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Abstract
Native to Southeastern Asia, the ambrosia beetle Xylosandrus compactus is invasive worldwide. Its invasion is favoured by 
its cryptic lifestyle, symbiosis with a fungus that facilitates a broad range of host plants, and predominant sib-mating repro-
duction. X. compactus invaded Africa more than a century ago and the Americas and Pacific Islands in the middle of the 
twentieth century. It was not detected in Europe before 2011, when it was first reported in Italy before quickly spreading to 
France, Greece and Spain. Despite the negative environmental, agricultural and economic consequences of the invasion of 
X. compactus, its invasion history and main pathways remain poorly documented. We used COI and RAD sequencing to (i) 
characterise the worldwide genetic structure of the species, (ii) disentangle the origin(s) of the non-native populations on the 
three invaded continents and (iii) analyse the genetic diversity and pathways within each invaded region. Three mitochondrial 
lineages were identified in the native range. Populations invading Europe and the American-Pacific region originated from 
the first lineage and were only slightly genetically differentiated at nuclear SNP markers, suggesting independent introduc-
tions from close sources in or near Shanghai, ca. 60 years apart. Populations invading Africa originated from the second 
lineage, likely from India or Vietnam.

Keywords  Bioinvasion · Invasion route · Black twig borer · COI · RAD sequencing · Ambrosia beetle

Key message

•	 Xylosandrus compactus is native to Asia and invasive 
in Africa, the Americas, and the Pacific Islands, and it 
recently invaded Europe.

•	 We used COI and RAD sequencing to identify its source 
populations and decipher its invasion history.

•	 Populations from Europe and the American-Pacific 
region are closely related, show almost no genetic diver-
sity and presumably originated from independent intro-
ductions from Eastern China.

•	 The invasion in Africa likely originated from Southeast-
ern Asia, potentially from India or Vietnam.

•	 Invasions probably happened through the international 
trade of living plants.
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Introduction

Biological invasions have been increasing dramatically 
in the last decades, with no sign of plateauing, and are 
now one of the main threats to biodiversity and ecosys-
tems health and services (Pejchar and Mooney 2009; See-
bens et al. 2017, 2020; Sardain et al. 2019). Invasions are 
known to cause biodiversity loss (Dueñas et al. 2021), eco-
system disruption (Morales et al. 2017; Simberloff et al. 
2013; Kenis et al. 2008), economic loss (Bradshaw et al. 
2016) and human health problems (Schindler et al. 2015; 
Jones 2017; Jones and McDermott 2017). International 
trade plays a major role in insect biological invasions, 
dispersing pest species between geographically isolated 
ecosystems (Gippet et al. 2019). Invasion scenarios can 
however be diverse, for example resulting from single or 
multiple introductions from the species’ native range, and 
may or may not involve strong bottlenecks depending on 
the number of dispersed propagules. One of the invaded 
regions can also serve as a source for further introductions, 
a phenomenon known as “bridgehead effect” (Lombaert 
et al. 2010). Understanding the routes of invasions and 
determining the source populations are thus critical in 
developing management strategies to prevent further intro-
ductions. The most effective way to retrace invasive spe-
cies’ invasion history is to study their worldwide genetic 
structure (Estoup and Guillemaud 2010).

Bark and ambrosia beetles (Coleoptera: Curculioni-
dae: Scolytinae) are among the most successful invasive 
species groups. They represent 0.2% of insect species but 
more than 50% of insect interceptions in ports of entry 
(Hulcr and Dunn 2011). Ambrosia beetles take their name 
from their obligate association with symbiotic ambrosia 
fungi. The females dig galleries into the xylem of their 
host plant, where they inoculate spores of their fungal 
symbiont, which will be used as the only food source by 
both larvae and adults. This symbiosis allows them to 
attack a broad range of host plant species and easily shift 
to new hosts in invaded ranges, which is a major reason for 
their success as invaders (Kirkendall et al. 2008). Because 
they are tiny insects living inside galleries most of their 
life, they can easily travel long distances unspotted, hid-
den in living plants or wood packaging material (Raffa 
et al. 2015). While most ambrosia beetles are harmless in 
their native range, attacking only dead or weakened trees, 
some species can attack healthy trees and economically 
important crops in the ecosystems they invade (Hulcr et al. 
2017; Kühnholz et al. 2001; Ploetz et al. 2013). Ambrosia 
beetles can also spread pathogenic fungi and diseases in 
naive ecosystems (Hulcr and Dunn 2011). For instance, 
the laurel wilt disease caused by the pathogenic fungus 
Raffaela spread by the redbay ambrosia beetle (Xyleborus 

glabratus) has killed hundreds of millions of trees in the 
Lauraceae family since it was first detected in the USA in 
2002 and is responsible for a $356 million annual loss in 
the avocado industry (Evans et al. 2010).

Xylosandrus is a particularly successful genus of invading 
ambrosia beetles. Out of the 54 Xylosandrus species pres-
ently recognised, four are worldwide invaders causing major 
losses in plant nurseries and cultivations, namely X. crassi-
usculus, X. germanus, X. morigerus and X. compactus (Gug-
liuzzo et al. 2021; Dole et al. 2010). Like other ambrosia 
beetles, Xylosandrus species have biological and ecological 
characteristics favouring invasion (Kirkendall and Odegaard 
2007). They are haplodiploid (i.e. non-fertilised eggs give 
haploid males, while fertilised eggs give diploid females) 
and predominantly mate between siblings as females usu-
ally mate with their brothers in maternal galleries before 
dispersing. More, as adults are relatively long-lived, a single 
unmated Xylosandrus female is able to find a population by 
mating with its haploid male offsprings (Jordal et al. 2001). 
The combination of haplodiploidy and regular inbreeding 
allows to lower inbreeding depression by purging deleterious 
alleles (Peer and Taborsky 2005), which prevents detrimen-
tal effects of low population density typical for regularly 
outcrossing diploid species, such as the mate-finding Allee 
effect (Gascoigne et al. 2009). The invasive Xylosandrus 
species were reported on hundreds of hosts species belong-
ing to dozens of plant families (Weber and McPherson 1983; 
Browne 1961). This could be caused by generalist genotypes 
able to live in multiple host plants rather than complexes 
of multiple genotypes specialised on diverse plant families. 
Indeed, Andersen et al. (2012) showed that deeply diverg-
ing genotypes of X. morigerus shared broad and completely 
overlapping niches without any sign of host specialisation.

The genetic structures of populations of these four spe-
cies have been studied in the last decade, but the worldwide 
patterns of invasions were only addressed for X. germanus 
(Dzurenko et al. 2020) and X. crassiusculus (Storer et al. 
2017; Ito and Kajimura 2009; Landi et al. 2017). Despite 
similar ecological characteristics, these two species were 
proved to have drastically different invasion histories. In par-
ticular, all non-native populations of X. germanus proved 
to originate from a single region in Japan, and invasion 
in Europe and in North America occurred independently. 
Results based on a mitochondrial and a nuclear gene fur-
ther suggested that only one introduction event occurred in 
Europe, while several introductions were suggested in North 
America. On the other hand, genetic structure and invasion 
history of X. crassiusculus seem more complex. Cryptic 
diversity was identified worldwide, and divergent lineages 
were introduced in different regions of the world, with each 
invasive population potentially resulting from numerous 
introductions, or from a single genetically diverse introduc-
tion, or a mix of both.
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Very little is known about Xylosandrus compactus genetic 
structure and invasion history. The only genetic study focus-
ing on X. compactus so far was centred on India and based 
on a single mitochondrial marker, showing a very low 
genetic diversity in spite of a sampling including almost 
200 specimens (Kiran et al. 2019). However, this work did 
not discuss X. compactus invasion history. Yet, X. compac-
tus is a worldwide invader native to temperate and tropical 
regions of Asia. It is reported on more than 220 host species 
from more than 60 families (Ngoan et al. 1976; Beaver et al. 
2014), including several plants of economic importance, 
such as cacao, mango, avocado and coffee (Oliveira et al. 
2008). Solely in Uganda, X. compactus is responsible for 
$40 million annual loss due to damages on coffee planta-
tions (Egonyu et al. 2015). It is also known to spread poten-
tially pathogenic fungi such as Fusarium solani (Bosso et al. 
2012). X. compactus is still expanding worldwide and colo-
nising new territories, notably in Europe where it spreads 
at an alarming rate. It has been present in Madagascar and 
Africa for more than a century, and it colonised North Amer-
ica in the 1940s, Hawaii in 1964 and South America in the 
late 1970s. Colonisation of Europe is much more recent, as 
it was first detected in Italy in 2011 (Garonna et al. 2012), in 
France in 2014 (Roques et al. 2019), in Greece (Spanou et al. 
2019) and Mallorca (Balearic Islands) (Leza et al. 2020) 
in 2019, continental Spain in 2020 (Gallego et al. 2020) 
and Corsica in 2021 (A.R., pers. obs.). Species distribution 
modelling suggests that X. compactus could spread to most 
Mediterranean regions and along the Atlantic coast from 
Portugal to the United Kingdom. It could also establish in 
new countries such as Australia, New Zealand or Mexico, 
where environmental conditions are predicted to be suitable 
(Urvois et al. 2021).

The aim of the present study was to characterise the 
global genetic structure and invasion history of X. compac-
tus worldwide, with a focus on Europe where it was the most 
recently introduced. We used both mitochondrial and nuclear 
markers to test whether they bring consistent information, 
as these two types of markers can be differently affected by 
the species’ demographic history and could show contrast-
ing patterns (Toews and Brelsford 2012). Moreover, we used 
genome-wide nuclear data based on Restriction-site Associ-
ated DNA (RAD) sequencing (Davey and Blaxter 2010) to 
describe at high resolution the species’ genetic structure. 
Our objectives were (i) to compare the worldwide genetic 
structure obtained with mitochondrial and nuclear markers, 
and to determine if the species consisted of differentiated 
lineages; (ii) to disentangle the origin(s) of the non-native 
populations on the three invaded continents (Africa, Amer-
ica and Europe), testing if they were colonised indepen-
dently and if each continent was invaded once or several 
times; and (iii) to analyse the genetic diversity and pathways 
within each invaded region. Answering these questions is 

timely to develop management strategies and propose plans 
for efficient epidemiological surveillance and early detection 
for this highly invasive pest.

Material and methods

Insect sampling

We collected Xylosandrus compactus females from 29 
locations (Table 1). X. compactus is commonly described 
as native to Southeastern Asia. Still, the exact boundaries 
of its native range are unknown and it is not possible to 
know whether it should be considered invasive in the periph-
ery of its Asian distribution, such as India. To simplify, we 
decided to consider all Asian localities as part of its native 
area. China was the only country sampled in the presump-
tive native range of the species. Low sampling coverage in 
invasive species’ native range is a common issue as they 
often cause less damage in their native area and are thus 
harder to find there. We collected specimens at 25 sites in the 
invaded range, in 6 countries distributed on three continents. 
The insects were obtained either directly from the host tree, 
from traps baited with ethanol or more specific attractants 
(Roques et al., in prep) or from collections. Whenever pos-
sible, insects from each location were caught from different 
trees and traps, and at different dates, to minimise within-
location inter-individuals relatedness. Individuals were 
stored in 96% ethanol and at -18 °C until DNA extraction.

DNA extraction

Mycangia were removed, and each specimen was washed 
with 70% alcohol and cleaned with a paintbrush to limit 
potential fungal contamination. DNA was then extracted 
from the whole insect using the Macherey–Nagel Nucle-
oSpin Tissue kit following the manufacturer’s instructions, 
with two successive elutions in 50 µL elution buffer BE to 
increase DNA yield, and stored at -18 °C.

Mitochondrial DNA sequencing

We sequenced between 1 and 8 insects per location for a 
total of 96 specimens. We amplified the barcode COI frag-
ment via PCR using the primers HCO2198 (5’ –TAA​ACT​
TCA​GGG​TGA​CCA​AAA​AAT​CA – 3’) and LCO1490 (5’ 
– GGT​CAA​CAA​ATC​ATA​AAG​ATA​TTG​G – 3’) (Folmer 
et al. 1994) (Table 1). The PCR was performed as follows: 
denaturation for 5 min at 94 °C followed by 35 cycles of 
amplification of 45 s at 94 °C, 50 s at 47 °C and 90 s at 72 °C 
and finally 5 min at 72 °C. PCR products were cleaned using 
the NucleoSpin Gel and PCR Cleanup kit (Machery-Nagel) 
and sequenced in both directions using the ABI Prism 
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Table 1   Summary of the localities sampled and specimens used in 
the COI and RAD sequencing analyses. UFFE is short for University 
of Florida’s Forest Entomology Laboratory and uffeID represents the 

sample’s unique identifier in the UFFE collection database. PACA is 
short for the French region Provence-Alpes-Côtes d’Azur

Range Sender (Gen-
Bank accession 
number/uffeID)

Country State/Province/
Region

Locality Latitude Longitude No. in COI 
analysis (haplo-
type)

No. in RAD 
analysis 
(group)

Africa GenBank 
(GU808707.1)

Ghana Western Region Ankasa 5.454129 –2.049559 1 (B2) –

Africa Fabrice Pinard Uganda Central Region Bunjako Island 0.002465 32.133916 2 (B2) 7 (group 3)
Asia UFFE (31,708) China Fujian Shuyang 27.159615 119.685488 2 (A5) 2 (group 4)
Asia UFFE (31,704) China Guizhou Zunyi 27.702703 106.923687 2 (A4) 2 (group 4)
Asia GenBank 

(MN620067.1)
China Hong Kong – 22.351683 114.167294 1 (C) –

Asia GenBank 
(MN620068.1)

China Jiangsu Nanjing 32.073142 118.608523 1 (A5) –

Asia UFFE (31,864) China Jiangxi Xiangshan 27.554360 116.039123 1 (A6) 1 (group 4)
Asia UFFE (33,225, 

33,226)
China Shanghai Shanghai Botan-

ical Garden
31.148935 121.441839 5 (A1) 10 (group 1)

Asia GenBank 
(MT178811.1)

India Karnataka Cottabetta 13.729165 75.574106 1 (B1) –

Asia GenBank 
(KY172634.1, 
KY172635.1)

India Karnataka Mudigere 13.08 75.63 2 (B2) –

Asia GenBank 
(MN620069.1)

Japan Okinawa – 26.344871 127.801188 1 (A3) –

sia GenBank 
(KU727031.1)

Vietnam Phú Yên Tuy Hoa 13.112984 109.277958 1 (B2) –

Europe INRAE team France Corsica Cotti 41.772022 8.773401 2 (A1) –
Europe INRAE team France PACA​ Cap d'Ail 43.728410 7.402091 1 (A1) 1 (group 1)
Europe INRAE team France PACA​ Cap Ferrat 43.676092 7.329719 4 (A1) 5 (group 1)
Europe INRAE team France PACA​ Château-Léoube 43.122588 6.275151 6 (A1) 7 (group 1)
Europe INRAE team France PACA​ Garoupe 43.563996 7.124504 2 (A1) 5 (group 1)
Europe INRAE team France PACA​ Le Lavandou 43.154 6.413 2 (A1) –
Europe INRAE team France PACA​ Nice 43.695849 7.267888 4 (A1) 4 (group 1)
Europe INRAE team France PACA​ Sainte-Margue-

rite
43.519819 7.048594 2 (A1) 2 (group 1)

Europe INRAE team France PACA​ Saint-Tropez 43.261871 6.645200 1 (A1) 1 (group 1)
Europe INRAE team France PACA​ Villa Thuret 43.563996 7.124504 6 (A1) 5 (group 1)
Europe Massimo Faccoli Greece Peloponnese – 37.349380 22.352093 8 (A1) 8 (group 1)
Europe INRAE team Italy Latina Circeo Park 41.297216 13.046848 4 (A1) 11 (group 1)
Europe Giovanna Tropea Italy Sicily Donnafugata 36.881903 14.563506 2 (A1) 5 (group 1)
Europe Giovanna Tropea Italy Sicily Donnalucata 36.766307 14.636295 2 (A1) 5 (group 1)
Europe Giovanna Tropea Italy Sicily Marina di 

Ragusa
36.785731 14.548371 5 (A1) 5 (group 1)

Europe Diego Gallego Spain Tarragonès Vila-seca 41.11125 1.13381 4 (A1) -
North America UFFE (11,379) USA Florida Austin Cary 

Forest
29.749605 −82.212870 5 (A2) 5 (group 2)

North America UFFE (20,588, 
20,595)

USA Florida Highlands Ham-
mock Park

27.471267 −81.531776 6 (A2) 5 (group 2)

Pacific Island GenBank 
(KX055191.1)

France French Polynesia Tefarerii 21.899523 −159.560966 1 (A2) 3 (group 2)

Pacific Island Jared Bernard USA Hawaii Kaua’i Coffee 
Cie

21.31564 −157.80398 5 (A2) 6 (group 2)
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BigDye Terminator v3.1 Cycle Sequencing Kit on an ABI 
Prism 3500 Genetic Analyzer (Thermo Fisher Scientific). 
We used CodonCode (CodonCode Corporation) to check 
electropherograms, create contigs and trim all sequences to 
566 bp. DNA sequences were aligned using ClustalW in 
MEGA X (Kumar et al. 2018). We completed the align-
ment with all the barcode COI sequences publicly available 
from Genbank and for which location information was avail-
able. Thus, 14 sequences from 10 locations in 8 countries 
were added, including sequences from Mitchell and Mad-
dox (2010) (KX818316, KX818319), Cognato et al. (2020) 
(MN620067, MN620068, MN620069), Dole et al. (2010) 
(GU808707), Stouthamer et al. (2017) (KU727031.1) and 
Kiran et al. (2019) (KY172634.1, KY172635.1). The final 
alignment hence included 110 individuals (Table 1).

Mitochondrial data statistical analysis

We calculated Kimura 2 Parameters (K2P) genetic distances 
between haplotypes using MEGA X (Kumar et al. 2018). 
Haplotype and nucleotide diversities were calculated using 
the pegas package (Paradis 2010) in the R Software (R Core 
Team 2018). We reconstructed a phylogeny between haplo-
types using Maximum Likelihood and Bayesian inference, 
with X. germanus and X. crassiusculus as outgroups (acces-
sion numbers NC036280.1 and MT230099.1, respectively). 
A Maximum Likelihood phylogeny was performed with 
MEGA X (Kumar et al. 2018) with 1000 bootstraps using 
K2P distances. A Bayesian inference of the haplotype phy-
logeny was performed with MrBayes (Ronquist et al. 2012) 
with a GTR + I + Γ evolutionary model, and four chains run 
four times during 2,000,000 generations with a diagnostic 
every 100 generations. A median-joining network was real-
ised with PopArt (Bandelt et al. 1999). Haplotype maps were 
performed using the R packages maps (Becker et al. 2018), 

ggplot2 (Wickham 2016) and scatterpie (Guangchuang 
2020).

RAD sequencing

DNA quantity and quality were assessed using the Qubit 
dsDNA HS Assay Kit with a Qubit fluorometer. As the DNA 
amount obtained from each individual was too small for the 
construction of RAD libraries, we followed the protocol used 
by Cruaud et al. (2018) to perform a whole genome amplifi-
cation of each individual DNA sample with the Genomiphi 
kit V3 following the manufacturer’s procedure. Individual 
RAD libraries were then constructed following Baird et al. 
(2008) and Etter et al. (2011) with a few modifications listed 
hereafter. DNA was digested using 250 ng of DNA in 22 
µL per sample and 0.5 µL of the PstI-HF enzyme for a total 
volume of 25 µL. The digested fragments from each speci-
men were tagged with a unique 5- or 6- bp barcode and a P1 
adapter using 1.5 µL of P1 adapter (100 nM) and 0.5 µL of 
T4 Ligase (2.000.000 U/ml) for a total volume of 30.5 µL. 
Specimens were then pooled 19 by 19 to create seven librar-
ies. Libraries were sonicated on a Covaris S220 (duty cycle 
10%, intensity 5, 200 cycles/burst, duration 75 s) to obtain 
300–600 bp fragments. Each library was then tagged with a 
5- or 6- nucleotide barcode and a P2 adapter using 1 µL of 
P2 adapter (10 nM) and 0.5 µL of Quick Ligase (2,000,000 
U/ml). The sizing and purification steps were realised using 
AMPure XP beads (Agencourt). We performed 5 PCR 
enrichment with 15 cycles (30 ng DNA input, NEB Phusion 
High-Fidelity PCR Master Mix) for each library to increase 
fragment diversity. After quality control using the Agilent 
2100 Bioanalyzer, the libraries were pooled altogether at an 
equimolar ratio and sent to MGX-Montpellier GenomiX for 
sequencing. The library was verified on a Fragment Analyser 
(Agilent, HS NGS fragment Kit), quantified by qPCR (Kapa 
Library quantification kit) and sequenced on a SP lane in 

Table 1   (continued)

Range Sender (Gen-
Bank accession 
number/uffeID)

Country State/Province/
Region

Locality Latitude Longitude No. in COI 
analysis (haplo-
type)

No. in RAD 
analysis 
(group)

Pacific Island GenBank 
(KX818316.1 
to 
KX818319.1)

USA Hawaii Kona Research 
Farm

22.198215 −159.334457 4 (A2) -

Pacific Island Jared Bernard USA Hawaii Mānoa Valley 21.483681 −158.022090 5 (A2) 3 (group 2)
Pacific Island Jared Bernard USA Hawaii Moloa’a Coffee –19.6359 −155.95 2 (A2) –
Pacific Island UFFE (27,780) USA Hawaii O’ahu –16.79 −150.962 1 (A2) –
South America GenBank 

(GU808706.1)
Brasil Espirito Santo – –19.179798 −40.318079 1 (A2) –

South America UFFE (17,769) France French Guiana Amazon Lodge 4.559321 −52.207490 4 (A2) 5 (group 2)
South America UFFE (31,702) France French Guiana Carrefour de 

Gallion
4.824021 −52.486669 1 (A2) 1 (group 2)
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paired-end 2 × 150 nt mode on a Novaseq6000 (Illumina) 
according to the manufacturer’s instructions.

RAD sequence data processing

We used the RADIS pipeline (Cruaud et al. 2016) to (i) 
demultiplex individuals using process_radtags (Catchen 
et  al. 2013), (ii) homogenise read length and remove a 
few low-quality bases at the 3’-ends by trimming reads to 
139 bp and (iii) remove PCR duplicates using clone_filter 
(Catchen et al. 2013). The following steps were performed 
using STACKS (Catchen et al. 2013; Rochette et al. 2019) 
on the Genotoul Bioinformatics Platform (INRAE, Tou-
louse, France). We tested two values of the M parameter 
from ustacks (i.e. the maximum distance allowed between 
stacks) M = 6 and M = 8. We also tested two values of the 
n parameter from cstacks (i.e. the number of mismatches 
allowed between sample loci when building the catalogue) 
n = 4 and n = 6. In order to remove potential fungal con-
taminations, we aligned the obtained loci on the Ambro-
siella xylebori’s (X. compactus’ symbiotic fungus) refer-
ence genome (Vanderpool et al. 2018) (accession number: 
ASM277803v1) using the BWA-MEM algorithm (Li and 
Durbin 2009) to create a loci blacklist that we later used to 
filter the fungus’ reads in STACKS’ populations module. In 
STACKS’ populations module, we used three filtering val-
ues for parameter r (the minimum percentage of individuals 
required to process a locus, here with one population) r = 0, 
0.5 and 0.7. We compared the number of SNPs obtained for 
each of the M, n and r Stacks parameters combinations. We 
also performed Principal Component Analyses (PCAs) and 
clustering with SNPrelate (Zheng et al. 2012) for the four 
M and n combinations parameters for r = 0.7. We excluded 
loci with a mean read depth lower than 8 using VCFtools 
(Danecek et al. 2011). We did not apply filtering based on 
minor allele frequency (we kept all SNP with at least one 
allelic variation) in order to avoid biasing subsequent statisti-
cal analyses (Linck and Battey 2019).

Lastly, we also wanted to determine the genetic structure 
of the symbiotic fungus. We thus ran the STACKS’ popu-
lation module using the loci mapping on the Ambrosiella 
xylebori reference genome as a whitelist, using r = 0.3 and 
excluding loci with a mean depth lower than 4.

RAD SNP statistical analysis

We estimated the specimens’ relative ancestry using 
Admixture (Alexander et al. 2009), with a putative num-
ber of populations, K, ranging from 1 to 12 with a 100-fold 
cross-validation to assess the best K. We then used the pong 
1.4.9 software (Behr et al. 2016) to estimate the major mode 
(using a greedy approach with 100 runs and a similarity 
threshold value of 0.90) and plotted the results using the 

package pophelper (Francis 2017) in the R Software (R Core 
Team 2018). A Maximum Likelihood tree was generated 
using RAxML 8.2.21 (Stamatakis 2014). We used the GTR​
CAT​ approximation and allowed the program to automati-
cally halt bootstrapping using the bootstrap converge crite-
rion (Pattengale et al. 2010) through the autoMRE option. 
The tree was visualised using FigTree V.1.4.4 (https://​
github.​com/​ramba​ut/​figtr​ee/​relea​ses). Besides, a hierarchi-
cal clustering tree was built using SNPRelate (Zheng et al. 
2012) on an individual dissimilarity matrix (Zheng 2013). 
We also calculated the pairwise Fst (Weir and Cockerham 
1984; Wright 1951) and Nei distances (Nei 1972) between 
the different groups obtained with the methods mentioned 
above using the StAMPP package (Pembleton et al. 2013). 
We also estimated the relative ancestry of the symbiotic 
fungi Ambrosiella xylebori and built a hierarchical cluster-
ing tree using the same procedure as for X. compactus.

Results

Mitochondrial diversity and differentiation

We obtained nine haplotypes worldwide (Fig. 1a–c, Table 1), 
with 70 variable sites out of 566 bp. Eight haplotypes were 
found in X. compactus’ native area, including 5 in China 
(A1, A4, A5, A6 and C), 1 in Japan (A3), 1 common to 
India and Vietnam (B2) and 1 only in India (B1). Only three 
haplotypes were found in X. compactus’ invaded range. 
The haplotype B2 was found in the two African countries 
studied, Uganda and Ghana. Only the haplotype A1 was 
observed in the invaded sites of southern Europe, this hap-
lotype being also present in Shanghai but not in the site 
of the close Jiangsu province (Nanjing) nor the other sam-
pled provinces. The haplotype A2 was found only in the 
invaded range and was present in every locality sampled in 
the Americas and the Pacific Islands. The K2P genetic dis-
tances suggested that the haplotypes could be divided into 
three groups with distances within groups lower than 0.045 
(mean 0.018) and between groups higher than 0.056 (mean 
0.0648) (Table 2). The first group (lineage A) comprised 
six haplotypes (A1 to A6) and was present in China, Japan, 
Europe, the Americas, Hawaii and French Polynesia. The 
haplotypes A1 and A2, the only haplotypes found in most of 
the invaded range, differed only by one substitution (Fig. 1c). 
The second group (lineage B) comprised two haplotypes 
(B1 and B2) and was found in Vietnam, India, Uganda and 
Ghana. The third group (lineage C) consisted of only one 
haplotype found in Hong Kong, whose sequence was pub-
lished in a recent study by Cognato et al. (2020).

We found only one haplotype in each locality; thus, 
haplotype and nucleotide diversities and their respective 
standard deviations at the locality level all equalled zero. 
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The Maximum Likelihood tree reached high support val-
ues for every node and set the groups A and C in the same 
clade. The Bayesian inference tree had a lower resolution but 
placed groups B and C in the same clade with a significant 
posterior probability (Supplementary Figure S1).

Genetic structure at nuclear SNPs obtained 
from RAD sequencing

We obtained a total of 563,419,874 reads, with an aver-
age of 2,324,174 (445,028 SD) reads per specimen after 

Fig. 1   Xylosandrus compactus haplotype maps (a and b) and median-joining network (c) based on COI sequences. The diagrams represent the 
sampling size and the proportion of each haplotype in each locality sampled a worldwide, and b focusing on Europe
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demultiplexing, and of 1,382,550 (252,282 SD) after remov-
ing low-quality reads and PCR duplicates. Depending on 
the combinations of the parameters M and n, 1.65 to 1.69% 
of the sequences mapped on the Ambrosiella xylebori’s 
genome and were blacklisted. The combination used of 
the parameters M and n had limited effects on our results. 
Indeed, each parameter combination of M, n and r yielded 
very similar numbers of loci, variant sites, and observed 
homozygosity (Supplementary Table 1). This was expected 
given the relatively low heterozygosity of the genome of 
species with regular inbreeding (Kirkendall et al. 2015). The 
Principal Component Analyses and the clustering analyses 
also gave similar results for the different parameter combina-
tions (Supplementary Figure S2, Supplementary Figure S3). 
We decided to focus exclusively on the results obtained with 
M = 6 and n = 4, excluding loci with a mean depth lower than 
8 or shared by less than 70% of the specimens (r = 0.7). This 
M and n parameter set corresponds to the parameters used by 
Storer et al. (2017), adjusted for the read length. With these 
selected parameters values, we kept 27,583 SNPs.

The average homozygosity was 0.99 (0.002 SD), and 
the average inbreeding coefficient was 0.899 (0.02 SD). 
Using Admixture to explore the worldwide genetic struc-
ture of X. compactus, the cross-validation values reached 
a plateau for K = 4 (Supplementary Figure S4). Increasing 
K above 4 increased the model’s complexity at the cost of 
the geographical signal (Supplementary Figure S5); we thus 
selected K = 4 as the most parsimonious number of genetic 
groups. With a similarity threshold of 0.90, the 100 Admix-
ture runs yielded 24 different modes, the major mode repre-
senting 77 of them, with a pairwise similarity of 0.999. In 
all 233 runs of the major mode, all specimens were assigned 
to one of the four groups with a score higher than 0.95, and 
most of them scored more than 0.999 (Fig. 2). All speci-
mens from Shanghai and Europe were assigned to group 
1. The specimens from the Americas and Hawaii clustered 
together in group 2. The two remaining groups corresponded 
to the individuals from Uganda, Africa (group 3) and the 
other Chinese localities (group 4). Groups 1 and 2 were 
the closest, with a genetic distance of 0.03 (Table 3), while 

the genetic distances between group 4 and groups 1 and 2 
were seven times larger. Group 3 was the most distant, with 
a genetic distance over 1 when compared with any of the 
three other groups. Despite the small number of specimens 
in group 4, the third-best mode split it into two groups. The 
RAxML analysis stopped after 400 bootstraps with a best 
tree scoring a GAMMA-score of -91,723.68 and depicting 
a genetic structure consistent with the Admixture results. 
Indeed, the Maximum Likelihood tree clearly divided the 
same four groups, respectively, Uganda, Europe and Shang-
hai, the Americas and Hawaii and the remaining localities 
in China. This analysis also showed a higher genetic differ-
entiation between individuals from the different locations 
in Asia compared to between individuals within each of 
the three other clusters. The hierarchical clustering tree on 
the individual dissimilarity matrix yielded a similar genetic 
structure between samples (Supplementary Fig. 3).

Using the blacklisted reads as a whitelist to focus on the 
symbiotic fungus, we obtained only 95 SNPs after filtering 
with r = 0.3 and excluding loci with a mean depth lower 
than 4. As for X. compactus, the cross-validation values 
reached a plateau for K = 4 (Supplementary Material S6). 
With a similarity threshold of 0.90, the 300 Admixture runs 
yielded 83 different modes, the major mode representing 191 
of them, with a pairwise similarity of 0.949. The analyses 
distinguished the same four groups as for the insect sym-
biont. However, in some runs, a few samples from group 1 
were assigned to group 2 and, reciprocally, most probably 
resulting from restricted power due to the limited number of 
loci (Supplementary Table S6).

Discussion

Invasion history of X. compactus and plausible 
scenarios

In spite of a limited sampling obtained in the native range, 
our results suggest the existence of genetic diversity and dif-
ferentiation among X. compactus populations in Asia, with 

Table 2   Genetic distances 
between COI haplotypes based 
on the Kimura 2-parameter 
model

A1 A2 A3 A4 A5 A6 B1 B2

A1
A2 0.002
A3 0.033 0.031
A4 0.044 0.042 0.027
A5 0.042 0.040 0.025 0.013
A6 0.040 0.038 0.023 0.011 0.002
B1 0.086 0.084 0.068 0.070 0.071 0.070
B2 0.082 0.080 0.064 0.066 0.067 0.066 0.007
C 0.073 0.071 0.065 0.063 0.065 0.063 0.063 0.056
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at least three mitochondrial lineages. The geographical dis-
tributions of these genetic groups within the native range 
will need to be characterised, as well as the putative exist-
ence of unsampled additional lineages. We showed that two 
of these genetic groups were the sources of all the invasive 
populations. Lineage A independently colonised the Ameri-
cas and the Pacific Islands in the 1960s and Europe in the 
2010s, and lineage B colonised Madagascar and Africa in 
the early twentieth century. The regions invaded by mito-
chondrial lineage A (Europe, the Americas and the Pacific 
islands) were characterised by very low genetic diversity 
despite the use of mitochondrial and pangenomic markers 

and extensive sampling coverage of their large geographical 
extent. Our results showed only one mitochondrial haplo-
type and almost no genomic diversity within each invasive 
group. This contrasts with other invasive ambrosia beetles, 
such as X. crassiusculus, whose populations in the invaded 
range were genetically diverse (Storer et al. 2017). How-
ever, it is similar to X. germanus, in which a single COI 
lineage was responsible for the European and the Ameri-
can invasions, although it showed higher haplotypic diver-
sity in both continents than X. compactus (Dzurenko et al. 
2020). According to the genetic invasion paradox (Sax and 
Brown 2000), we should expect invasive populations that 
experienced founder effects or bottlenecks to suffer from 
reduced fitness and evolutionary potential. X. compactus’ 
populations, however, might not fulfil the conditions to be 
called paradoxical (Estoup et al. 2016) as they presumably 
do not experience inbreeding depression thanks to the purge 
of the genetic load through repeated inbreeding (Schrieber 
and Lachmuth 2017). Indeed, a previous experimental study 
using X. germanus showed signs of outcrossing depres-
sion but not of inbreeding depression in this species (Peer 
and Taborsky 2005). Andersen et al. (2012) showed that 
X. morigerus follows the general-purpose-genotype model 

Fig. 2   Maximum likelihood tree performed with RAxML 8.2.1 and admixture plot for K = 4 calculated on RAD sequencing data. Specimens are 
divided according to their geographical origin

Table 3   Pairwise Fst (lower part) and Nei distances (upper part) cal-
culated on RAD sequencing data between the four groups identified 
by Admixture

Americas 
and Pacific

Africa Europe and 
Shanghai

Asia

Americas and Pacific 0 1.315 0.028 0.195
Africa 0.994 0 1.315 1.109
Europe and Shanghai 0.797 0.994 0 0.196
Asia 0.938 0.975 0.954 0
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(Baker 1965), with generalist rather than specialised line-
ages with different ecological niches. X. compactus invaded 
Europe, the Americas and the Pacific Islands with almost no 
genetic diversity, suggesting that it also follows the general-
purpose-genotype model and comprises generalist lineages 
occurring in various environmental conditions.

The absence of mitochondrial and genomic diversity both 
in Europe and in America and the Pacific is striking and 
suggests a single introduction in each continent followed by 
stepping-stone extension and within-continent human-aided 
dispersion, possibly through national and international live 
plant trade or timber and wood packaging material trans-
portation. Indeed, further expansions involved long-distance 
dispersal that the insect’s natural dispersal capacities can-
not explain. Still, the absence of mitochondrial and genomic 
diversity could also result from repeated introductions from 
a single primary source in Europe and the American-Pacific 
region. As closely related but distinct mitochondrial hap-
lotypes and RAD genetic groups occur in each region, we 
suppose that both continents were colonised independently 
from a very similar source. However, the very low genetic 
diversity found prevented us from inferring X. compactus’ 
invasion history after its first entry, and we can only propose 
hypotheses based on historical data and dates of first detec-
tions. Concerning Europe, X. compactus was first detected in 
Italy in 2011 (Garonna et al. 2012), three years before France 
(Roques et al. 2019), which suggests that Italy might be the 
origin of the first step of the European invasion. However, 
we cannot infer the exact movements of the pest that caused 
the subsequent invasions in Greece, Mallorca, continental 
Spain and more recently Corsica. The same is true for the 
American-Pacific invasion, where a single colonisation event 
from the native range probably occurred. X. compactus was 
first detected in North America in 1941 (Ngoan et al. 1976), 
in Hawaii in 1964 (Hara and Beardsley Jr 1979) and South 
America in 1979 (Wood 1980). Thus, the populations from 
North America could have acted as a source for invasions in 
Pacific Islands or South America. X. compactus can disperse 
more than 8 km between two flying seasons (Gugliuzzo et al. 
2019), which would be enough to disperse actively between 
close sites (e.g. between sampling sites in Hawaii, for exam-
ple). Between remote places, however, its spread was prob-
ably human-mediated through international trade.

The analyses revealed a relatively low genetic differ-
entiation at nuclear loci between populations in Europe 
versus in America and the Pacific, in addition to a single 
mutational step difference between their mitochondrial 
haplotypes. This suggests a recent divergence and poten-
tially similar or geographically close origins but no recent 
gene flow between both. We did not find native specimens 
that would group with the specimens from the Americas 
and Pacific Islands, probably due to poor coverage of the 
X. compactus’ native range. On the contrary, the analyses 

consistently grouped the specimens from Europe with 
those sampled in Shanghai. Shanghai is one of the most 
economically important cities in China and the busiest port 
globally, from which quantities of goods, including orna-
mental plants, are exported worldwide (UNCTAD 2020). 
We thus hypothesise that Shanghai could be the donor area 
of the European and the American-Pacific invasions, pre-
sumably through international plant trade, but the origin 
may be larger since the samplings were limited in Eastern 
China. X. compactus is one of the most frequent pests in 
Shanghai’s urban forests (Liu et al. 2021; Gao et al. 2017), 
and it is unknown whether it is native to Shanghai or not. 
Therefore, it cannot be excluded that the specimens we 
analysed originated from other parts of China through the 
trade of ornamentals within the country. Indeed, Shanghai 
imported various tree species from other Chinese regions 
to increase its plant diversity (Wang et al. 2020). Thus, 
Shanghai could have simply acted as a bridgehead by 
exporting plants infested by X. compactus from Shang-
hai, or already infested plants produced elsewhere as it 
has been reported by Bras et al. (2019) for the invasive 
box tree moth, Cydalima perspectalis. Another hypothesis 
would be that Europe was invaded by specimens from the 
American-Pacific regions. However, this is less parsimoni-
ous as we did not find the haplotype A2 in Europe, nor the 
haplotype A1 in the American-Pacific. Plus, the haplotype 
A2 is the only one sequenced in a large region, suggesting 
that it was stable over the last decades during the invasion 
of the Americas and the Pacific Islands. Thus, it is unlikely 
that it mutated before reaching Europe and Shanghai, or 
that the only mutation between A1 and A2 appeared both 
in the American-Pacific and Shanghai.

Ghana and Uganda were invaded by the same mitochon-
drial haplotype belonging to the lineage B, presumably more 
than a century ago (Egonyu et al. 2015). The haplotype B2, 
which occurs in Africa, was observed within the native 
range in a locality in Vietnam and a locality in India, where 
Kiran et al. (2019) sequenced around 200 specimens and 
found the haplotype B2 exclusively. These two localities are 
more than 3500 km apart, and a more thorough sampling 
throughout Asia might have revealed the haplotype B2 in 
other localities, potentially along the Bay of Bengal. Unfor-
tunately, Vietnam, India, and Ghana were not included in the 
RAD sequencing experiment (Table 1), which could have 
helped propose hypotheses about Africa’s invasion history. 
Although not much is known about the first steps of X. com-
pactus invasion in Africa, we hypothesise that X. compac-
tus might have been introduced to Africa from Southeastern 
Asia, maybe from India or Vietnam. Extensive sampling 
and genetic characterisation of X. compactus are needed to 
assess the number of lineages present in Madagascar and 
Africa and test whether genetic diversity is also almost non-
existent in this continent.
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Despite a very limited sampling of the native range, 
we found that populations from the native range carried a 
higher genetic diversity than in the numerous populations 
sampled in the invasive range. We can hypothesise that, 
similarly to X. crassiusculus and X. germanus, genetic 
diversity in native populations of X. compactus is rela-
tively high, and further genetic structure may be identified 
with a more extensive sampling there. A comprehensive 
study of X. compactus genetic structure in its native range 
is needed to better describe its genetic diversity, to map 
the distribution of the different mitochondrial lineages and 
increase our understanding of X. compactus’ evolutionary 
history and colonisation pathways. This would also allow 
to formally test whether the genetic diversity is almost 
non-existent at the local scale. Specimens from Shang-
hai excluded, Admixture assigned all Asian specimens 
to the group 4, despite larger differences between them 
than between specimens from the groups 1 and 2 (Fig. 2). 
This is most likely due to the difference of sample size 
between the larger groups 1 and 2, and group 4 (Table 1), 
and a study including more specimens from X. compactus’ 
native range would presumably reach a higher number of 
clusters and notably split the group 3 in several groups, 
again arguing for a more extensive sampling of popula-
tions in the native range.

Our analysis revealed low individual’s heterozygosity and 
high Fst between genetic groups. This must be interpreted 
with caution, as restricted dispersal and hence low gene flow 
between populations, sib-mating and haplodiploidy contrib-
ute to very low heterozygosity and to a predominant effect of 
drift on differentiation between lineages. Hence, these met-
rics are expected to show particularly extreme values com-
pared to organisms having higher dispersal and reproductive 
strategies implicating more random mating between local 
individuals and to diploid organisms. Nevertheless, such low 
heterozygosity and high differentiation are observed among 
a wide diversity of organisms, including insects (e.g. Eyer 
et al. 2018; Andreev et al. 1998). In the context of assess-
ing invasion routes and identifying source locations of the 
invading lineages, such high Fst between lineages have one 
major advantage and one major inconvenient. The advantage 
is that given the depleted diversity and genetic stability of 
sib-mating populations, the several invading lineages can 
be deciphered efficiently and traced along their way. The 
disadvantage is that, as the potential source populations are 
highly differentiated, one has to genotype virtually almost all 
the source populations to be able to assign invading lineages 
to their source. This task would be much easier if popula-
tions were less differentiated and with a smoother pattern of 
isolation by distance (e.g. Wasser et al. 2004). Less variable 
DNA markers (i.e. mitochondrial or nuclear ultra-conserved 
elements) may be more suitable to attain such objective in 
the context of highly structured populations.

The analyses performed on the symbiotic fungus lacked 
power, probably because of the relatively small number of 
loci available (95 compared to 27,583 for X. compactus). 
Yet, they showed results consistent with those for X. com-
pactus, with four different groups emerging from Admixture 
and the clustering tree, which suggests a parallel genetic 
structure, gene flow, and invasion history of the pest insect 
and its symbiotic fungus. As the genome of Ambrosiella 
xylebori is available, it would be interesting in future studies 
to extract DNA of both the insect and the symbiotic fungus 
separately, to obtain more markers from the fungus and con-
firm the parallel histories of both partners.

Management implications

The objective of invasive pest management is to lower the 
damage resulting from the invasion. This can be accom-
plished by preventing the invasion, eradicating an incipient 
invasion, or adapting the management of nurseries, orchards, 
and forests to the new pest.

In terms of prevention of X. compactus invasion, it is no 
longer possible for the Americas, Europe and many islands. 
Once established, the eradication of X. compactus is likely 
impossible. Indeed, given in the absence of the Allee effect 
in the population dynamics of inbreeding ambrosia beetles, 
eradication would require the elimination of all individuals. 
Invasion eradication has succeeded in the case of Xylosan-
drus crassiusculus in Oregon, but only while its distribution 
was restricted to one small area (LaBonte 2010).

X. compactus is not yet established in the entirety of the 
suitable area and could presumably colonise new countries 
such as Australia or New Zealand and pursue its expansion 
in its invaded range, notably in the Mediterranean (Urvois 
et al. 2021). The results we presented here showed that 
both mitochondrial and nuclear markers revealed the same 
invasion history without discrepancy and could be used to 
monitor and screen for the pest invasion in regions where 
it did not occur yet. Although RAD sequencing could be 
helpful to understand the finer genetic structure in X. com-
pactus’ native range, its development is demanding, and it 
is not necessary for detection and monitoring tools given 
the low diversity in the invaded ranges. We advise to use 
mitochondrial DNA sequencing to survey X. compactus 
in the invasive range, as it is faster, less expensive and 
requires less equipment. As our results point to a single 
source for both colonisations of Europe and the Americas, 
we suggest a more thorough screening of imports origi-
nating from the region of Shanghai, mainly live plants 
or wood packaging, as it may be the source of the inva-
sion of X. compactus in most of the world. Rizzo et al. 
(2021) developed a protocol allowing the identification 
of Xylosandrus compactus, X. germanus and X. crassi-
usculus from a segment of gallery or frass. This could be 
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of great help to identify the species after the specimens 
have dispersed from the galleries. We also advise border 
protection agencies to deploy traps with attractive lures 
(a combination of UHR Ethanol, α-pinene, α-copaene 
and quercivorol, Roques et al., in prep) in ports of entry 
and to routinely sequence the specimens’ mitochondrial 
DNA to characterise their lineage and haplotype to iden-
tify their origin. In already invaded areas, this could help 
detect additional invasions from new sources, which is 
a valuable information as populations from different ori-
gins could display different behaviours or have different 
ecological preferences, ultimately affecting management 
success. Identifying the source of the invasion would also 
help target the best agent in the case of classical biologi-
cal control.

In countries where the species is established, there are 
only limited options for direct control of the pests. For-
tunately, as with other Xylosandrus, X. compactus also 
attacks stressed trees more than healthy trees (Ranger et al. 
2015). Therefore, improving tree health and ecosystem 
health is an effective management approach, particularly 
in terms of irrigation (Gugliuzzo et al. 2021).
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