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Lianas are abundant and diverse in tropical forests and impact forest dynamics. They
occupy part of the canopy, forming a layer of leaves overtopping tree crowns. Yet, their
interaction with trees has been mainly studied from the ground. With the emergence of
drone-based sensing, very high-resolution data may be obtained on liana distribution
above canopies. Here, we assessed the relationship between common liana ground
measurements and drone-determined liana leaf coverage over tree crowns, tested if this
relationship is mediated by liana functional composition, and compared the signature
of liana patches and tree crowns in our drone images. Using drone platforms, we
acquired very high resolution RGB and multispectral images and LiDAR data over
two 9-ha permanent plots located in northern Republic of Congo and delineated
liana leaf coverage and individual tree crowns from these data. During a concomitant
ground survey, we focused on 275 trees infested or not by lianas, for which we
measured all lianas ≥ 1 cm in diameter climbing on them (n = 615) and estimated
their crown occupancy index (COI). We additionally measured or recorded the wood
density and climbing mechanisms of most liana taxa. Contrary to recent findings, we
found significant relationships between most ground-derived metrics and the top-of-
view liana leaf coverage over tree crowns. Tree crown infestation by lianas was primarily
explained by the load of liana climbing on them, and negatively impacted by tree height.
Liana leaf coverage over individual tree crowns was best predicted by liana basal area
and negatively mediated by liana wood density, with a higher leaf area to diameter ratio
for light-wooded lianas. COI scores were concordant with drone assessments, but two
thirds differed from those obtained from drone measurements. Finally, liana patches
had a higher light reflectance and variance of spectral responses than tree crowns in all
studied spectra. However, the large overlap between them challenges the autodetection
of liana patches in canopies. Overall, we illustrate that the joint use of ground and
drone-based data deepen our understanding of liana-infestation pathways and of their
functional and spectral diversity. We expect drone data to soon transform the field of
liana ecology.
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INTRODUCTION

Lianas are essential components of tropical forests. They may
represent up to 20% of woody plant diversity and 40% of stem
density in Neotropical forests (Dalling et al., 2012). Because they
do not invest into structural support at the adult stage, often using
trees to rise to the forest canopy, lianas tend to exhibit a large
leaf area-stem diameter ratio compared to trees (Hegarty and
Caballé, 1991; Medina-Vega et al., 2021). They can invade more
than half of canopy tree crowns (Ingwell et al., 2010), forming
a monolayer of leaves overtopping trees and limiting their light
acquisition (Avalos et al., 1999; Visser et al., 2018). They are also
suspected to better explore and capture soil resources than trees
(Collins et al., 2016; Smith-Martin et al., 2019). They thus are in
direct competition with trees for both below-ground and above-
ground resources (Avalos et al., 1999; De Deurwaerder et al.,
2018), reducing forest tree diversity, growth and carbon storage
and strongly limiting forest resilience (Schnitzer and Carson,
2010; Laurance et al., 2014; van der Heijden et al., 2015; Tymen
et al., 2016). Therefore, accurately estimating liana infestation is
important to quantify its effects on forest functions and predict
tropical forests dynamics.

Lianas have mostly been studied through ground-level
observations, using common measurements such as stem
diameters, following international standardized protocols (Clark
and Clark, 1990; Gerwing et al., 2006; Schnitzer et al., 2008).
However, while they typically represent less than 5% of woody
stem biomass, they can occupy up to 30% of the forest leaf area
(van der Heijden et al., 2013). To our knowledge, only one study
has looked into the relationship between estimates derived from
classical ground measurements (i.e., liana stem density, basal area
and biomass) and the top-of-view liana leaf coverage over tree
crowns, measured by a canopy crane (Cox et al., 2019). This
study found no significant correlations between ground-derived
estimates and the liana leaf coverage, raising important questions
about the conclusions drawn from ground-based measurements
on the aboveground impact of lianas on trees. Understanding the
relationship between ground-based measurements and the top-
of-view liana leaf coverage over tree crowns is thus important
to better interpret the conclusions drawn from classical ground
measurements and to better understand liana impact and
proliferation in tropical forests.

One mechanism that could blur the relationship between
ground-based measurements and the top-of-view liana leaf
coverage on tree crowns is that lianas do not constitute a
homogenous functional group. A recent study has indeed shown
that liana trait variations are comparable in magnitude to tropical
tree trait variations, within and across studies (Meunier et al.,
2020). Indeed, lianas possess a wide range of strategies for
climbing and colonizing trees, allowing them to adapt to different
environments (Darwin, 1875; Hegarty, 1991; Putz and Holbrook,
1991; Rowe and Speck, 2015). For instance, physiologically,
different wood densities may enable lianas to have different
growth-survival strategies. As shown for trees, low wood densities
tend to characterize acquisitive species, with high growth rates,
large and thin leaves, high photosynthesis rates, large wood
vessels and high hydraulic conductance (Van Gelder et al., 2006;

Chave et al., 2009; Baraloto et al., 2010; Poorter et al., 2010;
Werden et al., 2018; Buckton et al., 2019). These characteristics
may in turn impact the patterns of biomass allocation between
foliage and woody structures in liana species, as shown for
trees where the biomass allocated to the foliage decreases with
wood density (Mensah et al., 2016). Furthermore, different
climbing mechanisms enable lianas to have different exploration
strategies to reach the canopy (Darwin, 1875; Putz, 1984; Isnard
and Silk, 2009). Active climbers, such as lianas with tendrils
or twining species, exhibit a support-seeking behavior through
circumnutation, whereas other climbers, for example climbing
with hooks, spines or root climbing attachment, have developed
entirely different mechanisms to attach and climb (Melzer et al.,
2010). Attachment modes and climbing behaviors have been long
known to be of key interest for understanding liana ecology (Putz,
1984). For instance, Bongers et al. (2020) recently found that
climbing strategies was significantly related to the recruitment
rates of lianas in Central Africa.

With the development of new emerging remote sensing
tools such as unmanned aerial vehicles (hereafter referred to as
drones), we can now acquire very high-resolution data in which
patches of liana leaves can be visually detected on individual
trees (Waite et al., 2019). These high-resolution images provide
us with accurate estimations of liana leaf distribution above
individual tree crowns and allow us to assess the accuracy
of commonly used ground-based liana infestation estimates
such as the Crown Occupancy Index (COI). This index is a
semiquantitative ground-based assessment of relative liana leaf
cover over trees (Clark and Clark, 1990). Some studies have
looked into the accuracy of the COI to estimate liana loads
through its relationship with metrics derived from common
ground liana measurements (density, basal area), with positive
conclusions (van der Heijden et al., 2010). As a consequence,
liana-infestation has been monitored through time using the
COI, as it is much less time-expensive than classical dendrometric
measurements (Ingwell et al., 2010; Wright et al., 2015). However,
using high resolution drone data in Malaysia, Waite et al.
(2019) showed that even if a significant positive correlation
between the COI and the relative liana leaves coverage over
tree crowns exists, ground-based COI estimates were prone to
errors, with more than 25% of trees incorrectly classified from
the ground. Most of these errors occurred for low infestation
levels, representing nearly half of the wrongly classified trees.
Given the importance of the COI in current liana studies, the
accuracy of this index should be further evaluated in different
forest contexts.

One important condition for detecting liana leaves in remote
sensing products is the existence of different spectral responses
between liana and tree leaves. Lianas tend to have different leaf
chemical properties than trees, resulting in higher reflectance
across the solar spectrum, with higher differences between trees
and lianas observed around 550 nm (green domain; Castro-
Esau, 2004; Asner and Martin, 2012; Li et al., 2018; Chandler
et al., 2021) and in the near infrared (NIR; 780–1,400 nm; Li
et al., 2018) and shortwave infrared (SWIR; 1,400–3,000 nm;
Chandler et al., 2021; Visser et al., 2021). Some studies have used
these differences in spectral responses to detect liana infested
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trees and monitor infestation rates at the scale of the canopy
(Marvin et al., 2016; Li et al., 2018; Chandler et al., 2021). For
instance, Li et al. (2018) obtained an accurate classification of
liana infested and non-infested trees using a deep self-encoding
network at the scale of the canopy, using high-resolution multi-
spectral [475 nm (blue) to 840 nm (NIR)] drone data. However,
as most previous studies, they solely focused on the presence or
absence of lianas and did not quantify the degree of infestation
of trees. All studies aiming at quantifying the degree of liana
infestation found reliable results only for highly infested trees
(>50 or 75% of infestation by lianas) and could not accurately
estimate nor detect low liana infestation rates (Marvin et al.,
2016; Chandler et al., 2021). A recent study even showed that
lianas and trees do not differ significantly in their spectral
signatures at the leaf level (Visser et al., 2021). Nevertheless,
radiative transfer modeling has suggested that lianas display a
lower light absorption and greater projected leaf area, due to
flatter leaf angles. This results in a higher reflectance at the canopy
scale, especially in the near and shortwave infrared regions and
when liana leaves are aggregated within large patches (Visser
et al., 2021). Most of these studies were, however, conducted
in Neotropical forests while much less is known about the
spectral properties of lianas in the paleotropics. Given that
lianas are present in more than 133 families of angiosperms
(Gentry et al., 1991), probably generating a large range of
spectral signatures as observed for trees (Féret and Asner,
2012; Rocchini et al., 2016) and that spectral signatures partly
depend on local environmental conditions (Asner and Martin,
2012; Medina-Vega et al., 2021), the extent to which liana
leaves can be detected from their spectral signatures should
be further investigated, especially with the use of very high-
resolution drone data and focusing in other tropical regions
than the Neotropics. Furthermore, with the recent advances in
processing Light Detection and ranging (LiDAR) data, we now
can semi-automatically delineate individual tree crowns thanks
to dedicated algorithms (Aubry-Kientz et al., 2019) and thus
better disentangle the spectral response of tree crowns from that
of liana patches.

In this study, we investigated the relationship between
ground-based liana measurements and liana leaf coverage
over tree crowns quantified through high-resolution drone
images. More specifically, we assessed whether ground-based
measurements accurately predict liana leaf coverage over tree
crowns and whether these two measurements are mediated by
liana functional composition. We also separated the signatures
of liana patches and tree crowns both in the visible and non-
visible domain to evaluate the extent to which they overlap. We
hypothesize that (i) classical ground-based liana measurements
are significantly correlated with drone-based liana leaf coverage
estimates; (ii) liana wood density and climbing mechanisms
both influence liana leaf coverage over tree crowns; (iii) the
COI is not an accurate measure of liana leaf coverage for low
infested trees, as found by Waite et al. (2019); and (iv) spectral
responses of liana patches and tree crowns significantly differ
in multispectral data, with higher reflectances of lianas both
in the green and near infrared domain, as previously found
in the Neotropics.

MATERIALS AND METHODS

Study Site
Our study took place in Central Africa, in the north of the
Republic of Congo, in the Likouala province (2◦27′11.87′′ N
and 17◦02′32.17′′ E). Mean annual rainfall is 1,605 mm/year
(unpublished data obtained from 2003 to 2017 using a local
station at Pokola, 140 km away from our study site). The climate
is characterized by two dry seasons with a short one from June
to August and a long one from December to February. The
Loundoungou site is located on a plateau, the geological substrate
consists of limestone and alluvium from the Quaternary. Soils
can be classified as Xanthic Acrisols, sandy-clay to clay-sandy,
representative of the highest and lowest elevations of the plateau
(Freycon, 2014). The studied landscape is generally low and flat,
between 395 and 470 m asl (Freycon, 2014). The vegetation is
a semi deciduous forest characterized by the abundance of trees
belonging to the Fabaceae, Annonaceae, and Malvaceae families
(Réjou-Méchain et al., 2021).

The experimental study site was settled in 2013–2014 in the
Forest Management Unit (UFA) of Loundoungou-Toukoulaka,
in a concession managed by the logging company CIB-Olam.
The experimental design aims at comparing different silvicultural
treatments among four 9-ha plots that were established in
similar soil, topography and initial vegetation conditions (using
preliminary inventories). In the present study, we focused on
two 9-ha permanent plots that experienced highly selective
logging operations at the end of 2018 (0.3 trees logged per
ha on average). Other human activities are unlikely to have
induced major disturbances in the recent decades. Inside each
plot, all trees ≥ 10 cm dbh (diameter at breast height) have
been identified, located, and their diameter measured each
year since 2015 following international standards (Picard and
Gourlet-Fleury, 2008), for a total of 6,380 trees ≥ 10 cm dbh
measured in 2019.

Drone-Based Data and Pre-field
Inventories Analyses
Drone-based acquisitions were performed at three different
periods: in June 2018, April 2019 and in February 2020. In
2018 and 2019, Red Green Blue (RGB) images were acquired
over the experimental site using an EBEE 03-907 drone, from
the manufacturer SENSEFLY, operated by a private company
(Sylvafrica). In 2020, we acquired three drone datasets: Red
Green Blue (RGB), multispectral and LiDAR data. All flights were
conducted under homogeneous sunlit conditions. RGB data were
acquired with a Mavic 2 Pro drone, using an integrated three-
waveband (RGB) camera (20MP Hasselblad L1D-20c gimbal).
The flight trajectory was calculated and conducted with the
UGCS software. The acquisitions were made in three flights
covering the whole study site in less than 1-h between 7
and 8 a.m., on the 14th of February, with an overlap of
90% between flight lines. This short time of acquisition of
all RGB data allowed us to obtain Digital Numbers (DN)
values under homogeneous sunlight and atmospheric conditions,
and were hereafter assumed as a proxy of relative radiometric
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responses (radiometric corrections were not possible in our
study). Multispectral data were acquired in the red (660 nm
± 40 nm), green (550 nm ± 40 nm), red-edge (735 nm ±
10 nm) and near-infra red (790 nm ± 40 nm) regions using a
Parrot Sequoia camera mounted on a DJI Matrice 600 drone.
The flight trajectory was also calculated and conducted using
UGCS. The acquisitions were made in two overlapping flights
over the studied area, on the 13th of February, the first at 8 am
and the second at 15 pm, with an overlap of 90% within flight
lines. Data from an incident light sensor located above the drone
was used for conversion of DN values into bottom-of-atmosphere
(BoA) reflectance in the Pix4D software.1 However, as the Pix4D
routine did not yield satisfactory results, analyses based on the
BoA reflectance values of trees versus lianas were restricted to
60% of the studied area, i.e., using only the first flight to minimize
atmospheric effects and avoid inter flight radiometric corrections.

All drone imagery data were processed through Pix4D to
produce orthomosaics at spatial resolutions of 10 cm (2018), 5 cm
(2019), 3 cm (2020 RGB), and 17 cm (2020 Multispectral). Pix4D
used structure from motion algorithms, and other algorithms, to
build a dense point cloud from which a digital surface model
(DSM) was derived and used to produce an orthomosaic. In all
cases, pixels were represented by a minimum of five overlapping
images, with a total of 1095 images over 1292 ha (2018), 248
images over 80 ha (2019), 1153 images over 56 ha (2020 RGB)
and 2011 images over 450 ha (2020 Multispectral). We used both
the Pix4D algorithms of noise filtering, to remove outliers in the
generated points cloud, and of surface smoothing (type Sharp), to
flatten erroneous small bumps in the DSM.

Finally, very high-resolution LiDAR data were acquired on the
9th of February 2020 over the whole study site. A Yellowscan
Surveyor Ultra sensor (combining a Velodyne Ultra Puck, 600
kHz, 905 nm wavelength LiDAR scanner and an Applanix 15
IMU) was flown mounted on the DJI Matrice 600 UAV platform
at 60 m above SRTM elevation at a speed of 8 m/s, with
an interline distance of 50 m. A multiple return acquisition
resulted in a point density of 372 points/m2. We used a Reach
RS2 GNSS base station for PPK differential positioning with a
global accuracy of less than 4 cm on the X and Y axis (average
accuracy of 3.7 cm on all trajectories) and less than 7 cm
on the Z axis (average accuracy of 6.3 cm on all trajectories).
Trajectories were post-processed in PosPac UAV v9 and point
clouds were processed in LASTools (Isenburg, 2014) to derive a
1-m resolution Digital Terrain Model (DTM) using the lasground
(with the wilderness option) and las2dem functions. We then
normalized the point clouds (using the lasheight function) and
assessed the maximum height values with a 1m-grid in the
normalized point cloud (lascanopy function) to create a Canopy
Height Model (CHM), representing the top-of-canopy height
above the ground.

Prior to the field inventory (see next section), we conducted
preliminary analyses on the 2018 and 2019 drone datasets in
order to facilitate our upcoming fieldwork. Through a visual
interpretation of RGB mosaics, we manually delineated what
was seemingly liana leaf cover patches over individual tree

1https://www.pix4d.com/

crowns, using the QGIS open source software (version 3.10).
We then validated the presence of lianas in these tree crowns
using binoculars in the field to assess the accuracy of these
preliminary delineations from the ground. This assessment also
both helped our tree selection and liana delineation afterward
on the 2020 drone images (see section “Liana Delineation and
Spectral Signatures of Lianas”).

Field Inventories
We conducted a field campaign concomitantly with the third
drone acquisition in February 2020. Using the field application
of QGIS, Qfield,2 we validated and corrected (if needed) the
delineation of individual tree crowns and the presence of liana
leaf coverage observed on the 2019 RGB images, and recorded the
corresponding tree field inventory number for each tree crown.
In almost all cases the preliminary delineations of lianas were
validated with the presence of liana leaf coverage patches over
tree crowns, with only a few errors due to the occurrence of hemi-
parasite and hemi-epiphyte plants. Because the number of liana-
infested trees was much smaller than that of non-infested ones,
we focused our field investigations on trees that were identified
as liana-infested in our preliminary analyses and measured non-
infested trees in an opportunistic way. It enabled us to optimize
our time during our 3-week field mission and to ensure the
measurement of numerous liana-infested trees. In total, we were
able to link individual tree crowns delineated on drone images
with tree ground survey numbers for a total of 275 trees, infested
or not by lianas, with diameters ranging from 12.9 to 170.7 cm
dbh (median of 55.7 cm dbh). All studied trees had a crown
entirely visible from drone images, as estimated from the field.

For each tree, we estimated the liana leaf coverage from the
ground using the widely used Crown Occupancy Index (COI;
Clark and Clark, 1990; van der Heijden et al., 2010). This semi-
quantitative index expresses the relative coverage of liana leaves
in the tree crown using five categories: (0) no liana leaves in
the crown, (1) 1–25%, (2) 26–50%, (3) 51–75%, and (4) > 75%
of the tree crown covered by liana leaves. For each tree, the
COI was systematically assessed by two observers, equipped with
binoculars, who observed tree crowns from every visible and
accessible angle, discussed their estimates and agreed on the
final COI score.

All woody lianas ≥ 1 cm in diameter climbing on the studied
trees, or visibly entering or leaving the tree crown, were identified
by vernacular name and their diameters were measured following
international protocols using a manual caliper for small lianas
and a tape for large ones (Gerwing et al., 2006; Schnitzer et al.,
2008). In total, we measured 615 lianas belonging to 54 vernacular
taxa climbing on 104 trees. For each tree, we computed four
stand level liana measurements: liana stem number (NL), liana
basal area (BAL), liana maximum diameter (DmaxL), liana mean
quadratic diameter (QMDL).

We measured or recorded two functional traits: the stem
wood infradensity and the climbing mechanism. For stem wood
infradensity, we collected stem cylinders of more than 2 cm in
diameter at 1.3 m from the stem root, out of the permanent plot

2https://qfield.org/
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to avoid destructive measurements within the plots. In total, we
collected stems belonging to the most abundant 20 vernacular
taxa, representing 83% of the 615 liana stems inventoried. Wood
samples of approximately 2 cm of length were debarked and
saturated with water under pressure and the Archimedes thrust
was measured following the protocol described by Birouste et al.
(2014). Wood samples were first dried in an oven at 45◦C for
a week to avoid damaging the water saturated materials with
sudden extreme temperatures. Then, we rose the temperature
to 103◦C for 24 h to eliminate all water residuals. Finally, the
anhydrous masses of wood samples were measured, to assess the
wood infradensity, hereafter named wood density.

Liana climbing mechanisms were recorded for 34 vernacular
taxa, representing 92% of the 615 liana stems inventoried.
Climbing mechanisms were assigned to each vernacular name
following the classification proposed by Sperotto et al. (2020).
We classified as “active” climbing mechanisms twining lianas,
lianas with tendrils, prehensible branches and lianas with angular
branches. We classified as “passive” climbing mechanisms lianas
with hooks, spines, adhesive roots and simple scrambling lianas.

Data Analysis
Geospatial Analysis
Tree Crown Segmentation
We used the LiDAR data to delineate tree crowns on the two 9-
ha plots. After normalizing the point cloud with the DTM, we
removed the ground points and reduced randomly the density
of the point cloud to 40 points/m2 to limit computing time.
We then used the Adaptative Mean Shift approach (AMS3D;
Ferraz et al., 2012) implemented in the open Computree software
(Piboule et al., 2013). This approach composes a normalized
point cloud into 3D clusters, corresponding to individual tree
crowns, by finding local maxima giving a certain cylinder size.
We deliberately parameterized the model to over-segment tree
crowns (Figures 1A,B) because it is then easier to manually
merge over-segmented crowns than to segment under-segmented
crowns. After extracting the projected shapes from Computree,
we manually cleaned the segmentation in QGIS, using our field
observations and high resolution RGB and multispectral images
(Figures 1C,D). In total, we delineated 1626 individual canopy
tree crowns over the 18-ha study area. We finally assigned to each
tree its maximum height using the LiDAR-derived CHM model
built at 1-m resolution.

Liana Delineation and Spectral Signatures of Lianas
In all the studied trees validated from the ground, liana leaves
were clearly distinguished visually from leaves of their host trees
in the visible (RGB) and/or non-visible (Red-Edge and Near
Infrared) domain (Figure 2). We thus delineated all visible liana
leaf coverage over the two 9-ha plots, manually from QGIS,
combining our specialized field observations and a careful visual
interpretation using the different 2020 spectral bands available.

Using the 2020 RGB images, we then selected pixels that were
likely dominated by leaves, either from trees or lianas, to quantify
the photosynthetic surface of trees and lianas. To do this, we
first only selected pixels belonging to a segmented tree crown
(see previous section), ignoring canopy gaps and below-canopy

vegetation. We then filtered out woody pixels (in our case DN
values > 190 in the blue waveband) and pixels corresponding
to small gaps in the tree crown (DN values ≤ 100 in the green
waveband). Using this dataset, we finally estimated the relative
area of liana leaves over the total canopy photosynthetic surface.

To test whether liana leaves expressed a singular spectral
response, we averaged pixel DN (RGB data) and reflectance
(multispectral data) values for each individual liana patch and
liana-free tree crown for all bands independently to minimize
the noise associated with pixel-level information. We submitted
object-level averaged DN and reflectance values to a Principal
Coordinate Analysis (PCA) and compared the liana and tree
leaves responses along the first two PCA axes using Wilcoxon
tests, to test for difference in signal average, and F-test, to
test for difference in signal variance. As mentioned earlier,
this analysis was conducted on only 60% of the study area
to minimize atmospheric and radiometric bias in multispectral
data. Considering multispectral data in DN values instead of
reflectance values in the PCA led to the same results (not shown).

Statistical Analyses
Relationship Between the Crown Occupancy Index and Liana
Leaf Coverage Over Tree Crowns
We used the whole dataset (275 trees) to study the relationship
between the COI determined from the ground and the
proportion of photosynthetic surface of lianas on tree crowns
determined by drone-based data. We modeled with an ordinal
probit regression the relationship between the different ground-
determined COI categories (0, 1, 2, 3, or 4) and the proportion of
photosynthetic surface of lianas (aka drone-determined liana leaf
coverage) on tree crowns.

Relationship Between Stem Ground Measurements and
Liana Leaf Coverage Over Tree Crowns
We performed all statistical analyses at the scale of individual
trees. We divided our dataset in four categories by the type of
infestation of the host tree:

(i) trees that were not infested by lianas. These trees did not
have any visible liana climbing on them or coming from
adjacent trees from the ground (COI of zero), and did not
have any liana leaves visible on the crown from the drone
images (n = 161 trees);

(ii) trees that were identified as infested by lianas. These
trees were identified as infested either from ground
measurements or/and drone observations;

(ii)-a trees that were identified as infested from both ground
measurements and drone observations (n = 87 trees);

(ii)-b trees that were identified as infested only from ground
measurements, with no visible liana leaves on the crown
from drone images (n = 17 trees);

(ii)-c trees that were identified as infested only from drone
observations, with no visible lianas climbing on them
or coming from adjacent trees from the ground
(n = 10 trees).
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FIGURE 1 | An example of tree crowns segmentation of a 1-ha subplot, with the AMS3D approach. (A) The point cloud before the segmentation, colored by height
(green to blue) and (B) after the segmentation, colored by individual tree. The projected 2D shapes of individual tree crowns (in black) before manual cleaning in (C)
and after in (D) over an RGB image.

FIGURE 2 | Example of the manual delineation of liana leaves using RGB and multispectral data. (A) RGB mosaic of one of the two 9-ha plots. A liana-infested tree
crown is illustrated before (B) and after (C,D) the manual delineation of lianas (in black lines) and the LiDAR segmentation of the tree crown with the AMS3D
approach (in white dotted lines) on RGB (C) and multispectral (D) images.

Because including category (i) may lead to an overestimation
of model performance, with an inflation of zero values, we
only considered infested trees of category (ii) when analysing
the relationship between ground measurements and liana leaf
coverage. We also discarded infested trees of the category (ii)-
c because we either failed to find the corresponding lianas
rooted point in the ground or the leaves most probably
belonged to epiphytes (see section “Discussion”). Thus, ground

measurements and liana leaf coverage comparison were done on
a total of 104 trees (categories (ii)-a and (ii)-b). Our infested tree
selection was the same as Cox et al. (2019) except that, here, we
also included trees with lianas climbing on them without any
visible leaves from above.

First, we modeled with a Bernoulli probit-regression, the
probability that a tree infested from ground measurements had
visible liana leaves on the crown from drone images. This model
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was calibrated on the 104 trees of [categories (ii)-a and (ii)-b].
Second, we modeled with a log-linear regression, the liana leaf
coverage for trees infested from ground measurements and with
visible liana leaves on the crown from drone images. This model
was calibrated on the 87 trees of [categories (ii)-a].

For the two models, the predictors were selected among
the four tree-level liana measurements calculated at the tree
level (NL, BAL, DmaxL, QMDL), the LiDAR-derived total tree
height (H) and the interactions between NL

∗ QMDL and H∗
QMDL. We selected the predictors using a stepwise approach
(backward/forward) based on the Bayesian Information Criterion
(BIC; the best model has the lowest BIC).

Hence, the products of these two models could lead to a
model of the liana leaf coverage for trees defined as infested from
ground measurements.

Influence of Liana Functional Traits on Liana Leaf Coverage
To study the influence of growth strategies on liana leaf coverage,
we analyzed the relationship between the residuals of the selected
linear log-log regression model and two liana functional traits
averaged at the tree level: the basal-area weighted wood density of
lianas (WDL) and the climbing mechanisms of lianas (MechaL).
WDL was estimated for every infested tree for which we knew the
wood density of liana individuals for more than 80% of the total
liana basal area (n = 57 trees) using the equation as follows:

WDL =
∑n

i = 1 (WDi∗BALi)∑n
i = 1 BALi

With n the total number of liana stem climbing on the host
tree, WDi the wood density for liana species i and BALi the total
liana basal area for individuals belonging to the liana species i.
on the host tree We calculated the climbing mechanism index
(MechaL) indicating the mean liana growth strategy through the
following equation:

MechaL =

∑na
i = 1 BAia∑na

i = 1 BAia +
∑nb

i = 1 BAib

With na the total number of liana stems with active climbing
mechanisms, nbthe total number of liana stems with passive
climbing mechanisms and BAia and BAib the basal area of
all lianas having an active and passive climbing mechanism,
respectively. We calculated MechaL for every infested tree for
which we knew the climbing mechanism of more than 80% of
the total liana basal area (n = 70 trees).

We did not include directly functional traits variables into
the regression models but decided to look at their relationship
with the residuals of the models (response minus fitted
values), because we did not have trait data information for
the whole dataset.

All analyses were conducted on R version 4.0.3 (R Core
Team, 2020), using the libraries sf (Pebesma et al., 2018), raster
(Hijmans, 2021), lidR (Roussel et al., 2020), MASS (Venables and
Ripley, 2002), reshape2 (Wickham, 2007), ggplot2 (Villanueva
et al., 2016), DescTools (Signorell et al., 2021), dplyr (Wickham
et al., 2021), and RcmdrMisc (Fox et al., 2020).

RESULTS

Amount of Liana Infestation Estimated
From the Ground and From Drone Data
Drone- and ground-based measurements indicated that 35 and
38% of the selected 275 trees were infested by lianas, respectively.
These numbers are unlikely to be representative because we
deliberately sampled a higher proportion of liana-infested trees
than non-infested trees. However, at the scale of the study sites
(the two 9-ha plots), drone-based measurements indicated that
16.6% of canopy trees (n = 270) were infested by lianas and
that liana leaves covered 6.2% of the total canopy photosynthetic
surface (n = 594 patches). At the scale of the 275 trees dataset,
ground-based measurements indicated that liana-infested trees
were infested by an average of 5.9 lianas (range of 1–20) with
a mean quadratic diameter of 3.5 cm (range of 0.7–22.8 cm)
and an average basal area of 157.8 cm2 (range of 1.6–1027.5
cm2). Using herbariums, we identified a total of 54 liana taxa,
although this estimate might be underestimated because some
vernacular names cannot yet be assigned to a single species (work
in progress). Wood density also varied markedly among liana
taxa, ranging from 0.29 to 0.52 g cm−3 (mean of 0.42 g cm−3),
and the basal-area weighted wood density of lianas at the scale of
an individual tree, WDL, ranged from 0.37 to 0.52 g cm−3 (mean
of 0.44 g cm−3). Finally, the dominant climbing mechanisms was
active (64% of individuals), with 47% of the total stems belonging
to twining lianas.

Link Between Drone and Ground-Based
Liana Measurements
Eighty four percent of the trees hosting lianas had visible liana
leaves on their tree crowns in drone images [category (ii)-a; red
dots in Figure 3]. Thus, 16% of the trees observed as infested from
the ground did not have any visible leaf coverage on their crowns
when drone data were acquired [category (ii)-b; green dots in
Figure 3]. Most of these trees consistently had a COI score of
0 (n = 5) or 1 (n = 11), except one tree that had a COI score of
3. For this tree, our field note indicated that the COI score was
uncertain due to the co-existence of a hemi-epiphyte (Ficus sp.)
and a mix of old and young liana leaves. Finally, we observed liana
leaves in the crown of 10 trees [4%; category (ii)-c; blue dots in
Figure 3] for which we failed to assign any corresponding liana
stems on the ground.

Link Between Liana Leaf Coverage and Classical
Ground-Based Liana Measurements
For trees identified as infested either from the ground or drone
data (category (ii)), we found that ground-derived liana stand
metrics were significantly correlated with the liana leaf coverage
measured on drone data (Spearman’s ρ = 0.43–0.58; p < 0.001;
Figure 3), except for liana mean quadratic diameter (p = 0.97).

The infestation status of tree crowns (infested or not) was first
best predicted by liana basal area and total tree height, with a
predominant positive effect of liana basal area and a negative
effect of tree height (Table 1). The selected model classified
86% of the 275 trees accurately but tended to overestimate the
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FIGURE 3 | Relationships between liana ground measurements and liana leaf coverage estimated from drone data for the 275 studied trees. Colors illustrate the
different infestation categories, black for category (i), red for (ii)-a, green for (ii)-b, and blue for (ii)-c. Axes are shown in log scale. For NL, Spearman’s ρ = 0.43,
p < 0.001; for BAL, Spearman’s ρ = 0.58, p < 0.001; for QMDL, Spearman’s ρ = 0.004, p = 0.97; for DmaxL, Spearman’s ρ = 0.48, p < 0.001.

number of tree crowns infested by liana leaves using ground-
based measurements as predictors (Table 2).

When focusing on trees being interpreted as liana-infested
from both ground and drone observations [category (ii)-a;
n = 87], our BIC selection procedure only retained the total liana
basal area per tree as a predictor of liana leaf coverage over tree
crowns, with a significant positive effect, explaining 43% of the
total variance (intercept = 0.42; slope = 0.60; p < 0.001; Figure 4).

We then found a significant, albeit weak, negative effect of
liana basal area weighted wood density on the residuals of the

selected model predicting liana leaf coverage (intercept = 2.18;
slope = -5.10; p = 0.048; Figure 5). Trees hosting lianas with lower
wood densities thus tend to have a larger liana leaf coverage over
their crowns. By contrast, we did not detect any significant effect
of liana climbing mechanisms on the model residuals (p = 0.96).

Link Between Liana Leaf Coverage and the Crown
Occupancy Index
COI scores estimated from the ground and from drone data
were significantly concordant (Kendall’s W = 0.94, p < 0.001,
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TABLE 1 | Estimates of parameters of the model selected to predict liana
infestation status (tree crowns infested or not).

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 1.4791 0.2754 5.371 <0.0001***

BAL 1.3630 0.4258 3.201 0.0001**

Height −0.4791 0.1937 −2.474 0.01337*

Parameters associated with variables that were not selected by the BIC step
procedure are not reported.
*p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2 | Error matrix showing the number of tree crowns predicted to be
infested by liana leaves using ground-based measurements as predictors and
drone observations as reference data.

Drone observations

Not infested Infested

Predictions from ground
measurements

Not infested 5 2

Infested 12 85

Agreements between predictions and observations are represented in bold.

N = 275), with the same classification for 72% of the studied
trees (Table 3). However, most of these agreements were due to
trees identified as non-infested by the two approaches (95% of
the trees identified as non-infested from the ground were also
identified as non-infested by drone measurements). When the
comparison was restricted to trees observed as infested from
the ground, only 32% of them were assigned to the same COI
category using both approaches, with an overestimation of the
ground-based compared to the drone-based estimates (Table 3).
For 22% of the trees, the classification varied by one class and, for
6% of the trees, it varied by two or more classes. The probit model
confirmed that a large overlap exists between the probabilities
of belonging to the different categories along the gradient of
infestation, even if the ranks were fairly well-preserved among
categories on average (Figure 6).

Spectral Signatures of Lianas and Trees
in Drone Images
The PCA performed on liana patches and liana-free tree crowns
signal averages resulted in a first dominant axis (76% of the
inertia) negatively correlated with signal intensity in all bands
(Figure 7). The second axis, expressing 16% of the variance,
tended to oppose invisible (near-infrared and red-edge) from
visible bands. Despite a large overlap, we found that liana patches
had significantly lower scores (higher DN and reflectance values)
than tree crowns on the first axis (Wilcoxon’s W = 82,447,
p < 0.0001) but exhibited no significant difference along the
second axis (W = 141,893, p = 0.21). On the two PCA axes,
the variance of the scores of individual lianas patches was
significantly larger than that of trees (PCA Axis 1: F = 1.2,
p = 0.05; PCA Axis 2: F = 1.6, p < 0.0001). Analyses conducted
at the band level (Supplementary Figure 1) confirmed that liana
patches tend to have greater DN and reflectance values than tree

crowns in all the bands with a marked difference in the red and
green domain compared to the other bands.

DISCUSSION

In this study, we used a combination of high-resolution drone
images and field ground surveys to understand the links between
below- and above-canopy liana distribution. We showed that the
ability of lianas to reach the canopy depends mostly on their basal
area and, to a less extent, on the total height of their host. Once
the canopy is reached, lianas expand their leaves over tree crowns
proportionally to their basal area, even though large variability
in liana leaf cover exists for a given basal area. Some of this
variability was explained here by a differential investment in leaf
versus wood biomass with a larger leaf cover observed for liana
species with lighter wood. We further showed that the widely
used COI provides reliable information on the liana infested
status but that, in our case, this index tends to provide lower
estimates of infestation levels compared to drone-determined
liana leaf coverage. Finally, our results suggest that liana patches
display a stronger light reflectance than tree crowns in all the
studied bands but that their spectral signatures largely overlap
with that of trees. The mechanisms underlying these results and
their implications are discussed below.

Liana Drone-Based Measurements Can
Be Linked to Classical Ground
Measurements, in Most Cases
Our results indicate that drone and ground data led to similar
estimates of the number of liana-infested trees. The infestation
status of tree crowns was indeed well predicted from ground
data with 90% of the drone-based infested trees identified as
such from a model using ground-derived estimates as predictors.
This suggests that both methods are suited to study the number
of tree crowns infested by lianas. We also found a significant
correlation between classical ground measurements of lianas and
drone-determined liana leaf coverage over tree crowns. This
result is contradictory to that found by the only other study
which has analyzed the link between above and below canopy
liana measurements, using a canopy crane to determine liana
leaf coverage over tree crowns (Cox et al., 2019). This study
surprisingly indicated that liana leaf coverage was unrelated
to liana stem count, basal area, aboveground biomass or tree
diameter at breast height and the authors interpreted this
negative result by the fact that lianas tended to mostly spread
through neighboring tree crowns in their site. In our case,
as discussed in the next section, we found strong significant
correlations between the top-of-view liana leaf coverage and the
ground-derived liana stem count, basal area, maximum diameter
and tree height. This constitutes a reassuring result because
liana infestation on trees has been extensively studied through
ground measurements and estimations (Phillips et al., 2005; van
der Heijden and Phillips, 2009; Ingwell et al., 2010; Wright
et al., 2015). However, liana leaf cover was highly variable for
a given range of ground-based measurements, keeping in mind
that we studied the relationship between both measurements
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FIGURE 4 | Relationship between total liana basal area measured from the ground and leaf coverage estimated from drone data for 87 tree crowns. The red line
illustrates the predicted linear log-log model. Axes are shown in log scale.

in log-transformed scale. This indicates that a large variance in
aboveground competition between lianas and trees cannot be
captured by ground measurements.

Some liana-infested trees were not identified as such from
the ground [10 trees, category (ii)-c]. For one of these trees,
the crown of which was heavily infested by lianas, our field
notes indicated that it was impossible to follow any of the liana
stems coming out or into the crown and measure them with
certainty due to a poor visibility. For the other trees, a careful
reanalysis of the drone images suggested that (i) five of them
were infested by hemi-epiphytes or epiphytes that we did not
detect during our fieldwork; (ii) four of them were trees with
lianas coming from adjacent tree crowns, with probably remote
rooting points of lianas that we missed from the ground. Once
they reach the canopy, lianas can progress horizontally from
crown to crown (Putz, 1984), sometimes up to relatively large
distances (Ingwell et al., 2010), making the link between above
and below-canopy views difficult to establish in some cases.
Conversely, some trees identified with lianas climbing on them
during the ground survey did not have liana leaf coverage over
their crowns [17 trees; category (ii)-b]. Four of these trees were
trees with lianas climbing on them but which did not reach
the canopy either because they still were at an early stage of
development or because they appeared to have fallen at the

time of the inventory, due to tree branch falls. For the other
trees, lianas appeared to reach the canopy from the ground but
were still invisible in drone images. One potential explanation
is that these lianas were either deciduous or dying at the time
of the 2020 drone acquisition. However, for all trees of this
category, we did not find any visible leaves on the older drone
data, up to two years before (2018 and 2019; Figure 8). Even if
these lianas are not currently in competition with trees for light,
they still may compete with trees for below-ground resources
and induce significant mechanical stress on host trees (Ingwell
et al., 2010), decreasing tree growth and survival rates (Schnitzer
et al., 2005). This well illustrates that if most of the drone and
ground measurements can be paired with confidence, exhaustive
links are unlikely to be made due to the complexity of some
liana infestation pathways and that both measurements can
bring complementary information on the impact of liana on
forest dynamics.

The Allometry Between Liana Leaf
Coverage and Ground Measurements Is
Mediated by Liana Wood Density
We found that the probability of tree crowns to be infested by
lianas depends strongly on the size of lianas and tree height.
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FIGURE 5 | Relationship between the basal area weighted liana wood density (A), or the percentage of active climbing mechanism (B), and the residuals of the
selected linear model predicting liana leaf coverage from total liana basal area. The red (significant slope) or dotted gray (non-significant slope) lines illustrate the
predicted linear model between the two variables.

Larger lianas are developmentally older and have thus, on
average, had more time to reach the canopy. However, the length-
diameter allometry is known to be weak in lianas (Smith-Martin
et al., 2019) with individuals of only 2 cm in diameter already
reaching the canopy (Kurzel et al., 2006). Consistently, the total
liana basal area was identified as the best predictor of tree crown
infestation status (infested or not by lianas). Tree height also had
a significant, yet smaller, effect on the probability of infestation
of a tree crown in our statistical model. This result is consistent
with previous studies where liana loads tended to be higher on
smaller trees or lower canopy forests (Wright et al., 2015; Tymen
et al., 2016). However, these results may originate from two
non-exclusive mechanisms: lianas can more easily colonize small
trees and/or liana infestation can lead to smaller tree heights by
limiting their growth. By contrast, Marvin et al. (2016) found no
strong associations between liana leaf coverage and canopy height
but, as discussed in section “Lianas Display (Not Enough) Specific

TABLE 3 | Confusion matrix showing the number of trees classified into the five
COI classes from ground and drone-based measures.

Ground data COI

0 1 2 3 4

Drone data COI 0 166 11 0 1 0

1 8 10 11 7 1

2 1 0 9 14 5

3 0 0 2 11 11

4 0 0 1 3 3

Agreement between the two approaches are illustrated in bold.

Spectral Signatures,” their remote sensing approach only enabled
them to account for severe and high liana infestation levels,
for which they had the lowest prediction error. Our findings
also showed that if several ground-derived estimates can be
successfully linked to liana leaf coverage, liana basal area was
the best predictor, explaining 43% of the variance in the log-
transformed space. This result is consistent with other studies
that focused on the relationship between liana basal area and liana
loads estimated from the ground (Ingwell et al., 2010; van der
Heijden et al., 2010).

Our findings revealed that the large variability of liana leaf
coverage for a given liana basal area can be partly explained
by the functional composition of lianas. We indeed found a
significant negative relationship between the drone-determined
liana leaf coverage and mean wood density indicating that, for
a given diameter, light-wooded lianas tend to invest in wider
liana leaf coverages than hard-wooded lianas. As introduced
earlier, variations of wood density are well-known to express
different growth strategies in trees (Van Gelder et al., 2006;
Chave et al., 2009; Baraloto et al., 2010; Poorter et al., 2010;
Werden et al., 2018; Buckton et al., 2019) but the implication
of wood density variation on liana ecology has been much
less studied. Our results show that wood density significantly
vary among taxa and that this variation entails ecological trade-
offs among lianas, with greater biomass allocation to leaves
for lianas with softer wood, as previously found for trees
(Mensah et al., 2016). This pattern suggests that light-wooded
lianas allocate more resources into leaves, and thus to light
acquisition, at the expense of wood material, which may entail
a greater mortality, as observed for trees (Chave et al., 2009).
By contrast, no significant effect of liana climbing mechanism
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FIGURE 6 | Probabilities that a tree belong to a given COI score determined from the ground according to the level of infestation measured with drone data.

was found on liana leaf coverage. Some studies have shown
that climbing mechanisms have an effect on liana recruitment
and distribution across different forest structures (Dewalt et al.,
2000; Bongers et al., 2020). Indeed, it is expected that climbing
mechanism has a primary role in the early life of lianas and
may thus constitute a central trait to understand the spatial
(horizontal) liana distribution (Dias et al., 2021). For instance,
Dewalt et al. (2000) showed that lianas with tendrils were more
abundant in low canopy forests. The absence of an effect of
climbing mechanisms on liana leaf coverage may be due to
the fact that the early-life influence of climbing mechanisms
on liana ecology may vanish when lianas reach the canopy.
In this study, we divided our dataset between active and
passive climbing mechanisms following Sperotto et al. (2020).
Further investigations using different classifications, such as
the one used by Dewalt et al. (2000), may provide different
insights on the role of liana climbing mechanisms in liana
structure and dynamics.

The Crown Occupancy Index Should Be
Used Carefully
The COI is widely used to estimate liana leaf coverage over
tree crowns and is now routinely used in international protocols

such as in the RAINFOR network (Lopez-Gonzalez et al.,
2011). We found a significant concordance between the ground-
determined COI scores and the drone-determined liana leaf
coverage. This supports that the COI is a quite reliable estimate
of liana infestation over tree crowns, and is an alternative
worth considering against time-consuming dendrometric liana
measurements (van der Heijden et al., 2010), at least when
substantial time is dedicated to this measurement, as done in the
present study. However, we found that two thirds of the infested
trees were attributed to a (generally neighboring) different
infestation level from that determined by drone. This mismatch
between categories raises questions about the reliability of the
use of the COI to monitor liana infestation over time (Ingwell
et al., 2010; Wright et al., 2015). One clear difference between the
ground-determined COI and the extent of the drone-determined
liana leaf coverage over tree crowns was the overestimation of
infestation levels from the ground. This result is expected not
to be specific to our study case because, from the ground, tree
crowns are rarely entirely visible, and thus the proportion of
the tree crown covered by liana leaves could easily be over-
estimated (but see Waite et al. (2019)). Moreover, the results of
our probit model supports the idea that dividing the COI in five
infestation levels is too ambitious given the large variability of the
ground estimates for a given drone-determined relative liana leaf
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FIGURE 7 | Plan 1–2 of a Principal Coordinate Analysis performed on RGB
(red, green, blue) and multispectral (red_M, green_M, rededge, nir) bands.
Tree and liana objects are represented in green and red, respectively, boxplots
illustrate the differences between the scores of liana patches and tree crowns
along the two first PCA axes.

coverage (Figure 6). Our model indeed suggests that separating,
or aggregating, infestation levels in three categories, as done
by Rutishauser et al. (2011), is a more conservative approach.
To summarize, if the COI might be a reliable estimate of the
spatial distribution of liana load on trees, it should be interpreted
carefully when used to detect changes of liana infestation over
time. For the latter objective, multi-temporal drone acquisition
appears as a more reliable and accurate approach.

Lianas Display (Not Enough) Specific
Spectral Signatures
The emergence of new remote sensing approaches and data,
such as the use of high spatial and spectral resolution products,

appeared as a promising way to monitor canopy liana infestation
in space and time over large scales (Marvin et al., 2016; Chandler
et al., 2021). A prerequisite to map liana distribution over
tree crowns is that lianas should display a detectable signature
over tree crowns (Visser et al., 2021). In our study site, our
results suggest that liana patches exhibit significantly higher
light reflectance than trees on average in all studied spectral
bands, as found and predicted by Visser et al. (2021), who
accounted for several parameters that were unavailable in our
study, such as chemical and architectural leaf traits. Thus, the
origin of these higher DN and reflectance values should be
further investigated as it may be due to several non-exclusive
origins, such as a higher leaf reflectance, lower gap fraction
or flatter leaf angles, as shown in the neotropics by Visser
et al. (2021). Note also that, in our study, we were unable to
explicitly or accurately radiometrically calibrate our data due
to a lack of reference data, such as those obtained with white
panels or from ex situ physical measurements. To minimize
this aspect, we focused on data acquired during a single flight
or within 1 h, limiting the spatial extent of our analyses.
Future works should thus provide more efforts to improve
this calibration step to both enable the investigation of larger
areas and to minimize the potential problems associated with
illumination artifacts. Contrary to Chandler et al. (2021) and
Visser et al. (2021), we did not find that the near-infrared
region provided additional information for the discrimination
of lianas versus trees (non-significant differences along the
second PCA axis; Figure 7), suggesting that visible bands already
contained most of the information, even if our studied bands
were limited to only two invisible bands. Interestingly, the
variances of the scores along the two first PCA axes were
significantly higher than those of trees, suggesting a higher
spectral diversity and/or a higher variability in leaf optical
properties (e.g., leaf area in vertical profiles and leaf angles; see
Visser et al., 2021) among lianas than among trees. Indeed, liana
species have different leaf structure, pigment concentration or
water content, resulting in a wide range of spectral responses
(Sánchez-Azofeifa and Castro-Esau, 2006; Visser et al., 2021).
Importantly, we found that the PCA scores of lianas versus

FIGURE 8 | Example of a time series of photographs made by drone of a tree hosting a large liana of 6.3 cm dbh but that lacks any visible liana leaves in its crown.
Black lines illustrate the tree crown limit and the red lines some delineated liana leaves belonging to other liana stems, as observed from the field. (A) Image at a
resolution of 10 cm GSD from 2018. (B) Image at a resolution of 5 cm GSD from 2019. (C) Image at a resolution of 3 cm GSD from 2020.
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trees largely overlapped, as acknowledged by previous studies
(Chandler et al., 2021; Visser et al., 2021), potentially leading
to a high rate of confusion in predictive models. It partly
explains why reliable remote sensing predictions were obtained
only for highly infested trees (>50% of infestation; Marvin
et al., 2016; Chandler et al., 2021; Visser et al., 2021). If the
probability of identifying liana pixels among a set of pixels
is rather low, the probability that the spectral signature of
a given liana does not overlap with that of its host tree
is much higher, as illustrated in Figure 2. Thus, developing
approaches that classify pixels based on their contrast with
surrounding pixels, and accounting for tree crown segmentation
information, might be more promising than adopting a pixel-
based approach. The rapid development of deep learning
approaches on very high-resolution images, that specifically
account for texture, thus constitutes a promising avenue (Li
et al., 2018). Another efficient strategy has been recently adopted
by Visser et al. (2021), who combined observations, trait
measurements and radiative transfer modeling to understand
the promise and limitations of monitoring liana infestation
from remote sensing data. Finally, with the low cost associated
with drone acquisitions, it is today possible to acquire drone
data at a high frequency level, typically on a monthly basis.
Assuming that the leaf phenology of a given liana and its host
tree are decoupled in time, repeated drone acquisitions have the
potential to better discriminate liana leaf patches over tree crows
using approaches accounting for intra-annual co-variability in
spectral signals.

CONCLUSION

Combining drone-based and ground-based measurements has
the potential to approximate the complex infestation pathways
of lianas and their consequences on forest dynamics. Ground-
based data on liana distributions and structure have been
acquired for decades in tropical forests, providing key insights
on liana ecology and on their impact on forest dynamics.
However, as shown here, ground-based data approximate the
above canopy distribution of lianas with important uncertainties,
limiting our ability to understand tree-liana interactions in
what is often considered as the most important forest layer
for ecosystem dynamics. The emergence of easy-to-acquire
drone-data can make a difference on this aspect, providing
a very-high resolution view of liana distribution above the
canopy, thus improving our ability to integrate explicitly light
competition between lianas and trees in ecological models.
Drone-based determinations also open new opportunities to
study liana infestation over large extents and over time, e.g.,
accounting for leaf phenology when acquisitions are done
with a high frequency. However, drone-data also have serious
drawbacks, especially when not paired with ground data.
Given that current automatic approaches are not yet fully
satisfactory due to a large overlap in the spectral signatures
of lianas and trees, delineating manually liana patches in
drone data requires significant time and a certain level of
expertise. Furthermore, as seen in this paper, the functional

composition of lianas can mediate the dynamics of infestation,
something that would not have been seen using only drone
data. Thus, we here advocate that combining ground- and
drone-based data have the potential to take a major step
forward in liana ecology, especially if the dynamics of lianas
through time and space are studied in relation to their diverse
ecological strategies.
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