and
ẏ

y
= b̃y

x+ y
− c. (58)

Subtracting the last two equations, it follows that

ẏ

y
= ẋ

x
+
(
b̃− c

)
,

which is equivalent to
d

dt
(lny) = d

dt
(lnx) +

(
b̃− c

)
. (59)

Integrating and taking the exponential of equation (59) gives

y (t) = x (t)κe(b̃−c)t, (60)

with κ = y0
x0
. Replacing (60) in (57) gives

ẋ

x
= −b̃

(
κe(b̃−c)t

1 + κe(b̃−c)t

)
= − b̃

b̃− c

(
du

u

)
, (61)

where u = 1 + κe(b̃−c)t. Integrating (61) gives

lnx = − b̃

b̃− c
(lnu+K1) . (62)

Taking the exponential of (62) and rearranging terms, we have

x (t) = x0 (1 + κ)
b̃
b̃−c

(
1 + κe(b̃−c)t

)− b̃
b̃−c

, (63)

y (t) = y0 (1 + κ)
b̃
b̃−c

(
1 + κe(b̃−c)t

)− b̃
b̃−c

e(b̃−c)t. (64)

A.2 Proof of Proposition 1

The proof is quite trivial. To ensure the condition limt→∞H = 0, we should have limt→∞p3 = −p1
γ(b̃−c)
β S (t) =

0. If we have an increasing number of infected persons, which requires c < b̃, this (i.e, λ < 1− c
b ). Natural

resource extraction becomes Ṡ
S = γ(b̃−c)

β > 0 in the long run. This implies that limt→∞p3 6= 0 and the
transversality condition limt→∞H = 0 are not respected. Note also that the increase in natural resource ex-
traction is in contradiction with the constraint

∫∞
0 R (t) dt = S0. Hence, we should have c > b̃ (i.e, λ > 1− c

b )
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for an optimal solution under maximin optimization that implies the existence of a sustainable utility path.

A.3 Proof of Proposition 2

To check that the proposal candidate indeed establishess the first-order condition, differentiating two first-
order conditions in (25) with respect to time, it follows that

Ḟq
Fq

= Φ̇

Φ
= −FK = −αY (t)

K (t) = −α YT
KT

. (65)

Thus,
Φ (t) = α

YT
KT

e
−
(
α
YT
KT

)
(t−T )

. (66)

The second first-order condition in (25) gives

p2 (t) = U
′

2
(
C̄
)
α
YT
KT

e
−
(
α
YT
KT

)
(t−T )

. (67)

Since K̇ = 0, from the last equation of (26) we can write

p3 (t) = p1R = p1
γ
(
c− b̃

)
β

S (T ) e
−
(
γ(c−b̃)
β

)
(t−T )

. (68)

Differentiating (68) yields

ṗ3 (t) = −p1

(
γ
(
c− b̃

)
β

)2

S (T ) e
−
(
γ(c−b̃)
β

)
(t−T )

. (69)

On the other hand, recall equation (c) of (26):

ṗ3 = −p2γ
(
c− b̃

)
Y = −p2γ

(
c− b̃

)
YT = −U

′

2
(
C̄
)
α

(YT )2

KT
e
−
(
α
YT
KT

)
(t−T )

γ
(
c− b̃

)
, (70)

where the second equality comes from the fact that along the candidate path production is constant and the
last equality comes from (67).

The last two equations are consistent if and only if

α
YT
KT

=
γ
(
c− b̃

)
β

(71)

and

p1

(
γ
(
c− b̃

)
β

)2

= U
′

2
(
C̄
)
α

(YT )2

KT
. (72)
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Combining equations (29) and (71), we have the following relationship between KT and ST :

ST = K
1−α
β

T

(
γ
(
c− b̃

)
β

) 1−β
β

(κ)γ .

Substituting this ST into C, it follows that

C = KT

(
γ(c− b̃)

β

)1+β−α

.

By plugging equation (29) into the aggregate utility U2
(
C̄
)
, we can express the maximum sustainable utility

level as

ū2 = U2

Kα
TS

β
T

κγ

(
γ
(
c− b̃

)
β

)β . (73)

That completes the proof.

A.4 Long-term behavior

In order to characterize the long-run behavior, consider labor productivity (when z (t) decreases) as augment-
ing the natural resource stocks and diminishing physical capital. Then, the production function becomes

Y =
(
KL−mK

)α (
RL−mX

)β
LmL ,

with J = KL−mKand X = SLmX . Thus, −αmK + βmX +mL = 1− α− β = γ. To guarantee that K and
Y grow at the same rate, it must be that mK = mL. In the long run, J̇ = 0 and Ẋ = 0 yield gK = mKgL.
From equation Y = C−qz

1−β , it is easy to derive gY = gqz = 0. Furthermore, gK = gY implies mL = mK = 0.
Then, it is easy to see that mX = 1−α−β

β = γ
β and J = K. So the dynamic system can be expressed as

K̇ = βY − qz,

Ẋ = −Y
1
βK−

α
β κ−

γ
β − γ(b̃−c)

β X,

q̇z = γ
(
b̃− c

)
Y + rqz,

where qz = p3
p2

. Thus, in the long run the above state and co-state variables can be expressed in terms of
the constant consumption C̄: 

K∗ = αβC̄

γ(c−b̃) ,

X∗ =
(

β

γ(c−b̃)

)(1−αβ )
α−

α
β κ−

γ
β
(
C̄
) (1−α)

β ,

q∗z = βC̄.

(74)

X = SL
γ
β yields that Ẋ

X = Ṡ
S −

γ(b̃−c)
β . Thus, in the long run, from Ẋ = 0 it follows that Ṡ

S = γ(b̃−c)
β .

Since exhaustible natural resource stocks cannot increase in the long run, we should have b̃ − c < 0, which
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is possible with prevention policy λ > 1 − c
b . In other words, the natural resource stocks decrease at rate

−γ(b̃−c)β .

A.5 Not a knife’s edge case

In order to see that the system is equivalent to the knife’s edge case with the SIR model, denote q̂z = qzz

b̃−c .
Recall that the knife’s edge case implies the following functional forms: g (z) =

(
b̃− c

)
z, f̃ (z) = 1

z , and
X = SL

γ
β . Then, it is easy to see that we can reduce the dimension of the system by keeping z out of the

dynamic system: 
K̇ = βY − qz,

Ẋ = −Y
1
βK−

α
β κ−

γ
β − γ(b̃−c)

β X,

q̇z = γ
(
b̃− c

)
Y + rqz.

ii) For the sake of clarity, we rewrite the Lagrangian as

L = −p̂1R+ p̂2

(
KαRβ

(
L̄f̃ (z)

)γ − C)+ p̂3 (g (z)) + Φ · (U2 (C)− ū2) .

The first-order conditions are

p̂1 = p̂2FR,

ΦU
′

2 (c) = p̂2.

We can write the dynamics of the economy in the following form:

K̇ = βY − q̂zg (z) ,

Ṡ = −Y
1
βK−

α
β
(
L̄f̃ (z)

)− γβ ,
ż = g (z) ,
˙̂p2 = −p̂2FK .

˙̂p3 = −p̂2K
αRβγL̄

(
f̃ (z)

)γ−1
f̃
′ (z)− p̂3g

′ (z) .

(75)

With the variable q̂z = p̂3
p̂2

and X = SL
γ
β , it follows that



K̇ = βY − q̂zg (z) ,

Ẋ = −Y
1
βK−

α
β + γ

β
f̃
′
(z)

f̃(z) żX,

ż = g (z) ,
˙̂qz = −γY f̃

′
(z)

f̃(z) −
(
g
′ (z)− r

)
q̂z.

(76)

That completes the proof.
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A.5.1 Example: SIS model

To have a clear idea of why the social planner should ensure b̃ − c < 0, we give an example using an SIS
model. Following d’Albis and Augeraud-Véron (2021), denote as x susceptible individuals and as y infected
individuals. Assume there is no immunity in this model, meaning that the infected population becomes
susceptible and can be infected several times. Then, the dynamics are

ẋ (t) = cy (t)− b̃x (t) y (t)
x (t) + y (t) ,

ẏ (t) = −cy (t) + b̃x (t) y (t)
x (t) + y (t) ,

where b̃ = b (1− λ). Recall that z (t) = y(t)
x(t) . We can write the dynamics ż =

(
b̃− c (1 + z)

)
z. The

differential equation has the following general solution:

z (t) = b̃− c
b̃−c+z(0)c

z(0) e−(b̃−c)t + c
. (77)

There are two steady-state solutions: z∗ = 0, which is unstable if b̃ − c < 0, or z∗ = b̃−c
c , which is stable if

b̃ − c > 0. Then, if z∗ = b̃−c
c , ż = 0 at the steady state, leading to C̄ = 0. This shows that with increasing

prevalence z (t) over time, the economy cannot sustain itsutility level.

However, if the policymaker can control the pandemic from the beginning by ensuring b̃− c < 0, then z (t)
jumps to zero from the beginning and the model becomes a standard DHSS model. Then, sustained utility
over time can be achieved.

A.6 An economy facing an uncertain pandemic

Taking the expectations of (16) gives

ET

[∫ T

0
U (C (t)) e−ρtdt+ e−ρTϕ (K (T ) , S (T ))

]
. (78)

Note that the probability distribution and density function are

f (t) = θe−θt and F (t) = 1− e−θt. (79)

We write the following expression:

∫ ∞
0

f (T )
[∫ T

0
U (C (t)) e−ρtdt+ e−ρTϕ (K (T ) , S (T ))

]
dT =

∫ ∞
0

f (T )
[∫ T

0
U (C (t)) e−ρtdt

]
dT︸ ︷︷ ︸

A

+
∫ ∞

0
f (T )

[
e−ρTϕ (K (T ) , S (T ))

]
dT︸ ︷︷ ︸

B

. (80)
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Integrating by parts, A yields

dX = f (T ) =⇒ X =
∫ T

0
f (s) dsY =

∫ T

0
U (C (t)) e−ρtdt =⇒ dY = U (C (T )) e−ρT .

Using
∫
Y dX = XY −

∫
XdY yields

A =
[(∫ T

0
f (s) ds

)(∫ T

0
U (C (t)) e−ρtdt

)]∞
T=0

−
∫ ∞

0
F (T )U (C (T )) e−ρT dT. (81)

Recall that
∫∞

0 f (s) ds = 1. Part A leads to∫ ∞
0

U (C (t)) e−ρtdt−
∫ ∞

0
F (t)U (C (t)) e−ρtdt. (82)

Taking the sum A+B, it follows that∫ ∞
0

[(1− F (t))U (C (t)) + f (t)ϕ (K (T ) , S (T ))] e−ρtdt.

Thus, inserting the probability distribution and density function gives∫ ∞
0

[U (C (t)) + ϕ (K (T ) , S (T ))] e−(ρ+θ)tdt.

A.7 Proof of Proposition 6 - Pre-pandemic regime

The detailed proof follows the same process as Example 9.6.1 in Van Long (1992) (pages 300–304).

First, by Theorem 7.11.1 of Van Long (1992) (page 255), it follows that∫ ∞
0

∂L
∂ū1

dt = 0,

which yields ∫ ∞
0

(
(ρ+ θ) ū1e

−(ρ+θ)t − Λ (t)
)
dt = 0 (83)

or ∫ ∞
0

Λ (t) dt = 1. (84)

In addition, Theorem 9.6.1 in Van Long (1992) implies that

e(ρ+θ)tH = (ρ+ θ)u1. (85)

Combing with equations (44) and (45) gives

− e(ρ+θ)tπ1R+ e(ρ+θ)tπ2I = 0, (86)
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where
I = K̇ = KβRα − C.

From (86), it follows that
π1

π2
= I

R
.

From the second equation in the first-order conditions (46), we have

π1

π2
=
(
βKαRβ−1) .

Then,
K̇ = I = βKαRβ . (87)

We reformulate the dynamics of capital accumulation as follows:

C = Y − I = (1− β)KαRβ . (88)

Thus, the dynamics of the natural resource stocks S and the dynamics of capital K can be rewritten as

Ṡ = −Y
1
βK−

α
β ,

K̇ = βY where Y = C (ū1, ū2, S)
1− β .

Hence, Hartwick’s rule in the first period can be expressed in the following way by using (88):

K̇ = KβRα − C = βY = q̃R,

with q̃ = π1
π2

= I
R .

Furthermore, from the CRRA utility function U(C) = C1−σ

1−σ with 0 < σ < 1, it follows that C1−σ

1−σ +
θ (ū2 − ψ (S)) = ū1. Suppose a linear pandemic cost function ψ (S) = a − ψ̄S where parameters fulfill
a > ψ̄S0 > 0, then it is easy to check

C(t) =
[
(1− σ)

[
ū1 − θ

(
ū2 −

(
a− ψ̄S(t)

))]] 1
1−σ .

Eliminating the time variable from the two dynamics equations above yields

dS

dK
= − 1

β
K−

α
β

[
(1− σ)

[
ū1 − θ

(
ū2 −

(
a− ψ̄S

))]] 1−β
β(1−σ)

(1− β)
1−β
β

. (89)

Integrating on both sides of (89) gives

(1− β)
1−β
β (1− σ)−

1−β
β(1−σ)

∫ S0

S

[
ū1 − θ

(
ū2 − ψ̄

(
a− ψ̄ξ

))]− 1−β
β(1−σ) dξ = 1

β

∫ K

K0

Υ−
α
β dΥ,
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with the assumption that α > β (Solow, 1974; Van Long, 1992). Furthermore, noticing when K → ∞ and
S → 0, the above integral becomes

(1− β)
1−β
β (1− σ)−

1−β
β(1−σ)

−
(

1− 1−β
β(1−σ)

)
ψ̄θ

[[
ū1 − θ

(
ū2 −

(
a− ψ̄S0

))]1− 1−β
β(1−σ) − [ū1 − θ (ū2 − a)]1−

1−β
β(1−σ)

]

= K
1−αβ
0

α− β
.

(90)

The last equation gives the implicit expression for ū1:

ū1 = ū1
(
ū2,K0, S0, θ, ψ̄, a, k, α, β, σ

)
.

A similar result to (90) can be obtained in terms of any S(t),K(t) instead of S(0),K(0). To do so, taking
the integral of (89) over [t,+∞] with the initial condition S(t),K(t), it follows that

− (1− β)
1−β
β (1− σ)−

1−β
β(1−σ)(

1− 1−β
β(1−σ)

)
ψ̄θ

[[
ū1 − θ

(
ū2 −

(
a− ψ̄S (t)

))]1− 1−β
β(1−σ) − [ū1 − θ (ū2 − a)]1−

1−β
β(1−σ)

]

= K (t)1−αβ

α− β
.

(91)

To get a precise S(t) and K(t), denote

S̃(t) = ū1 − θ
(
ū2 −

(
a− ψ̄S (t)

))
such that

S̃ (t) =
(
K (t)1−αβ

B1 (α− β) +B2

) 1
B2

, (92)

where B1, B2, and B3 are constant terms.

B1 = − (1−β)
1−β
β (1−σ)

− 1−β
β(1−σ)(

1− 1−β
β(1−σ)

)
ψ̄θ

> 0

B2 = 1− 1−β
β(1−σ) < 0

B3 = [ū1 − θ (ū2 − a)]1−
1−β

β(1−σ) > 0

(93)

Substituting (92) in for capital accumulation,

K̇ = β

1− β
[
(1− σ)

(
ū1 − θ

(
ū2 −

(
a− ψ̄S

)))] 1
1−σ ,

it follows that

K̇ = β

1− β (1− σ)
1

1−σ

[
K (t)1−αβ

B1 (α− β) +B3

] 1
B2(1−σ)

. (94)
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It is possible to solve the last differential equation (94) analytically, even though it yields an implicit solution
for K (t):

β

1− β (1− σ)
1

1−σ t+ K (0)
(B3)

β
β(1−σ)−(1−β)

2F1

(
β

β (1− σ)− (1− β) ,
1

1− α
β

; 1 + 1
1− α

β

;− K (0)
B1 (α− β) (B3)

)

= K (t)
(B3)

β
β(1−σ)−(1−β)

2F1

(
β

β (1− σ)− (1− β) ,
1

1− α
β

; 1 + 1
1− α

β

;− K (t)
B1 (α− β) (B3)

)
. (95)

A.8 Proof of Proposition 7

(i) To assess the impact of the probability of a disease occurring, θ, on the maximum sustainable utility ū1,
we take the total differential with respect to equation (90) and rearrange the terms. It follows that

∂ū1

∂θ
=

<0︷ ︸︸ ︷
−1
θ

[
Ā1− 1−β

β(1−σ) − B̄1− 1−β
β(1−σ)

]
+

<0︷ ︸︸ ︷
1− β

β (1− σ)

[(
ū2 − ψ̄ (a− kS0)− ū1

β (1− σ)
(1− β) θ

)
Ā

1−β
β(1−σ) −

(
ū2 − ψ̄a

)
B̄

1−β
β(1−σ)

]
−
(

1− 1− β
β (1− σ)

)
︸ ︷︷ ︸

<0

(
Ā1− 1−β

β(1−σ) − B̄1− 1−β
β(1−σ)

θ

)
︸ ︷︷ ︸

>0
< 0,

where Ā = ū1 − θ
(
ū2 − ψ̄ (a− kS0)

)
and B̄ = ū1 − θ

(
ū2 − ψ̄a

)
.

ii) To assess the impact of the probability of a pandemic on physical capital accumulation, we take the total
differential of equation 95 and rearrange terms, yielding

∂K (t)
∂θ

= −

<0︷ ︸︸ ︷
− 1

1− σ
(
ū1 − θ

(
ū2 − ψ̄

))− 1
1−σ−1

<0︷ ︸︸ ︷(
∂ū1

∂θ
−
(
ū2 − ψ̄

)) <0︷︸︸︷
K̃ + <0

︷︸︸︷
∂K̃

∂θ

<0
− ∂J̃

∂K︸︷︷︸
< 0, (96)

where

J̃ = K (t)
(B3)

β
β(1−σ)−(1−β)

2F1

(
β

β (1− σ)− (1− β) ,
1

1− α
β

; 1 + 1
1− α

β

;− K (t)
B1 (α− β) (B3)

)
,

∂J̃

∂K
= 1

(B3)
β

β(1−σ)−(1−β)
2F1

(
β

β (1− σ)− (1− β) ,
1

1− α
β

; 1 + 1
1− α

β

;− K (t)
B1 (α− β) (B3)

)

+
β

β(1−σ)−(1−β)

(
1

1−αβ

)2

(
1 + 1

1−αβ

)
B1 (α− β) (B3)

2F1

(
1 + β

β (1− σ)− (1− β) , 1 + 1
1− α

β

; 2 + 1
1− α

β

;− K (t)
B1 (α− β) (B3)

)
.
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(iii) By differentiating equation (90), it is easy to see the impact of the prevention policy λ on the maximum
achievable utility ū1:

∂ū1

∂λ
= βbθ

[(
c− b (1− λ)

β

)β
Kα

0 S
β
0

κ

]−σ (
c− b (1− λ)

β

)β−1
> 0, (97)

∂ū2

∂λ
= βb

[(
c− b (1− λ)

β

)β
Kα

0 S
β
0

κ

]−σ (
c− b (1− λ)

β

)β−1
> 0. (98)

It is also obvious that the analytical solution of K (t) is not affected by the prevention policy λ. The only
term that implies λ is B3. The variation of B3 with respect to λ is

∂B3

∂λ
= ∂ū1

∂λ
− θ∂ū2

∂λ
= 0.

That completes the proof.

A.9 Proof of Proposition 8

In order to see the impact of the prevention policy, λ, we differentiate the consumption with respect to λ,
which yields

∂C̄

∂λ
=
(
γ (c− b (1− λ))

β

)β
Kα
TS

β
T

κγ

[
−ζ + (1− ζλ) γbβ

(
γ (c− b (1− λ))

β

)−1
]
≶ 0.

Thus, the first-order condition for optimality yields

λ∗ =
b
(
1 + ζβ2)− c
(1 + ζβ2) .
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