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Summary

� Minimum water potential (Ψmin) is a key variable for characterizing dehydration tolerance

and hydraulic safety margins (HSMs) in plants. Ψmin is usually estimated as the absolute mini-

mum tissue Ψ experienced by a species, but this is problematic because sample extremes are

affected by sample size and the underlying probability distribution.
� We compare alternative approaches to estimate Ψmin and assess the corresponding uncer-

tainties and biases; propose statistically robust estimation methods based on extreme value

theory (EVT); and assess the implications of our results for the characterization of hydraulic

risk.
� Our results show that current estimates of Ψmin and HSMs are biased, as they are strongly

affected by sample size. Because sampling effort is generally higher for species living in dry

environments, the differences in current Ψmin estimates between these species and those liv-

ing under milder conditions are partly artefactual. When this bias is corrected using EVT meth-

ods, resulting HSMs tend to increase substantially with resistance to embolism across species.
� Although data availability and representativeness remain the main challenges for proper

determination of Ψmin, a closer look at Ψ distributions and the use of statistically robust meth-

ods to estimate Ψmin opens new ground for characterizing plant hydraulic risks.

Introduction

Extreme values are important in shaping the physiology, ecology
and evolution of plants (Gutschick & BassiriRad, 2003). Physio-
logical extremes are frequently used to characterize the functional
limits of species and populations, describing the operational lim-
its of organisms and their tolerance to stressful environmental
factors (e.g. Bozinovic et al., 2011; Kingsolver & Buckley, 2017).
For this reason, extreme values are frequently used as parameters
constraining key variables in ecological models, particularly in
the context of predicting responses to ongoing climate change. In
plant ecophysiology, examples of such extreme values include
maximum (Hoshika et al., 2018) and minimum stomatal con-
ductance (Duursma et al., 2019), as well as the minimum tissue
water potential characterizing extreme exposure to drought
(Bhaskar & Ackerly, 2006).

The minimum water potential (Ψmin) describes the largest
xylem tension that a species (or population or individual plant)
experiences in the field. Because in actively transpiring plants
xylem water potentials decline from roots to leaves along the
soil–plant–atmosphere continuum, minimum water potentials
are usually determined in leaves or twigs. Low xylem water
potentials imperil turgor maintenance and metabolic function
(Tyree & Jarvis, 1982; Bartlett et al., 2012) and increase the
risk of xylem embolism and the corresponding hydraulic dys-
function (Tyree & Sperry, 1988; Tyree & Zimmermann,
2002). Our current understanding is that hydraulic failure as a
result of xylem embolism triggers drought-induced mortality in
plants (Adams et al., 2017; Choat et al., 2018; Brodribb et al.,
2020). Consequently, the hydraulic safety margin (HSM), usu-
ally quantified as the difference between Ψmin and embolism
resistance (e.g. ΨPLC50, or the water potential causing 50% loss
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of hydraulic conductivity), has become a standard metric for
characterizing plant vulnerability to drought (Meinzer et al.,
2009; Choat et al., 2012; Delzon & Cochard, 2014). This
variable has the merit of integrating a measure of absolute
stress tolerance determined in the laboratory (ΨPLC50) with a
measure of (extreme) exposure at the tissue level (Ψmin), thus
yielding a promising measure of mortality risk (Anderegg
et al., 2016; Benito Garz�on et al., 2018). Note, however, that
hydraulic failure may be associated with other metrics such as
the water potential causing 88% loss of conductivity, which is
frequently used to calculate HSM in angiosperms (Urli et al.,
2013), or the remaining water transport capacity in the xylem
(Venturas et al., 2016). In addition, leaf shedding may compli-
cate the link between measures of hydraulic risk and mortality,
particularly in drought-deciduous species (Kolb & Davis,
1994).

The determination of Ψmin is challenging. Some studies
have modelled Ψmin from estimated minimum soil water con-
tent using pedotransfer functions and information on soil tex-
ture (Benito Garz�on et al., 2018). This approximation has the
advantage of providing spatially explicit estimates of Ψmin (and
HSM), but it fails to account for the fact that Ψmin is also
driven by several, covarying plant traits (Bhaskar & Ackerly,
2006; Mart�ınez-Vilalta & Garcia-Forner, 2017). A more com-
mon approach is to estimate Ψmin as the absolute minimum
water potential measured in a given species or population.
However, this is also problematic, as sample extremes are
inherently biased and the magnitude of the bias depends on
the probability distribution of the underlying variable and on
sample size (Head et al., 2012). In particular, if Ψmin is esti-
mated as the absolute minimum Ψ recorded for a given
species, its magnitude will necessarily get more negative (more
extreme) as more Ψ measurements are taken, which seems a
highly undesirable property when different species with
unequal sample size are compared. Importantly, sampling
effort is likely to vary directionally with drought exposure
because species in drier and more variable environments tend
to be sampled more intensively than species from wetter envi-
ronments, where drought is not perceived as an important
stress factor.

An alternative approach to estimating Ψmin involves determin-
ing the Ψ associated with mortality. When this is done through
opportunistic sampling under extreme drought conditions in the
field, the problem becomes the identification of the physiological
point of no return (cf. Hammond et al., 2019; Sapes et al., 2019),
thus avoiding measurements taken in drying tissue once plants
are effectively dead. This can be achieved by monitoring mea-
sured branches to ensure they survive the drought (e.g. Venturas
et al., 2016), but this is not always feasible. An alternative
approach is to conduct drought simulation experiments in con-
trolled environments and apply rewatering trials to identify the
point of no return (e.g. Brodribb & Cochard, 2009; Urli et al.,
2013). Even these types of study, however, may bring plants
beyond any conditions they could actually experience in the field,
and thus it seems better to refer to the corresponding magnitude
as Ψlethal (cf. Liang et al., 2021).

Clearly, a more robust way of determining Ψmin (and other
ecophysiological extremes) is needed. Percentiles may be used
to characterize extreme values from a Ψ distribution, but they
make use of all observations and are hence highly dependent
on the representativeness of the sample. Extreme value theory
(EVT) is the branch of statistics devoted to the study of
extreme deviations from the median, focusing on the tails of
the underlying probability distributions as a means to estimate
extreme values (Coles, 2001; Reiss & Thomas, 2007;
Embrechts et al., 2013). The two most common approaches
involve grouping data into blocks of equivalent sizes and then
fitting the distribution of block maxima (or minima) using the
generalized extreme value (GEV) distribution, or using the
generalized Pareto distribution (GPD) to fit the tail of the dis-
tribution of raw values (‘peak over threshold’ or POT method;
cf. Fig. 1) (see Supporting Information Notes S1 for an
extended introduction to EVT methods).

Extreme value theory methods are widely applied in finance,
hydrology and climatology, among other fields, but their use in
ecology is rare and basically limited to the characterization of
environmental extremes (Katz et al., 2005; Denny et al., 2009)
and the likelihood of species extinction (Burgman et al., 2012).
We are only aware of two studies that apply EVT to address rele-
vant questions in plant functional ecology, one to characterize
seed mass distributions (Edwards et al., 2015) and the other to
determine maximum stomatal conductance (Murray et al.,
2019).

Here, we take advantage of EVT to provide a general frame-
work aimed at improving the estimation of Ψmin. We first charac-
terize the statistical properties of water potential distributions
and their variability within species, focusing on distribution tails
and taking advantage of a new database of raw water potential
values assembled for this study. We then compare different meth-
ods to estimate Ψmin and the associated uncertainties and biases
using two empirical databases and synthetic data characterizing
typical water potential distributions. Finally, we assess the impli-
cations of our results for the characterization of hydraulic risk
and its variability among species, and provide guidelines to esti-
mate Ψmin and other ecophysiological extremes in a statistically
robust manner.

Materials and Methods

Empirical water potential datasets

The first dataset was collected by Mart�ınez-Vilalta et al. (2014)
and hence we identify it as the ‘MV14’ dataset. It consists of a
global collection of paired predawn and midday leaf water poten-
tial seasonal time courses for 159 species (3562 individual obser-
vations in total). Note that we use the term leaf Ψ for simplicity,
but all measurements we refer to in the manuscript were con-
ducted in leaves or (leafed) twigs. These data were extracted from
published papers and hence correspond to averages across indi-
viduals for a given site and date, as given typically in figures. This
dataset was used to study the impact of sample size on the estima-
tion of Ψmin for the subset of 17 species with a reasonably large
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sample size (N ≥ 50 midday measurements, spanning one to 11
sites depending on the species) (Table S1).

A second empirical dataset including raw, individual-level
measurements of midday water potentials was collected specifi-
cally for this study, using our own measurements and contributed
or publicly available databases. This dataset contains a total of
7749 individual measurements of midday leaf water potential on
76 species, and we identify it as the ‘raw’ dataset. We selected
data for the 26 species for which the number of measurements
was ≥ 30 and there were at least 10 combinations of site and sam-
pling date (e.g. two sites with five or more time points per site or
one site with 10 or more time points) (Table S2). Note that an
explicit separation of temporal and spatial effects would have
been desirable in all analyses, but was not possible owing to data
limitations.

Absolute Ψmin values from the two previous databases
(‘MV14’ and ‘raw’) were combined with an updated version of

the global xylem functional traits (XFT) dataset by Choat et al.
(2012) incorporating newer references covering primarily China,
the Amazon and Australia (Sanchez-Martinez et al., 2020). After
aggregating to the species level this database contained Ψmin data
for 654 species (‘species-level’ dataset). Unlike the measurements
in the ‘MV14’ and ‘raw’ datasets, which were taken on uncovered
leaves (or twigs), the Ψmin data in the XFT dataset combine mea-
surements taken on covered and uncovered leaves. However, the
effect of the pressure drop in leaves associated with transpiration
is minimal in our case because Ψmin is usually recorded under
extreme conditions when stomata are closed (cf. Choat et al.,
2012; Martin-StPaul et al., 2017).

Synthetic datasets

We generated two synthetic water potential datasets with realistic
statistical properties to conduct a detailed analysis of the impact

Fig. 1 Time series of measured midday leaf water potentials (top row), histograms showing the probability distributions of measured water potentials
(middle row), and tails of the distributions (bottom row) for four representative species included in the ‘raw’ dataset. Each column corresponds to the
species indicated on top. The dashed red lines in top and middle rows indicate the 90th percentile of the distribution, which is the threshold value used to
define the tail in the bottom panel. The blue line in the bottom panel indicates the generalized Pareto distribution (GPD) fit to the tail of the corresponding
distribution. Note the use of log scale in the y-axis of the bottom row panels. Data for Juniperus monosperma and Pinus edulis are pooled across
experimental treatments.
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of sample size and different analytical approaches on species-level
estimates of Ψmin. One of these datasets was generated from a
Gamma distribution with scale and shape parameters equal to
those obtained for the fitted Juniperus monosperma distribution,
and simulated a right-skewed distribution typical of relatively
anisohydric species with looser water potential regulation
(Fig. S1). The second dataset was obtained using a Weibull distri-
bution with parameters equal to those corresponding to Pinus
pinaster, and represents a relatively isohydric species with tighter
water potential regulation (Fig. S1).

Each of the synthetic datasets corresponded to a combination
of data for two to 100 sites, each of which had been measured 10
times and with 10 plants sampled per time point, and hence pro-
vided an ‘ideal’ species-level coverage relative to what is possible
in practice in field studies. Individual data points within a sam-
pling event and seasonal measurements within a year were sam-
pled from the same distribution (constant scale and shape
parameters). We also conducted additional simulations in which
variability was allowed among sites to account for climatic as well
as ecotypic variability. This variability was introduced by sam-
pling the corresponding distribution parameters from multivari-
ate normal distributions with the same means as discussed earlier
and a realistic covariance matrix, based on the distribution fits for
species with data from multiple populations/years.

Data analysis

Water potential distributions and their tails (species level) We
used the ‘raw’ dataset (including completely disaggregated,
individual-level measurements) to study the tails of Ψ distribu-
tions (data above the 90th percentile). We compared the fit pro-
vided by three different probability functions with different tail
shapes, corresponding to the log-normal (heavy-tailed), Gamma
and Weibull (heavy-tailed depending on the shape parameter)
distributions, with the fit provided by the GPD (using the proba-
bility weighted moment method). We also compared GPD fits
using alternative thresholds to characterize the distribution tail,
corresponding to 75th and 95th percentiles. In all analyses, water
potential values were converted to positive (absolute) values
before fitting the different probability distributions. The
goodness-of-fit of different distributions was compared qualita-
tively using the Akaike information criterion (AIC).

Variance components and variability in Ψ and Ψmin within
species We used variance components analysis to estimate the
contribution of species, site, year and date (day of the year) to
total Ψ variability in the ‘raw’ dataset. We conducted additional
analyses focusing on the species with largest sample size (J.
monosperma and Pinus edulis) to further explore the components
of temporal variability. In those models date was nested within
season and season within year. All variance components analyses
were conducted using the R package VCA (v.1.4.3).

To study the variability within species, we subset the data from
the ‘raw’ dataset by combinations of site and year and selected
only the combinations with sufficient data (N ≥ 30 individual
measurements). For each of the six species that had several such

combinations we compared the full Ψ distributions among com-
binations of site and year using a k sample Anderson–Darling test
(R package KSAMPLES v.1.2.9), which gives more weight to the
tails of the distributions than do alternative methods (Scholz &
Stephens, 1987). In addition, we also compared the Ψmin values
estimated for different combinations of site and year (within
species) using the following methods: the lowest midday leaf
water potential (highest absolute value) recorded for a given
species (cf. Choat et al., 2012); the 99th percentile of the sampled
values for the species; and the 99th percentiles of the Gamma,
Weibull, and GPD distributions (parameterized as described ear-
lier) fitted to the water potential data.

Effect of sample size and estimation method on Ψmin determi-
nation (species level) To assess the impact of sample size and
estimation method on the determination of species-level Ψmin we
used both the ‘MV14’ and ‘raw’ datasets. As earlier, Ψmin was cal-
culated as: the lowest midday leaf water potential, the 99th per-
centile of the sample, or the 99th percentile of the Gamma,
Weibull and GPD distributions fitted to the species data. In all
cases we obtained Ψmin estimates from the whole dataset for each
species and from random subsamples, including 80%, 60%,
40%, 20% and 10% of the data, as well as for N = 10 (in that lat-
ter case to compare a common, low sample size across species).
Computations were repeated 100 times per species using differ-
ent random subsamples.

To account for all sources of variability in water potential
observations in an idealized situation, we conducted a similar
analysis using the synthetic datasets. In this case the underlying
probability distribution was known and hence the methods to
estimate Ψmin that we compared were: the lowest midday leaf
water potential observed for a given ‘species’; the average Ψmin

across populations (cf. Bartlett et al., 2016); the 99.9th percentile
of the sampled values; the 99.9th percentile of the underlying dis-
tribution used to generate the data; the 90th percentile of the
GEV distribution fitted to the Ψmin data, blocking by popula-
tion; and the 99.9th percentile of the GPD fitted to the water
potential data. Here we used more extreme percentiles than with
the empirical datasets (99.9th instead of 99th as a reference)
because sample size was much larger and included all sources of
variability (across individuals, time and populations). Similarly,
the 90th percentile was used when fitting the GEV distribution
(instead of the 99.9th percentile) because in that case we are fit-
ting (blocked) Ψmin data as opposed to raw Ψ data. Because we
are blocking by population, each of which corresponds to 100 Ψ
values, the 90th percentile of the resulting Ψmin should be compa-
rable to the 99.9th percentile of the underlying raw data.

Estimating hydraulic risk We used the disaggregated data of
the ‘raw’ dataset (full sample size) to calculate the species-level
HSM using different estimates of Ψmin, including the lowest
Ψmin value, the average Ψmin across populations and years, the
99th percentiles of the Weibull, Gamma and GPD distributions,
and the 90th percentile of the GEV distribution fitted to the Ψmin

data, blocking by population and year (the latter only for the only
two species for which the number of blocks was > 10: Pinus
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halepensis and Quercus ilex). These estimates were computed for
the 17 species for which stem ΨPLC50 data were present in the
‘species-level’ database. We also used the fitted GPD and GEV
distributions to calculate the probability of Ψmin reaching a value
equal to ΨPLC50. To get a ΨPLC50 value representative of the max-
imum resistance to embolism at the species level, and also to
avoid methodological issues that may overestimate vulnerability
to embolism (Cochard et al., 2013; see also Venturas et al.,
2019), in these analyses we estimated ΨPLC50 as the minimum
value recorded for a given species. This minimum ΨPLC50 was
tightly related to the species mean ΨPLC50 (r = 0.93, slope =
0.85� 0.09) and to more extreme measures of hydraulic loss
such as ΨPLC88 (r = 0.91, slope = 1.10� 0.15), and our results
remained qualitatively identical if these other metrics were used
(data not shown).

Assessing implications for global patterns of hydraulic safety
margins Finally, we assessed whether methodological issues in
Ψmin estimation could be affecting the global relationship
between Ψmin and ΨPLC50 as reported by Choat et al. (2012) and
similar studies. To that end, we first assessed the relationship
between ΨPLC50 and sample size (for Ψmin) for both the species
in our ‘raw’ dataset and globally using the updated XFT database
(with individual site-specific values retained instead of being
aggregated by species as in our ‘species-level’ dataset). A positive
relationship between |ΨPLC50| and sample size would indicate
that more resistant species are more intensively sampled, and
hence a potential, directional bias in the estimation of Ψmin. We
then compared the relationship between Ψmin and ΨPLC50 for the
species in our ‘raw’ dataset using two different estimates of Ψmin:
the absolute minimum (as in Choat et al. (2012)) and the GPD-
based estimate described earlier, which is expected to be more
robust to sample size effects. In both models |Ψmin| and |ΨPLC50|
were log-transformed to normalize the distribution of the residu-
als. In this case ΨPLC50 was estimated as the mean ΨPLC50 for a
given species, for consistency with the original analysis by Choat
et al. (2012), although other measures of hydraulic vulnerability
were also tested (minimum ΨPLC50, ΨPLC88). Note that we could
not perform a similar analysis using the whole ‘species-level’
dataset because the real sample size (number of individuals, sam-
pling dates and sites used to estimate Ψmin) is unknown in this
case.

All analyses were conducted in the R environment (R v.3.6.2;
The R Foundation for Statistical Computing). Distributions
were fitted using the packages FITDISTRPLUS (v.1.1.1), EVD (GEV,
v.2.3.3) and FEXTREMES (GPD, v.3042.82).

Results

The statistical distribution of water potential data

The distribution of leaf water potentials for the species included
in the ‘MV14’ and ‘raw’ datasets are shown in Figs S2 and S3. As
expected, the shapes of the distributions differed across species
and were not always well captured by standard distributions (log-
normal, Gamma, Weibull). In particular, some species showed

bimodal distributions. This pattern was observed in some species
for which several populations were included (e.g. Quercus coc-
cifera), but also in species that had been measured over one single
site and year (e.g. Encelia actoni, Ericameria linearifolia and Pur-
shia tridentata; Fig. S3). As expected, when we focused on the
tails of the distributions (‘raw’ dataset) the best fit was always pro-
vided by the GPD, which had AIC values that were on average
13, 14 and 24 units lower than those corresponding to the log-
normal, Gamma and Weibull distributions, respectively
(Table S3). Fig. 1 shows GPD fits to distribution tails for four
representative species. The average value of the shape parameter
of the GPD distribution was �0.38 and it was < 0 in 19 out of
26 species (Table S3), indicating that the distribution of values
above the Ψ threshold was bounded in most cases (see Embrechts
et al., 2013). However, this shape parameter (unlike the corre-
sponding, estimated Ψmin) was relatively unstable and depended
on the choice of threshold (Table S3), probably reflecting sample
size limitations.

Variance components and within-species variability

The variance components analysis indicated that most of the
variability in Ψ corresponded to differences among dates
(57%) and sites (19%), whereas species accounted for 10% of
the total variability (Table S4). A similar pattern emerged
within species, where > 50% of the variability was observed
among dates (within seasons and years) for the two species
tested (Table S4). For five out of six species analysed, the dis-
tribution of Ψ differed among years/sites (k sample Anderson–
Darling test, P < 0.001), the only exception being Phillyrea lat-
ifolia, for which we could only compare two consecutive years
at the same site (Fig. 2). For three species (P. halepensis,
P. sylvestris and Q. ilex) we could also group the observations
by years within a site and compare the distributions by sites.
The resulting Ψ distributions also differed significantly among
sites (P < 0.001). The fact that Ψ distributions differed within
species also resulted in substantially different Ψmin estimates
among sites and years, regardless of the estimation method that
was used (Table S5). For estimates based on the GPD distri-
bution, which again provided the best fit to the Ψ tail data
(Table S5), Ψmin values varied by as much as 5.7 MPa between
different combinations of site by year in P. halepensis, and up
to 4.6 MPa when comparing the same population (Orihuela)
between two consecutive years.

Comparing Ψmin estimation methods

Species-level Ψmin differed substantially across estimation meth-
ods, both for the ‘raw’ (cf. values corresponding to maximum
sample size in Fig. 3) and for the ‘MV14’ datasets (Fig. S4).
These values were typically more extreme for either the 99th per-
centile of the Gamma distribution fitted to the data or for the
lowest measured Ψmin, with the latter being generally more
extreme for species with a large sample size (N > 100). The Ψmin

estimates based on the 99th percentile of the GPD were usually
similar to those obtained from the sample 99th percentile, but the
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former were less sensitive to sample size. The GPD-based esti-
mates were very robust to the criteria used to set the threshold,
with resulting Ψmin values differing by 0.05 and �0.03MPa on
average between our base calculations (90th percentile) and those
using the 75th or 95th percentiles, respectively (Table S3). In
addition, GPD-based estimates were also reasonably robust to
removing different proportions of the data with less extreme Ψ
values (i.e. using only the data measured under relatively extreme
conditions) (Table S6).

Effect of sample size on Ψmin estimates

Sample size had a strong effect on Ψmin when it was estimated as
the lowest midday leaf water potential recorded for a given
species, regardless of whether data came from the ‘raw’ or the
‘MV14’ dataset (Figs 3 and S4, respectively). In most species the
effect tended to saturate at high sample sizes, but in some cases a
plateau was not observed even for sample sizes > 100 (e.g.

Quercus coccifera in Fig. 3; Q. ilex in Fig. S4). The bias associated
with sample size was particularly conspicuous for heavily sampled
species, for which estimates could differ by several MPa (e.g.
between c. �6 and �10MPa for J. monosperma; Fig. 3). As
expected, Ψmin estimates based on the 99th percentile of the sam-
pled distribution were basically identical to the absolute mini-
mums for sample sizes below 100, and shared the strong
dependency on sample size. All the other Ψmin estimates, based
on percentiles of the fitted Gamma, Weibull or GPD distribu-
tions, were much less sensitive to sample size. However, they were
all affected by sample size at low values (N < 20), at least for some
species (Figs 3, S4).

Sample size also had a strong effect on Ψmin estimated as
the lowest midday leaf water potential recorded in the syn-
thetic datasets, regardless of the distribution used to generate
the data (Fig. 4). At high sample sizes, these estimates were
always substantially more extreme than those obtained by the
other methods, including the 99.9th percentile from the known

Fig. 2 Density distributions for different combinations of site and year for six representative species from the ‘raw’ dataset. Asterisks at the top left corner
of a given panel indicate significant differences among sites/years for the corresponding species (***, P < 0.001). Data for Juniperus monosperma and
Pinus edulis are pooled across experimental treatments.
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distribution. At the other extreme, when ‘species’ Ψmin was
estimated as the average Ψmin across populations, the resulting
values were very stable but always substantially less extreme
than the 99.9th percentile from the known distribution
(Fig. 4). Estimates obtained from the sample 99.9th percentile
and those using the GEV and GPD distributions all converged
to values indistinguishable from the 99.9th percentile of the
original distribution (Fig. 4). These three methods were quite
robust to low sample sizes down to N = 10 populations,
although the estimate from the sample 99.9th percentile typi-
cally showed the highest standard deviations. For even lower
sample sizes, GPD-based estimates appeared the most consis-
tent, although uncertainty increased substantially in all cases,
particularly for GEV-based estimates. These results remained
qualitatively similar when variability in the parameters of the
underlying distributions was introduced among populations
(Fig. S5).

Estimating hydraulic risk

The calculated HSMs for the 17 species in the ‘raw’ dataset for
which stem ΨPLC50 was available were highly variable depending
on the method used to estimate Ψmin, with discrepancies of more
than 1MPa in many species and up to > 4MPa in P. halepensis
(Fig. 5). For all the species in which there was more than one
combination of year and site, the HSM estimates using the abso-
lute lowest Ψmin were substantially lower than those using the
mean Ψmin across sites/years. The HSM estimates obtained using
the Weibull and particularly the Gamma distributions tended to
be substantially lower than those using the GPD distribution,
whereas those based on the GPD and GEV distributions were
similar for the two species for which the latter could be computed
(Fig. 5).

The probability of individual water potential measurements
reaching ΨPLC50 calculated from the GPD (90th percentile

Fig. 3 Effect of sample size on minimum water potential estimates (absolute values in MPa) from the ‘raw’ dataset. For each species, different estimation
methods are compared and shown in different colours (black lines: the absolute lowest value from the sample; grey lines: the 99th percentile from the
sample, which is indistinguishable from absolute lowest values for sample sizes < 100; red lines: the 99th percentiles of the Gamma distribution fitted to the
data; blue lines: the 99th percentiles of the Weibull distribution fitted to the data; green lines: the 99th percentile of the generalized Pareto distribution
(GPD) fitted to the data). Error bars show SDs of 100 random repetitions for each species and sample size.
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threshold) ranged between 0% for four species to > 10% for
Ambrosia salsola, Rhus ovata, Viburnum tinus and Vitis vinifera
(Table S7). The latter values imply that ΨPLC50 was higher (less
negative) than the threshold used to fit the GPD, and hence the
probability of reaching ΨPLC50 could not be estimated with preci-
sion. The consistency of these probability estimates when com-
paring different GPD thresholds (75th and 95th percentiles) was
quite variable across species (4.9–150% deviation depending on
the species and threshold comparison; Table S7), and was clearly
lower than for the Ψmin estimates themselves (Table S3). For the
two species for which GEV distributions could be fitted, the
probability of Ψmin reaching ΨPLC50 (or lower) differed substan-
tially (3% for Q. ilex, 19% for P. halepensis). This difference was
qualitatively consistent with that obtained using GPD-based esti-
mates (Table S7) and reflected differences in the corresponding
HSM (Fig. 5).

We note that our focus here is on the effect on HSM of differ-
ent approaches to estimate Ψmin, not on the HSM values them-
selves, which should be interpreted with caution. In particular,
HSM estimates for some species may be problematic owing to
uncertainty in ΨPLC50 values. For instance, the highly negative
HSM in Viburnum tinus, and particularly Vitis vinifera, probably
arise from the overestimation of embolism vulnerability for these
species (Charrier et al., 2018), for which only one ΨPLC50 value
was available in the XFT dataset. The fact that we are comparing
leaf/twig Ψmin with stem Ψ50 may introduce additional bias, even

if water potential gradients in the xylem are expected to be low
under extreme drought (Choat et al., 2012).

Implications for global patterns of hydraulic safety margins

We found a significant, negative correlation between species-level
ΨPLC50 and the number of entries in the ‘species-level’ dataset (r
= �0.22, P < 0.001, N = 226), suggesting that embolism-
resistant species tended to be more intensively sampled. A similar
relationship was found for the species in our ‘raw’ dataset, which
was statistically significant when minimum ΨPLC50 was consid-
ered (r = �0.55, P = 0.02, N = 17) but not when using mean
ΨPLC50 (r = �0.35, P = 0.17, N = 17). Consistent with the origi-
nal analysis in Choat et al. (2012) we found a strong positive rela-
tionship between Ψmin and mean ΨPLC50, regardless of whether
Ψmin was estimated from absolute minimum values or GPD-
based estimates (r = 0.65, P < 0.01, N = 17 in both cases) (Fig. 6).
The slope of the relationship was significantly < 1 in the two
cases, but declined from 0.44� 0.13 (intercept = 0.94� 0.19)
when Ψmin was estimated from absolute minimum values to
0.38� 0.12 (intercept = 0.92� 0.16) when GPD-based esti-
mates were used (Fig. 6). These results indicate that more resis-
tant species had wider safety margins, and that this trend was
exacerbated when more robust Ψmin estimates that accounted for
sample size effects were used. We fitted a single relationship for
angiosperms and gymnosperms because, in our dataset, HSM

Fig. 4 Effect of sample size (number of sites, from two to 100) on minimum water potential estimates (absolute values in MPa) from the synthetic datasets.
Each site comprised data for 10 measurement dates with 10 plants sampled per time point. Results are shown for two different distributions: a Gamma (left
panel) and a Weibull distribution (right panel) (see text for details on parameterization and Supporting Information Fig. S1 for the corresponding
histograms). Different estimation methods are compared and shown in different colours (red: the absolute lowest value; brown: the mean of the minimum
values observed at different sites; blue: the 99.9th percentile from the whole sample; black: the 99.9th percentile of the known distribution; green: the
99.9th percentile of the generalized Pareto distribution (GPD) fitted to the data; orange: the 90th percentile of the generalized extreme value (GEV)
distribution fitted to the data blocked by site). Error bars show SDs of 100 random repetitions for each species and sample size. Note that some error bars
for the GEV estimates under low sample sizes were very large and have been omitted.
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were similar between these two group of species (P = 0.23,
N = 11 angiosperm and N = 6 gymnosperm species).

Discussion

Current estimates of Ψmin are biased

Minimum water potential (Ψmin) is a key variable to characterize
dehydration tolerance and hydraulic risk in plants (Choat et al.,
2012, 2018; Delzon & Cochard, 2014). Our results show that
current Ψmin values, estimated as the absolute minimum leaf
water potential reported for a given species, are biased. This is
because absolute extremes are a function of sample size and the
underlying statistical distribution, which differ markedly among
species (and among sites and years within species; Fig. 2). This
bias can be large, of the order of several MPa (Figs 3, 5), and its

magnitude is generally unknown. Moreover, this bias is not ran-
domly distributed across species. Because species living in drier
environments tend to be more intensively sampled, current Ψmin

estimates for these species would be necessarily more extreme
(even if the underlying probability distribution was identical)
than those for species living under milder conditions.

The fact that Ψmin estimates are biased has significant implica-
tions for the determination of HSMs. Because HSM is usually
calculated as the difference between Ψmin and a measure of
hydraulic resistance (e.g. ΨPLC50), estimated HSM would have
the same absolute bias as the corresponding Ψmin values (cf.
Fig. 5). We also show that this bias can have important conse-
quences for our understanding of the distribution of drought
resistance and hydraulic risks at the global scale. Choat et al.
(2012) showed that, for angiosperms, HSM were relatively
invariant among biomes and only increased slightly for more

Fig. 5 Comparison of hydraulic safety margins (HSM, MPa) obtained using different estimates of minimum water potential (Ψmin) on the species from the
‘raw’ dataset. Different estimation methods include the absolute lowest value from the sample (‘Abs’), the mean across all the sites/years sampled
(‘Mean’), the 99th percentile from the fitted Gamma distribution (‘Gamma p99’), the 99th percentile from the fitted Weibull distribution (‘Weibull p99’),
the 99th percentile of the fitted generalized Pareto distribution (‘GPD p99’), and the 90th percentile of the generalized extreme value distribution fitted to
site/year blocks, for the two species for which the number of combinations of site and year was > 10 (‘GEV p90’). HSM is quantified as the difference
between Ψmin and stem ΨPLC50, and hence a lower (e.g. negative) value indicates higher hydraulic risk. Please note that HSM values reported in this figure
are primarily intended for comparison of alternative Ψmin estimation methods and should be interpreted with caution (see text).
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embolism-resistant species. Our analyses show that this interpre-
tation may need to be reassessed, as HSM estimates became wider
when more robust, GPD-based estimates of Ψmin were used, rela-
tive to using absolute lowest Ψ values, and this happened particu-
larly in more embolism-resistant species as a result of their higher
sampling effort (Fig. 6). Although it is impossible to quantify this
effect precisely at present, because the sample size used to esti-
mate Ψmin in global hydraulic databases is unknown, these results
suggest that safety margins may actually increase substantially
with embolism resistance at the global scale. This is consistent
with the higher difference between the water potential at stomatal
closure and ΨPLC50 (another measure of the safety margin) in
embolism-resistant species (Mart�ınez-Vilalta et al., 2014; Men-
cuccini et al., 2015; Martin-StPaul et al., 2017). We note, how-
ever, that these patterns are likely to be scale-dependent, as
increased hydraulic risk in embolism-resistant species has been
reported in local communities (e.g. Venturas et al., 2016).

The fact that the distribution of leaf water potentials differs
greatly among species has been largely overlooked in the litera-
ture. Besides having substantial implications for the estimation of
Ψmin, this variation reflects important biological phenomena. In
particular, the distribution of leaf water potentials is the end
result of all the control mechanisms by which plants regulate
their water status as a response to environmental drivers, and
hence provides a synthetic, statistical description of water poten-
tial regulation (Mart�ınez-Vilalta & Garcia-Forner, 2017). Under
the same environmental conditions, relatively anisohydric species
would have Ψ distributions that tend to be skewed to the right
and show fatter tails, whereas more isohydric species would be
characterized by more left-skewed distributions. Examples of this
would be J. monosperma and P. edulis (or even more clearly
P. pinaster; Fig. S3), which are paradigmatic examples of anisohy-
dric and isohydric regulation of water potentials, respectively

(Breshears et al., 2008; McDowell et al., 2008; Meinzer et al.,
2014). The Ψ distribution, however, is also determined by envi-
ronmental conditions (Hochberg et al., 2018), which probably
explains part of the within-species variability we observed
(Fig. 2). This effect could be accounted for by modelling leaf
from soil Ψ (e.g. Mart�ınez-Vilalta et al., 2014) or by directly
focusing on the difference between the two. This type of analysis
should be facilitated by increased availability of environmental
drivers and detailed soil and plant water content measures from
remote sensing (cf. Wu et al., 2021).

Guidelines for the estimation of Ψmin and other
ecophysiological extremes

Any proper estimation of extreme values from field measure-
ments has to deal with the fact that these values are rare by
definition, and thus their estimation is less straightforward than
for typical measures of centrality (e.g. the mean) or dispersion
(e.g. the standard deviation). Although the absolute minimum
of any given sample is easy to calculate, this magnitude does
not provide a sound basis to estimate Ψmin, as it continuously
declines (becomes more extreme) as sample size increases, and
hence cannot be used as a reference to compare species (or
populations) in practice. An operational definition of Ψmin is
therefore needed, and such definition should be probabilistic
to make it independent of sampling effort. Although directly
estimating (and comparing) a given sample percentile could be
a reasonable solution in many cases, these estimates are more
sensitive to low sample sizes (Fig. 4), and would be particularly
problematic when the underlying probability distribution is
heavy-tailed. We thus advocate here for the use of EVT (Coles,
2001; Reiss & Thomas, 2007) as a good basis for improved
estimation.

Extreme value theory focuses on the tail of the probability dis-
tribution, as the tail conveys the most relevant information to
estimate the magnitude and likelihood of extreme events. In gen-
eral, the most efficient approach uses the ‘peak over threshold’
(POT) method (Coles, 2001). This approach involves identifying
a threshold in the raw distribution of Ψ that characterizes extreme
situations, fitting a GPD to values exceeding that threshold (the
tail of the distribution), and then estimating the species’ Ψmin as
a given (conventional) percentile of the fitted GPD. Because this
method focuses on the most extreme values of the overall distri-
bution, it has the advantage of being relatively insensitive to vari-
ability in Ψ among populations or years (cf. Fig. 2), which is
particularly useful when the objective is to obtain species-level
estimates of Ψmin. We suggest that a 99.9th percentile would be a
reasonable choice, as it corresponds to the minimum value
recorded, on average, every 1000 individual water potential mea-
surements. Based on our analyses, Ψmin estimates obtained this
way are consistent when the number of individual Ψ measure-
ments exceeds 20 (Fig. 3), and are robust to different threshold
choices (see Coles (2001) for additional criteria to set the GPD
threshold).

Using the GPD approach, however, requires fitting raw Ψ
data, which are not always available. In those cases, and

Fig. 6 Relationship between water potential at 50% loss of hydraulic
conductivity (ΨPLC50) and minimum water potential (Ψmin) across the
species in the ‘raw’ dataset. Red dots correspond to the absolute lowest
Ψmin recorded for a given species, whereas green dots show generalized
Pareto distribution (GPD)-based estimates of Ψmin, which are robust to
sample size effects. Observations for a given species are connected by a
black arrow. Different symbols are used for angiosperm and gymnosperm
species. Red and green lines show the corresponding linear fits. The 1 : 1
line is indicated by the dotted black line. Note the log scales in both axes.
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particularly when midday Ψ measurements are available for sev-
eral sites and years with a reasonably balanced experimental
design, an alternative way to estimate Ψmin involves grouping the
data into blocks corresponding to combinations of site and year.
Then, the absolute minimum Ψ is obtained for each block (anal-
ogous to data binning procedures), the GEV distribution is fitted
to these block extremes (cf. Makkonen & Tikanm€aki (2019) for
a comparison of fitting methods), and species’ Ψmin is estimated
as a given (conventional) percentile of the fitted distribution. In
this case, the 90th percentile, corresponding to the minimum
water potential that would be observed, on average, once every
10 yr (or 10 combinations of site and year), may be adequate in
most cases. That implies, of course, that robust estimates of Ψmin

can only be obtained if data are available for at least 10 combina-
tions of site and year (cf. Fig. 4), which unfortunately is quite rare
at present (e.g. only two out of the 76 species recorded in our
‘raw’ dataset fulfilled this requirement). The GEV-based esti-
mates may be particularly useful to capture biologically relevant
differences among sites or years. It is noteworthy that, in our case,
the resulting Ψmin estimates were similar for GEV- and GPD-
based methods for the two species in which both could be applied
(Fig. 5).

Sampling issues and representativeness remain the main diffi-
culty in obtaining robust estimates of Ψmin. Water potential mea-
surements tend to be heavily clustered around specific sites or
years, and hence may not capture the relevant conditions (severe
drought) and spatiotemporal variability to accurately determine
extreme values. Our variance components analyses show that
most of the Ψ variability occurs over time, and particularly at the
daily scale (Table S4), and hence temporal replication is critical
to characterize Ψ distributions. At the same time, it is clear that
ecotypical variation may also be high (e.g. Atzmon et al., 2004;
see also our Fig. 2) and hence a proper characterization of Ψmin at
the species level requires some degree of spatial replication.
Because water potential measurements are largely conducted to
study vegetation responses to drought, sampling schemes tend to
prioritize dry locations and dry periods, effectively biasing water
potential distributions towards low values. Although, by focusing
on the tail of the Ψ distribution, EVT-based methods are rela-
tively insensitive to the impact of undersampling other parts of
the distribution, they are not immune to bias, and extensions
may be required to account for relevant sources of variation and
to obtain accurate estimates. Psychrometers offer a powerful
alternative to obtain quasi-continuous Ψ series and increase data
representativeness, at least in the temporal dimension (e.g. Guo
et al., 2020), and have the additional advantage of measuring
stem (as opposed to leaf) water potential, which is more directly
comparable with most assessments of hydraulic vulnerability.
However, psychrometer measurements are still rare and cannot
be obtained for all taxa. In summary, even though sampling
issues are minimized by the EVT approach we propose, they are
certainly not solved.

Interestingly, for the seven species in the ‘raw’ dataset for
which we could obtain Ψlethal values from the literature
(Table S8), those compared well with our Ψmin estimates
(r = 0.76, average difference < 0.9 MPa). For these species, Ψlethal

< Ψmin except for J.monosperma. The largest difference between
Ψlethal and Ψmin was observed for P. edulis (2.12MPa), for which
the absolute lowest Ψ after c. 1500 measurements (including an
extreme drought treatment) was �4.19MPa, still a long way
from the estimated Ψlethal (�5.53MPa on average). This discrep-
ancy illustrates the fact that at least some species may effectively
never reach, in the field, the Ψlethal values determined under con-
trolled experimental conditions. Tagging and monitoring
branches sampled under extreme drought to ensure they were
alive and survived is a promising avenue to reconcile Ψlethal and
Ψmin estimates.

Towards a more robust determination of hydraulic risk

Characterizing the statistical distribution of water potentials and
their minimum values opens new ground for the determination
of plant hydraulic risk, as it allows the probability of reaching a
certain, critical Ψ to be estimated. If enough data are available,
deriving return intervals analogous to those used in hydrology
and other applied sciences (i.e. the average time between events
of a given magnitude) becomes straightforward (e.g. Reiss &
Thomas, 2007). Because hydraulic vulnerability thresholds are
relatively well understood, at least for the xylem, estimating the
probability of a given amount of hydraulic damage (e.g. 50% or
88% loss of conductivity), or the corresponding return interval,
also becomes possible. Conceptually, this is clearly superior to
HSMs estimated as the difference between Ψmin and embolism
resistance, as currently done. Unfortunately, our results show that
the quality of species-level, water potential data is rarely good
enough at present to obtain robust probabilistic estimates of
hydraulic risk. Therefore, even without considering the issues
associated with the determination of hydraulic vulnerability,
which are beyond the scope of this paper, a proper characteriza-
tion of hydraulic risk remains a challenge (Martinez-Vilalta et al.,
2019).

In conclusion, we demonstrate that current Ψmin estimates
are biased and propose two EVT-based methods to obtain sta-
tistically robust estimates of Ψmin. We validate these methods,
which may also be applied to other ecophysiological extremes,
using different empirical and synthetic datasets at different
measurement levels. Our results show the potential of EVT-
based methods to improve the determination of hydraulic risks
in plants, and also point towards novel ways of characterizing
water potential regulation. At the same time, our analyses
highlight the large spatiotemporal variability in Ψ within
species, particularly at daily scales, and the limitations of cur-
rently available data. We urge improved sampling designs to
better characterize water potential variability within species and
also better reporting of these data, if possible including
individual-level measurements or at least a clear indication of
the level of aggregation. Making raw data available together
with relevant metadata (e.g. site coordinates, time stamps, local
environmental data, occurrence of severe drought effects)
would pave the way for building global, harmonized water
potential databases and for a rigorous treatment of inclusion
criteria for the determination of Ψmin and associated measures
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of hydraulic risk. Altogether, this effort should result in better
understanding and prediction of plant responses to drought
under ongoing climate change (Choat et al., 2018; Brodribb
et al., 2020; Ruiz-Benito et al., 2020).
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