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Abstract9

In simulations, artificial boundaries need to be introduced to limit the size
of computational domains and thereby lower computational cost. At these
boundaries, flow variables need to be calculated in a way that will not in-
duce any perturbation of the interior solution, which poses a great challenge
in incompressible flows. In this paper, we demonstrate the potential of a new
traction open boundary condition to address the classical problems encoun-
tered in simulations with open boundary conditions: backflow instability,
wave reflections, and confinement caused by the proximity of the outlet. This
novel boundary treatment, based on a Lagrangian estimation of the traction
in the outlet section coupled to a stabilization term, is shown to provide
accuracy and stability for turbulent, single- or multi-phase flows, test cases.
Using a simulation of surface gravity waves, we show that if special care is
given to the computation of the estimated traction, it is possible to get a
fully non-reflective open boundary condition.

Keywords: Outflow, non-reflective boundary, backflow instability10

1. Introduction11

Due to the finite nature of numerical simulations, it is often necessary12

to truncate computational domains. This requires imposing artificial bound-13

aries along with the associated mathematical conditions that close the system14

of equations to be solved. The primary goal of such boundaries is to restrict15
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the computation to a given region of interest without perturbing the solution16

inside the domain, thereby limiting cost. In the case of outflow boundaries,17

the flow should be allowed to leave the computational domain in the most18

natural way possible without undergoing any perturbations that could prop-19

agate upstream and thus pollute the upstream solution. Moreover, complex20

dynamics may occur at the artificial boundary and the flow may contain re-21

gions of both outflow and backflow, i.e., regions of flow reversal where the22

outlet boundary acts as an inlet, potentially polluting the solution [1].23

The definition of an ideal open boundary condition (OBC) for incompress-24

ible fluid dynamic simulations is still an unresolved topic, as demonstrated by25

Sani and Gresho after the “Open boundary condition minisymposium” [2],26

or by other authors in recent reviews [1, 3]. However, one can describe the27

effect of a non-ideal OBC on a simulation result. In wave-like simulations,28

the phenomena of wave reflection can create unrealistic flows, instabilities29

and prevent the flow from reaching a statistical equilibrium over a long com-30

putational time [4]. In turbulent flows, the presence of backflow can cause31

the system to experience an uncontrolled growth in kinetic energy, which has32

for example been evidenced in biofluids simulations [5].33

More generally, the choice of OBC can severely influence the size of the34

computational domain due to the difficulty of finding a condition that does35

not durably affect the upstream flow, the most famous example being the36

impact of the outflow position on a cylinder drag and lift coefficients [6].37

Indeed, the incompressibility constraint and the unphysical nature of domain38

truncations may prevent finding a perfect OBC. However, in this paper,39

we endeavor to present a novel boundary treatment that reduces the error40

induced by outlet position on severely truncated domains and is stable to41

backflow, in addition to satisfying the incompressibility constraint.42

In the next section, the main types of outflow treatments are discussed.43

The new proposed strategy is then presented. In section 3, the numerical im-44

plementations of these boundary conditions are presented in the context of a45

fractional step method with pressure projection method. Section 4 is devoted46

to single phase test cases, consisting of the Kovasznay flow for measuring spa-47

tial convergence, a time-dependent manufactured solution test for measuring48

temporal convergence, and a flow past a square and a turbulent plane jet49

to explore the stability and accuracy of the method. Finally, multiphase50

test cases are considered in section 5, with the convection of a high density51

droplet, a turbulent swirling liquid jet, and the transport of surface gravity52

waves. All of the work presented hereafter is applied to outlet boundary con-53
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ditions where the flow is expected to be mostly leaving the computational54

domain, but it can be applied as well on lateral and inlet boundaries.55

2. Existing methods and present work56

Before giving a short review of existing methods we introduce here some57

useful notations. The computational domain will be refered to as Ω. This58

domain is bounded by real and artifical (open) boundaries. The firsts ones are59

denoted ∂Ωd and the laters ∂Ωo. ∂Ω will refer to both types of boundaries,60

i.e., ∂Ω = ∂Ωd ∪ ∂Ωo. The vector n is defined as the unit normal to those61

boundaries, always oriented toward the exterior of the domain.62

2.1. Existing methods63

Apart from classical Dirichlet and Neumann conditions, one of the most64

widely used boundary conditions is the convective boundary condition,65

∂φ

∂t
+ c

∂φ

∂n
= 0. (1)

This equation represents the transport of a quantity φ through a boundary66

of normal n with a phase speed c, where n is the coordinate in the n direc-67

tion. This condition, known as the Sommerfeld equation, or the radiation68

condition, is in fact an exact absorbing condition, i.e., specification of the69

incoming characteristic to zero, for a 1D wave equation with a constant wave70

speed [1]. The most famous choice of phase speed comes from the work of71

Orlanski [7]: c is computed locally based on known values of φ in the vicinity72

of the boundary. This solution has been shown to result in a phase velocity73

close to white noise [8]. Despite some improvements of Orlanski’s method74

[9], it seems that no satisfying method has emerged to obtain an accurate75

estimation of the phase velocity without a priori knowledge of it [1, 10].76

A general mathematical approach to obtain exact absorbing boundary77

conditions has been derived [11]. However, to our knowledge, no applications78

of this method to Navier-Stokes equations have been presented, the closest79

being recent progress on shallow-water equations [1]. It has been applied to80

a 2D wave equation whose coefficients are then identified using the Navier-81

Stokes equations [12]. It results in a condition similar to Eq. (1) with the82

phase velocity evaluated as the local speed and the presence of a viscous term83

on the right hand side. More generally, a whole family of OBCs relies on the84

method of characteristics [1].85
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On the other hand, another type of boundary condition can be directly86

derived from the Navier-Stokes equation in its weak form [13]: the traction87

boundary condition. It consists of applying a condition on the normal stress88

at the artificial boundary,89

σ · n = (−pI + µ(∇u +∇uT )) · n = t, (2)

where σ, p, µ and u are the stress tensor, the pressure, the dynamic viscosity,90

and the velocity, respectively. t is a traction vector that must be prescribed.91

No clear guidelines exist for the choice of this vector. The most widespread92

choice is t = 0, giving the well-known “traction-free” boundary condition93

[14, 15]. The traction t has also been computed locally and iteratively [13],94

based on previous runs on longer domains [2], or defined analytically with a95

Stokes solution [16].96

As stated previously, the presence of backflow at an outlet boundary could97

lead to an instability due to an uncontrolled growth of kinetic energy. To98

understand it, the energy balance in the overall computational domain, Ω,99

can be considered [17, 18],100

∂

∂t

∫
Ω

1

2
ρ|u|2 =−

∫
Ω

µ

2
‖D(u)‖2 +

∫
Ω

(ρg + Tσ) · u

+

∫
∂Ωd

(
σ · n− 1

2
ρ|u|2n

)
· u

+

∫
∂Ωo

(
σ · n− 1

2
ρ|u|2n

)
· u,

(3)

Where ρ is the density, g is the gravity vector, D(u) is the shear rate tensor101

and Tσ represents surface tension forces. It results that the rate of change102

of kinetic energy is controlled by viscous dissipation (exchange with internal103

energy), gravity (exchange with potential energy), surface tension (exchange104

with surface energy) and by two surface terms. The first one is expressed105

on ∂Ωd, the Dirichlet boundaries, where variables are known. The second106

surface term is expressed on ∂Ωo, the outflow boundary, where all variables107

have to be computed. In case of backflow, the convective part of this term108

becomes positive and can lead to a global increase of kinetic energy, leading109

to the instability of the system.110

Following Eq. (3), one possible backflow treatment is to ensure that the111

last term is zero, preventing backflow from causing an unstable growth of112
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kinetic energy. It leads to the following OBC113

σ · n = (−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n, (4)

with f(u) chosen so that it cancels the last term of Eq. (3) in case of backflow,114

for example115

f(u) =

{
(u · n)2 if u · n < 0,

0 otherwise.
(5)

This condition is similar to the stabilized traction-free condition used for116

single phase flows [17, 19] and for multiphase flows [18, 20]. In case of back-117

flow, the normal stress will compensate the normal influx of kinetic energy,118

whereas it will vanish in case of outflow. Different forms for f(u) along with119

other types of backflow treatments have been reviewed [3].120

The traction boundary condition, when used as the stabilized traction-121

free condition as in Eq. (4), requires the flow to be well-developped before122

reaching the boundary [13]. Several methods have already been proposed to123

combine stability and accuracy even at high Reynolds number, such as the124

“convective-like” traction boundary condition [21],125

σ · n = −µD0
∂u

∂t
+
ρ

2
Θ(u · n)((u · n)u + |u|2n), (6)

where D0 is computed using a characteristic velocity, and the function Θ(x)126

is essentially equal to 1 for negative value of x and 0 otherwise, see [21]127

for more details. The value of D0 is found to have little effect on the overall128

flow, except on the flow patterns near the outlet boundary. An earlier method129

developped by Bruneau and Fabrie [16] combines a stabilization to backflow130

and a non-zero traction,131

σ · n = σ
ref · n +

ρ

2
(u · n)−(u− uref ), (7)

where the reference values are computed using an analytical solution, or eval-132

uated from known values inside the domain [22], and (u·n)− = max(0,−u·n).133

Note that this condition leads to a well-posed problem [23]. It has, to the134

best of our knowledge, not been applied to projection methods.135

Another potential backflow treatment is to simply force all velocities such136

that u · n < 0 to zero, thus preventing any influx of kinetic energy. This137

solution provides energy stability of the system, but we will show in section138
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5.1 that it can lead to severe inaccuracies in multiphase flows. In [4], when139

the phase velocity is computed as u · n < 0, the use of external data allows140

to limit the occurence of the backflow instability.141

As said in the introduction, the main difficulties encountered by out-142

flow treatments are associated with the proper transmission of perturbations143

through the artificial boundary, and to the presence of inflow/backflow re-144

gions on it. One common way to overcome those issues is to try to dissipate,145

or damp, the fluctuating energy of the flow before the outlet using artifi-146

cial zones called sponge layers or nudging layers. Sponge layers consist in147

the introduction of a dissipative source term in Navier-Stokes equations that148

becomes stronger when getting closer to the boundary [24]. Nudging layers149

consist of the relaxation of the flow towards prescribed external data [4].150

These solutions are intentionally excluded from our study to focus on the151

improvements of an accurate OBC.152

Finally, most efforts to get non-reflective and accurate boundaries have153

been focused on convective-like OBCs, often requiring the use of external154

data that is consistent with the backflow treatment [4], whereas traction155

boundary conditions present an easier way to deal with backflow without156

the need for external data. As said previously, the stabilized traction-free157

condition, Eq. (4), requires the flow to be well-developped before reaching158

the boundary [13]. Traction boundary conditions have, to our knowledge,159

never been applied to problems of wave reflections.160

2.2. Generalized traction boundary condition161

We propose a new traction boundary condition, inspired from the Bruneau162

and Fabrie condition Eq. (7), that combines the two following characteristics.163

Firstly, the flow will not be required to be well-developped at the boundary,164

which will be achieved by applying a non-zero traction at the boundary. Sec-165

ondly, this OBC will be stable to influxes of kinetic energy due to backflow,166

which will be achieved by the inclusion of a stabilization term.167

We express the traction at the boundary as168

(−pI + µ(∇u +∇uT )) · n = tstab + αtest. (8)

tstab is a numerical treatment to ensure stability to backflow. test is an esti-169

mation of the traction at the outlet boundary and α = [0; 1] is an adjustable170

parameter. The accuracy of the present boundary treatment will depend on171

the choice of the last two terms.172
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Following Eq. (3), the stabilization term is taken such that it cancels the173

term responsible for the backflow instability in case of backflow,174

tstab =
ρ

2
f(u)n, (9)

with f(u) defined as in Eq. (5). Thus, the kinetic energy variation at the175

open boundary is not equal to zero, as with Eq. (4), but depends on the value176

of αtest. The results presented in this paper show that this novel boundary177

condition is sufficient to ensure the stability of the system in the presence of178

backflow at the open boundary. If α is equal to zero, one can see that we179

recover the stabilized traction-free condition presented in [17].180

To obtain the best possible traction estimate we introduce here the gen-181

eral idea behind our work. We propose test, the estimated traction at the182

boundary, to be considered as a Lagrangian quantity. Its value can therefore183

be evaluated using an advection equation,184

∂test

∂t
+ uad · ∇test = 0, (10)

where uad is an advection velocity that can be computed using an analytical185

expression, an averaged or a local velocity.186

2.3. Scope of this work187

The previous method to estimate the traction is very general and studying188

all possible ways to resolve it is beyond the scope of the present paper.189

Thus, we restrict our study to a few particular cases. We first assume a190

one dimensional advection velocity of the estimated traction in the outlet191

boundary normal direction. Then, we assume a first order explicit temporal192

resolution of Eq. (10) on a cartesian grid. The choice of an explicit resolution193

is a consequence of the algorithm used to solve the coupling between velocity194

and pressure, as we detail in the next section. Finally, we use a first order195

upwind discretization of the spatial term in order to use values inside the196

computational domain.197

The traction estimation is therefore expressed as198

test =
[
φσBC−1 · n + (1− φ)σBC · n

]
, (11)

where the notations BC − 1 and BC refer to the point just before the199

boundary and the boundary point, respectively. φ is an interpolation coef-200

ficient computed using numerical parameters and the one dimensional ad-201

vection velocity. φ can be considered as a CFL condition and therefore has202

7



here to be kept in the range [0; 1] as the advection is only done between the203

boundary point and its closest neighbour.204

The previous choices of resolution for Eq. (10) are not suitable in case205

of discontinuities in the traction field. This latter point is limiting in case206

of multiphase flows due to the effect of surface tension. The presence of a207

pressure jump can thus deteriorate the traction estimation and create un-208

physical velocities, or even stability issues. Therefore, in case of multiphase209

flows we limit our study to high Weber number. A way to get around that210

difficulty would be to use, for example, a semi-Lagrangian advection method211

[25] for test. Other aspects may have to be considered, such as the curvature212

computation in the vicinity of the open boundary, or the density boundary213

condition. Note that the use of multiphase traction-free condition in phase214

field method provides a natural way to get around that difficulty as a surface215

tension term appears in the outlet boundary energy flux [18].216

For α = 0, the generalized traction boundary condition, Eq. (8), reduces217

to218

(−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n, (12)

which will be refered to as the stabilized traction-free condition (TF) in the219

following. TF is the same condition as used in [17]. For α = 1 and φ = 1,220

Eq. (8) reduces to221

(−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n + σBC−1 · n, (13)

which will be refered to as the estimated traction boundary condition (ET).222

This condition ressembles the Bruneau and Fabrie condition, Eq. (7). The223

choice φ = 1 raises the question of the dependence of the accuracy to nu-224

merical parameters, as the traction at the point just before the boundary225

may not always be a good estimation. In the final part of the article, we will226

consider the φ 6= 1 case, where Eq. (8) reduces to227

(−pI+µ(∇u+∇uT )) ·n =
ρ

2
f(u)n+

[
φσBC−1 · n + (1− φ)σBC · n

]
, (14)

which will be refered to as the convected traction boundary condition (CT).228

Note that in the previous three boundary conditions f(u) is computed using229

Eq. (5).230
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In the rest of the paper we also use classic OBCs, such as the Neumann231

boundary condition (NM),232

∂u

∂n
= 0, (15)

or the convective boundary condition (CV),233

∂u

∂t
+ c

∂u

∂n
= 0. (16)

As mentioned previously the performance of such condition will be strongly234

linked to the choice of the convective velocity, which will be detailed later.235

Finally, the main objectives of the present paper are, for each of the236

OBCs under consideration, to give a detailed description of the algorithm237

allowing to their use in the context of projection methods and VOF/Level Set238

methods, to demonstrate the importance of bakflow stabilization in single- or239

multiphase flows, and to demonstrate the stability and accuracy of the non-240

zero traction methods, such as ET or CT. CT will only be used in the end of241

the paper, where the level of accuracy obtained with ET is not satisfactory.242

3. Mathematical formulation and algorithms243

3.1. General framework244

Fluid dynamics are governed by conservation laws, forming the Navier-245

Stokes system of equations. Conservation of mass is, providing that the flow246

is incompressible (∇ · u = 0),247

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ u · ∇ρ = 0. (17)

Multiphase momentum conservation is written in the framework of the one248

fluid formulation [26]: a single equation with space varying material proper-249

ties is used to describe the dynamics of both phases. The effect of surface250

tension is added through a singular force, Tσ, acting on the interface,251

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ ·

(
µ
[
∇u +∇uT

])
+ Tσ + ρg. (18)

In absence of phase change, the application of the momentum equation on252

the interface results in the classical jump condition for normal stress,253

[p]Γ = σκ+ 2 [µ]Γ n
T
Γ · ∇u · nΓ, (19)

9



where σ, κ and nΓ are the surface tension, the curvature and the normal vec-254

tor to the interface Γ respectively. The notation [.]Γ represents the interfacial255

jump from liquid to gas.256

These equations are solved using NGA, a finite volume, staggered-grid,257

second order flow solver [27]. Mass conservation, Eq. (17), is ensured through258

an unsplit semi-Lagrangian VOF advection method [25]. Momentum conser-259

vation, Eq. (18), is computed in a way consistent with mass transport and260

with the presence of interfacial discontinuities [28]. It is to be noted that261

all OBC methods presented are usable with any sharp interface-capturing262

method (VOF/Level-Set). For an application to diffuse interface methods,263

we refer the reader to a work for phase field method [18]. Interface boundary264

conditions, Eq. (19), are included in the pressure through the use of the ghost265

fluid method [29], with a curvature computed using a least-squares curve fit-266

ting method [30]. The coupling between velocity and pressure, required due267

to the incompressibility constraint, is enforced using an incremental pres-268

sure projection method [31]. In the following equations, superscripts n and269

n + 1 refer to previous and new time steps, respectively, whereas subscript270

k refers to the subiterations of the iterative Crank-Nicolson time advance-271

ment scheme [32] used in the present solver. Note that we use an implicit272

resolution of the linearized problem at each subiteration, see [27] for more273

details. Second order centered schemes are used for spatial discretization on274

all terms but the convective term at the interface, where a consistent mass275

and momentum advection strategy is employed (see [28] for more details). In276

case of single phase flows the same solver is used but the physical properties277

are taken as constant and surface tension effects are not present. First, a278

non-solenoidal velocity field, u∗k+1, is computed as279

ρn+1
k+1u

∗
k+1 − ρnun

∆t
=−∇pn+1

k −∇ ·
(
ρnu

n+1/2
k

(
un + u∗k+1

2

))
+∇ ·

[
µn+1

(
∇
(
un + u∗k+1

2

)
+ ∇

(
un + u∗k+1

2

)∣∣∣∣T
)]

+ ρn+1
k+1g,

(20)
where the intermediate velocity field is280

u
n+1/2
k =

1

2

(
un+1
k + un

)
. (21)
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Then, a Poisson equation is solved for the pressure increment Φn+1,281

∇ ·
(

∆t

ρn+1
k+1

∇
(
Φn+1

))
= ∇ · u∗k+1. (22)

Finally, the velocity and the pressure at the next time step are obtained using282

Φn+1,283

un+1
k+1 = u∗k+1 −

∆t

ρn+1
k+1

∇
(
Φn+1

)
, (23)

284

pn+1
k+1 = pn+1

k + Φn+1. (24)

Eqs. (20), (22) and (23)-(24) are refered to as estimation, projection,285

and correction. ∆t is the time step size. In the case of multiphase flows, ρn286

and µn+1 values are computed from the old and new VOF field, respectively,287

whereas ρn+1
k+1 is computed in a way that ensures consistency between mass288

and momentum transport [28]. More details can be found in [33].289

At all of these steps, boundary conditions have to be provided: velocity290

boundary condition after estimation and correction, and pressure boundary291

condition during projection. At the inflow and on the walls, those steps are292

straightforward and well documented [34]. For the velocity it simply consists293

of setting the corresponding values in the velocity vector. As these values294

will not change during estimation and correction, this step is only necessary295

after estimation, Eq. (20),296

u∗k+1

∣∣
∂Ωd

= un+1
D , (25)

where un+1
D is an imposed velocity value given by the physics, i.e., inflow or297

walls. The definition of the pressure boundary condition is directly obtained298

from the application of Eq. (23) on those boundaries,299

∂Φn+1

∂n

∣∣∣∣
∂Ωd

= 0. (26)

The expression of outlet boundary conditions for velocities and pressure at300

each step of the projection algorithm, resulting in the application of the301

OBCs presented in section 2, is detailed in the next subsections.302
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3.2. Implementation of convective/Neumann OBC303

Neumann (NM) and convective (CV) boundary conditions can be directly304

used to compute outlet velocities at the estimation step. In the CV boundary305

condition, Eq. (16), a wave velocity c has to be prescribed. In the present306

work, it is going to be taken as the maximal velocity in the plane just before307

the exit,308

c = cmax = max(u∗k+1 · n)BC−1, (27)

or as a theoretical wave speed, if available,309

c = cth. (28)

The theoretical expression for the phase velocity will be detailed in the re-310

sults when used. Except if otherwise stated, the phase velocity will be taken311

as c = cmax. What is of interest here is the definition of the pressure bound-312

ary condition that will allow to obtain a solution to the Poisson equation,313

Eq. (22). This comes from the integration of Eq. (22) over the computational314

domain:315 ∫
∂Ω

∆t

ρn+1
∇Φn+1 · ndS =

∫
∂Ω

u∗k+1 · ndS (29)

Applying Eq. (26) will directly lead to the following pressure outlet boundary316

condition,317 ∫
∂Ω

∆t

ρn+1

∂Φn+1

∂n

∣∣∣∣
∂Ωo

dS = Qin −Qout, (30)

where Qin and Qout are the inlet and outlet flow rates, respectively. Thus, if318

inlet and outlet flow rates are forced to be the same (including the clipping319

of negative velocities, as explained in section 2) when considering the appli-320

cation of the velocity OBC and the resolution of the Poisson equation, the321

pressure outlet boundary condition can simply be a Neumann BC,322

∂Φn+1

∂n

∣∣∣∣
∂Ωo

= 0, (31)

thus ensuring that the integral on the left hand side of Eq. (30) is equal to323

zero. Finally, as the gradient of pressure on all boundaries is equal to zero,324

there is no need to correct outlet velocities during the correction step. The325

overall algorithm is presented in algorithm 1.326
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Input: un, pn, ρn in Ω and on ∂Ω
1 Solve Eq. (17) using VOF advection → κn+1, µn+1 in Ω
2 for k = 0 to kmax − 1 do
3 Compute ρn+1

k+1

4 Solve Eq. (20) → u∗k+1 in Ω
5 Apply Eq. (25) and Neumann or convective OBC on u∗k+1

6 Set all velocities such that u∗k+1 · n < 0 to zero in the outlet section
7 Correct outlet flow rate
8 Solve Eq. (22) with Eq. (26) and Eq. (31) → Φn+1 in Ω
9 Correct velocities Eq. (23) and pressure Eq. (24) → un+1

k+1 and pn+1
k+1

in Ω
10 end

Output: un+1, pn+1, ρn+1 in Ω and on ∂Ω
Algorithm 1: Algorithm for Neumann and convective OBCs

3.3. Implementation of traction-free and estimated traction OBC327

The implementation of traction boundary conditions in pressure projec-328

tion methods has been the subject of many publications in recent years329

[35, 14, 19, 36]. See also [37] in the context of vector penalty method and [38]330

for an extension to curved artificial boundaries. Note furthermore that all331

algorithms presented herein may be adapted to velocity correction methods332

starting from the work presented in [39].333

The main difficulty is to ensure the validity of the relation,334

(−pn+1
k+1I + µn+1(∇un+1

k+1 +∇un+1
k+1

T
)) · n = tn+1 (32)

along with the incompressibility constraint at the end of the correction step.335

The form of the vector tn+1 will depend on the type of traction boundary336

condition (TF, ET, or CT, see section 2) and will be explained below. A337

first strategy consists in simply setting the pressure increment to zero at the338

outlet [14], but this strategy is known to limit the order of convergence of339

the overall method [36]. An improvement is found whith an update of the340

outlet pressure through a rotational pressure correction method [17, 18, 19].341

It is known with those methods that the use of a rotational pressure correc-342

tion will significantly improve the convergence order of the overall algorithm.343

However, in multiphase flows, there is, to our knowledge, only one exam-344

ple of a rotational pressure-correction [20], which involves the resolution of345

a second linear system due to the absence of an analytical solution for the346
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pressure increment. Thus, we choose to employ the method presented in [35],347

extended for multiphase flow and non-zero traction.348

The method presented in [35] starts by applying the normal, i.e., perpen-349

dicular, projection of the traction boundary condition just after the estima-350

tion step, Eq. (20), using the available variables, namely pn+1
k and u∗k+1. To351

simplify the understanding of the method, the coordinate system is taken to352

be cartesian (x, y, z) with an artificial boundary oriented along x. This first353

step is then,354

−pn+1
k + 2µn+1∂u

∗
k+1

∂x
= tn+1

x , (33)

where tn+1
x is assumed to be known. The final step will be the application of355

the traction outlet boundary condition on the new variables un+1
k+1 and pn+1

k+1 ,356

−pn+1
k+1 + 2µn+1∂u

n+1
k+1

∂x
= tn+1

x . (34)

We are then looking for the pressure increment that will ensure the validity357

of Eq. (34) as well as satisfy the incompressibility condition. We first take358

the incompressibility condition in the cell just before the boundary,359

∇ · un+1
k+1 =

∂un+1
k+1

∂x
+
∂vn+1

k+1

∂y
+
∂wn+1

k+1

∂z
= 0, (35)

where we express ∂un+1
k+1/∂x using Eq. (33) and Eq. (34), and ∂vn+1

k+1/∂y and360

∂wn+1
k+1/∂z using Eq. (23). It leads to361

∇·un+1
k+1 =

pn+1
k+1 − p

n+1
k

2µn+1
+∇·u∗k+1−

∂

∂y

(
∆t

ρn+1
k+1

∂

∂y
Φn+1

)
− ∂

∂z

(
∆t

ρn+1
k+1

∂

∂z
Φn+1

)
.

(36)
Finally, as the flow is incompressible, the pressure boundary condition is362

∂

∂y

(
1

ρn+1
k+1

∂

∂y
Φn+1

)
+
∂

∂z

(
1

ρn+1
k+1

∂

∂z
Φn+1

)
− 1

2µn+1∆t
Φn+1 =

∇ · u∗k+1

∆t
, (37)

which is the pressure boundary condition derived in [35] adapted to a variable363

density flow. Previous equations are forming the algorithm used to compute364

and couple the x-velocity and the pressure at the outflow, and to satisfy365

exactly the relation Eq. (34) along with the incompressibility constraint.366

Concerning the tangential components of the velocity, the outflow condition367

is simply a Neumann condition,368
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∂v∗,n+1
k+1

∂x
=
∂w∗,n+1

k+1

∂x
= 0. (38)

This choice, rather than the use of a constraint on the tangential traction369

value, is motivated by the well-known fact that a tangential traction-free370

condition is not compatible with a parallel flow [40] and by the fact that371

several results are reported as better with a Neumann condition on tangential372

velocities rather than a tangential traction condition, even with non-zero373

traction [34].374

It should be noted that the pressure boundary condition, Eq. (37), is only375

valid if tn+1
x does not change between the estimation and correction steps.376

Otherwise, any change will have to be taken into account into the pressure377

OBC, Eq. (37). Thus, the traction tn+1
x can be given depending on the type378

of open boundary condition. For TF, it is379

tn+1
x =

ρn

2
f(un), (39)

and for non-zero traction conditions (ET and CT),380

tn+1
x =

ρn

2
f(un) + test,n+1

x . (40)

The density is taken at the previous time step to be coherent with the381

choice of the velocity. The backflow stabilization is thus not instantaneous382

but delayed by one time step. As stated previously, the estimated normal383

traction is computed using interior values and at the previous iteration to384

ensure the validity of the pressure boundary condition. For ET,385

test,n+1
x =

(
−p+ 2µ

∂u

∂x

)n
BC−1

, (41)

and for CT,386

test,n+1
x = φ

(
−p+ 2µ

∂u

∂x

)n
BC−1

+ (1− φ)

(
−p+ 2µ

∂u

∂x

)n
BC

, (42)

with φ to be prescribed later. The overall algorithm is presented in algorithm387

2.388
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Input: un, pn, ρn in Ω and on ∂Ω
1 Solve Eq. (17) using VOF advection → κn+1, µn+1 in Ω
2 for k = 0 to kmax − 1 do
3 Compute ρn+1

k+1

4 Solve Eq. (20) → u∗k+1 in Ω
5 Apply Eqs. (25)-(33) and (38) on u∗k+1

6 Solve Eq. (22) with Eq. (26) and Eq. (37) → Φn+1 in Ω
7 Correct velocities Eq. (23) and pressure Eq. (24) → un+1

k+1 and pn+1
k+1

in Ω
8 Apply Eqs. (34) and (38) on un+1

k+1

9 end
Output: un+1, pn+1, ρn+1 in Ω and on ∂Ω

Algorithm 2: Algorithm for traction OBCs

4. Single phase test cases389

The improvements obtained using our novel outlet treatment are first390

illustrated on single phase test cases. The first test case, the Kovasznay flow,391

allows to see the spatial order of convergence of the overall method, while392

the second test case, a time-dependent manufactured solution test, allows to393

study the temporal order of convergence of the present algorithm. The third394

test case, the flow around a square, shows both qualitative and quantitative395

improvements thanks to ET. The last case, a turbulent plane jet, shows the396

stability and accuracy of ET in the presence of a fully turbulent flow.397

4.1. Kovasznay flow398

The Kovasznay flow is a steady state flow used to mimic the flow behind a399

cylinder [41]. This configuration is a 2D domain, periodic along the vertical400

axis, with an inflow on its left boundary and an OBC on its right. The401

analytical solution of the Kovasznay flow is given by402

u = 1− eλx cos(2πy), (43)
403

v =
λ

2π
eλx sin(2πy), (44)

404

p =
1

2

(
1− e2λx

)
, (45)
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Figure 1: Streamlines of the Kovasznay flow

where λ = Re
2
−
√

Re2

4
+ 4π2. We choose here Re = 1/40. Thus, this test405

case can be used to study the effect of the type of OBC and its position on406

the error level compared to the analytical solution [17]. The domain is a two-407

dimensional domain of size −0.5 6 x 6 Lx and −0.5 6 y 6 0.5, with Lx the408

position of the OBC. The mesh is uniform and Cartesian with a cell size ∆,409

with ∆ to be specified later. In all cases presented below, ∆t = 0.001. The410

inflow is defined using the analytical solution in x = −0.5. The streamlines411

of this flow are shown in figure 1.412

Hereafter we study the effect of the OBC choice on the error compared413

to the theoretical solution. Considered OBCs are NM, TF and ET. CV414

is intentionally excluded from this test case to avoid any discussion on the415

choice of the convective velocity at this point.416

In a first comparative test, the domain length is kept constant with Lx =417

4.5 and the mesh is progressively refined in order to check the convergence of418

the error depending on the type of OBC. In figure 2a) we show the evolution of419

the L2 error norm of the x-velocity and the pressure, for differents OBCs and420

depending on mesh resolution. One can first observe two differents behaviors:421

for coarser meshes, the same level of error is obtained for all three OBCs,422

which decreases with mesh resolution (with order 2, i.e., the order of used423

numerical methods). For finer meshes, and for NM and TF OBCs, the error424

progressively saturates at a constant value, indicating that outflow error is425

dominating. Note that this deviation occurs later for TF than for NM and426

stabilizes also at a lower value, meaning that TF gives a lower error than427
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Figure 2: Error levels for different OBCs: a) Mesh convergence, b) Effect of domain
truncation. Continuous line: ET - Dashed line: TF - Dotted line: NM

NM on that test case. On the other hand, with ET, no deviation is observed428

from the second order slope, meaning that in that range of mesh resolutions,429

the error due to the outflow is never dominating. With finer meshes and430

ET, one will necessarily observe a saturation of the error as the choice of431

the estimated traction is not perfect. Note that one can also compute the432

estimated traction using the analytical solution [17], which is not possible in433

real flow simulations. Note that second order convergence is also obtained in434

Linf error norm.435

In a second comparative test, the mesh is kept constant (∆ = 1/80)436

and the domain is progressively truncated. Similarly to the previous test,437

we show on figure 2b) the evolution of the L2 error norm of the x-velocity438

and the pressure, for differents OBCs and depending on the position of the439

artificial boundary. It is seen in figure 2b) that on a sufficiently long domain440

all OBCs produce the same level of error. It is also seen that with NM the441

truncation of the domain has a much stronger effect than with other OBCs.442

The result is, for the range of Lx considered here and using NM, barely443

independent of the artifical boundary position. This point is improved with444

TF, which provides a better independence of the result with the position of445

the outlet. With ET the result is independent of Lx for a large range of446

domain size, even though a small increase of L2(u) is noticeable. Note that447

all OBCs are stable for the smallest domain (Lx = −0.1), where the outflow448

boundary is located in a recirculation zone, which is not possible without449
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Figure 3: Error levels for different OBCs and two domain lengths: a) Lx = 0.5, b)
Lx = −0.1. Continuous line: ET - Dashed line: TF - Dotted line: NM. The orange
dashed line in both plots shows second order spatial convergence.

backflow treatment such as clipping or stabilization. But, in case of the450

durable presence of a backflow, even the traction condition will not provide451

a perfectly accurate solution as the stabilization term only makes sense in452

terms of kinetic energy conservation. In order to examine how the order453

of spatial convergence is deteriorated whith domain truncation, we show in454

figure 3, two additional convergence tests with domains shorter than the one455

used for the test presented in figure 2a). For Lx = 0.5, see figure 3a), second456

order convergence is only obtained for L2(u) using ET and for a shorter457

range of resolution than previously. For Lx = −0.1, see figure 3b), the outlet458

boundary is located in the recirculation zone, and no clear convergence of the459

error with resolution can be observed, even using ET. For all resolutions and460

domain lengths tested, ET has the lowest level of error. The same results are461

obtained on Linf error norm.462

Those tests demonstrate the interest of the non-zero traction OBC on463

a steady state problem in terms of error level and independence to outlet464

position.465

4.2. Time-dependent manufactured solution466

In order to study the temporal order of convergence of the proposed467

method, we use the time-dependent manufactured solution of [17],468

u = 2 cos(πy) sin(πx) sin(t), (46)
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469

v = −2 cos(πx) sin(πy) sin(t), (47)
470

p = 2 sin(πx) sin(πy) cos(t), (48)

which satisfies the incompressibility condition (∇ · u = 0). In order to sat-471

isfy Eq. (18), unsteady body forces have to be added to the Navier-Stokes472

equations.473

The computational domain is two-dimensional, of size 0 6 x 6 2 and474

−1 6 y 6 1, with 256 uniform cells in both directions. Eqs. (46) and (47)475

are enforced as Dirichlet boundary conditions on three boundaries of the476

computational domain, whereas the traction condition Eq. (32) is used on the477

last one. Similarly to [17, 20, 35], the right hand side of Eq. (32) is computed478

using the manufactured solution. Imposing the analytical traction value at479

the open boundary is needed to avoid the domination of spatial error over480

temporal error. No stabilization term is included as it becomes meaningless481

when one imposes the exact traction at the open boundary, i.e., when the482

open boundary is transformed into a Dirichlet boundary. The initial velocity483

field is set to zero, in agreement with the manufactured solution. For this484

test case we use ρ = 1 and µ = 0.01.485

The simulation is advanced in time with a fixed time step, ∆t, to be486

specified, until a fixed final time tf = 0.5. The L2 error norm on different487

flow variables at this final time is computed with respect to the manufactured488

solution. The test is then repeated with various time steps.489

The results are shown on figure 4. One can see that the error norm490

convergence for all flow variables is approximately of second order until a491

progressive saturation of the temporal error by the spatial error. Note that492

the convergence of the error seems to be faster for the velocities than for493

the pressure, which may be due to the presence of splitting errors [35]. A494

rotational pressure correction would be a solution to resolve this discrepancy495

[35, 17], but for the reason cited in section 3.3 we chose not to use this496

strategy. Note that the same results are obtained in Linf error norm. In497

agreement with [35], these results suggest that the present algorithm for498

the implementation of traction conditions does not deteriorate the order of499

temporal convergence.500

The choice of manufactured solution and computational domain we made501

involves u · n = 0 and p = 0 at the boundaries (same test case as [17]). In502

order to prove that the results are not affected by these choices, we use the503

same manufactured solution on a computational domain shifted along x, i.e.,504
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Figure 4: Method of manufactured solution. Convergence of the error level with respect
to the time step. The dashed black line shows second order convergence.

with −0.5 6 x 6 1.5 and −1 6 y 6 1. This way, there is backflow and505

non-zero pressure at the open boundary at the final time (tf = 0.5). The506

resolution is the same as previously.507

The results are shown in figure 5a). Similarly to the previous results,508

second order temporal convergence is obtained, though with an error slightly509

higher than for the previous computational domain. This demonstrates once510

again that the present algorithm for traction condition does not deteriorate511

the order of temporal convergence. When we add the stabilization term to512

the analytical traction value, as done for the results presented in figure 5b),513

we observe degraded temporal convergence leading to an error plateau. We514

emphasize that this plateau is fully expected, as the stabilization term is515

purely ad-hoc and represents a numerical error when added to the analytical516

traction at the open boundary.517

4.3. Flow around a square518

We now compare the different OBCs on an unsteady case: the flow over519

a two-dimensional square. This test case presents two main interests from520

the point of view of OBC performance. Firstly, we study their ability to521

convect the vortices generated by the von Kármán instability through the522
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Figure 5: Method of manufactured solution for the shifted domain. Convergence of the
error at the final time with respect to the time step, a) imposing the analytical traction
at the open boundary, and b) imposing the analytical traction and the stabilization term
at the open boundary. The dotted and dashed black lines show first and second order
convergence, respectively.

artificial boundary. Secondly, we investigate the impact of the OBC position523

and type on aerodynamic quantities such as drag and lift coefficients and524

vortex shedding frequency525

In a first test, we use the square as a vortex generator and we compare526

qualitatively TF and ET on their ability to properly convect vortices through527

the artificial boundary. The test case is a two dimensional domain of size528

−5H 6 x 6 5H and −5H 6 y 6 5H where H is the size of the square529

located in the middle of the domain. The Reynolds number Re = ρUH/µ is530

equal to 1000. U is the velocity uniformely imposed at the inflow (x = −5H)531

and the outflow is located at x = 5H. Symmetry boundary conditions are532

used at y = ±5H and the domain is uniformely discretized with a cell size533

∆ = H/40. The time step is chosen such that the CFL number stays equal to534

1. Under those conditions a strongly unsteady flow is generated downstream535

of the obstacle. It should be noted that this flow is unphysical given the536

three-dimensionality of a real flow at that Reynolds number, but this test537

case allows to assess the accuracy of outlet boundary conditions [17].538

On figure 6 we show, through isocontours of z vorticity, the exit of several539

vortices through the outlet boundary. The top row of figures presents the540

result with TF, whereas the bottom row of figures presents the result using541

ET. On the top images, one can observe that the use of TF tends to flatten542
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Figure 6: Isocontours of z vorticity. Top figures: TF; bottom figures: ET. From left to
right, all figures are separated by a time interval of 0.5H/U .

the vortices on the outlet and to delay their complete exit through the open543

boundary. This can simply be explained by a balance of pressure: the pres-544

sure at the vortex center is balanced by the imposed outlet pressure through545

imposed traction and by inertial effects. As inertial effects are not strong546

enough to push out the vortex, it sticks to the boundary and is only slighty547

– and slowly – pulled out of the domain by the backflow stabilization term.548

We observed that if no backflow stabilization is taken into account, vortices549

were gathering on the artificial boundary, finally leading to the blow-up of550

the simulation due to the backflow instability. Note that, although the vor-551

tices exit seems unnatural, once the stabilization term is included the code552

remains perfectly stable to backflow at the outlet boundary. On the other553

hand, with ET, no vortex sticking is observed and vortices simply cross the554

boundary with barely any deformation.555

We now propose a more quantitative comparison between different OBCs556

through the study of the aerodynamic quantities. To avoid any confinement557

effect and any impact of the inflow position, the domain is this time of size558

−10H 6 x 6 L and −10H 6 y 6 10H, with L the position of the outlet559

boundary and H the size of the square located at (0, 0). The Reynolds560

number Re = ρUH/µ is now equal to 100. The domain is discretized with561

a uniform cell size ∆ = H/40 in the sub-domain −10H 6 x 6 L and562
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−4H 6 y 6 4H, to avoid any loss of resolution of the vortices in the wake of563

the obstacle, and is then progressively stretched up to the top and bottom564

boundaries with a constant stretching ratio of 1.05. The time step is chosen565

such that the CFL number stays equal to 1. The aerodynamic forces are566

directly integrated on the surface of the obstacle.567

Figure 7 presents the evolution of differents aerodynamic quantities as a568

function of the position and the type of open boundary. We also included the569

results of two recent publications using the stabilized traction-free condition570

[17] and the traction-free condition [35]. In order to simplify comparison with571

other publications, the evolution of the aerodynamic quantities is presented572

in terms of error relative to the value obtained on the longest domain. Figure573

7a) shows the evolution of the mean drag coefficient, figure 7b) shows the574

evolution of the r.m.s lift coefficient and figure 7c) shows the evolution of the575

Strouhal number associated with the vortex shedding frequency. The results576

obtained with ET keep a correct behavior even on the smaller domains by577

exhibiting the lowest variation of aerodynamic quantities as a function of the578

outflow position. This improvement is largely explained by the fact that the579

underlying assumption of well-developped flow associated with the traction-580

free condition, stabilized or not, is no longer required with ET.581

4.4. Turbulent plane jet582

To finally assess the stability and the accuracy of the proposed boundary583

condition we study the spatial evolution of a turbulent plane jet. The config-584

uration, the expression of the analytical inlet velocity profile and the choice585

of parameters are the same as in Da Silva & Metais [42] (case refered to as586

“DNS2” in their original paper). The numerical domain is a 3D domain of587

size 0 6 x 6 12.4h, −6h 6 y 6 6h and −1.6h 6 z 6 1.6h, where h is the jet588

width. The inlet boundary is located at x = 0 and the outflow at x = 12.4h.589

The other boundaries are periodic. The domain is discretized with a uniform590

cell size ∆x = ∆y = ∆z = 0.04h. The constant time step is ∆t = 0.02.591

In a first study the Reynolds number based on the jet width, Re = (Ui−592

Uff )h/ν, is taken equal to 3000, with Ui the jet centerline inlet velocity and593

Uff the inlet far-field velocity. The isocontours of positive Q-criterion [43]594

are shown on figure 8, using TF (a) and ET (b). On both figures one can see595

the spatial development of the jet, initiated by the apparition of successive596

Kelvin-Helmholtz rolls that are then connected by the apparition of vortices597

in the streamwise direction. When reaching the outlet boundary the flow598

is fully tridimensional. On figure 8a) one can see the dramatic effect of TF599
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Figure 7: Impact of the outflow position and type on the aerodynamic quantities: a) mean
drag coefficient, b) r.m.s lift coefficient, c) Strouhal number. On all plots, the vertical axis
is the error compared to the value obtained on the longest domain, whereas the horizontal
axis is the distance between the square and the outflow position L normalized by the size
of the square H. The reference results included are the results from Dong et al [17] and
Poux et al [35].

25



on the exit of the vortices. A part of them sticks to the boundary and is600

prevented to leave the domain. On the other hand, using ET, no vortex601

sticking is observed and the vortices are crossing the boundary with barely602

any deformations, see figure 8b). With CV, the vortices exit looks very603

similar to the one seen using ET (results not shown). Note that using TF604

we had to reduce the time step size in order to obtain a stable simulation.605

This may be due to the vortex sticking phenomena coupled to the delayed606

backflow correction of one time step. Considering the poor qualitative result607

seen on figure 8a) and the need to decrease the time step size, we therefore608

exclude TF from the following analysis.609

The jet exhibits a self-similar behaviour in its downstream region [42]. In610

this region, several quantities computed from the time averaged velocity field611

are evolving linearly with the downstream distance. We choose here to use the612

centerline velocity, Uc = 〈u(x, y = 0)〉, and the jet half-width, δ1/2, defined as613

the y−location where the velocity is equal to half of the centerline velocity,614

i.e., 〈u(x, y = δ1/2)〉 − Ux,∞ = 0.5 (Uc − Ux,∞), with Ux,∞ = 〈u(x, y = ∞)〉,615

the far-field velocity. Those quantities follow the following relationships [44]:616

δ1/2

h
= Ku1

[x
h

+Ku2

]
, (49)

and617 [
Ui − Uff
Uc − Ux,∞

]2

= Cu1

[x
h

+ Cu2

]
. (50)

618

We plot those quantities, along with their linear relations, on figure 8c)619

and 8d) using ET and CV. Using ET, in addition to provide a natural exit of620

the vortices as well as the stability of the simulation, the self-similar region621

is barely disturbed by the presence of the open boundary. With CV both of622

the self-similar quantities are strongly affected by the presence of the outflow.623

Note that the slopes of the linear relations are the same as in Da Silva &624

Metais [42].625

To demonstrate that the proposed boundary treatment is stable for highly626

turbulent flows, we study the large eddy simulation of the turbulent plane627

jet at Re = 30000. The sub-grid stresses are estimated with a dynamic628

Smagorinsky eddy viscosity model using Lagrangian averaging to compute629

the dynamic coefficient [45]. The computational domain is now larger in630

the vertical direction to account for the entrainment induced by the jet,631

i.e., −8h 6 y 6 8h. The isocontours of positive Q-criterion are shown on632
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Figure 8: (Color online) Turbulent plane jet at Re = 3000. Positive Q-criterion isocontours
(20 isocontours from Q = 0.25 to Q = 100) at t(Ui −Uff )/h = 166, using TF (a) and ET
(b). c) Evolution of the jet half-width with downstream distance using ET and CV. Model
computed using Eq. (49) with Ku1 = 0.089 and Ku2 = −1. d) Evolution of the centerline
jet velocity with downstream distance using ET and CV. Model computed using Eq. (50)
with Cu1 = 0.165 and Cu2 = −2.
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Figure 9: Large eddy simulation of a turbulent plane jet at Re = 30000. a) Positive
Q-criterion isocontours (10 isocontours from Q = 0.25 to Q = 100) at t(Ui−Uff )/h = 400
using ET. b) Temporal evolution of the normalized kinetic energy integrated over the
domain using ET.

figure 9a). One can see that there is no accumulation of vortices on the open633

boundary although the turbulence is fully developped when reaching the open634

boundary. To show the long-term stability of the proposed method even in635

the presence of a strong turbulent flow, we show the temporal evolution of636

the kinetic energy integrated over the computational domain on figure 9b).637

After an initial transient, the flow reaches a statistically stationary state638

that is not perturbed by the presence of backflow at the open boundary. As639

stated before, this result strongly suggests that a zero energy flux at the640

open boundary is not needed to ensure the stability of the simulation. The641

accuracy of the proposed boundary treatment could even be improved using642

a better estimation of the traction at the open boundary, for example with643

CT.644

5. Multiphase test cases645

We now turn our attention to multiphase flows. In this section, the646

importance of backflow stabilization is demonstrated using first a single drop647

advection test case, then a turbulent swirling jet flow simulation. Finally, we648

demonstrate the improvements obtained using CT on a problem of surface649

waves reflection.650
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a) b) c) d)

e) f) g) h)

Figure 10: Water drop advection in a domain without inlet. a)-d) : CV ; e)-h) : ET. From
left to right, all figures are separated by a time interval of 0.6D/Ul.

5.1. Drop convection651

A water droplet of size D = 0.1 with initial velocity Ul = 3 is placed652

at the center a domain of size −10D 6 x 6 10D and −10D 6 y 6 10D653

and surrounded by quiescent air. The outflow is located at x = 10D, with654

periodic boundary conditions at y = ±10D. At x = −10D, a slip wall655

condition is used. The simulation is run on a 64× 64 mesh with a timestep656

∆t = 0.001.657

Figure 10 shows velocity vectors along with the liquid-gas interface dur-658

ing the advection of the drop towards the outlet for two types of boundary659

conditions. On the top row of images the result are obtain with the CV, and660

on the bottom row of images the result are obtained with ET. Note that,661

on this test case, one can replace CV by NM and ET by TF, for the same662

qualitative result.663

On the top pictures of figure 10, one can observe that with CV OBC the664

drop is flattening on the boundary and no liquid is exiting the domain. On665

the other hand, using ET, the drop is completely going out with minimal666

deformation. The reason for these completely different behaviors lies in the667

fact that the incompressibility condition requires the outlet flow rate to be668

equal to the inlet flow rate, in this case zero. Thus, the only way for the drop669

to exit is to allow backflow. We see here one strong limitation of the clipping670
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strategy, which severely affects the flow by preventing the drop from going671

out, though it provides unconditional stability. On the other hand, once the672

stabilization term is included, ET and TF are perfectly stable to backflow as673

can be seen in figures 10f-g-h).674

5.2. Turbulent swirling jet675

To show the importance of backflow stabilization in a more realistic case,676

we present a simulation of turbulent swirling jet. As shown in figure 11, a677

turbulent liquid jet exits from a nozzle located on the left of the domain.678

The jet then develops into a conical shape and becomes subject to different679

interfacial instabilities leading to its atomization. The outflow is located680

on the right of the domain (colored in pink), whereas all lateral boundary681

conditions are periodic. All physical properties, injection parameters and682

geometric characteristics are the same as in [46]. The domain is discretized683

with a 200× 400× 400 cartesian grid and the simulation is advanced with a684

CFL number of 0.8.685

On figures 11a) and 11b), the liquid-gas interface colored by the axial686

velocity is shown after a simulation time tU/D = 11, where U is the bulk687

injection velocity, and D the external diameter of the injector. On figure688

11a), the result with CV is shown, with the phase velocity computed using689

Eq. (27). One can see that since this outflow treatment does not allow690

backflow, some of the liquid is prevented from going out and “splashes” on691

the exit plane. Figure 11b) shows the result using the ET OBC, and in this692

case the liquid is not blocked on the exit plane. This obviously has a large693

impact on the capability to reach long term simulations of such atomizing694

liquid jets. With a boundary condition that does not allow backflow, the695

simulation time is obvisouly limited by the length of the domain, which is696

not the case with a stabilized traction boundary condition. It should be697

noted here that CV may be replaced by NM and ET by TF for the same698

results on the liquid exit. The difference between TF and ET will lie in the699

speed of the droplets in the vicinity of the outlet and in the behavior of the700

vortices exiting the domain, as already discussed using the test case of the701

flow around a square.702

Although here traction conditions are used only as exit conditions, it703

should be noted that they may also be used as lateral boundary condition [21,704

47]. One can also imagine replacing the wall used around the liquid injector705

by an open traction boundary condition in order to get a more realistic706
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a) b)

Figure 11: (Color online) Turbulent swirling jet test case. Liquid-gas interface colored by
axial velocity shown at a time tU/D = 11 (dark blue: u = 0, dark red: u = 3U , with U
the bulk injection velocity). a) result using CV, b) result using ET.

representation of such jets by allowing the development of a “natural” gas707

co-flow. We will investigate that point in future works.708

5.3. Surface gravity waves709

We finally evaluate the ability of the different OBCs to evacuate a surface710

wave without reflection. As said in the introduction, wave reflection is a prob-711

lem of critical importance in ocean modeling as it prevents the convergence712

of flow statistics and may create unrealistic flows [4].713

The test case is set up using solitary wave theory [48]. The interface714
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height is defined as715

η(x) = A0sech2

(√
3A0

4h0
3x

)
, (51)

with A0 the initial height of the wave and h0 the water depth. The initial716

velocity is defined as u = (u(x), 0, 0) where717

u(x) = η(x)

√
|g| (h0 + A0)

h0 + η(x)
+ Uin, (52)

and Uin is the inflow velocity. The computational domain is two-dimensional,718

of size −60h0 6 x 6 20h0 and −h0 6 y 6 4h0 with symmetry boundary719

conditions along y, a constant velocity inflow u = Uin at x = −60h0 and the720

OBC at x = 20h0. Air/water conditions are used for the choice of physical721

properties. This setup results in the transport of a soliton from the position722

x = 0 to the OBC at a constant phase velocity cth =
√
|g| (h0 + A0) + Uin.723

For all cases presented below parameters are chosen as A0 = 0.005, h0 = 0.01,724

Uin = 0.07. The domain is discretized using a uniform Cartesian mesh with725

∆x = ∆y = 5 × 10−4. The solution is advanced using a time step size726

∆t = 1× 10−3.727

On figure 12 are presented the space-time plots of the interface height728

for 4 different OBCs along with, on figure 13, the interface height signals729

at a position x = 10h0. On figure 12a), the result with CV is shown. As730

in previous tests, the wave speed is taken as c = cmax. One can first see731

a transient phenomenon at the initialization which causes the emission of732

perturbations towards the left of the domain and the height of the wave to733

slightly decrease. Since the inflow is located at x = −60h0, none of the results734

presented herein are affected by the reflexion of these initial perturbations735

on the inflow. The reason for these perturbations is an initial adjustment736

due to the discrete approximations of the continuous solution [4]. Following737

this initial transient, the soliton travels towards the OBC at a constant speed738

cth. Once the wave reaches the artificial boundary, it completely crashes on739

the boundary and a large part is reflected in the domain in a succession of740

smaller waves, forming a reflection cone. This result is not a surprise given741

the inapropriate choice of the convective velocity.742

In figure 12c), we use the theoretical wave speed as the convective velocity743

in CV. One can see that the reflection is much lower in amplitude but creates744
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Figure 12: (Color online) Transport of a surface gravity waves through an OBC. a) CV
with c = cmax, b) ET, c) CV with c = cth, d) CT with c = cth. The color indicates the
liquid height.

an increase of the mean liquid level, seen also in figure 13. Thus, even with the745

best choice of the wave speed, a convective condition is not able to evacuate746

a soliton out of the domain without reflection.747

We now focus our study on the use of a traction condition. First, it should748

be noted that the use of TF is impractical for such simulations. The pressure749

being hydrostatic in the domain, using a traction-free condition will impose750

a pressure close to zero at the outlet (velocity gradients being small far from751

the soliton), thus resulting in a strong suction of the flow which rapidly752

propagates up to the inlet. On figure 12b), we show the result using the753

ET. One can observe that the reflection is almost suppressed but that small754
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Figure 13: Interface height signals at a fixed position x = 10h0 for 4 different OBCs.

waves propagate upstream. Thus, such an arbitrary choice of the estimated755

traction (computed at the point just before the boundary at the previous756

time step) is in fact even better than the best choice of a convective OBC.757

However, two points have to be emphasized. Firstly, ET is not perfectly758

non-reflective. Secondly, we have observed a dependence of its performance759

to numerical parameters such as the time step or cell sizes.760

The reason for the last two points has in fact already been explained in761

section 2. Considering the estimated traction as a Lagrangian quantity, the762

present choice is not optimal. Indeed, taking the estimation of the traction763

at the point before the boundary and at the previous time step is not always764

a good choice depending on numerical parameters. A more accurate choice765

can be found considering the convected traction boundary condition (CT).766

The theoretical wave speed, cth, is taken as the advection velocity. The767

interpolation coeficient used in Eq. (14) is therefore φ = cth∆t/∆x. The768

result using this approach is shown on figures 12d) and 13).769

One can see that CT, our new OBC, is now perfectly non-reflective. It770

must be emphasized that this result is now independent of the time step, the771

mesh size, and is also independent of the OBC position.772
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5.4. Additional remark773

In most of the present paper, we use an estimation of the traction at774

the point just before the boundary, which is easy to define on a structured775

mesh. The extension to fully unstructured meshes is possible thanks to776

the Lagrangian estimation of the traction introduced previously, as done in777

Eq. (14). On such meshes, one has to define an advection velocity and then778

perform a semi-Lagrangian interpolation of the traction field at the location779

of interest to obtain the traction estimate. In case of curved boundaries, one780

has to use differential geometry to complete the pressure boundary condition,781

Eq. (37), as done in [38].782

6. Conclusion783

We have presented a comparison between several outlet boundary treat-784

ments on single and multiphase test cases along with their numerical imple-785

mentation in the context of fractional step methods. One major difference786

between these open boundary conditions lies in the backflow treatment. The787

implementation of backflow clipping associated with Neumann or convective788

open boundary conditions, while providing unconditional stability, can have789

a strong effect in the simulation of multiphase flows. On the other hand, sta-790

bilized traction conditions are perfectly suited to resolve this issue. The main791

drawback of the traction-free condition lies in its underlying assumption of792

well-developed flow that is not suited for severely truncated domains or high793

Reynolds number flows. To overcome this issue, an open boundary condition794

combining stabilization to backflow and space and time varying estimated795

traction is proposed, allowing stable and accurate simulations for turbulent796

and multiphase flows. This estimated traction is considered as a Lagrangian797

quantity, which allows to use it as a non-reflective artifical boundary for sur-798

face waves simulations. This work shows that traction conditions have the799

potential to resolve most of issues related to outflow treatment. They might800

also be used as lateral or inlet boundary conditions and allow a consider-801

able reduction in the cost of numerical simulations, as we will explore in802

future work. The very general form under which the estimated traction is803

introduced also opens the way to a study of the effect of different advection804

methods on the accuracy of traction boundary conditions.805
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