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Abstract12

Forage quality is essential in livestock farming and has an important role13

in the functioning of agricultural farms.14

Access to biochemical variables provides an estimation of the feed value of15

crop for animal feed at harvest. Near infrared (NIR) spectroscopy provides16

measurements indirectly related to biochemical variables. In recent years,17

several micro-spectrometers have been developed that offer the opportunity18

to predict such biochemical variables at low cost. In this study, the poten-19

tial of a combination of micro-spectrometers is evaluated to predict crude20

protein (CP) and total sugar content (TS) of sugarcane. First, each micro-21

spectrometer with optimal pretreatments was individually compared to a ref-22

erence laboratory spectrometer. Then, a combination of micro-spectrometers23

is proposed and prediction models were established by a multi-block method24

from data fusion called Sequential and Orthogonalised - Partial Least Squares25
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(SO-PLS). For CP, the combination of micro-spectrometers provides model26

(sep=0.69%; bias=0.15%; R2
test=0.910) close to those obtained with the ref-27

erence spectrometer (sep=0.56%; bias=-0.13%; R2
test =0.935). For TS, the28

results obtained with this combination of micro-spectrometers (sep=2.38%;29

bias=-0.52%; R2
test=0.983) are better than those obtained with the refer-30

ence spectrometer (sep=2.59%; bias=0.41%; R2
test=0.978). For both chemical31

variables, the combination of the micro-spectrometers significantly increases32

the performance of the predictive models compared to the models obtained33

with the micro-spectrometers independently. Using several low-cost micro-34

spectrometers, combined with a multi-block method would give results as35

good as a single laboratory spectrometer with a lower cost.36

Keywords: Food control, Micro-spectrometer, Spectroscopy, Data fusion,37

Forage, multi-block regression, Multivariate Data Analysis38

1. Introduction39

Forage quality is essential in livestock farming and has an important role40

in agricultural farm management (Ball et al., 2001; Collins and Fritz, 2003).41

Forage must respond to a set of constraints related to farms, production42

costs, animal requirements and environment (Wilkins, 2000). Forage feed43

value, including energy value or protein and mineral contents, ensures a nu-44

tritional quality for a good metabolic development of animals. Information45

such as protein or sugar content represents a major interest to estimate feed46

value of crops at harvest time. Accessing these parameters is possible by di-47

rect destructive laboratory measurements (Ball et al., 2001). However, these48

measurements have time and cost constraints.49
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In laboratory, near-infrared (NIR) spectroscopy is an alternative to ac-50

cess these parameters in an indirect and non-destructive manner (Stuth et al.,51

2003; Deaville and Flinn, 2000; Barton II and Windham, 1988). In the NIR52

range, spectral bands are related to harmonics and combinations of fun-53

damental molecular vibrations, in particular stretching, bending and some54

deformations (Siesler et al., 2008; Workman and Springsteen, 1998).55

In recent years, several micro-spectrometers have been developed (Yang56

et al., 2021). These micro-spectrometers provide fast and non-destructive57

measurements with a very low cost compared to laboratory spectrometers.58

With this technology, the increased use of NIR spectroscopy is expected to59

lead to new applications (Yan and Siesler, 2018; Wiesner et al., 2014; Siesler60

et al., 2008) directly accessible to crop producers.61

To this end, micro-spectrometers are expected to be widely used. Hence,62

appropriate multivariate data analysis methods must be proposed to exploit63

spectral data from NIR spectroscopy (Wiesner et al., 2014). The reference64

method is Partial Least Squares Regression (PLS-R)(Wold et al., 2001) which65

is a bilinear regression method that allows to predict biochemical variables66

from spectral data.67

Generally, prediction quality of regression models can be improved by68

choosing the best pretreatment according to variables to be predicted, spec-69

tral region considered and undesired spectra to be corrected (Engel et al.,70

2013; Rinnan et al., 2009). Another way to increase predictive capabilities71

is to predict a response variable from several complementary data sources72

(blocks), using so-called multi-block methods (Mishra et al., 2021). Re-73

cently, Sequential and Orthogonalised - Partial Least Squares (SO-PLS) was74
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proposed as an extension of PLSR (Naes et al., 2011) involving an orthog-75

onalisation procedure to sequentially capture additional information from76

different blocks. This category of methods offers the possibility to predict77

a response variable from a combination of several blocks such as NIR mea-78

surements combining with physicochemical parameters for the monitoring of79

anaerobic digestion (Awhangbo et al., 2020).80

In this study, the potential of a combination of micro-spectrometers is81

evaluated to predict chemical variables of sugarcane for forage application.82

The main objective is to study the contribution of a multi-block method to83

exploit spectra resulting from a combination of a set of micro-spectrometers.84

In a first step, PLS models are established for each micro-spectrometer with85

optimal pretreatments. These models are compared to a model from a ref-86

erence laboratory spectrometer. In a second step, a combination of micro-87

spectrometers is proposed and SO-PLS is used to build a prediction model.88

2. Materials and methods89

2.1. Sample preparation and reference analysis90

A set of sixty sugarcane samples from different plant parts (leaf, stem91

or whole aerial part) were collected in the French West Indies (Guadeloupe)92

(Zgouz et al., 2020). Before chemical analysis, the samples were dried for 72h93

at 85◦C, milled with a Retsch SM100 mill (Retsch GmBH,Germany) with a94

1 mm exit sieve and analysed in the Cirad Selmet feed laboratory (Mont-95

pellier, France) to determine total sugar content (TS) and Crude Protein96

content (CP). CP content was estimated from the total nitrogen content (N)97

measured by Kjeldahl method, with the relationship CP = N * 6.25 and TS98
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content was determined by adapted Luff-Schoorl method (noa, 1997). CP99

and TS are expressed as a percentage (%) of Dry Matter (DM).100

2.2. Spectral measurement protocols101

All samples were measured by a laboratory spectrometer used as refer-102

ence: LabSpec 4 (ASD, Boulder, CO, USA).103
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Figure 1: Spectral range according to approximate price for all spectrometers

Spectral acquisitions were also performed on the same samples (in a same104

FOSS cup) using different micro-spectrometers: SCIO (Consumer Physics,105

Israel), F750 (Felix Instrument, Camas, USA), µNIR1700 (Viavi, Solution-106

Milpitas, USA), DLP NIRscan Nano (Texas Instrument s Inc., Texas, USA),107

µNIR2200 (Viavi, Solution-Milpitas, USA) and NIRONE 2.2 (Spectral En-108

gines, Finland). Fifty spectra were averaged for each spectrometer acquisi-109

tion.110

These micro-spectrometers, covering different visible and near-infrared111

spectral ranges (see Table 1), were used to establish predictive models and112
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were compared with the ASD Labspec 4 which covers a much larger spec-113

tral range. Approximate price values of all spectrometers are displayed for114

comparison purposes (see Fig. 1). The lowest priced micro-spectrometers115

were the NIRone, NIRscan and SCIO with values close to 1000$. The refer-116

ence spectrometer (ASD) was about 60x more expensive compared to these117

micro-spectrometers. µNIR1700 and µNIR2200 have intermediate values118

corresponding to 20x more expensive than NIRone, NIRscan and SCIO. The119

F750 is a compromise ( 8000$) between the micro-spectrometers in terms of120

price.121

Table 1: Detail for each spectrometer/micro-spectrometers: acronym used on the docu-

ment, spectral range and spectral resolution of the NIR spectrometers

Acronym Manufacturer Device model Spectral range (nm) Spectral resolution (at λ) (nm)

ASD ASD Inc. LabSpec 4 350 - 2500 3 (at 700 nm) - 10 (at 1300/2100 nm)

SCIO Consumer Physics SCIO 740 - 1070 not communicated

F750 Felix Instrument F750 450 - 1140 8

µNIR1700 JDSU/VIAVI MicroNIR1700 908 - 1676 10

µNIR2200 JDSU/VIAVI MicroNIR2200 1150 - 2150 20

NIRscan Texas Instrument DLP NIRscan Nano 901 - 1701 10

NIRone Spectral Engines NIRone 2.2 1750 - 2150 20-26

2.3. Data analysis122

2.3.1. Regression models123

In the first section, Partial Least Squares Regression (PLSR) (Wold et al.,124

2001) was used to build models to predict chemical variables, from spectra,125

represented by a matrix X. Each chemical variable is represented by a vector126

y. A model was established for each micro-spectrometer where the final PLS127

equation can be established as follows:128
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y = Xb+ rX (1)

where b is a vector containing regression coefficients and rX is corre-129

sponding to residuals of the model.130

In the second section, Sequential and Orthogonalized Partial Least Squares131

(SO-PLS) (Naes et al., 2011) was used as a multi-block method to predict132

variables from multiple blocks. This method was used to evaluate a com-133

bination of micro-spectrometers, i.e. blocks corresponding to the spectra134

measured by these micro-spectrometers.135

This method extracts the information sequentially from each data block.136

First, the SO-PLS algorithm started as PLS method with the first block137

containing spectral data, as previously described (eq. 1).138

Then, an orthogonalisation procedure was performed to remove informa-139

tion (from the first regression) on the second block, defined by the matrix Z.140

This orthogonalisation, providing Z⊥, can be written as follows:141

Z⊥ = Z−T(TtT)TtZ (2)

where T corresponds to the score matrix of X in a PLS procedure.142

Then, a second PLS model is established between the residual vector,143

corresponding to the vector rX (eq. 1) and the matrix Z⊥. This regression is144

established by following the same procedure as previously for the regression145

between X and y (eq. 1). At the end of this procedure, a vector c containing146

the regression coefficients is obtained. The final equation of the SO-PLS147

multi-block method can be written as follows:148
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y = Xb+ Z⊥c+ rX,Z (3)

With rX,Z , the residual vector of the SO-PLS model.149

2.3.2. Model evaluation150

To evaluate model performances, a calibration set and a test set from151

available samples were defined by random selection. The calibration set was152

constituted by using two thirds of the samples, i.e. forty samples. Spectra153

corresponding to these 40 samples were used to build the prediction model.154

This step was performed in k-fold cross validation (five blocks) to select the155

relevant number of latent variables (LV).156

Spectra from the 20 remaining samples, corresponding to the remaining157

third of the whole available samples, were used as an internal test set. Each158

model obtained in cross-validation procedures was applied to the test set.159

To evaluate SO-PLS models, the order of the blocks was defined in the160

order of the spectral ranges (i.e. the lowest spectral range corresponds to the161

first block).162

2.3.3. Pretreatments163

Pretreatments commonly used in chemometrics were tested to establish164

the best prediction models: Standard Normal Variate (SNV) (Barnes et al.,165

1989), Variable Sorting for Normalization (VSN) (Rabatel et al., 2020) and166

Multiple Scatter Correction (MSC). These corrections were also combined167

with a Savitzky-Golay type smoothing (Savitzky and Golay, 1964) by varying168

the window size with common values corresponding to 20 nm to 400 nm as169
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well as varying the polynomial order from 1 to 3. In addition, the first and170

second derivatives were also studied to these Savitzky-Golay smoothings.171

A choice on the best pretreatment (including no pretreatment) was made172

for each spectrometer according to several criteria from cross-validation pro-173

cedure. More especially, this choice was motivated by minimizing validation174

errors while selecting a low number of latent variables.175

3. Results and discussion176

3.1. Data overview177

3.1.1. Y values178

For each variable describing the chemical properties, value distributions179

for the calibration set and the test set are displayed in figure 2.180
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Figure 2: Histograms of calibration and test sets for each biochemical variable: (a) Crude

protein content (CP, %DM), (b) Sugar content (TS, % DM)

For the calibration set, CP content (Fig. 2a) has values ranging from 1%181

to 10% of total dry matter with a distribution mainly between 1% and 4%182

and very few values above 4%. The calibration set value distribution of TS183
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content (Fig. 2b) ranges from 0% to 50% with many observations having184

either low values between 0% and 5% or values around 40%.185

For both chemical variables, test sets have similar value distributions186

than those of the corresponding calibration set. The visualization of value187

distributions confirms that the test set covers the whole value range.188

3.1.2. Spectra analysis189

Pseudo-absorbance spectra defined by log(1/R) (where R is the reflectance190

spectrum measured by a spectrometer) of all calibration and test sets are191

shown for each spectrometer (Fig. 3).192

Spectra from ASD have a spectral range from 350 nm to 2500 nm (Fig.193

3a). These spectra have shapes consistent with what is generally found in194

NIR spectroscopy of fruits and vegetables (Nicoläı et al., 2014): NIR spectra195

are dominated by water contribution. Two water-related absorption bands196

can be identified: 1436 nm, 1938 nm. A small peak at 1200nm can be ob-197

served. The same observations are made for the spectra measured in the198

near infrared range with the other spectrometers (Fig. 3d, 3e, 3f and 3g).199

A visible base line shift effect was observed in absorbance raw spectra, for200

all spectrometers. The increase in the optical path length traveled by the201

photons in a scattering medium reflects a multiplicative effect on the spectra202

(Osborne et al., 1993; Ryckewaert et al., 2020) resulting in baseline drifts of203

the ideal absorbance spectra. In the spectral range between 350 and 1000 nm,204

these scattering effects are much more dominant (Fig. 3a) and 3b) and re-205

sult in a decreasing slope (Ishimaru, 1978). Weaker absorption peaks are206

present at 670 nm (Fig. 3a and 3b) and 1200 nm (Fig. 3a, 3d, 3e and 3f). In207

vegetable products, the absorption bands at 670 nm and 1200 nm have been208
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Figure 3: Absorbance spectra for each spectrometer: (a) ASD, (b) F750, (c) SCIO, (d)
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respectively associated with chlorophyll and sucrose (Osborne et al., 1993).209

3.2. Regression model by spectrometer210

3.2.1. Pretreatment and calibration model211

The best models obtained by cross-validation to predict CP and TS vari-212

ables by micro-spectrometers/spectrometer are presented in Table 2. For213

each variable (CP and TS), results are classified according to the error val-214

ues obtained in cross-validation (i.e. secv).215

Table 2: Calibration results for prediction of the two variables: CP and TS. The spec-

trometers are ranked in order of best to worst model based on SECV values. ; savgol

(width (in nm) /deriv/order)

Y Spectrometer pretreatment LV sec (%DM) secv (%DM) R2
cv

CP

µNIR2200 savgol(245/2/2) - SNV 9 0.29 0.51 0.942

NIRone SNV 9 0.45 0.55 0.929

ASD savgol(41/0/0) 10 0.40 0.57 0.926

µNIR1700 savgol(185/1/2) - SNV 12 0.49 0.64 0.930

F750 savgol(75/2/2) 3 0.65 0.73 0.87

SCIO savgol(90/1/1) 5 0.64 0.75 0.87

NIRscan savgol(53/2/2) - SNV 8 0.51 0.99 0.77

TS

ASD savgol(41/0/0) - SNV 8 1.15 1.83 0.989

µNIR2200 savgol(203/0/0) - SNV 9 1.48 2.46 0.981

µNIR1700 savgol(155/1/1) - SNV 8 2.37 3.40 0.960

NIRscan savgol(88/2/2) 13 1.84 4.24 0.939

NIRone savgol(30/2/2) - SNV 9 3.00 6.31 0.87

F750 savgol(105/1/1) - SNV 13 4.17 6.42 0.87

SCIO savgol(45/1/1) 4 7.79 8.33 0.76

For the CP variable, best models from cross-validation procedure are216

obtained with the µNIR2200 micro-spectrometers (secv=0.51%; R2
cv=0.942),217

the NIRone (secv=0.55%; R2
cv =0.929), the ASD (secv=0.57%; R2

cv =0.926)218
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and the µNIR1700 (secv=0.64%; R2
cv =0.930). The models obtained with219

the NIRscan (secv=0.99%; R2
cv=0.77), the SCIO (secv=0.75%; R2

cv =0.87)220

and the F750 (secv=0.73%; R2
cv=0.87) have higher errors and a lower R2

cv.221

For the TS variable, the best model from the cross-validation is obtained222

with the ASD (secv=1.83%; R2
cv =0.989). The best models using micro-223

spectrometers are obtained with the µNIR2200 (secv=2.46%; R2
cv =0.981)224

and the µNIR1700 (secv=3.40%; R2
cv =0.960). The worst models are ob-225

tained with the SCIO (secv=8.33%; R2
cv =0.76), the F750 (secv=6.42%; R2

cv226

=0.87) and the NIRone (secv=6.31%; R2
cv =0.87) The NIRscan (secv=4.24%;227

R2
cv =0.939) shows intermediate results.228

In most cases, best models are obtained with savgol smoothing of differ-229

ent window sizes depending on the spectrometer used and their respective230

spectral resolution. The VSN and MSC pretreatments did not give optimal231

results and do not appear in Table 2. This smoothing is combined with SNV232

pretreatment for µNIR2200, µNIR1700 and NIRscan in the case of CP pre-233

diction. SNV is also combined with smoothing on the µNIR2200 , µNIR1700234

and NIRone and F750 for the TS variable.235

Different pretreatments are obtained for micro-spectrometers, even to pre-236

dict the same response variable. This is due to different characteristics of the237

spectrometer used (spectral region, spectral resolution, noise). For a given238

spectrometer, pretreatments can be different depending on the variable to239

be predicted. Indeed, two chemical variables of different nature will impact240

differently reflectance spectrum shape.241

3.2.2. Model evaluation242

Once optimal pretreatment and LV number are chosen during the cross-243
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validation procedure, models are calibrated with the entire calibration set244

samples. (Tab. 2). These models are now applied to the test set. For the245

two chemical variables, performances of the prediction models are evaluated246

through sep and R2
test values. These values are obtained for each spectrometer247

or micro-spectrometer and can be seen in table 3.248

Table 3: Evaluation of prediction models on a test set. Spectrometers are ranked in order

of best to worst model based on SEP value

Y Spectrometer sep (%DM) bias (%DM) R2
test

CP

ASD 0.56 -0.13 0.935

µNIR1700 0.58 0.18 0.932

µNIR2200 0.67 0.20 0.908

SCIO 0.72 -0.31 0.902

NIRone 0.73 -0.027 0.88

NIRscan 0.78 0.28 0.88

F750 0.86 -0.30 0.87

TS

ASD 2.59 0.41 0.978

µNIR2200 2.99 0.31 0.970

µNIR1700 3.01 0.81 0.969

NIRscan 4.40 0.55 0.939

NIRone 8.04 -1.64 0.78

F750 9.37 0.49 0.73

SCIO 11.05 3.80 0.61

CP. For CP variable, R2
test values range from 0.87 to 0.94 and error values249

range from 0.56 to 0.86%. The range of prediction error values needs to be250

compared with the protein content values, which range from 1 to 7%, but251

with the majority of values between 1 and 3% (Fig. 2a). The best model252

is obtained with the ASD (sep = 0.56%; bias=-0.13%; R2
test = 0.935). The253

micro-spectrometers with values close to those obtained with the ASD are254

the µNIR1700 (sep =0.58%; bias=0.18%; R2
test=0.932) and the µNIR2200255
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(sep =0.67%; bias=0.20%; R2
test=0.908). Models with intermediate results256

are obtained with SCIO (sep =0.72%; bias=-0.31%; R2
test=0.902), NIRone257

(sep =0.73%; bias=-0.0027%; R2
test=0.88) and NIRscan (sep =0.78%; bias=-258

0.28%; R2
test=0.88). The worst performance is obtained for the model using259

the F750 (sep =0.86%; bias=-0.30%; R2
test=0.87)260

The µNIR1700 has a spectral region defined between 908 nm and 1676 nm.261

This spectral region contains a part related to overtones of the C-H, C-N,262

N-H bonds present between 1600-1700 nm and related to protein (Clark and263

Lamb, 1991). Besides, predictive quality obtained with the NIRone remains264

satisfactory despite a very small spectral range defined between 1750 nm and265

2150 nm. Nitrogen-Hydrogen (N-H) bonds absorb at 2055 nm and 2180 nm266

(Wetzel, 1983). In addition, proteins contain mostly amide structures that267

possess nitrogen-hydrogen (N-H) bonds. The NIRone spectral region is there-268

fore suitable to predict protein content, as absorption peak at 2055 nm can269

be observed as well as the beginning of the absorption peak at 2180 nm.270

Almost equivalent results are reached with SCIO despite a restricted spec-271

tral range from 740 nm to 1070 nm. In this range, information is related to272

protein at 1007 nm or to primary amines at 1000 nm and 1020 nm (Workman273

and Springsteen, 1998) .274

TS. For TS (Fig. 3), R2
test and sep values have a wider range. These val-275

ues range from 0.61 to 0.98 for R2
test and from 1.81 to 11.05% for sep. Best276

models on the test set were obtained for the ASD (sep =2.59%; bias=0.41%;277

R2
test=0.978) and the µNIR2200 (sep =2.99%; bias=0.31%; R2

test=0.970). In-278

termediate results were obtained for the µNIR1700 (sep=3.01%; bias=0.81%;279

R2
test=0.969) and the NIRscan (sep=4.40%; bias=0.55%; R2

test=0.939). On280
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the other hand, models derived from the spectra measured by NIRone (sep=8.04%;281

bias=-1.64%; R2
test=0.78), F750 (sep=9.37%; bias=0.49%; R2

test=0.73) and282

SCIO (sep=11.05%; bias=3.80%; R2
test=0.61) have a poor predictive quality.283

Good and intermediate results (µNIR2200, ASD, µNIR1700 and NIRscan)284

are reached with spectrometers whose spectral ranges cover the region around285

O-H bond from sugar as crystalline sucrose (Kays et al., 1997) around 1441 nm286

(Workman and Springsteen, 1998). This is not the case for the NIRone, F750287

and SCIO spectrometers (see 1), and may explain the high error values in288

TS prediction.289

Best results are obtained with ASD and the µNIR2200. These spectrom-290

eters cover both spectral regions around 1441 nm, as well as around 2100 nm.291

At 2100 nm, O-H bending and C-O stretching combination can be observed292

and can be related to sugar content (Workman and Springsteen, 1998) and293

could explain the good results obtained.294

3.3. Regression model from a combination of spectrometers295

Table 4 shows prediction model evaluations for CP and TS using ASD296

and using a combination of micro-spectrometers. Micro-spectrometers re-297

tained for the combination are the following: SCIO, NIRscan and NIRone.298

These micro-spectrometers were chosen because their combination covers ap-299

proximately the same spectral range as the ASD while minimising the cost300

compared to other micro-spectrometers (see fig. 1). Pretreatments used301

for each micro-spectrometer correspond to those identified by the micro-302

spectrometers independently (see table 2).303
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Table 4: Evaluation of prediction performance for all variables using ASD and using

the combination of three micro-spectrometers (SCIO; NIRscan; NIRone). The latent

variables displayed in the format ’../../..’ correspond to the latent variables of the micro-

spectrometers in the order: SCIO/NIRscan/NIRone

Y Spectrometer(s) pretreatment LV sec secv sep bias R2
cv R2

test

CP content
ASD savgol(40/0/0)’ 10 0.40 0.57 0.56 -0.13 0.926 0.935

Combination Best each 3/2/10 0.29 0.47 0.69 0.15 0.952 0.910

TS content
ASD savgol(40/0/0) 8 1.15 1.83 2.59 0.41 0.989 0.978

Combination Best each 0/6/6 1.67 2.56 2.38 -0.52 0.978 0.983

Results obtained previously with ASD are reported here as reference val-304

ues. For CP variable, the optimal prediction model remains the one us-305

ing spectra obtained with ASD (sep=0.56%; bias=-0.13 %; R2
test =0.935).306

Nonetheless, the micro-spectrometer combination provides a model with per-307

formances (sep=0.69%; bias=0.15 %; R2
test=0.910) close to those obtained308

with ASD.309

For TS, results obtained with this micro-spectrometer combination (sep=2.38%;310

bias=-0.52%; R2
test=0.980) are better than those obtained with ASD (sep=2.59%;311

bias=0.41%;R2
test=0.978). Combining the three micro-spectrometers leads to312

lower prediction errors than using each micro-spectrometer separately, for313

both variables tested. Indeed, the best performances previously obtained for314

CP prediction were sep=0.72% and R2
test=0.88 with the NIRone, whereas TS315

prediction performances were sep=4.40% and R2
test=0.939 with the NIRscan.316

The combination of sensors greatly improves the predictive qualities for the317

variables studied. However, this proposed micro-spectrometer combination318

does not reach the performances obtained with µNIR2200 for CP prediction319

(sep =0.65%; R2
test=0.926) as well as TS prediction (sep =2.36%; R2

test=0.985)320
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(see Tab. 3). Nevertheless, the three-spectrometer combination has a lower321

cost than that of the µNIR2200 alone.322

In multi-block methods, the number of latent variables is defined by cross-323

validation for each of the blocks (i.e. micro-spectrometers). This number324

varies according to the relative importance of each block to predict a given325

variable. Visualising the number of latent variables helps understanding the326

relevance of each micro-spectrometer and would be a guided way to select the327

best combination of micro-spectrometers according to predictive capabilities.328

Indeed, if the number of latent variables is equal to zero, this means that the329

micro-spectrometer is not considered in the multi-block model. This is the330

case for the SCIO micro-spectrometer which is not used for TS prediction331

(table 4). In this case study, the combination of only two micro-spectrometers332

(NIRscan and NIRone) would be sufficient to predict TS at a considerably333

lower cost.334

Here we have chosen the pretreatments defined separately for these three335

identified micro-spectrometers. However, it is recommended to integrate the336

pretreatment choice into the cross-validation procedure of SO-PLS to ensure337

better complementarity between blocks and thus improve the prediction ca-338

pabilities. An alternative is to systematically add blocks corresponding to339

relevant pretreatments for each micro-spectrometer. This alternative would340

have the capacity to be automatic but would impose new constraints in terms341

of computing time and memory space.342
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4. Conclusion343

In this study, micro-spectrometers were evaluated individually to predict344

Crude Protein (CP) and sugar content (TS) on sugarcane forage samples.345

Optimal pretreatments were identified. For a micro-spectrometer, resulting346

pretreatment may differ according to the chemical variable to be predicted347

and depends on the measured phenomena. In a second step, a combination348

of three micro-spectrometers (SCIO, NIRscan and NIRone) was proposed.349

Model performances were compared to those obtained with the laboratory350

spectrometer (ASD). Some models built from a single micro-spectrometer351

(the most expensive) gave similar performances as the laboratory spectrom-352

eter. For CP, the combination of micro-spectrometers gave a prediction353

performance (sep=0.69%; bias=0.15%; R2
test=0.910) close to that obtained354

with the laboratory spectrometer (sep=0.56%; bias=-0.13%; R2
test =0.935).355

For TS, the results obtained with this combination of micro-spectrometers356

(sep=2.38%; bias=-0.52%; R2
test=0.983) are better than those obtained with357

the laboratory spectrometer (sep=2.59%; bias=0.41%; R2
test=0.978). For358

both chemical variables, the combination of the micro-spectrometers signif-359

icantly increases the performance of the predictive models compared to the360

models obtained with the micro-spectrometers independently.361

Using several low-cost micro-spectrometers, combined with a multi-block362

method gave results as good as a single laboratory spectrometer. The overall363

cost can be lower than a reference spectrometer. In this study, the SO-PLS364

multi-block method with the number of latent variables selected per block365

shows the usefulness of micro-spectrometers in the prediction results. It366

guides the choice of the combination of micro-spectrometers by the variable(s)367
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to be predicted. A further study could thus define the cost benefit versus368

the measurement efficiency. Trade-offs between prediction quality and device369

cost can then be defined according to the objective and constraints of the370

application, particularly as is the case with on-line monitoring applications371

or outdoor measurements.372
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