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Having described the different challenges facing agriculture in the previous 
chapter, in particular those of agroecology and sustainable food systems, 
which will be the “target” of our reflections, in this chapter we will address the 
foundational aspects of digital technology, their use in agriculture and current 
research. In the Introduction, we reviewed the pillars of digital agriculture, which 
can be summarised as data, processing capacities, connectivity to allow data and 
information exchange and, finally, automation. The challenges facing agriculture 
concern all levels of the data cycle, from capture to use via collection, traceability, 
processing, storage, interpretation, provision and application in automatic and 
robotic systems. 

     �Data
The use of digital technology in agriculture produces large volumes of highly 

heterogeneous data that can be qualified as “big data” (Bellon-Maurel et al., 
2018). It is uniquely complex because it includes observations of complex objects 
and environments of different natures and operating at very different spatio-
temporal levels (for example from the gene to the field), with strong intra- and 
inter-level interactions and involving numerous actors. This complexity leads to 
questions about what data to collect (nature, frequency, objective, etc.) to guide the  
deployment of a technical solution at all levels (hardware, software, interface, etc.).  

 Data capture (what, why, where and how) 

The challenges of data capture are both hardware- and software-related. 
Knowing what the data is intended for helps to determine the choice of mea-
surement equipment.  

First, the nature of the measurement (temperature, air or soil humidity, 
condition of a plant’s leaves, weight of an animal, etc.) and the accuracy required 
must be specified. These requirements, which depend on the needs defined, vary 
greatly from one use to another. The second issue is how to capture the data. The 
nature, size, weight, bulk and robustness of the sensor will also depend on the 
nature of the measurement, the object to which it is applied and the environment 
in which it will be placed: a sensor worn by an animal will be chosen according 
to the weight and bulk of the equipment and the size of the animal. Similarly, a 
sensor for field measurements on soil or plants will require protection to make 
it resistant to the surrounding environment (humidity, temperature variations, 
shock resistance, etc.). Finally, how the data will be used will define the sampling 
method, in particular the collection location and spatial and temporal resolution 
(Brun-Laguna et al., 2018). For example, should the sensors be positioned per m² 
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or per km²? If the aim is to monitor animals, should all or just a few of the animals 
in the herd be equipped (Jabbar et al., 2017)? What time frequency is required 
and should it be constant? Some applications require high spatial and temporal 
frequency, offered by satellite remote sensing. Others need less frequent mea-
surements, such as those obtained from participatory data (Minet et al., 2017). 

The decision of which technology and equipment to use and which 
methodologies to implement for the deployment of sensors has been the subject 
of numerous studies in recent decades, with applications in both cropping and 
livestock production: identification and geolocation using RFID (Ruiz-Garcia and 
Lunadei, 2011) or GPS; imagery (2D, 3D, infrared, hyperspectral), accelerometery, 
acoustics, biochemical measurements on fluids (including biomarkers), 
measurement robots such as weighing scales, water or milk meters, feed dispensers, 
etc. (Chastant-Maillard and Saint-Dizier, 2016; Halachmi et al., 2019). In most 
cases, trade-offs must be made between cost, resolution, precision and practicality 
(Foubert and Mitton, 2019). Research aims to limit these concessions, either by 
developing sensors that are increasingly precise, energy-efficient, smaller, less 
intrusive and less costly, or by designing massive data acquisition devices (using 
satellite images, drones, etc.). The deployment of new satellite constellations 
(Sentinel-2),28 which produce high-resolution images (both spatial and temporal) 
made available free of charge, offers new monitoring opportunities. 

In conclusion, the work to develop acquisition systems is inherently multidisci-
plinary and requires collaboration between agronomists, biologists, zootechnicians, 
geneticists, computer scientists, electronic engineers and end users to ensure 
that the requirements of users (who are sometimes researchers themselves in 
another field) are met and to combine knowledge of the objects of study, their 
specificities and their constraints with knowledge of digital technology.

28. https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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Several INRAE units are developing such acquisition devices for phenotyping 
or monitoring animals or crops. Examples include: a high-speed 3D image 
acquisition device and its associated processing methods to measure 
the physical condition and morphology of dairy cows, developed by the 
PEGASE Mixed Research Unit (UMR) in collaboration with the Agricultural 
Technical Institute IDELE and the company 3D Ouest. An automatic feeder 
has been developed by the PEAT Experimental Unit (UE) and the BOA UMR 
for studying the feed intake and individual feeding behaviour of poultry 
reared in groups. The electronic mounting detector “ALPHA” (the company 
Wallace), based on an automatic RFID reader worn by a ram, was designed 
by the SELMET UMR to automatically detect heat in sheep, particularly in 
large-scale farming. In the plant field, the ITAP UMR and the CAPTE Mixed 
Technology Unit (UMT) are developing optical sensors for phenotyping 
or early detection of plant diseases. The TETIS UMR uses satellite remote 
sensing to detect plot defects. The acquisition of phenotypic data using 
sensors is being addressed by large-scale programmes and infrastructures 
such as PHENOME on the characterisation of crops grown in greenhouses 
and in the field and IN SYLVA on forests. The resulting data can be used to 
improve the predictive capacities of models and how they take into account 
interactions between genotypes and the environment. More broadly, high-
speed phenotyping systems are also being developed in plant and animal 
experimental units at INRAE.

 Data collection and transmission (What data to send, when and how) 

Once the data has been acquired, it must be transmitted. Some systems use 
wired communication (Ethernet, serial, etc.), but this is not always possible and 
sensors have to be equipped for wireless communication, which poses different 
challenges. Data capture and transmission in agriculture increasingly use Internet 
of Things technology (Zhao et al., 2010), especially RFID and wireless sensor 
networks with specific features for agriculture.  

For example…
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Monitoring of animals in extensive breeding. © Selmet – CIRAD.

Most wireless sensors rely on energy sources that are either limited (e.g. 
batteries) and/or variable (e.g. via a solar collector) and must therefore be preserved. 
Data transmission is often the most energy-consuming factor and presents a 
major challenge, so the aim is to limit the amount of data sent while maintaining 
the data accuracy required for the application to function. Research therefore 
focuses on data processing in the sensor, which itself is limited in computing 
and memory capacity, using spatial and/or temporal data aggregation (Salim et 
al., 2020) and simplified artificial intelligence methods. For example, researchers 
use the correlation between two quantities (such as temperature and humidity) 
to transmit just one of the two values and interpret the second. Another option 
is to locally predict the next value to be measured and only transmit the data if 
it does not match the predicted value. The more demanding an application is in 
terms of temporal resolution or accuracy, the more data transfer is required. This 
also requires a trade-off between efficiency, accuracy and cost. 

For example…
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The FUN and EVA project-teams at Inria are working on data collection for 
agriculture using wireless sensor networks. Their work concerns both specific 
network protocols and the question of which data to transmit to avoid 
saturating the communication media and reduce the energy consumption 
of transmissions. The FUN project-team is installing sensors in vineyards 
in South Africa to improve watering and water management. They also 
collaborate with Sencrop, which uses sensors in cereal and potato farming. 
EVA installs sensors on peach trees in Argentina to protect against frost.  

The choice of communication technology depends on the quantity of data to be 
retrieved as well as the distance to cover and location of the sensors. For data to be 
collected over long distance and requiring greater intervals between transmission 
(such as once-a-day temperature readings) one would uses long-range technology 
with low data rate and power consumption, whereas high-frequency readings 
(such as animal video tracking) require high data rate. The measurement points 
may be located in areas not covered by cellular technology (such as 3G/4G/5G or 
LPWAN – Low Power Wide Area Network), which would require specific network  
mechanisms to be put in place such as routing (relaying information to the 
destination station). This must take account of the constraints and requirements 
of the applications and the material limitations and characteristics of existing radio 
technology (Foubert and Mitton, 2021) and the environment in which the sensors 
are deployed (Ferreira et al., 2020). An additional difficulty is the heterogeneity 
of technologies required that must to coexist and sometimes cooperate, as well 
as the more general challenges of the Internet of Things (IoT), addressed in the 
Inria White Paper on the Internet of Things.29

Lastly, mobile data collection solutions are emerging for blackspots, ranging 
from simplified solutions (portable data devices that can be carried in a rucksack, 
as in the case of the COWSHED project in Africa30) to high-tech solutions with  
“aerial” devices (drones or nanosatellites). The latter can collect data from 
thousands of connected objects at a low data rate (LoRa protocol) or high data 
rate (i.e. 100 kB per transmission) using a smaller number of terminals on the  
 
 
29. Scientific challenges of the Internet of Things. Inria White Paper. https://www.inria.fr/en/inria-white-paper-
internet-things-iot
30. https://hal.archives-ouvertes.fr/hal-03102190/document
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ground (around 100) (UHF protocol). Applications are developing in the field of 
agriculture, such as in Australia where farmers remotely monitor the level of 
irrigation tanks using nanosatellites.31

The Internet of Things (IoT) is the interconnection of the Internet with things, 
places and physical environments. The term refers to a growing number of 
objects that are connected to the Internet, allowing communication between 
the physical and digital aspects of our possessions. The IoT combines a wide 
range of technologies from simple RFID tags to mobile phone applications 
and wireless sensor networks. Radio communication technologies are diverse 
with different characteristics with regard to data rate, consumption, range, 
etc. Sensors can be equipped with microcontrollers with varying levels of 
power and energy consumption.  

 Data storage and exchange, traceability 

Once the data has been captured and transmitted, it can be used for a variety 
of purposes. Firstly, it can be stored and processed to extract knowledge, anticipate 
malfunctions, etc. This data can be very heterogeneous and of varying levels 
of quality. It can also have very different sampling rates due to it coming from 
different sources (physical sensors, “human” sensors or even simulation results) 
and can be very large in volume (many capture points, potentially high temporal 
frequency). Methods derived from multivariate data management and now big 
data offer a response to the challenges of volume, processing speed and the  
diversity of formats and sources (Bellon-Maurel et al., 2018). The prerequisite for 
successfully using this data is that it meets the guiding principles of “FAIR”, which 
are Findability, Accessibility, Interoperability and Reusability,32 with minimal human 
intervention. There is therefore a demand for a new generation of information 
systems adapted to agriculture in order to manage and structure this complex 
mass of data using the FAIR principles. Metadata and data must be well descri-
bed using semantic resources (ontology, taxonomy, thesaurus) to make them 
understandable and facilitate access via standardised protocols..

31. https://which-50.com/world-first-australian-iot-uses-satellites-to-monitor-farmers-tanks-rain-levels/
32. Wilkinson et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific 
Data 3, 160018. doi:10.1038/sdata.2016.18.

Definition

For example…
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Definition

For example…

At INRAE, automated data processing centres (CATI), federate and structure 
skills, methodologies and technologies to facilitate the reuse of data, such 
as the CATI SICPA (Information Systems and Computation for Animal 
Phenotyping), the CATI Codex (plant phenotyping) and the CATI GEDEOP 
(Management of Experimentation, Observation and Practice Data on Agro-
socioecosystems).

Finally, the question of data validation is becoming a central issue with the 
increase in the quantities of data collected: is the measured value correct, for 
what applications and under what conditions?

A variety of DBMS (Database Management Systems) exist depending on the data 
model used, with the relational model currently being the most common. Benchini 
et al. (2007), for example, coupled a dynamic cropping system simulation model 
with a relational database to achieve efficient storage and analysis of model data 
at farm level. But when it comes to dealing with very large volumes (of the order 
of petabytes) or complex and heterogeneous data (graphs, documents, etc.) in 
highly distributed contexts (remote servers, Internet of Things, etc.), NoSQL-type 
databases using a different data model – which has fewer conceptual constraints 
than the relational model – are more pertinent.

In some cases, the primary aim is to share the data among multiple actors, 
for example to limit fraud or validate certain processes (correctly following a 
given route, compliance with the cold chain, local production or insecticide-free 
requirements). To achieve this, one of the most promising digital tools currently 
available is the blockchain (Bermeo-Almeida et al., 2018). Blockchains, which use 
a distributed database that requires no control entity, date the components they 
contain and guarantee their unalterability. In agriculture, this technology makes 
it possible to record the life stages of a product and thus ensure traceability 
(Kamilaris et al., 2019). It offers multiple advantages (see Chapter 4: Opportunities) 
including transparency and records of transactions between farmers, suppliers, 
buyers, consumers etc. In some sectors, using blockchains makes it possible to 
avoid long and costly certification processes (Lin et al., 2017).  

However, blockchains also pose new digital and organisational challenges. In any 
information system, there is always an inherent risk of hacking. Also, blockchain 
technology was initially designed for transferring and sharing intangible goods 
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(funds, certificates, diplomas) and is not infallible in cases where information flows 
must be coupled with physical flows, such as in agriculture and agrifood where the 
digital data must be an exact representation of the physical flow. Furthermore, 
the perceived security of a blockchain is based on a mechanism known as “proof 
of work” (of computer operations), which validates the new blocks to be incorpo-
rated. Public blockchains rely on large numbers of “proofs of work”, which is very 
energy intensive, and research currently focuses on reducing the complexity of 
these cryptographic algorithms to reduce their energy consumption.  

     �Modelling, simulation and optimisation
If data is one of the driving forces of digital agriculture, modelling is also 

essential for linking measurements and observations to interpretations and 
recommendations to help actors in the agricultural sector better understand, 
manage and improve their production systems. 

In the field of agriculture and agronomic research, the scientific approach 
of modelling to predict harvests emerged as early on as the reign of Egyptian 
Pharaoh Sesostris I, when river levels were used to make crop forecasts (Gros de 
Beler, 1998), or among Inca farmers who knew several months in advance what 
agricultural cycles to expect by observing nature (Gutiérrez, 2008). Much later, 
the pioneering work of Mendel (Mendel, 1907) and then Fisher (Street, 1990) 
definitively legitimised the use of statistical models in the fields of genetics and 
agronomy. In the latter half of the 20th century, agricultural modelling developed 
in particular in rural economies to rationalise and optimise production, agronomy 
and zootechnics, crop management, animal nutrition and genetic selection in 
plants or animals. With the development of computers and the first calculators, 
modelling gradually went beyond statistics and operations research and increa-
singly used symbolic and algorithmic formalisms to produce models expressed 
in mathematical and computer terms and in which simulation plays a key role. 

The general function of a model is often called a mediation function: “to an 
observer B, an object A* is a model of an object A to the extent that B can use A* to 
answer questions that interest him about A” (Minsky, 1965). This mediation can help 
meet different cognitive objectives: facilitating experience, intelligible formulation, 
theorisation, communication and the coconstruction of knowledge, decision and 
action (Varenne and Silberstein, 2013). Today, agricultural modelling concerns a very 
broad spectrum of objects and has four main purposes: analysis, communication, 
predicting and controlling the evolution of various components in an agricultural 
system and designing and optimising the system under consideration. In the rest 
of this section, we will present a few of the major types of models and how they 
can be used in digital agriculture thanks to simulation and optimisation.

3.2
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 What to model, for what purposes and with which tools 

What to model? – In agriculture, the objects of study – or subjects of the 
model – are anthropised natural systems that can involve multiple scales and 
levels of organisation. Modelling focuses on the components of these systems 
as well as the processes that govern their dynamics, the events that activate or 
inhibit these processes and the exogenous factors that influence them (such as 
weather conditions) (Martin et al., 2011). Some of the components are biophysical 
(such as crops with growth processes, diseases) (Kumar and Sinhg, 2003) while 
others are centred on the roles played by human actors. In the latter case, mo-
delling can concern either a single individual (Martin-Clouaire and Rellier, 2004; 
2009) or a group of individuals (such as the members of a cooperative) and the 
social processes of activity coordination carried out by different individuals in 
the collective (Drewniak et al., 2013; Manson et al., 2016).

Models of processes, flows and interactions are being developed by many 
teams and units. Below are a few examples at different scales.
At INRAE, several teams are working on crop or livestock modelling, whether 
on a plot-by plot basis (multispecies crop models such as STICS, which describe 
growth according to climate and environmental variables), at the individual 
level (animal growth models according to their diet and environment), or 
at larger scales (plant epidemiology models including inter-plot dispersal 
and animal epidemiology models describing inter-herd transmissions, etc.). 
These models are hosted by modelling platforms such as RECORD, OPEN 
ALEA and OPEN FLUID and form the basis of simulations run according to 
different climate and contextual scenarios.

The STEEP project-team (Inria, CNRS, Université Grenoble Alpes) develops 
mathematical models for analysing material flows (production, transformation, 
exchanges, consumption, waste) in agriculture and the forestry-wood sector 
in order to 1) understand the upstream/downstream vulnerabilities in the 
sectors, 2) question the use of natural resources and potential problems 
caused by competition for use and, finally, 3) assess environmental impacts. 
The tools developed are based on the modelling of chains in terms of products 
and sectors and the existing flows between them. One of the major difficulties 
is the particularly patchy and inconsistent nature of the data.  

For example…
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The EASE project-team (Inria, Ecole Nationale Supérieure Mines-Télécom 
Atlantique Bretagne Pays de la Loire, Université de Rennes 1) is developing a 
complete series of new interaction models, offering tools for augmenting and 
describing information from complex systems. The work has been applied to 
energy management in agriculture. In particular, the model helps define how 
to reduce the environmental impact of energy consumption when optimising 
an existing site or installing new facilities. It has shown that the optimisation 
of a single parameter alone (local production, storage or process transfer) is 
not enough to maximise self-consumption and minimise energy requirements.

What purposes to model for? – The level of detail of the modelling systems 
at the heart of a study is defined by the purpose of the study and the tool under 
consideration. The most commonly applied objectives range from identifying the 
aims and means of managing agroecosystems to predicting performance (Rio 
et al., 2019) in the light of different scenarios going through the identification 
of risks and the critical analysis of the functioning and conduct of agricultural 
production systems (Li et al., 2019). Modelling can also allow the design of new 
systems such as the configuration and sizing of a logistics chain (Taghikhah et 
al., 2021). 

Many models concern agroecosystem management. The joint INRIA / 
INRAE project-team BIOCORE (CNRS, Sorbonne Université-UPMC) focuses 
on modelling and control in epidemiology for tropical agriculture. At INRAE, 
the MIAT UR and MISTEA UMR develop simulation models and optimisation 
methods for managing agroecosystems at farm level. For animals, UMRs 
such as BIOEPAR, SELMET, MoSAR, UMRH and PEGASE are developing 
models on animal health and epidemiology, dynamic ingestive, digestive 
and metabolic phenomena and livestock farming systems. For example, the 
PEGASE UMR has developed new models for adjusting daily feed according to 
the nutritional needs of each animal for individualised feeding for pregnant 
and lactating sows (Gauthier et al., 2019).

For example…

For example…
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Building an agronomic model. © INRAE.

How to model? – Computer modelling to support the analysis, design and 
management of agroecosystems is combined with approaches using either 
simulation or optimisation (Li et al., 2020). In dynamic simulation, the modelling 
of phenomena considered important for the objectives of the study is centred 
on realism (Kaghazchi et al., 2021), whereas optimisation involves algorithmic 
exploration of the space of alternatives that efficiently searches for an optimal 
solution according to one or more explicitly formulated criteria using reductionist 
mathematical models (Ezanno et al., 2020; Casagli et al., 2020). The two methods 
have relatively antagonistic objectives (modelling realism versus computational 
efficiency) and therefore generally use different modelling approaches.

 Representation frameworks 

Agroecosystems are complex objects of which the models concern, on the one 
hand, the functioning of the biophysical entities that compose them (soil, plants, 
animals, mineral and water flows, etc.) and, on the other hand, human decision 
making and action on these biophysical entities (Zabala et al., 2021). Models 
convey knowledge that mainly comes from scientific disciplines such as agronomy, 
zootechnics, environmental science, management science and the humanities.  

Biophysical models can be classified into three main fields: mechanistic, 
empirical and hybrid (Reyniers, 1996). Mechanistic modelling focuses on events, 
causal relationships and processes, whereas empirical models treat systems as 
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“black boxes” and only generally describe the underlying biophysical phenomena. 
These models represent the input-output dynamics of a system component in 
terms of observation data. In reality, there are few truly mechanistic or empirical 
models. Models are generally hybrids or classified in one or the other category 
according to whether they possess mainly mechanistic or empirical components. 
The overall understanding and level of information required to build these models 
increases as we move from empirical to mechanistic models. By making causality 
explicit, mechanistic models can be more complex, while empirical models are 
generally simpler but have a more limited scope of application due to statistical 
data availability issues.

Decision modelling varies depending on the modeller’s hypothesis about 
the decision maker. In a first type of hypothesis, the decision maker is assumed 
to be perfectly rational (in the economist’s sense) and, when making a decision, 
determines the mathematically optimal choice according to theoretically defined 
functions of utility. In a second type of hypothesis, known as a bounded rationality 
hypothesis, the agent makes a decision that leads to an outcome that they consider 
satisfactory given the information available and their level of aspiration. Mental 
models of varying levels of sophistication are often used, including models based 
on decision rules that associate situations with decisions or actions (Martin-
Clouaire, 2017). To facilitate and standardise the development of these models, 
ontologies can be used to define the concepts, relationships and other distinctions 
relevant to the areas concerned (major crops, livestock production, etc.) (Roussey 
et al., 2011). An ontology (see Section 3.4) is an abstract model (metamodel) of 
the area and provides the representation primitives allowing the instantiation 
of models for specific systems in the form of knowledge bases (Martin-Clouaire 
and Rellier, 2004; Fishwick, 2007).

An ontology defines a vocabulary and the semantic links between the elements 
of the vocabulary. The vocabulary is composed of names of concepts (or 
“classes”), which are types of entities known by the system and names of 
possible relationships (or “roles”) between these entities (for example, the 
relationship of “pest” links two “living organism”-type entities). The ontology 
is described in a logical computer language that expresses the representation 
of knowledge to different degrees of expression. It can range from a simple 
taxonomy (a set of concepts structured by progressive specialisation) to 
complex descriptions of vocabulary elements and their semantic links. The 
language used allows the implementation of automatic reasoning.

Definition
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Discrete event, discrete time and continuous time systems – A discrete event 
simulation model allows the representation of a dynamic system using variables 
whose evolution depends entirely on the occurrence of asynchronous events over 
time. One particular case is when the time progression is in fixed increments. 
The discrete event approach contrasts with (but does not oppose) the “system 
dynamics” approach in which the state of the system is modified continuously 
over time based on a set of differential equations defining the rates of change 
and state variables. In each of these different cases, researchers are interested in 
the representation of causal relations (i.e., for the biophysical aspect, mechanistic 
models). One of the best known formalisms is Discrete Event System Specification 
– DEVS (Zeigler et al., 2000), which is based on a generic framework allowing 
different adaptations to specific formalisms such as Petri nets, cellular automata 
and, more generally, models with fixed time intervals. Petri nets are a particularly  
popular mathematical formalism because of their ability to represent the  
synchronisation of processes running in parallel and offer possibilities for rigorous 
model analysis. A cellular automaton is built using a network of discrete cells and 
is well suited to representing spatial dynamics (such as the propagation of an 
infestation) and self-organising phenomena (such as the landscape dynamics of 
natural reforestation). Some formalisms such as statecharts (Léger and Naud, 
2009), timed automata (Hélias et al., 2008) and Petri nets (Guan et al., 2008) 
can also suit processes for verifying the behaviour of the model (e.g. to ensure 
that it cannot lock up) or its temporal properties.  

Automatic detection of mangoes by artificial intelligence from a smartphone photo. Hortsys.  
© Hortsys – CIRAD.
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Individual- or agent-based models – These models focus on systems that can 
be broken down into a set of entities (such as plants, animals, zones) that act or 
interact (Daudé, 2004; DeAngelis and Diaz, 2019). When combined with a cellular 
automaton-based approach, the individual-based approach allows the spatial 
representation and simulation of biophysical processes on a territory divided 
into plots. When the modelled entities acquire more elaborate cognitive and 
decision-making capacities (Bahri et al., 2020), we speak of agent models that 
allow, for example, simulation of the decision-making behaviour of a group of 
agents (such as farmers) operating in a given territory (Huber et al., 2018). Farm 
management has often been modelled using simple mechanisms for triggering 
decision-making rules associated with possible situations. With this approach, 
however, it has proved difficult to control the order in which rules are used and 
to maintain the rule base once it reaches a certain size. An improvement was 
introduced by the BDI (Belief, Desire, Intention) approach (Georgeff et al., 1970; 
Bratman, 1987), which makes it possible to model the process by which an agent 
makes decisions based on a perception of the current situation (Belief ), the  
declared objectives (Desire) and decisions on how to proceed toward the objectives 
(Intention). 

The INRAE-MIAT UR has developed several formalisms to represent and 
simulate the decision-making behaviour of farmers when managing their 
farms using the BDI approach, temporal planning and uncertainty in artificial 
intelligence. For example, Martin-Clouaire and Rellier address the problem of 
production management as one of coordinating a set of activities organised 
in flexible plans for which it is possible to simulate the implementation in 
a particular context (Martin-Clouaire and Rellier, 2009). For application 
examples in dairy farming see Martin et al. (2011) and Martin-Clouaire et 
al. (2016) in viticulture.  

Constraint-based models – Constraint-based models use varied range of 
formalisms that are mainly based on the concept of graphs modelling binary 
relationships between variables (Hurley et al., 2016). These relationships can 
model correlations and causal influences, whether deterministic or probabilistic, 
as in the case of Bayesian networks and Markov chains. These networks can also 
describe constraints between variables in terms of combinations of acceptable 
or unacceptable values, leading to a Constraint Satisfaction Problem (CSP) 

For example…
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(Moummadi et al., 2011). In a similar vein, linear programming methods are based 
on the optimisation of a linear combination of multiple variables connected by 
linear relationships called constraints (Maqrot et al., 2017).

At INRAE, the BAGAP UMR works on modelling the problem of dynamic crop 
allocation on a farm, based on the use of spatial and temporal constraints and 
the toolbar2 solver (Akplogan et al., 2013). For example, the team analysed 
the wooded countryside of the Charolais-Brionnais region to show the 
uniqueness of this landscape and its suitability for the different structures 
and functions of hedges. Thanks to this analysis, the countryside was added 
to the list of potential sites for submission to UNESCO for heritage protection.

 Modelling and simulation 

The primary advantage of modelling approaches is no doubt the ability to 
model and simulate complex behaviours in agricultural systems and, more broadly, 
socioecological systems such as agroecosystems (Peart and Curry, 1998). Models, 
especially agent-based ones, are often complex due to the number and heteroge-
neity of components and interactions and their sensitivity to variations affecting 
the systems. Their behaviour is difficult to study because the phenomena involved 
are non-linear with multiple discontinuities and feedback between levels of 
organisation and scales. Some of these models represent cognitive agents with 
bounded rationality behaviour. Numerous agricultural applications have been 
developed based on the CORMAS (Bommel et al., 2015) and GAMA (Taillandier 
et al., 2010) platforms, such as for studying water management, the reform of 
the Common Agricultural Policy, reducing the use of pesticides and developing 
organic farming.

At INRAE, the AGROECOLOGIE UMR coordinates the development of the 
MAELIA platform for the integrated modelling and evaluation of socio-
agroecological systems. It aims to produce knowledge on the structure, 
functioning and performance of these forms of agriculture at plot, countryside 
and/or territorial level.

For example…

For example…
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In practice, modelling-simulation approaches offer a variety of uses, ranging 
from laboratory analysis by scientists, decision support (Huber et al., 2018), 
real-time decision making by farmers or agricultural advisors and support 
for negotiations between stakeholders (e.g. support models for joint water 
management in a territory) to the co-design of new production systems by a 
group of farmers and training. Individual or groups of farmers can thus improve 
their understanding of biophysical functioning and obtain ideas for improving 
the system studied in terms of product quality, system vulnerability, environ-
mental consequences of the practices implemented, reduction of work overload 
and drudgery and, finally, economic performance linked to the application of 
agroecological principles.

At INRAE, skills are grouped in CATIs for modelling large-scale systems, such 
as the IMOTEP CATI (Information, Models and Data Processing in Epidemiology 
and Population Dynamics) and the IUMAN CATI (Computerisation and Use 
of Models for Digital Agroecosystems). The work covers both modelling of 
the spread of epidemics in plants or animals and software development for 
platforms and proofs of concept allowing the sharing and computerisation 
of these new models at multiple scales.  

 Modelling and optimisation 

By definition, optimisation explores possible solutions to a given problem using 
different methods to find an optimum or optima according to a criterion or set 
of criteria (Zelinka et al., 2013). It is used in different areas of agriculture and at 
different scales (Plà-Aragonés, 2015). At the farm level, optimisation is implemented 
either explicitly or implicitly, whether in feed formulation, herd management, 
animal slaughter planning, crop and land use planning or water management. 
It is also used at different scales, including groups of farms, territories, regions 
and countries, for managing land use, water and economic trade and market 
issues (Carpentier et al., 2015). In these cases, bioeconomic models are employed 
according to an analytical approach, in which the primary objective is to evaluate 
the impact of the applying constraints and criteria to optimal solutions.

Due to the complexity of agricultural systems and changes in questions relating 
to agriculture, optimisation has also evolved in agriculture (Jones et al., 2016). The 
early economic models of the 1950s focussed above all on maximising income. 

For example…
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Today, the formulation of low-cost feed still primarily aims to obtain the cheapest 
feed possible while meeting nutritional criteria. Optimisation has gradually 
become multi-objective to combine different aims: productive (e.g. animal or 
plant production, working time), economic (e.g. income, cost) or environmental 
(nutrient levels, environmental impact calculated by life cycle analysis, ecosystem 
services, etc.). In “constrained” optimisations, the constraints are also varied and can 
be biological, structural, regulatory, environmental or linked to decision-making.

Model optimisation in agriculture has also benefited from developments 
in optimisation methods, using a diverse range of methods. Deterministic 
linear programming methods are still very common, with adaptations to solve 
multi-objective problems. Stochastic metaheuristic methods are applied alone 
or in combination with the previous ones. These metaheuristic methods make 
it possible to address multicriteria optimisation and obtain a set of optimal 
solutions considered admissible in the context (called Pareto Front); they include, 
for example, evolutionary algorithms (such as genetic algorithms or differential 
evolution) that work on a population of solutions, particle swarm optimisation, 
taboo search, simulated annealing, etc.(Kaim et al., 2018; Memmah et al., 2015). 

Current issues surrounding optimisation concern, in particular, how to adapt 
methods to increasingly complex models, and in particular how to take account 
of uncertainty (Crespo et al., 2010) and the temporal aspect in the formulation 
of the optimisation problem (Akplogan et al., 2013). These issues echo those 
traditionally addressed in the automatic control and optimal control community. 
Another major topic of research is the coupling between optimisation and simu-
lation (Borodin, 2014), in particular in connection with reinforcement learning 
methods (Gosavi, 2015). Despite technological advances in computing power, 
the processing time of optimisation processes is still an important factor to be 
considered due to the increasing complexity of the models in question. Recent 
developments in metamodelling offer a possible simplification strategy to reduce 
these processing times.

At INRAE, the PEGASE and SMART-LERECO UMRs develop multi-criteria 
optimisation approaches (zootechnical and economic performance, 
environmental impact) for feeding strategies in pig farming, based on a 
pig farm model. 
At Inria, there are more than twenty project-teams working on the 
development of optimisation, operational research or control algorithms.

For example…
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     �Multi-scale learning and knowledge 
extraction

The two previous subchapters presented the approaches used to collect 
data, followed by modelling techniques based mainly on human analysis. In this 
subchapter, we will focus on the main families of approaches to building models 
directly from data and thereby automatically extracting knowledge. The resultant 
knowledge can either be presented to human experts or remain within a learning 
context for prediction or identification tasks, for example. 

We will first show that the “raw” data sent by the sensors cannot generally be 
used in its initial state and that its pre-processing represents a challenge in itself. 
Let’s start by presenting the types of data frequently used in digital agriculture, 
and which could constitute a Big Data. 

 Massive data in agriculture 

In agriculture, the most “massive” data comes from sensors with high temporal 
or spatial resolution, such as time series and remote sensing or mapping data 
from embedded sensors. 

Time series – A time series is a sequence of numerical values representing 
the evolution of a variable measured on an individual over time. Such sequences 
of variables can be modelled individually to understand their past evolution 
and predict future behaviour using ARMA-type models (Box et al., 2015). Today, 
experiments in agronomy make it possible to observe the same variable on 
thousands of individuals (e.g. leaf area on thousands of plants in a greenhouse, 
the temperature of livestock) over long periods. The aim of analysing these time 
series has therefore evolved toward the search for common characteristics between 
series, major differences or the acquisition of more detailed knowledge about 
the internal (e.g. effect of genotypes) or external (e.g. linked to environmental 
variables) mechanisms that influence the observed variables. Time series are 
thus studied more generally as functions of time. Their data is also known as 
“functional” or “longitudinal” data.  

Remote sensing data – Remote sensing data can be images of a given area, 
taken by satellite or by drones. Satellite images – which we will focus on next – can 
be recorded at different periods, these sequences constituting time series. They can 
also, for the same period, be taken from different satellites, each with a different 
radiometric content (i.e. radar information, optical information). Thanks to recent 

3.3
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space missions such as Copernicus, plant dynamics can now be monitored with 
a spatial resolution compatible with the size of the objects of interest and short 
revisit time intervals. The Sentinel-1 satellite mission acquires radar information 
(two bands) every five or six days over the same area at a spatial resolution of ten 
metres. This source of data provides access to information on the structure of 
objects (i.e. forest or agricultural biomass) and makes it possible to monitor and 
assess wetland areas and the area of land that has been irrigated over a certain 
period. Another equally interesting satellite mission is Sentinel-2, which provides 
multispectral imaging information (thirteen bands), again delivered every five or 
six days and at a spatial resolution of ten metres. This optical sensor is particularly 
suitable for mapping land cover and land use, monitoring the biodiversity of natural 
states and for large-scale yield estimation over large areas (Lambert et al., 2018).    

At the other end of the scale, at the microscopic level, metabarcoding33  
metaomic data allows a better characterisation of the biological environment of 
crops or animals. This metadata is constructed by assembling the “fingerprints” of 
the genomes present or of their expressions (RNA, proteins), making it possible to 
analyse new dimensions of ecosystems, which can better explain the behaviour of 
crops or animals. We are still only at the beginning of exploring these new data 
sources, some of which remaining difficult to access (proteomics, metabolomics, etc.).

 Data pre-processing 

The major challenges in data pre-processing are: i) identifying outliers or 
unreliable data: data collected during experiments or in the field is voluminous, 
very noisy and can be affected by errors from a variety of causes, such as a faulty 
sensor. Specific tools are therefore needed to annotate this data, rapidly detect 
faulty sensors and diagnose heterogeneity in the field or greenhouse to improve the 
quality of the data sets for future analyses; ii) linking data with expert knowledge, 
such as mimicking an expert’s reasoning by an automaton when validating a 
“small” data set, or using the expert’s knowledge to adjust curves (alignment of 
phenological stage dates).

One particular challenge is data fusion. Information that is difficult to 
obtain directly can be retrieved by combining data, whether of the same type 
(for example, the leaf area of a plant can be predicted from the analysis of  
 
33. Metabarcoding is a method of identifying species from DNA or RNA segments. Instead of targeting  
different species, metabarcoding determines the composition of species in a sample, thereby allowing  
the identification of many taxa in an assembly of populations (of bacteria or other microorganisms)  
within an environmental sample (e.g. soil sample, sediment, excrements, etc.). It is thus one of the fastest  
methods for the environmental assessment of the biodiversity of ecological systems with a high number  
of unknown or difficult-to-identify species.
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fifteen images of this plant taken from different angles), or of different types. 
To do so, i.e. to monitor the same phenomenon or the same study area, an ever 
greater volume of heterogenous data of various types (called “multisource” data) 
is collected. The knowledge contained within this data is a real opportunity for 
improving our understanding of the complex phenomena associated with modern 
agricultural practices in order to better monitor and manage them. Within this 
general framework, one of the main challenges today is knowing how to make 
the best use of these heterogeneous and complementary sources of informa-
tion to obtain the maximum amount of information (because, in the science 
of complexity, “the whole is greater than the sum of its parts”34). Depending 
on the typology of the sources involved in the process, two merging strategies 
can be used: early and late merging. In the first case, the data is combined at 
the beginning of the process to form a single new homogeneous dataset. This 
can be done, for example, by bringing all the available information to the same 
spatial or temporal resolution or unit of analysis. In this context, once the new 
dataset has been built, standard single-source analysis techniques can be used. 
In the second case (late merging), an analysis process is set up by each source 
specifically and the merge is carried out at the descriptor or decision-making 
level. For example, specific descriptors can be extracted from each source and 
then combined to exploit higher-level interactions between the different sources 
considered. Lastly, the different sources can be combined in what is known as 
an “end-to-end” process, in which the standard processing stages are replaced 
by a single system (usually a deep neural network) that takes the raw sources as 
input and returns the required decisions as output (Charvat et al., 2018; Plaisant, 
2004; Tonda et al., 2018).

In the case of time series, merging series with different temporal resolutions is 
a major challenge, for example if the activity sensor in a collar worn by an animal 
sends information every five minutes, but the animal is only weighed once a 
day. In order to compare individuals, it may be necessary to interpolate the time 
series for the same time period (using linear or polynomial smoothing methods), 
possibly by matching similarities (dates of phenological stages, growth peaks, etc.). 
Dynamic Time Warping (Sakoe et al., 1978) is one of the well-known techniques 
for measuring similarities between two series. However, this technique does not 
provide answers to all the curve alignment issues encountered when dealing with 
living beings, when it is essential to take phenological time into account. These 
questions present challenges that are still largely unresolved in biology. 

34. http://www.scilogs.fr/complexites/le-tout-est-il-plus-que-la-somme-des-parties/
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There are also methods able to extract several models from time series at 
different time scales and then select the most relevant ones using information  
theory approaches (principle of Minimum Description Length – MDL) (Vespier et 
al., 2012). The advantage of these approaches is that they allow us to focus on the 
temporal scale of the observed phenomena instead of the technical sampling value.

In the case of remote-sensing, with the explosion in the number of satellite 
missions (Sentinel, Spot, Pleiades and PleiadesNeo, PlanetScope, etc.), it is now 
possible to collect information describing a single study area at a lower cost in 
different spectral ranges (optical and radar) and at different spatiotemporal scales. 
This massive volume of multisource information requires new data management 
and analysis tools to be developed (Schmitt and Zhu, 2016). Typically, in a classical 
multisource fusion process for Earth observation data, sources are exploited 
through an early fusion process. For example, in the case of imagery at different 
spatial scales, a resampling stage is incorporated to bring all the images to the 
same spatial scale beforehand. Unfortunately, this type of process can introduce 
bias or error by generating new synthetic information. This is why late fusion 
approaches are now preferred wherever possible. Early examples in the context 
of land use mapping are starting to appear but we are still far from a generic 
solution that can be deployed systematically across different territories and 
adapted to different agricultural practices. 

At INRAE, the MISCA team of the TETIS UMR develop information management 
methods to meet the major societal challenges related to the environment, 
whether storing, managing, sharing or analysing large volumes of data. 
In particular, it contributes to soil mapping by applying Deep Learning 
techniques on very large datasets. 

At Inria, several project-teams (GEOSTAT, TITANE, FLUMINANCE (Inria, INRAE, 
Université de Rennes 1), etc.) and the exploratory action AYANA are working 
on the analysis of satellite images.  
 

In addition to purely satellite-based multisource information, other types of 
information are now combined with Earth observation data. For example, “spon-
taneous” geolocation information or information from citizen science (Ienco et 
al., 2019) have much to offer to improve calibration and complement the purely 
physical information from satellite sensors. 

For example…
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 Supervised approaches 

Supervised analysis consists mainly of two tasks: supervised classification and 
prediction of future values. Supervised classification consists in assigning, for a 
given time series and set of predetermined classes (e.g. “sick animal” and “healthy 
animal”), one of these classes to the time series. In practical terms, this can help 
determine the condition of an animal or plant from sensor data and information 
on the different conditions possible. Supervised classification methods need to 
be “trained”; to do this, they must be provided with a large number of correctly 
labelled examples indicating their class. Using these examples, the classification 
algorithm builds one (or more) model(s), to assign a class to an unlabelled time 
series according to its characteristics. The main differences between the major 
families of supervised classification approaches lie in the way the models are 
built. The simplest approaches, known as k-Nearest Neighbor (kNN), do not build  
a model but search for the k examples of the training set closest to the individual 
to be labelled, and return the majority label. The difficulty lies in choosing a 
suitable similarity method (Karlsson et al., 2016).

Finally, the very popular deep neural network methods can also be used to 
classify such data. The most successful method of this type is currently MLSTM-
FCN (Karim et al., 2019), which combines a convolutional CNN (Convolutional 
Neural Network) block with a LSTM (Long Short Term Memory) block. The CNN 
block, widely used in image analysis, serves as a filter that traverses the time series 
or spectrum and extracts characteristic attributes at time t. It is combined with 
the LSTM block, which is widely used in the analysis of sequential data (especially 
text), and allows connections between past and present values to be made. This 
type of approach can produce excellent results (Kamilaris and Prenafeta-Boldú, 
2018). However, it requires an even greater volume of labelled training data (which 
can be difficult to acquire in some agronomic contexts), and its parameters can 
be tricky to define (Zhu et al., 2017).. 

At Inria, the STATIFY project-team (Inria, CNRS, Institut Polytechnique de 
Grenoble) focuses on the statistical modelling of systems involving complex-
structure data. The team develops statistical methods for capturing the 
variability of the systems studied while ensuring a good level of precision and 
taking into account extreme values that generally reflect rare phenomena. 
In particular, they model weather events for agroecology.  

For example…
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An example of the use of supervised classification methods in agriculture can 
be found in Fauvel et al. (2019), in which the authors work with precision breeding 
sensor data from dairy cows. The cows are equipped with thermometers and collars 
with an accelerometer. The time series of temperature and physical activity are 
analysed to allow more accurate oestrus detection than with existing methods 
or visual observation, even in the frequent cases where cows do not express any 
particular behaviour in the pre-oestrus phase (30%).  

 Unsupervised approaches 

Unsupervised approaches are used to reveal certain structures in data, whether 
groupings with clustering or recurring patterns with pattern mining.  

Clustering – The aim of the clustering (or unsupervised classification) learning 
method is to identify relevant classes in the data. Data is grouped by similarity 
or proximity within each class. To achieve a good classification, it is necessary to 
minimise the intra-class inertia (to obtain homogeneous classes) and maximise 
the inter-class inertia (to obtain well differentiated classes). Two main families of 
methods are commonly used: i) hierarchical ascending classification (HAC), which 
seeks to group individuals iteratively, starting at the bottom (the two closest) and 
gradually building a tree, or dendrogram, to finally group all the individuals into 
a single class, at the root; ii) classification by dynamic reallocation (the k-means 
algorithm is a well-known example of this). The number k of classes is fixed a 
priori. After initialising k class centres, all individuals are assigned to the class 
whose centre is closest in the sense of the chosen distance. The algorithm then 
calculates the barycenters of these classes which become the new centres. The 
process (assignment of each individual to a centre, determination of the centres) 
is iterated until convergence to a fixed (local) minimum or maximum number 
of iterations. 

The main issues to overcome when clustering multivariate data are identifying 
the “right” number of classes and defining a distance that is adapted to the data, 
sometimes implying the need to reduce the dimension. One common technique 
involves performing principal component analysis on the data and then apply 
clustering on the coordinates of the data in the eigenbasis, with all the difficul-
ties of choosing dimensions that this entails. Clustering by combining Dirichlet 
processes (Coquet et al., 2002) offers a way to get around these difficulties.

3_Foundations and state of play
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Patterns mining – Patterns correspond to implied regularities/irregularities 
or specificities of the data or subparts of the data. In agronomic applications, an 
individual can be described through a sequence of characteristics or events. For 
example, a plot can be described by a sequence of cultivation operations, a plant 
can be described by a DNA sequence, etc. one of the major challenges with this 
type of data is the extraction of frequent or rare subsequences.  

At INRAE, the TETIS UMR focuses on extracting frequent/rare subsequences 
in this type of data and frequent patterns in the form of items and sequences 
(sequences of events ordered in time) in order to characterise the difference in 
vegetation growth between different spatial areas. Their work is particularly 
relevant for wetland area estimation and biodiversity monitoring.  

Other approaches aim to highlight sub-parts of the data with very different 
characteristics to the rest of the data (distribution differences for certain 
attributes, etc.). For example, in Millot et al. (2020), the authors use the notion 
of discriminating patterns to characterise, from simulation data, sub-families of 
crop protocols in urban farms where part of the attributes (temperature, light, CO2, 
etc.) show an interesting distribution with respect to a given measure of interest. 

Unfortunately, these methods are often faced with a number of patterns that 
prove to be too large to be easily used by experts. A promising and currently much 
studied avenue is the selection of the most relevant pattern subset. Patterns can 
be extracted from time series after a pre-processing phase in which the sequence 
of numerical values is transformed into a sequence of symbolic values, allowing 
classical pattern discovery methods to then be applied. When the numerical 
data is kept, methods for extracting representative subsets, called “shapelets”, 
can be used..

INRAE units such as the PEGASE UMR, UMRH, the Toxalim UMR and the 
GenPhyse UMR use these different learning approaches for precision feeding, 
early detection of anomalies in the activity of dairy cows in a herd, detection 
of pathologies in piglets or analysis of sow behaviour respectively.  

For example…
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 Reinforcement learning 

Like many types of data, agricultural data is often uncertain (see 3.1). 
Reinforcement Learning (RL) is concerned with learning to operate in an uncertain 
environment. One example of a modern use of RL for crop management planning 
is Déciblé (Chatelin et al., 2005), originating from Garcia (1999) and based on 
interaction using a decision rule model for wheat cultivation. This empirical crop 
simulator is used to evaluate policies expressed as sets of decision rules. In Ndiaye 
(1999), model-free methods – namely Q-learning and R-learning – are mixed 
with genetic algorithms, decision trees and fuzzy logic to find optimal decision 
rules for crop management coupled with Déciblé. The result was considered to 
be not as good as the decisions that an expert would expect to see. These early 
approaches were interesting in that they introduced modern RL techniques for 
crop management while considering a range of actions. They also expressed an 
optimised policy in a natural way, i.e. in the form of a set of simple decision rules 
corresponding to farmers’ reasoning. However, the solutions in Garcia (1999) and 
Ndiaye (1999) are limited in that learning is offline, using an empirical decision 
model simulator with its own biases and field of validity. Because learning is not 
in real time, the systems do not use farmers’ feedback to improve the policy 
learned from the simulator.

These methods were later applied in a more complex context, incorporating an 
economic model for oilseed rape management and a pest and disease component 
in crop modelling (Trépos et al., 2014). RL methods have been successfully applied 
in irrigation planning when water availability is limited (Bergez et al., 2001). 
Nevertheless, each management decision must take into account the whole 
sequence of choices. Different crop varieties have different water requirements, 
so there will be different irrigation costs. Bu and Wang (2019), proposed a general 
computer architecture for intelligent decision making in agriculture based on 
deep Q-Learning. In practice, deep Q-Learning requires billions of instances of 
trial and error. Furthermore, no proposal has been made to integrate specialist 
knowledge (e.g. knowledge of plant physiology) into this system; approaches 
using expert knowledge could therefore be considered (model-based learning), 
allowing the amount of examples needed for training to be reduced by several 
orders of magnitude.

3_Foundations and state of play
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The SCOOL project-team (Inria, CNRS, Université de Lille) specialises in 
reinforcement learning and is studying the recommendation of practices 
in agriculture for very small farms, especially in developing countries, 
and in gardening. The research is carried out with a focus on sustainable 
development.

Different machine learning and data science methods are implemented in 
the scikit-learn library, which was principally developed at Inria and is one 
of the three most downloaded artificial intelligence libraries in the world.

The INRAE MIAT unit is also working on the development of methods based 
on Markov decision processes and reinforcement learning applied to the 
management of agroecological systems, with particular focus on issues 
related to the spatial dimension of problems.

 Data warehouses and OLAP analysis  

Data warehouses (DWs) were designed to handle very large volumes of data from 
heterogeneous sources (Chandra and Gupta, 2018). Multidimensional modelling 
(where data is characterised across multiple axes of analysis) and hierarchical 
modelling (where an axis of analysis can be associated with different levels of 
granularity) form the basis of DWs and multidimensional analysis. For example, 
the analysis of the amount of pesticides or nitrogen used by farmers can be cha-
racterised according to several dimensions (or axes of analysis): temporal, spatial 
and at crop level (Bouadi et al., 2017). This allows quantities to be represented by 
crop type, season and plot. These dimensions can be expressed in different levels of 
detail. For example, spatial information can be defined at the scale of a single plot 
or at a larger scale such as the watershed, region, etc., since each plot belongs to a 
watershed, which in turn belongs to a region, which in turn belongs to a country. 

Multidimensional analysis uses OLAP (On-Line Analytical Processing) to 
aggregate, visualise and interactively explore data. If we take the previous example, 
we could analyse the quantity of pesticides or nitrogen at plot level or at a more 
aggregated level of spatial dimension such as the watershed. OLAP processing is 
used to navigate between different granularities of one or more dimensions in a 
very efficient way (i .e. navigation is instantaneous). 

For example…
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Users can use the data warehouse by combining the different dimensions 
and different levels of granularity of the corresponding hierarchies. To select 
the appropriate data at the right scale, users express and submit queries to the 
data warehouse. 

Other works (Palpanas, 2000) describe the coupling of multidimensional 
analysis with data mining methods (e.g. pattern mining), with the aim of proposing 
hybrid methods that combine the exploratory and analytical capacities of OLAP 
with the descriptive capacities of data mining. For example, the ADSS-OLAP tool 
(Abdullah and Hussain, 2006) combines OLAP and data mining (clustering) and 
was developed to analyse the impact of mealy bug on cotton crops. To further 
enhance OLAP analysis and allow geographic data mining, the idea emerged to 
couple OLAP and GIS (Geographic Information System) technologies. Thus, the new 
concept of Spatial-OLAP (SOLAP) (Bédard et al., 2007) was introduced to jointly 
exploit OLAP tools (decision, graphs, etc.) and geographic tools (cartographic 
representation, geographic aggregators, etc.).  

At Inria, the LACODAM project-team (Inria, Institut national des sciences 
appliquées de Rennes, Institut national supérieur des sciences agronomiques, 
agroalimentaires, horticoles et du paysage, Université de Rennes 1) has 
modelled and built a data warehouse to analyse/explore, in space and time, 
the effects of agricultural practices on nitrogen emissions to water and 
the air (Bouadi et al., 2017). The team is also studying the use of machine 
learning to improve animal welfare (dairy cow health and sow feeding).

At INRAE, the TSCF unit focuses on spatial OLAP. Among other things, it 
contributes to storing and analysing biodiversity data online, in particular 
through the VGI4BIO project (www.vgi4bio.fr) which proposes methods for 
analysing biodiversity indicators in an agricultural context centred around 
data and VGI users. 

For example…
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Optidose® a tool to adapt the dose according to the parameters of the crop and the epidemic risk. 
© Le Mas Numérique.

     �Knowledge management and engineering 
for decision support in agriculture 

The previous sections provided an overview of the state of the art in data 
collection, management and processing; we also saw how modelling makes it pos-
sible to manage and represent knowledge in a mathematical way using measure-
ments and observations to help with interpretation and recommendation. Another 
important facet of digital agriculture is knowledge management, i.e. higher-level 
information including both general scientific knowledge (e.g. plant or animal 
physiological processes) and methods specific to certain actors in the agricultural  
sector (e.g. a livestock farmer’s herd management, methodology for making 
certain cheeses, etc.). In recent years, significant effort has been made to formalise 
this knowledge and organise it in ontologies that provide a structured access. 
Ontologies are a component of computer systems that help users accomplish a 
task. This assistance can take many forms, from automating an irrigation decision 
to finding information to help make a decision. Knowledge can also be generated 
by the analyses presented above. In this case, the difficulty lies in presenting these 
analyses to human actors in the most intelligible way. Again, recent developments 
in data analysis are of particular interest to agriculture, whether via visualisation 
approaches or methods for interpreting learning models. Lastly, the aim of 
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everything presented in this section is to enable human actors to make better 
decisions. Specific tools known as DSS (Decision Support Systems) that use all or 
some of the techniques presented in this chapter are available to these actors and 
are constantly evolving. This section will conclude with an overview of these tools.  

The BIOEPAR UMR contributed to the development of EMULSION, an open 
source program and DSS based on artificial intelligence. EMULSION allows 
modellers to develop stochastic mechanistic models of complex systems in 
epidemiology at different scales and using different paradigms, while reducing 
the amount of computer code that has to be written (Picault et al., 2019). 
Based on this, the ATOM (Automation of decision support Tools based On 
epidemiological Models) project aims to develop a process for industrialising 
the DSS generation using mechanistic epidemiological models (https://
www6.angers-nantes.inrae.fr/bioepar/Recherche/Projets-en-cours/ATOM).

 Knowledge-based systems in agriculture 

From the first expert systems to knowledge-based systems – The first expert 
systems emerged in the 1970s as a result of research in artificial intelligence. These 
systems were dedicated to resolving a specific problem by using the knowledge 
of one or more experts and mimicking their reasoning, with the ultimate aim of 
replacing them. In one approach, called the symbolic approach, expert knowledge is 
formalised using a knowledge representation language based on logical reasoning. 
This is in contrast to the connectionist approach, which mimics the functioning 
of the human brain using neural networks.  

One particularity of the agricultural sector is that the inherent problems in 
crop or herd management require expert knowledge in several fields (soil science, 
meteorology, chemistry, biology, etc.). To meet this demand for multidisciplinary 
expertise, some expert systems incorporate simulation models as components, 
such as those described in Section 3.2. Such an example is the expert system 
“CrOp MAnagement EXpert” (COMAX), dedicated to cotton cultivation, which aims 
to maximise yields while minimising inputs (McKinion and Lemmon, 1985) and 
encapsulates a simulation model of cotton development (GOSSYM). Because the 
acquisition of expert knowledge is crucial for the development of expert systems, 
knowledge engineering has focused on methods for acquiring such knowledge. 
These methods have been used to guide cognitive scientists through the complex 
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tasks of identifying, extracting and formalising expert knowledge from a variety 
of sources (expert interviews or other documents describing the task of solving 
the problem).  

Very popular in the 1980s, expert systems have also been severely criticised 
for not being adaptable to applications other than the one they were designed 
for and for offering poor potential for development. In the 1990s, expert systems 
gradually evolved into knowledge-based systems. The notion of ontology then 
appeared in computer science. Ontologies are designed to formalise consensual 
and relatively stable knowledge in a given domain to allow it to be reused in other 
knowledge-based systems. 

A knowledge-based system is composed of two distinct parts: firstly, a 
knowledge base including an ontology that structures the knowledge from 
the domain, with a fact base that instantiates the ontology to describe specific 
situations and sometimes a rule base that enriches the ontology; secondly, a 
reasoning engine associated with the knowledge representation language but 
independent of any particular knowledge base.  

Evolution of knowledge acquisition and capitalisation methods – The shift toward 
knowledge-based systems was accompanied by a change in the conception of the 
relationship between humans and machines. Knowledge-based systems and their 
associated intelligent computer system aim to cooperate with the user to help 
them perform a task requiring different types of knowledge by supplementing 
the user’s knowledge, revealing the consequences of their choices and proposing 
alternative options to those they would have imagined. Knowledge engineering 
then evolved into a form of knowledge modelling mediation, producing “knowledge 
models” – a model here taking on a different and more global meaning than in 
Section 3.2 since it no longer represents phenomena but knowledge. These models 
allow the cognitive scientist, in charge of implementation in a computer system, 
to dialogue with experts to enrich and validate the knowledge to be represented. 
To help this mediation, several methods have been developed, the best known 
being “Knowledge Acquisition and Documentation Structuring” (KADS, from which 
commonKADS was later developed). For example, a system for recommending 
irrigation dates for mango trees was developed using the commonKADS method 
(Nada et al., 2014). 
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The GRAPHIK project-team (Inria, INRAE, CNRS and Université de Montpellier) 
studies knowledge representation. Among other things, the team is working on 
a method for collecting, modelling and formalising knowledge to improve the 
quality of local cheeses. Data collection is carried out through questionnaires; 
modelling is done by creating mind maps to facilitate validation by experts 
and formalisation is carried out using conceptual graph language.

Knowledge models were deployed in other computer systems such as 
information (source) search systems. This development led to the creation of 
“organisational memories”. An organisational memory is the set of human and 
material resources – knowledge carriers – which allow an organisation to carry 
out its tasks. A memory can be composed of a set of text documents, videos, lists 
of employee skills and one or more knowledge models. The formalisation of these 
models allows them to be used automatically to help the circulation of resources 
and knowledge among the members of the organisation. This formalisation often 
takes the form of a thesaurus: a structured list of standardised terms organised 
into three types of relationship (equivalence, hierarchy, association), with the aim 
of indexing and helping to search for different content.  

The FAO (Food and Agriculture Organisation of the United Nations) has been 
instrumental in producing organisational memories in the agricultural field 
(O’Leary, 2008). Its bibliographic database AGRIS offers different types of 
resources (scientific documents, data sets, etc.) in several languages. These 
resources are indexed using the AGROVOC thesaurus, which is now one of 
the most important tools in the agricultural field (Sini et al., 2008). This 
thesaurus encompasses many aspects of the agricultural domain and can be 
adapted to the needs of a new organisation. An example of an organisational 
memory is the Agropedia project, led by a number of Indian agricultural 
institutes in collaboration with the FAO (Pappu et al., 2010) to transform 
scientific knowledge from universities into practical knowledge of use to 
farmers. Agropedia uses Topic Map knowledge models, which aggregate all 
the knowledge needed for a given crop.  

For example…
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Semantic access to information sources – The birth of the Semantic Web in 
the early 2000s had a strong impact on the field of knowledge representation. 
Semantic Web technology is a set of standardised languages, protocols and tools 
under the aegis of the W3C to enable the automated exploitation of Web resources 
according to their content. Web resources (such as HTML documents or, more 
broadly, any data available on the Web) are annotated with metadata describing 
their content in a formal language, constituting a fact base that can be enriched 
with a thesaurus or ontology that specifies its semantics.   

The main formal languages of the Semantic Web are:
	• �Resource Description Framework (RDF): the language for describing 
Web resources in the form of a graph made up of triples (subject, 
predicate, object); 

	• �RDF Schema (RDFS): an extension of RDF that allows a vocabulary to 
be defined in terms of classes and properties (or binary predicates) 
organised by specialisation;

	• �SPARQL Protocol and RDF Query Language (SPARQL): the RDF(S) 
description query language; 

	• �Ontology Web Language (OWL): the most commonly used language 
for describing Semantic Web ontologies;

	• �Semantic Web Rule Language (SWRL): a rule language that can be used 
to enrich OWL descriptions;

	• �Simple Knowledge Organization System (SKOS): RDFS specification 
for formalising terminologies, thesauri, classifications and other 
vocabularies used in information retrieval systems.

Web ontologies are modular and focus on a specific need to facilitate their 
reuse and combined use. By making them available on the web, the interoperability 
between knowledge-based systems can be improved. Of particular interest is the 
RDA Agrisemantics working group initiative which has been exploring the use of 
this technology and associated resources to improve the exchange and sharing of 
agricultural data (Aubin et al., 2017). This technology has allowed organisational 
memories to be transferred to the Web. 

Definition
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INRAE is also developing organisational memories on the impact of climate 
change on agricultural practices and agroecology. An archive of French 
agricultural information bulletins, the Plant Health Bulletins (BSV), was 
compiled during the VESPAproject, which studied epidemiosurveillance 
networks (Roussey et al., 2017). 

The GECO collaborative web portal (https://geco.ecophytopic.fr/) was 
developed to improve knowledge sharing around integrated crop protection 
and agroecology. This portal manages a set of explanatory text sheets to 
propose means of controlling pests (Soulignac et al., 2017). GECO allows 
users to perform searches regardless of their level of expertise.  

Web ontologies and SKOS thesauri have become reusable resources. Specific 
portals have been developed for searching for all these resources..

At INRAE, the computer science department of the MISTEA UMR has, among 
other things, developed the AgroPortal (http://agroportal.lirmm.fr/) which 
lists ontologies and thesauri related to agronomy and agriculture and makes 
them openly available. AgroPortal also provides services to help annotate 
text documents and detect links between concepts in two ontologies 
(ontology alignment). It also contributes to advances in high-throughput 
plant phenotyping.  

Semantic integration of structured data – Linked Data refers to a network 
of linked sets of resources. It was developed in the 2010s and marked a new 
stage in data sharing using Semantic Web technology by considering a network 
of interconnected sets of resources. This network is based on the use of shared 
vocabularies (thesauri, ontologies, etc.), used to describe the data. This development 
goes hand in hand with the generalisation of the concept of data and encompasses 
all data, including structured data from different databases. 

For example…
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. 

Examples of structured data include: 
Weather data from an INRAE station is available as Linked Data (http://
meteo.clermont.cemagref.fr/). A central Semantic Sensor Network (SSN) 
ontology provides a design pattern for describing the measurements. 

The European project SmartOpenData (http://www.smartopendata.
eu/) proposed an infrastructure (and a SmartOpenData (SMOD) schema) 
for managing Open and Linked Data in the field of biodiversity and the 
environment (e.g. in agroforestry data management). 

The Agronomic Linked Data project (AgroLD – http://www.agrold.org) 
integrates 50 databases into a single RDF database. Its objective is to jointly 
question and link different points of view on cultivated plants (genomic, 
proteomic and phenomenic) formalised by at least one of the ten Web 
ontologies used (Gene Ontology, Plant Trait Ontology, etc.).

Hybrid architectures such as OpenSilex (http://www.opensilex.org/) that 
incorporate ontologies, an inference engine and different formats of databases 
(relational, NoSQL, RDF) are used to develop multiple information systems for 
high-throughput phenotyping. In this architecture, a scientific object (plant, 
pot, field, etc.) is identified by a web identifier (URI) and typed by an element of 
one of the associated ontologies. The RDF database stores the static descriptive 
metadata while the NoSQL database stores the raw data streams: drone photos, 
time series from field sensors, etc. 

For example…
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The GnpIS information system stores all the structured data from experiments 
carried out on plant phenotyping (Pommier et al., 2019). The ontologies 
proposed by the Crop Ontology network (https://www.cropontology.org/) 
are used as dictionaries for all observable traits in the experiments. 
For animals, the descriptions of animal experiments carried out in 
different research centres can be made compatible using a web ontology 
network developed at INRAE. The network currently consists of three web 
ontologies (Salaun et al., 2018): Animal Trait Ontology for Livestock (ATOL, 
on phenotypic traits in livestock), Environment Ontology for Livestock 
(EOL, on environmental parameters in livestock farming), and AHOL (for 
livestock animal health).

Emerging architectures – Beyond the Web of Data, the problem of the intelligent 
exploitation of increasingly large and heterogeneous data has led to very active 
research combining knowledge representation, data management, the Semantic 
Web, data mining and learning, etc. It is in this context that a new architecture 
has been proposed called Ontology-Based Data Access (OBDA) (Xiao et al., 2018), 
which combines a specific approach to data integration, called mediation, with 
the concept of the knowledge-based system. OBDA systems are structured in 
three levels: the conceptual level, organised around an ontology (described for 
example in RDFS or OWL); the data level, composed of various pre-existing and 
independent databases; and the mapping level, which translates the data relevant 
to the target application into a fact base using the ontology vocabulary. Queries 
to the system (e.g. in SPARQL) use this vocabulary, with the user expressing 
himself at a conceptual level with no knowledge of the data storage system (for 
example, a query such as ““what auxiliaries can control pest X and what are the 
associated techniques that would limit competition with the main crop?” would 
be completely dissociated from the underlying database schemas).

. 

At INRAE, the Ecology of Mediterranean Forests URFM unit of the ECODIV 
department conducts multidisciplinary research in ecology. In particular, it 
implements mature OBDA systems such as Ontop (https://ontop-vkg.org/) 
and MASTRO (https://www.obdasystems.com/mastro) for the sustainable 
management of Mediterranean forest ecosystems.

For example…
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In the context of the Internet of Things, some of these systems also use 
Semantic Web technologies (OWL ontology, SWRL rules, RDF annotation base). 

Standardisation bodies such as W3C and ETSI are currently working on the 
validation of new standards and ontologies to combine the Internet of Things and 
the Semantic Web: these are the SAREF ontology by ETSI and the Web of Things 
(WoT) ontology by W3C. These ontologies have not yet reached a sufficient level 
of maturity to be used in real-life applications..

At INRAE, the TSCF unit has proposed a translation of the IRRINOV manual 
irrigation method into SWRL rules and a web ontology network to represent 
knowledge for automating irrigation.  

Questions remain about the compatibility of ontologies built on different 
principles: different uses, different authors, different foundational ontologies 
etc. Some web ontologies propose data schemas corresponding to reusable 
patterns (design patterns) centred on a specific need. Other ontologies offer 
reference classifications to qualify data. Data managers must therefore build 
a network of ontologies to structure their data, checking that these ontologies 
remain compatible with each other. Are they based on the same patterns? Do 
they allow correct inferences to be made? Lastly, current research topics focus 
on questions concerning the distribution of reasoning over all the components 
of an “Internet of Things”-type system.  

 Knowledge restitution, visualisation and human-machine  
 interaction in agriculture 

Data-driven knowledge production methods (section 3.3) have produced results 
that are not only increasingly accurate and reliable but also increasingly difficult 
to understand, to the extent that most of these approaches are now described 
as “black boxes”, of which the user is unable to understand the determinants of 
the result produced (e.g. a decision on the technical process). One solution to this 
problem consists in using local interpretability approaches such as LIME (Ribeiro 
et al., 2016) or SHAP (Lundberg and Lee, 2017). Instead of aiming to explain 
the learned model as a whole, which is too complex, these approaches explain 
the reasons that led the model to produce such a decision in the specific case 
provided by the user, such as the attributes that contributed most (positively or 

For example…
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negatively) to the decision. For example, SHAP, used in oestrus detection as seen 
above (Fauvel et al., 2019), provides explanations of the type: “an oestrus was 
predicted today based on temperature changes over the last three days and a 
significant rest period three days ago.”

In parallel to the issue of interpretability, the visual representation of data and 
information is essential for any computer system designed with user interaction 
in mind. “Visualising” consists in producing visual elements (graphs, curves, 
maps, images) to help users understand, explore and analyse to make sense of 
data, models and information, sometimes present in large quantities and often 
complex (Kubicek et al., 2013). Smooth and efficient human-machine interfaces 
and visualisations are often essential to the success of digital systems intended 
for the general public. The field of agriculture is no exception to the rule.

There is a high demand for visualisation in this sector due to a combination of 
several factors: significant growth in the masses of data collected, the existence of 
users who are not computer scientists but are often technophiles, and the need 
for visibility on private and public data at different spatial and temporal scales. 
Visualisation is sometimes even seen as a strategic matter, because mastering 
these techniques can offer a competitive advantage or afford a certain power to 
some actors in the agrifood chain. Private players (equipment manufacturers) 
are heavily involved in the field, but there are also initiatives by universities and 
institutes, including INRAE and Inria, available under free (e.g. AQUAPONY,35 
GeoVisage,36 PARCHEMIN)37 or participatory licenses (I-EKbase)38 (Wachowiak 
et al., 2017). 

At INRAE, the Ecology and Evolution of Zoonoses group of the CBGP UMR 
analyses the viral diversity of hantaviruses and the evolutionary processes that 
shape it. Among other things, they piloted the development of AQUAPONY, a 
web-based viewer that allows interactive navigation through a phylogenetic 
tree and facilitates the objective interpretation of evolutionary scenarios. 

35. http://www.atgc-montpellier.fr/aquapony/
36. http://geovisage.nipissingu.ca/
37. http://www.parchemins.bzh/index.php/outil-de-visualisation-donnees-lagriculture-littorale-bretagne/
38. http://iekbase.com/hot-spots-monitoring

For example…
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The tools currently deployed for the agricultural world are based on traditional 
visualisation paradigms: cartography (GIS, or Geographical Information Systems), 
sensor data visualisation interfaces, collections of linked visualisations (multi-
faceted) and reactive tools (dynamic queries). Semantic interfaces and related 
visualisation strategies (linking views) are major topics of interest, as well as 3D 
visualisation, which provides a view of the topology of geographical areas (down 
to field profiles), and the use of image synthesis or even augmented reality.

At INRAE, the SAS UMR supports the agroecological transition of livestock 
systems and territories. In particular, it participated in the PARCHEMINS 
project on the visualisation of coastal agricultural data in Brittany, completed 
in March 2021. This project developed a map viewer, a web-based map 
consultation tool that allows the user to interact with geographical data. 
Designed for users who are not geomatics experts or computer scientists, 
it allows spatial information to be represented and analysed in an intuitive 
and easy-to-use way.

The interactivity and speed of response of visualisation tools are key in 
agriculture (and elsewhere!) as these visualisations must be adapted to lightweight 
devices (smartphones, tablets) or on-board terminals (connected tractors). The 
fluidity of data visualisation is closely linked with technical solutions, data exchange 
protocols and system architecture. Adaptive visualisation, which is currently a 
major research topic, makes it possible to adapt the visualisation to the context, 
such as the user’s profession, the visualisation terminals or the nature of the 
data available.

The issue of visualisation and knowledge sharing is not widely addressed in 
practice and thus remains more in the field of research than application for the 
time being. In agriculture, however, human expertise traditionally plays a very 
important role, creating a particularly favourable context for the development of 
interactive techniques: it is indeed tempting to combine human expert capacities 
with learning, optimisation or modelling algorithms (Boukhelifa et al., 2018). 
Depending on the strategy and the system, Human-Computer Interaction (HCI) 
can be either explicit (the user is regularly asked questions via an interface or 
visualisation system) or implicit (unbeknownst to the user or non-verbal, with 
the machine capturing information and using it as a learning base). Current 
research in visualization and HCI focuses primarily on questions concerning the 
interpretability, explicability, causality and transparency of interactions.

For example…
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The HCI/visualisation tandem is also a factor in frameworks in which human 
expertise is required to manage data uncertainty and decision-making on multi-
criteria issues: qualitative approaches are complementary to automatic/statistical 
approaches (e.g. choice of criteria) for managing ambiguities, knowledge gaps or 
extrapolations to different crop types. Examples include uses in agroecological 
zoning – based on clustering and segmentation techniques – or the Crop-GIS web 
application combining modelling and visualisation for maize crop management.39  
However, interactive systems can be difficult to evaluate because while the  
algorithm learns and adapts to the human, the reverse is also true: the user learns 
to use a system. Understanding these subtle mechanisms of co-adaptation and 
co-evolution requires the use of experimental science approaches (test plans, 
reliability of results, biases) and testing on cohorts of volunteers. 

In conclusion, the topics of visualization and HCI applied to agriculture are 
relatively rarely addressed in both agronomic and visualization scientific literature. 
And yet, the issue is a key factor in the adoption of technology because farmers 
prefer tools that are less accurate but easy to use to high-performance ones that 
are difficult to use (Pierpaoli et al., 2013).

 Decision Support Systems (DSS) 

In the 1980s, computer programs and electronics began to be used to improve 
efficiency in agriculture and reasoning in agricultural activities. This saw the 
emergence of the first digital DSS (Decision Support Systems). This revolutionary 
development has been fairly well received both by farmers (79% of farmers who 
use new technologies recognise their usefulness, source: Rapport agriculture et 
innovation 2025)40 and in society where there is a demand for digital innovations 
for the protection of the environment (47% of those questioned, OpinionWay 
survey, 2016). Digital DSS are based on “simple” computer programming combined 
with a relatively small body of reference data, and can be installed on personal 
computers or used in a web interface that allows access to the application. They are 
most often developed by research or technical institutes. This generation of DSS 
includes software such as INRAtion41 and InraPorc.42 These programs, designed by 
INRA, are French benchmark tool in terms of assistance for defining feed rations 
for ruminants and pigs. Many software programs have also been developed in the 
plant sector to help farmers plan and manage crop fertilisation, pest control or 
irrigation. Today, with the upsurge in digital technology, a new generation of DSS  
 
39. https://www.cropgis.com/
40. https://agriculture.gouv.fr/sites/minagri/files/rapport-agriculture-innovation2025.pdf
41. https://www.inration-ruminal.fr/
42. https://inraporc.inra.fr/inraporc/
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has emerged that uses contemporary digital technology such as remote sensing, 
GPS, the Internet of Things, artificial intelligence, etc. These DSS are designed 
and produced by the AgriTech sector, which involves major agribusinesses and 
numerous start-ups (Padhy and Satapathy, 2020).  

Agritech is a generic term for agricultural technology. It includes four main 
areas: 1/ biocontrol, 2/ agricultural big data , 3/ robotics and 4/ plant genetics 
and biotechnology. These four elements are often closely linked and many 
agricultural technologies are derived from them.

The integration of new technologies into DSS allows the range of services offered 
by these tools to be expanded as farmers seek to make the most appropriate farm 
management decisions (Spanaki et al, 2021). Precise knowledge of the state of 
agricultural plots or herds is essential for the farmer, who can now use data (images, 
biophysical measurements, etc.) from connected sensors to obtain more information 
than can be perceived by the naked eye. After various digital processes, the farmer 
can access this information via a dedicated application online or on a smartphone. 
In the livestock sector, these new digital tools are readily adopted by farmers if 
they promise technical and economic gains and can reduce the arduousness of 
work. First of all, there are DSS based on sensors worn by the animals (externally 
or internally), which provide real-time measurements of the physiological charac-
teristics of the animal and its activity (temperature, abdominal pressure sensors, 
movement, etc.). In dairy farming, the farmer can use these tools to monitor the  
animal’s reproductive cycle and reliably detect heat or parturition or health problems, 
even before any external signs can be detected by a professional. We are also seeing 
the emergence of DSS prototypes based on image recognition (from cameras 
installed on the farm) using artificial intelligence methods (deep learning). These 
allow animals’ behaviour and health to be monitored and can even go so far as facial 
recognition. If an anomaly is detected in a group or animal, an alert can be sent 
to the farmer’s smartphone. Despite the number of initiatives underway, certain 
issues, which are crucial for making a DSS used and usable by professionals, are 
still the subject of research carried out in collaboration with the latter. In particular, 
these concern precision, pertinence (a DSS that provides too many false alerts, for 
example, risks being rejected), the adequacy and form of the information made 
available to the farmer according to his expertise and needs, and the ergonomics 
of the tool, in connection with the notions seen in the visualisation and HCI section 
(Li et al., 2020). The way in which user knowledge is used is also the topic of ethical 
questions raised in connection with open innovation more generally.
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     Automation, control and robotics
As highlighted above, digital farming is far from being limited to data acqui-

sition and processing. The aim is to use this data in decision making and deter-
mine actions to be taken, both spatially and temporally, to optimise cultivation 
techniques capable of reconciling high levels of production, crop quality and 
environmental conservation. In this sense, precise and potentially frequent work 
will be required in order to meet such specifications, which is not always possible in 
terms of human resources and capacities. This is especially true since agricultural 
tasks are often tedious and sometimes dangerous. Exploiting the full potential 
of the principles of digital farming could therefore lead to task automation. 
Today, robotics technology is taking the developments already implemented 
in the context of automated tools or driver assistance systems for agricultural 
machinery even further. But, beyond the automation of certain tasks, advances 
in the field of robotics in the agricultural world must pave the way for a change 
in practices to accompany the ecological transition.

Farmstar is a DSS based on subcellular spatial images. It was developed by Airbus in collaboration 
with agricultural technical institutes. The complex processing chain combines the use of spatial 
images and other data sources such as climatic data, and uses computer simulation for agronomic 
models. The result can be accessed via APIs (Application Programming Interfaces) which are 
queried by the user application. The farmer can thus obtain useful information in the form of maps 
and “dashboard” indicators via an integrated web application that hides the complex computer 
architecture and data flows involved..

Figure 1: Farmstar, from high-resolution spatial imagery to advice maps.

3.5
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The VALSE project-team (Inria, Ecole Centrale de Lille, Université de Lille) 
studies problems arising from the analysis of distributed, uncertain and 
interconnected dynamic systems. Its aim is to design estimation and control 
algorithms for different fields. In particular, in the field of oyster farming, 
these algorithms have enabled the design of a biosensor based on the 
measurement and interpretation of bivalve mollusc behaviour, for the remote 
detection of coastal water pollution and the consequences of climate change.  

 Structured environments: allies of robots 

The rise of robotics has historically been rooted in industrial applications, 
especially automotive, for the automation of production lines (Bahrin et al., 2016). 
From this, it is possible to design infrastructures that allow robots to be referenced 
and operate in perfectly known and unchanged environments, as well as to control 
the conditions of interaction (lighting conditions, handling known objects, creation 
of specific zones). This greatly helps the design of robust perception and control 
algorithms based on robot operation models that require strong assumptions 
(rolling without slipping, object or scene recognition, accurate localisation, etc.). 
As a result, robotics applications in agriculture have primarily focused on the 
indoor environment, particularly for livestock production (Bergerman et al., 
2016). In this sense, the biggest market for robotics in agriculture is currently in 
the livestock sector, with feeding and milking robots. These are able to operate 
using a number of reference points and benefit from special arrangements to 
maintain high repeatability. They can thus perform demanding tasks (such as 
milking or feeding animals) and free up the farmer’s time. Such developments 
are increasingly common in agricultural practices, and today half of new French 
dairy farm facilities are equipped with milking robots (Tse et al., 2018).

In cropping, such infrastructures are more difficult to put in place, with the 
structure of crop production being inherently changeable and posing detection 
and referencing issues. Nevertheless, the automation of certain tasks, particularly 
driving farm machinery, has greatly benefited from the advent of GPS, especially 
centimetre-precision models which offer absolute referencing. Many devices 
aimed at automating machine operation under the supervision of a “driver” have 
thus emerged, sharing a certain number of research challenges with advances 
in driverless vehicles.

For example…
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However, the use of GPS sensors alone remains limited for the production of 
fully autonomous robots (i.e. without on-board human supervision) for several 
reasons. Firstly, the potential loss of satellite signals near buildings, in greenhouses 
or near tall vegetation, would require manual intervention Secondly, farming  
requires referencing and interaction with plants and not absolute references, even 
if planting is carried out using GPS referencing. Lastly, the absence of an on-board 
supervisor means that autonomous machines must be equipped with a means of 
perception to ensure their safety (avoiding obstacles, traversability management).

Study of a robotized electric tractor for agroecology. © INRAE.

Thus, several other strategies including vision (Stefas et al., 2019) and laser 
technology (Tourrette et al., 2017) are substituting or complementing absolute 
referencing to achieve autonomous navigation. This is already being used 
commercially in robots, mainly for mechanical weeding, mowing and surveillance. 
However, the task efficiency of these robots is currently limited and performance 
is closely correlated to detectability conditions.

Before envisaging more complex work (pruning, harvesting in the field) 
performed in a fully autonomous way, there are several scientific and techno-
logical obstacles that must be overcome in order to deal with the variability of 
the environments and the diversity and complexity of the tasks to be carried out 
while preventing any damage to the robot(s).

3_Foundations and state of play
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 From adaptation to reconfiguration 

Unlike mobile robotics in industrial environments or road traffic, mobile 
robots in natural environments require specific adaptive abilities to deal with the 
diversity of interaction conditions and their variability (Bergerman et al, 2016). 
This involves the online modification of perception and control parameters (such 
as modifying response times as a function of speed (Hill et al., 2020) or adapting 
detection thresholds to light conditions. Several adaptation and anticipation or 
robust control mechanisms have been proposed to deal with the variation in 
these environments and maintain a high level of accuracy, while protecting the 
robot from damage (Krid et al., 2017, Yandun et al., 2017). This last functionality 
is defined in a relatively binary way in structured environments: avoid collisions 
with geometric obstacles, do not operate in out-of-bounds areas, etc. In natural 
environments, the notion of “obstacle” is less well defined and solutions are more 
complex. Firstly, encountering an obstacle is not necessarily a failure, as robots 
do not have to be stopped when passing over vegetation or if they have to push 
aside a branch. Secondly, some areas can be traversed under certain conditions 
(speed or load limitation) and the crossing also depends on the ground conditions 
(especially adhesion) and the properties of the robot (Guastella, 2018). Lastly, 
operating in some areas may lead to a loss of control or physical stability of the 
robot (Wolf et al., 2019).

At INRAE, the TSCF UR designs reconfigurable and shared autonomy systems 
to enhance the performance and safety of machines operating in natural 
environments, particularly those found in agriculture. For example, the team 
designs adaptation mechanisms to deal with the diversity of interaction 
conditions and their variability.  

Several approaches allow this complexity to be taken into account through 
the concept of traversability (the set of conditions allowing a given area in front 
of the robot to be crossed). Nevertheless, work on this concept illustrates the 
difficulty of defining a single perception and control approach to allow a robot 
to perform complex agricultural tasks. Many studies currently focus on the 
real-time selection or fusion of typical behaviour (see the INRAE Adap2E project43), 
which addresses the problem of scene interpretation and behaviour evaluation.  
 

43. https://adap2e.inrae.fr/

For example…
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3_Foundations and state of play

In addition, many strategies in agricultural robotics are based on cooperation 
between less complex robots able to work together or in the same area. This 
reduces the risks in terms of the operation of each robot (limited kinetic energy 
in the case of impact) and their cost, but shifts the issue of complexity to the 
association and synchronisation of the group (Blender et al., 2016).   

Conclusion
In this chapter, we have browsed at the different areas of research addressing 

the use of digital technology in agriculture. They mainly concentrate on data at 
all levels of the data cycle, from capture to exploitation via collection, traceability, 
processing, storage, interpretation, restitution and use in automated or robotic 
systems. Different skills involving networking, modelling, learning, knowledge 
management, control and security are used to provide efficient, safe and secure 
solutions. The key aims are to assist farmers in difficult tasks, allow better 
management of our resources and promote exchanges and expert knowledge, 
all while respecting the environment as much as possible.  




