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Abstract: The deterministic model developed by Graham et al. [2020], which is the approxi-
mation in large population of a stochastic model, allowed the authors to propose a ‘macroscopic
description’ of metabolic heterogeneity of Escherichia coli growing on glucose and xylose.
However, these models did not include any mechanistic model to explain the variations of
the duration of the ‘lag-phase’ observed when the glucose is exhausted and before the xylose
is being consumed. Here, we propose a deterministic mechanistic model to explain how E. coli
switches its consumption of a sugar to another one depending on the dynamic of intracellular
XylR molecules. The model is developed and investigated numerically. It reveals some important
observability issues.
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1. INTRODUCTION

Described for the first time by Monod, the diauxic growth
consists in a biphasic growth in a bacterial population
consuming two different sugars in a closed medium, Monod
[1942]. To study this phenomenon, a number of models
have been proposed in the literature. However, a specific
mechanism able to modulate the length of the lag phase as
a function of its state was not proposed neither modeled
and in all models the population was supposed to behave
uniformly with respect to the two sugars, Turon [2015],
Dedem and Moo-Young [1975], Liquori et al. [1981]. In
Barthe et al. [2020], it was shown for a pure culture
of Escherichia coli growing on glucose and xylose that
‘metabolic heterogeneity’, i.e. the fact that all cells do
not readily switch from glucose to xylose when glucose is
exhausted, could be explained by a specific internal process
related to the ‘XylR transcription factor’, Song and Park
[1997], Laikova et al. [2001], Schmidt et al. [2016]. This
molecule is known to play a central role in the activation
of the xylose pathway. In particular, depending on its
history, a given cell would not contain the same num-
ber of XylR molecules than the others. The dynamic at
which such a molecule would attach on a specific genomic
site could explain the modulation of the duration of the
lag-phases sometimes observed in the diauxic growth of
this microorganism. The deterministic model developed by
Graham et al. [2020], which is the approximation in large
population of a stochastic model, allowed the authors to

propose a ‘macroscopic description’ of metabolic hetero-
geneity. However, no mechanistic modeling was proposed.
Here, we propose a deterministic mechanistic model to
explain how E. coli switches its consumption of one sugar
to another depending on the dynamic of intracellular XylR
molecules. The paper is organized as follows: first, the
model proposed by Graham et al. [2020], hereafter called
‘macroscopic model’, is recalled together with the main
modeling assumptions. Second, a deterministic mechanis-
tic model (called the ‘compartmental model’) is presented.
In a third part, simulations allowing us to provide a first
analysis of the dynamical behaviours of both models are
presented and used to compare their predictions. Finally,
a number of modeling recommendations are suggested and
discussed.

2. A MACROSCOPIC DETERMINISTIC MODEL

The model proposed by Graham et al. [2020] considered
a pure culture of E. coli growing on two sugars, glucose
(which concentration is noted s1) and xylose (s2). The
population of bacteria is divided in two sub-populations
denoted n1 and n2, depending on the sugars on which
they are able to grow. The sub-population n1 can only
consume glucose while n2 preferably consumes s1 but is
also able to consume s2. Both sub-populations produce
and consume acetate noted a. Populations n1 and n2 grow
at rates b1(s1, s2, a) and b2(s1, s2, a), respectively. Each cell
has an internal and continuous production of XylR which



accelerates in the presence of s2 but which is inhibited
by s − 1 due to the catabolic repression. When a XylR
molecule attaches onto a specific genomic site, the xylose
pathway may be ‘activated’: at this instant, the cell is
no longer of type n1 and becomes part of n2. The sub-
population n2 is then able to consume s2 but under the
repression of s1. It means that n2 consumes s2 under the
condition that s1 remains under a given threshold. This
mechanism is modeled using a function η1(s1, s2) which is
the specific rate at which n1 converts into n2. Similarly, if
glucose increases again in the medium, η2(s1) is a function
characterizing the switching rate of n2 bacterial fraction
into n1.

These dynamics are characterized as follows:

dn1
dt

= (b1(s1, s2, a)− η1(s1, s2))n1 + η2(s1)n2

dn2
dt

= (b2(s1, s2, a)− η2(s1))n2 + η1(s1, s2, a)n1

with b1(s1, s2, a) = µ1(s1, a) + µ3(a), b2(s1, s2, a) =
µ2(s2, a) + µ3(a) and where µ1(s1, a) = µ̄1

s1
s1+κ1

λ
λ+a ,

µ2(s2, a) = µ̄2
s2

s2+κ2

λ
λ+a , µ3(a) = µ̄3

a
a+κ3

λ
λ+a , η1(s1, s2) =

η̄1
s2

s2+k1
ki

ki+s1
and η2(s1) = η̄2

s1
s1+k2

with kinetics parame-

ters defined as in Graham et al. [2020].

Acetate being produced by both sub-populations, and
noting θ1 and θ2 production yields of acetate by n1 and
n2, and q1, q2 and q3 the yield coefficients of the biomass
fractions one has:

dn1
dt

= (µ1 + µ3 − η1)n1 + η2n2
dn2
dt

= (µ2 + µ3 − η2)n2 + η1n1
ds1
dt

= −µ1

q1
n1

ds2
dt

= −µ2

q2
n2

da

dt
= −µ3

q3
(n1 + n2) + θ1µ1n1 + θ2µ2n2

(1)

Model parameters have been identified using real data to
come up with this first candidate model, cf. Graham et al.
[2020]. Parameters values are taken from Barthe et al.
[2020]. This model allows us to simulate variations of the
time lag, either in changing initial conditions or model
parameters. However, it remains a macroscopic model
in the sense that no mechanism explicitly explains the
emergence of sub-populations from an initial homogeneous
species. Following the mechanistic hypothesis proposed in
Barthe et al. [2020], we propose in the next section a more
detailed model called the ‘Compartmental model’.

3. COMPARTMENTAL MODEL

In this section, we develop a mechanistic model of E. coli
growing on glucose and xylose in describing specifically
the dynamic of the activation of the xylose pathway via
the fixation of the XylR molecule on a specific genomic
site.

In terms of biomass, the model is based on the same
important assumption than the macroscopic model but

both populations are further subdivided into compart-
ments depending on the number of XylR they contain.
As already mentioned, it comes from the hypothesis that
the ‘transcription factor’, i.e. the XylR molecule, can
activate the xylose pathway as soon as it is fixed on a
specific genomic site allowing bacteria to consume xylose.
However, it exists ‘trap sites’ (which are xylA promotors
on plasmids) on which XylR can fix too but without giving
E. coli the ability to consume xylose. In the following, we
denote by N the number of trap sites. Accounting for the
genomic site allowing the bacteria to be activated if the
XylR attaches to it, the total number of sites on which
XylR can fix is n = N + 1.

Let us note Xi the non-activated and Yi the activated
bacteria of the compartmental model. Xi contain i XylR
molecules (i = 0...N). On the opposite, Yi contain i + 1
XylR molecules : i are fixed on trap sites and 1 is fixed on
the promotor. For example, X5 means that all cells within
this variable contains 5 XylR fixed onto 5 trap sites, while
the activated cells in the class Y5 contain 6 XylR of which
5 are fixed onto 5 trap sites and one onto the genomic site.
Likewise, X0 is used to describe a cell containing no XylR
at all, whereas Y0 is a cell with one XylR fixed onto the
‘promotor site’.

In the macroscopic model, ‘biomass activation’ is modelled
by the switching of a fraction of cells from n1 to the
compartment n2 at a rate that depends on glucose and
xylose concentrations. In the compartmental model, this
passage is modeled with more details as the result of the
intracellular XylR dynamic. In other words, the underlying
idea is that while the lag duration is mostly the result
of model parameters in the macroscopic model, it will be
the result of the initial distribution of the biomass in the
different compartments in the compartmental model, once
its parameters will have been set once and for all.

The XylR dynamic depends on three distinct processes
that are now being described.

3.1 Modelling XylR production

During a time dt, some XylR molecules are produced inside
each cell. When a XylR molecule is produced, it is assumed
it attaches to a site. If this site is a trap site, a cell of the
class Xi quits this class and becomes a cell within the class
Xi+1. Following the same reasoning, a cell of the class Yi
quits this class and becomes a cell within the class Yi+1.
Now, if the XylR attaches to the promotor site, the cell
becomes activated: a cell of the class Xi quits this class
and becomes a cell within the class Yi.

At which rate does this process occur? The intracellular
XylR production rate is continuous but modulated by the
concentrations in glucose and xylose in the environment: it
is repressed by glucose (catabolic repression occuring even
at low glucose concentration) but promoted by xylose. We
define ρ0(s1, s2) the specific production rate of XylR by
one compartment as:

ρ0(s1, s2) =
k4i

k4i + s41
(p0 +

ρ̄0s2
k2 + s2

)

This function has the specific property of acting as a
switching function being ‘activated’ depending on the



value of the tuning parameter ki, and thus by a given con-
centration of glucose. It models a small basal production
of XylR as long as s1 is below this threeshold value. The
production of XylR is then further promoted as soon as
there is xylose in the medium.

In Figure 1, we plotted an example of the form of ρ0 for
ki = 1, k2 = 3, p0 = 0.01 and ρ̄0 = 1

Fig. 1. ρ0 function of s1 and s2

Assuming that XylR can fix on any of the trap sites or
on the promotor site with the same probability, the rate
at which each transition is realized is modulated by the
probability to occur and the following dynamics due to
the XylR production process are obtained:

Ẋ0 = −ρ0X0

Ẋi = −ρ0Xi +
N − i+ 1

N − i+ 2
ρ0Xi−1

ẊN = −ρ0XN +
1

2
ρ0XN−1

Ẏ0 = −ρ0Y0 +
1

N + 1
ρ0X0

Ẏi = −ρ0Yi +
1

N − i+ 1
ρ0Xi + ρ0Yi−1

˙YN = ρ0XN + ρ0YN−1

3.2 XylR degradation

Once attached to a site, it is hypothesized that a XylR
molecule can degrade and detach. We define the specific
degradation rate α(s1) similar to η2(s1).

α(s1) = ᾱ
s1

k3 + s1

Following the same reasoning as in the previous section,
this rate is modulated by the probability of such process
to happen. And thus, we come up with the following
dynamics:



Ẋ0 = αY0 + αX1

Ẋi =
1

i+ 1
αYi + αXi+1 − αXi

ẊN =
1

N + 1
αYN − αXN

Ẏ0 =
1

2
αY1 − αY0

Ẏi =
i+ 1

i+ 2
αYi+1 − αYi

ẎN = −αYN

3.3 Cell division

The last process considered is the fate of the XylR
molecules during cell division. In such a case, we distin-
guish between two different situations.

• If the cell is in a state where the production of XylR
is sufficiently high (thus for cells growing on xylose),
postulating that a cell divides into two exactly iden-
tical cells, it is assumed that it gives birth to two
cells containing the same number of XylR. To sum
up, Yi, when growing on xylose (but not on acetate)
will always divide in two new Yi.

• If the cell is growing on glucose or acetate, the pro-
duction of XylR molecules is slowed down: it does
not allow the production of two identical daughters
and it is assumed that the two cells produced share
the number of XylR of the mother. However, how
modeling the way the number of XylR are shared
between the two daughters? Several modeling pos-
sibilities were hypothesized and it was finally chosen
that the daughter cells shared half-half of the XylR.
This dynamic is making more complex with odd i:
in this case, one daughter cell will receive i+1

2 XylR

proteins and the other one i−1
2 .

• In addition, we assume that during division, Xi (resp.
Yi) can only produce Xi (resp. Yi).

To model the transition from a compartment to another
one for the cell division process, we use a matrix M of
dimension n × n that we multiply by the vector X =
(X0, ..., Xi, ...XN ) or the vector Y = (Y0, ..., Yi, ...YN ).
Note that the dimensions of the matrix M depends on N .
Let us first define a Mdiv matrix (of the same size as M),
which is the new population of cells after a division without
taking into account the mother cells disappearance. For
j ∈ [1, n] : Mdiv j

2
;j

= 1 and Mdiv j
2
+1;j

= 1 for j

even and Mdiv j−1
2

+1,j
= 2 for j odd and Mdiv equals 0

everywhere else. The terms Mdiv i
2
;i

= 1 and Mdiv i
2
+1;i

= 1

correspond to the (i+1) compartment with odd number
of XylR dividing half into the i

2 and half the i
2 + 1

compartments. The M i−1
2 +1,i correspond to the (i + 1)

compartment with integer number of XylR dividing into
the i−1

2 compartment.

M is used to characterize the total variation of the pop-
ulation due to cell division. To obtain it, we have to
subtract the population after division to the population
before division in computing M = Mdiv − In.



Supposing the growth rates are identical to those of the
macroscopic model, we have:

{
Ẋi = (µ1 + µ3)(MX)i
Ẏi = µ3(MY )i + µ2Yi

3.4 Sugar dynamics

The evolution of glucose and xylose, noted s1 and s2 as in
the macroscopic model, and the evolution of acetate are

the same as in the previous model. With X̃ =
∑N
i=0Xi

and Ỹ =
∑N
i=0 Yi, it gives:

ṡ1 = − 1

q1
µ1X̃

ṡ2 = − 1

q2
µ2Ỹ

ȧ = − 1

q3
µ3(X̃ + Ỹ ) + θ1µ1X̃s1 + θ2µ

act
2 s2Ỹ

3.5 Model dynamics

Adding the different components of the dynamic, we finally
have:

Ẋ0 = (µ1 + µ3)(X0 +X1) + αY0 + αX1

−ρ0X0

Ẋi = (µ1 + µ3)(MX)i +
1

i+ 1
αYi + αXi+1

−αXi − ρ0Xi +
N − i+ 1

N − i+ 2
ρ0Xi−1

ẊN = (µ1 + µ3)(MX)N +
1

n
αYN − αXN

−ρ0XN +
1

2
ρ0XN−1

Ẏ0 = µ3(MY )0 + µ2Y0 +
1

2
αY1 − αY0

−ρ0Y0 +
1

N + 1
ρ0Xi

Ẏi = µ3(MY )i + µ2Yi +
i+ 1

i+ 2
αYi+1 − αYi

−ρ0Yi +
1

N − i+ 1
ρ0Xi + ρ0Yi−1

˙YN = µ3(MY )N + µ2YN − αYN + ρ0XN + ρ0YN−1

ṡ1 = − 1

q1
µ1X̃

ṡ2 = − 1

q2
µ2Ỹ

ȧ = − 1

q3
µ3(X̃ + Ỹ ) + θ2µ2s2Ỹ + θ1µ1X̃s1

(2)

4. SIMULATIONS

In this section, we perfom a number of simulations in order
to compare predictions of both models. Parameters used
for the different simulations are taken from Barthe et al.
[2020].

Fig. 2. Trajectories of the macroscopic (top) and of
the compartmental (down) model. Initial condition :

n1(0) = X̃(0) = 0.28 × 0.75, n2(0) = Ỹ (0) = 0.28 ×
0.25, s1 = 10(g.L−1), s2 = 10(g.L−1), a = 0. Time in
hours.

As already mentioned, changing the distribution of the
initial biomass in the compartmental model is related to
control the lag duration. In other words, we would like to
explain and predict the differences of lag durations using
the compartmental model by the initial distribution of
XylR in the population while it directly depends on model
parameters in the macroscopic model.

First, we compare both models using numerical simu-
lations for ‘equivalent’ initial conditions (i.e. the same
proportion of active/non-active bacteria and quantities
of sugar). The initial conditions in sugar concentrations
and in biomass are thus equal: in the compartmental
model, uniform initial conditions are chosen. For n1(0) =

X̃(0) = 0.28 × 0.75, n2(0) = Ỹ (0) = 0.28 × 0.25, we
measured a lag of 1.85 h for the macroscopic model and
1.51 h for the compartmental model (see Figure (2)). For

n1(0) = X̃(0) = 0.28 × 0.25, n2(0) = Ỹ (0) = 0.28 × 0.75,
we observed time lags of 1.51 h and 1.16 h, respectively
(see Figure (3)). Notice that decreasing the proportion of
initial active bacteria increases the lag.

Now, another objective is to be able to better understand
how the initial conditions of the compartmental model
allows to ‘control the lag’. Said otherwise, the question
is to ‘link’ initial conditions of the compartmental model
(initial biomass distribution) with the fractions of acti-
vated/inactivated biomasses of the macroscopic model. To
do so, we proceed as follows:



Fig. 3. Trajectories of the macroscopic (top) and of
the compartmental (down) model. Initial condition :

n1(0) = X̃(0) = 0.28 × 0.25, n2(0) = Ỹ (0) = 0.28 ×
0.75, s1 = 10(g.L−1), s2 = 10(g.L−1), a = 0. Time in
hours.

• For a given fraction of initial biomass n1(0) and n2(0),
we generate biomass and sugar profiles using the
macroscopic model. We call these profiles ‘reference
profile’ in the following;
• We identify some initial conditions for the compart-

mental model using an optimization approach that
allows us to reproduce as well as possible the reference
profile. To do so we used a least squared method.

We did this work for the initial conditions given by
n1(0) = X̃(0) = 0.28 × 0.75, n2(0) = Ỹ (0) = 0.28 × 0.25,
s1(0) = s2(0) = 10. Repeating the previous described op-
timization procedure from initial conditions of the biomass
distribution of the compartmental model (the degrees of
freedom of the optimization) allowed us to highlight a very
important property of the compartmental model, that is
the fact that it is not observable. Indeed, in Figure 4, we
plotted 20 optimized biomass distributions allowing the
compartmental model to reproduce with a comparable and
acceptable accuracy the trajectories of the macroscopic
model departing from different sets of initial conditions.
Since many sets of initial conditions predict the same
trajectories of the sugar and of the total biomass, the
system is probably not observable.

The first idea to deal with the unobservability of the
compartmental model is to restrict the class of initial
conditions in which we search for the solution of the
optimization problem. Indeed, looking for the results of the
optimization step within a given distribution reduces the

Fig. 4. Initial distributions obtained after using the least
squared method on trajectories of total biomass and
quantities of sugar, for n1 = X̃ = 0.28 × 0.75, n2 =
Ỹ = 0.28 × 0.25, s1 = 10(g.L−1), s2 = 10(g.L−1),
a = 0.

number of degrees of freedom to the number of parameters
of this distribution. The problem then is to know in which
distribution we should restrict the search for the solution...
To investigate this question, we run again the optimization
procedure described previously but in limiting the number
of freedom degrees for the parameters of a normal distribu-
tion. The results of 20 optimizations are plotted in Figure
5. Unfortunately, although the number of freedom degree
is drastically reduced, the results indicate that the system
might not be observable.

Fig. 5. Initial distributions obtained after using the least
squared method on trajectories of total biomass and
quantities of sugar, for n1 = X̃ = 0.28 × 0.75, n2 =
Ỹ = 0.28 × 0.25, s1 = 10(g.L−1), s2 = 10(g.L−1),
a = 0. The type of distribution is constrained to a
normal form. 20 results are plotted.

A second idea is to ‘think practically’: in practice, prior
to any experimental work, the biomass is prepared in
specific conditions (cf. for instance Barthe et al. [2020]).
The followed idea is to use the compartmental model
as a virtual process to run simulations - several times
- with arbitrary initial conditions on 10 g/L of glucose
only. The final - very similar - distributions of biomass
obtained under these conditions (starting from several
random initial conditions) are plotted in Figure 6. Said
otherwise, when the biomass is growing on glucose only,



Fig. 6. Final distributions of biomass after growing on
10(g.L−1) glucose, starting with random initial dis-
tributions (50 repetitions)

Fig. 7. Final distributions of biomass after growing on
10(g.L−1) of xylose starting with random initial dis-
tributions (50 repetitions)

the biomass compartments with a low number of XylR are
attracting whatever the initial conditions are. Now, let us
repeat this procedure but assuming there is only xylose in
the medium. The results are now plotted in Figure 7. The
compartments of both activated and inactivated biomasses
with a low number of XylR are now attracting. In both
cases, the final distributions obtained can obviously be
approximated with a normal distribution in low XylR
compartments of X and/or in Y .

Taking these results into account, we can further con-
straint the optimization algorithm and only consider that
the compartments with low-XylR can be non-zero. If we
retain only 3 or 4 first compartments, the number of
parameters is not really more important than when con-
sidering parameters of the distributions. However, after
several tests, it has not been possible to find only one set
of initial conditions to explain the generated data. Thus,
at present time, the observability problem of the com-
partmental model remains a key issue, to be investigated
deeper in a coming work.

5. CONCLUSION

In this paper, we presented a new deterministic model of
the diauxic growth observed in E. coli growing on glucose
and xylose to find a possible mechanistic modeling of the
lag phase duration. We compared its predictions to those
obtained with another model that has been confronted
to experimental data, and showed that they could give
similar predictions of the lag phase duration. However, the
lag time was sometimes different, highlighting a problem
of unobervability. We have pursued several avenues, in-
cluding the modifications of the model or the reduction
of identified parameters, which unfortunately did not lead
to the resolution of this problem which remains open at
present time. Different techniques could be tested to free
ourselves of the uniqueness of the solutions (set member-
ship, multi-valued observers, change of coordinates...) as
an alternative to reducing the model.
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