N

N

BioSimulators: a central registry of simulation engines
and services for recommending specific tools
Bilal Shaikh, Lucian Smith, Dan Vasilescu, Gnaneswara Marupilla, Michael
Wilson, Eran Agmon, Henry Agnew, Steven Andrews, Azraf Anwar, Moritz
Beber, et al.

» To cite this version:

Bilal Shaikh, Lucian Smith, Dan Vasilescu, Gnaneswara Marupilla, Michael Wilson, et al.. BioSim-
ulators: a central registry of simulation engines and services for recommending specific tools. 2022.
hal-03613651

HAL Id: hal-03613651
https://hal.inrae.fr /hal-03613651

Preprint submitted on 18 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inrae.fr/hal-03613651
https://hal.archives-ouvertes.fr

arXiv:2203.06732v1 [g-bio.QM] 13 Mar 2022

BioSimulators: a central registry of simulation
engines and services for recommending specific tools

Bilal Shaikh®', Lucian P. Smith“?, Dan Vasilescu“?, Gnaneswara Marupilla“3, Michael
Wilson“3, Eran Agmon“4, Henry Agnew ", Steven S. Andrews 2, Azraf Anwar"¢, Moritz E.
Beber"7, Frank T. Bergmann8, David Brooks"?, Lutz Brusch“'°, Laurence Calzone“'",
Kiri Choi”'2, Joshua Cooper“'3, John Detloff“4, Brian Drawert”'3, Michel Dumontier5,
G. Bard Ermentrout™'%, James R. Faeder“'®, Andrew P. Freiburger'?, Fabian Frohlich®18,
Akira Funahashi“'®, Alan Garny“®, John H. Gennari“?°, Padraig Gleeson“?!, Anne
Goelzer“22, Zachary Haiman“?3, Joseph L. Hellerstein“?, Stefan Hoops“?*, Jon C. Ison“25,
Diego Jahn1°, Henry V. Jakubowski“?¢, Ryann Jordan“', Matus Kalas"??, Matthias
Konig“28, Wolfram Liebermeister”?2, Synchon Mandal“?°, Robert McDougal“%°, J. Kyle
Medley 3!, Pedro Mendes 3, Robert Miiller“'°, Chris J. Myers“32, Aurelien Naldi“33, Tung
V. N. Nguyen“34, David P. Nickerson?, Brett G. Olivier’3°, Drashti Patoliya“*, Loic
Paulevé™?¥, Linda R. Petzold 38, Ankita Priya“3°, Anand K. Rampadarath®®, Johann M.
Rohwer“4, Ali S. Saglam“®, Dilawar Singh“4!, Ankur Sinha“*2, Jacky Snoep“4°, Hugh
Sorby“?, Ryan Spangler“43, Jorn StarruB“'?, Payton J. Thomas“44, David van Niekerk“40,
Daniel Weindl“%5, Fengkai Zhang“5, Anna Zhukova“*’, Arthur P. Goldberg™', Michael L.
Blinov“3, Herbert M. Sauro“?, lon I. Moraru“3Jonathan R. Karr®'

Tlcahn School of Medicine at Mount Sinai, New York, NY 10029, US, 2University of Washington, Seattle, WA 98105,
US, 3University of Connecticut School of Medicine, Farmington, CT 06030, US, 4Stanford University, Stanford, CA
94305, US, SLibreTexts, US, 8New York University, Brooklyn, NY 11201, “Unseen Bio ApS, 2100 Kebenhavn &, DK,
8Heidelberg University, 69120 Heidelberg, DE, ®University of Auckland, 1010 Auckland, NZ, ®Technical University
of Dresden, 01187 Dresden, DE, ' Institut Curie, 75248 Paris, FR, 12Korea Institute for Advanced Study, 02455
Seoul, KR, "3University of North Carolina, Asheville, Ashville, NC 28804, US, '4Independent, Madison, WI 53705,
US, "®Maastricht University, 6200 Maastricht, NL, '8University of Pittsburgh, Pittsburgh, PA 15260, US, 7 University
of Victoria, Victoria, BC V8P 5C2, CA, '8Harvard Medical School, Boston, MA 02115 US, 1®Keio University,
Yokohama 223-8522, JP, 29University of Washington, Seattle WA 98019, US, 2! University College London, London
WCH1E 6BT, UK, "22National Research Institute for Agriculture, Food and Environment

Université Paris-Saclay, 78350 Jouy-en-Josas, FR," 23University of California, San Diego, La Jolla, CA 92093, US,
24University of Virginia, Charlottesville, VA 22904, US, 22CNRS, UMS 3601, Institut Frangais de Bioinformatique,
IFB-core, 91000 Evry-Courcouronnes, FR, 26College of Saint Benedict and Saint John’s University, St. Joseph, MN
56374, US, 27University of Bergen, 5020 Bergen, NO, 28Humboldt University of Berlin, 10115 Berlin, DE,
29Technical University of Dresden, 01069 Dresden, DE, 30Yale University, New Haven, CT 06511, US, 3! Autodesk,
Inc., San Rafael, CA 94903, US, 32University of Colorado at Boulder, Boulder CO, 80309, US, 33Inria Saclay -
{le-de-France Research Centre, 91120 Palaiseau, FR, 34European Molecular Biology Laboratory - European
Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK, 3>Vrije Universiteit Amsterdam, 1081 HZ Amsterdam,
NL, 36Sarvajanik College of Engineering & Technology, Surat, Gujarat 395001, IN, 37 Centre National de la
Recherche Scientifique, 33400 Talence, France, 38University of California, Santa Barbara, Santa Barbara, CA
93106, US, 39Birla Institute of Technology, Mesra, Jharkhand 835215, IN, 40Stellenbosch University, Stellenbosch,
7600, ZA, #1Subconscious Compute Pvt. Ltd., Bangalore, IN, “2University College London, London, WC1E 6BT, UK,
43Allen Institute for Cell Science, Seattle, WA 98109, US, 44University of Utah, Salt Lake City, UT 84112, US,
45Helmholtz Zentrum Miinchen GmbH and German Research Center for Environmental Health, 85764 Neuherberg,
DE, “6National Institutes of Health, Bethesda, MD 20892, US and #’Institut Pasteur, 75015 Paris, FR.

*To whom correspondence should be addressed. Tel: +1 212-659-8973 (JRK); Email: karr@mssm.edu

https://orcid.org/0000-0001-5801-5510
https://orcid.org/0000-0001-7002-6386
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0001-5892-6074
https://orcid.org/0000-0003-1279-2474
https://orcid.org/0000-0003-1447-6045
https://orcid.org/0000-0002-4576-8107
https://orcid.org/
https://orcid.org/0000-0003-2406-1978
https://orcid.org/0000-0001-5553-4702
https://orcid.org/0000-0002-6758-2186
https://orcid.org/0000-0003-0137-5106
https://orcid.org/0000-0002-7835-1148
https://orcid.org/0000-0002-0156-8410
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-0543-8189
https://orcid.org/0000-0003-4727-9435
https://orcid.org/0000-0002-5854-0654
https://orcid.org/0000-0001-8127-609X
https://orcid.org/0000-0002-7288-535X
https://orcid.org/0000-0002-5360-4292
https://orcid.org/0000-0003-0605-239X
https://orcid.org/0000-0001-7606-5888
https://orcid.org/0000-0001-8254-4957
https://orcid.org/0000-0001-5963-8576
https://orcid.org/0000-0003-2222-6142
https://orcid.org/0000-0001-6175-5050
https://orcid.org/0000-0003-0802-4069
https://orcid.org/0000-0001-8503-8371
https://orcid.org/0000-0001-6666-1520
https://orcid.org/0000-0001-6774-5507
https://orcid.org/0000-0002-9629-9339
https://orcid.org/
https://orcid.org/0000-0002-1509-4981
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0002-2568-2381
https://orcid.org/0000-0002-1212-5279
https://orcid.org/0000-0001-6394-3127
https://orcid.org/0000-0002-1509-4981
https://orcid.org/0000-0001-6507-9168
https://orcid.org/
https://orcid.org/0000-0002-8762-8444
https://orcid.org/0000-0002-6495-2655
https://orcid.org/0000-0002-2876-6046
https://orcid.org/0000-0003-4667-9779
https://orcid.org/0000-0002-5293-5321
https://orcid.org/
https://orcid.org/0000-0002-7219-2027
https://orcid.org/0000-0001-6251-6078
https://orcid.org/
https://orcid.org/0000-0001-8830-6212
https://orcid.org/0000-0001-6288-8904
https://orcid.org/0000-0002-6513-8401
https://orcid.org/0000-0002-4645-3211
https://orcid.org/0000-0001-7568-7167
https://orcid.org/0000-0002-0405-8854
https://orcid.org/0000-0001-8991-4703
https://orcid.org/
https://orcid.org/0000-0003-3649-2433
https://orcid.org/0000-0002-5075-3911
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0001-9963-6057
https://orcid.org/0000-0001-7112-9328
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0003-2772-1484
https://orcid.org/0000-0002-9363-9705
https://orcid.org/0000-0002-3659-6817
https://orcid.org/0000-0002-3746-9676
https://orcid.org/0000-0002-2605-5080
mailto:karr@mssm.edu

ABSTRACT

Computational models have great potential to
accelerate bioscience, bioengineering, and medi-
cine. However, it remains challenging to reproduce
and reuse simulations, in part, because the
numerous formats and methods for simulating
various subsystems and scales remain siloed by
different software tools. For example, each tool
must be executed through a distinct interface. To
help investigators find and use simulation tools,
we developed BioSimulators (https://biosimulators.
org), a central registry of the capabilities of simu-
lation tools and consistent Python, command-line,
and containerized interfaces to each version of each
tool. The foundation of BioSimulators is standards,
such as CellML, SBML, SED-ML, and the COMBINE
archive format, and validation tools for simulation
projects and simulation tools that ensure these
standards are used consistently. To help modelers
find tools for particular projects, we have also used
the registry to develop recommendation services.
We anticipate that BioSimulators will help modelers
exchange, reproduce, and combine simulations.

INTRODUCTION

Sophisticated computational models that can predict
biological phenomena have great potential for bioscience, bio-
engineering, and medicine. For example, whole-cell models
could help scientists understand the origin of behavior, help
engineers design biofactories, and help clinicians personalize
medicine (1, 2). Due to the complexity of biology, such
models often need to integrate multiple subsystems across
multiple scales, requiring collaborations among teams and the
use of multiple tools (3, 4).

Over the last 25 years, researchers have developed
numerous methods and tools for simulating various
subsystems and scales. For example, COBRApy (5) and
COPASI (6) can execute constraint-based and Kkinetic
simulations of metabolic and signaling networks, respectively.

Toward combining simulations, the community has
developed several resources for sharing several types of mod-
els. For example, formats such as CellML (7) and SBML (8);
libraries for these formats such as libCellML and libSBML;
and repositories such as BioModels (9) and ModelDB (10)
help investigators share and reuse diverse types of models.

More recently, investigators have initiated similar efforts to
share several types of simulations. For example, the Simu-
lation Experiment Description Language (SED-ML; 11), the
COMBINE archive format (12), the Kinetic Simulation Algo-
rithm Ontology (KiSAO; 13), and the JWS Online repository
(14) can be used to share kinetic simulations.

Despite this progress, sharing, reusing, and combining sim-
ulations remains difficult. One reason is that it is difficult to
find, obtain, and use appropriate tools for particular systems
and scales. For example, many tools do not provide clear
documentation about their simulation methods, and each tool
must be obtained from a different location, installed via a
different process, and executed via a different Ul or API
using different model formats. Guides, such as the retired

SBML Software Guide, and container registries, such as
BioContainers, have only addressed some of these issues.

To accelerate the reuse of simulations, as well as the
development of multiscale simulations, we developed Bio-
Simulators, a central registry for the capabilities of simula-
tion tools (e.g., supported model formats, modeling frame-
works, and simulation algorithms) and consistent Python,
command-line, and containerized interfaces to these tools.
Currently, BioSimulators encompasses 54 tools for 13 model
formats, 14 modeling frameworks, and 91 simulation algo-
rithms (Tables S1-S3), and consistent interfaces to 21 of these
tools (Tables S4,S5). For example, this includes asynchronous
logical simulation with BoolNet, geometric flux balance
analysis with COBRApy, discrete particle-based simula-
tion with BioNetGen, and discrete spatial simulation with
Smoldyn. To help investigators find appropriate tools, we have
also used this registry to develop services for recommending
specific algorithms and tools for particular systems and scales.

To simplify the discovery, installation, and use of simu-
lation tools, BioSimulators is based on an integrated set of
formats, ontologies, and quality controls (Figure 1). BioSim-
ulators uses Docker images to encapsulate simulation tools
and a new schema to capture their capabilities. The input to
each tool is a COMBINE archive which contains SED-ML
files that describe simulations of models in formats such as
SBML with algorithms described using KiSAO. The outputs
of each tool are HDF5 and PDF files that capture data sets and
visualizations of simulation results. To ensure these resources
are used consistently, we also developed tools for integrated
validation of simulation projects and tools (Figure 2a). On
top of BioSimulators, we have also developed runBioSim-
ulations and BioSimulations, user-friendly web applications
for using BioSimulators to execute and share simulations and
visualizations of their results (15) (Figure 2c).

Below, we summarize the key features of BioSimulators,
describe its architecture, delineate several use cases for Bio-
Simulators, and outline the future directions of BioSimulators.
Tutorials and additional documentation are available at https://
docs.biosimulations.org.

KEY FEATURES

The central features of BioSimulators are streamlined abilities
to find, obtain, and use simulation tools for a broad range of
modeling frameworks, formats, and algorithms.

Streamlined discovery of appropriate tools for projects

To help investigators find appropriate tools, BioSimulators
provides a central database of the capabilities of simulation
tools. This includes the model formats, modeling frameworks,
simulation algorithms, and observables that each tool sup-
ports; the parameters of each algorithm; and the data type
of each parameter, as well as metadata, such as the license
of each tool. Where possible, this information is captured
using ontologies such as EDAM, KiSAOQO, SBO, and SIO. This
ensures that simulation tools are described consistently.

To further help investigators find tools, we have also
used the capabilities of each tool and relationships among
algorithms captured by KiSAO to develop recommendation
services. For example, we have developed a web form that can
recommend simulators for executing particular projects.

https://biosimulators.org
https://biosimulators.org
https://docs.biosimulations.org
https://docs.biosimulations.org

Models Simulations Algorithms Report specs Viz specs

Model formats ~ Steady-state, CVODE, FBA, Tables Line charts,

(CellML, NeuroML, time course, ... pFBA, SSA, ... (SED-ML) flux maps, ...
SBML, ...) (SED-ML) (KiSAO) (SED-ML, Vega)

(@B Simulation projects
COMBINE archive
EEEEE o)

BioSimulators
Capabilities of tools;
consistent Python, CLI,
and OCl interfaces

BioNetGen OpenCOR
BoolNet RBApy
COBRApy Smoldyn
COPASI tellurium
MASSPy VCell
NEURON XPP

Reportsﬁ CT’:T? Visualizations
HOFs bt BEEH ppp

Figure 1. BioSimulators simplifies simulation by abstracting simula-
tion projects and simulation tools. BioSimulators abstracts projects as
COMBINE archives and tools as containerized command-line interfaces.
These abstractions make it easier to execute a broad range of simulations.

Streamlined acquisition and installation of simulators

To make it easier to obtain and install simulation tools, Bio-
Simulators saves a Docker image for each version of each
containerized tool. This ensures that investigators can use a
single program, such as Docker Desktop, to easily obtain
and install any version of any tool. To ensure that investi-
gators can use these images in high-performance computing
(HPC) environments, which generally disallow the use of
Docker due to security limitations, BioSimulators tests that
these images are compatible with the Singularity Image For-
mat (SIF), which can be run in HPC environments. Similarly,
the Python APIs and command-line programs for simulation
tools can be installed consistently from the PyPI repository.

Streamlined execution of simulation tools

To simplify simulation, each containerized tool provides the
same command-line interface. These interfaces capture the
project to be executed and the location where its outputs
(reports and visualizations) should be saved. This enables
modelers to use multiple simulators simply by switching
their image ids. We anticipate this will help investigators
work with a broader range of simulations, especially trainees,
experimentalists, and peer reviewers. Most of the simulators
with containerized interfaces also provide Python APIs. These
APIs provide consistent, flexible low-level simulation capabil-
ities. Currently, we are helping several groups use these APIs
to develop interactive tools for research and education.

Accurate and up-to-date information about simulators

To ensure that the interfaces to simulators are consistent and
that their specifications are accurate, we extensively review
each version of each tool. The first version of each tool
submitted to BioSimulators is both automatically validated
by a test suite that we developed and manually reviewed
by our team. Each subsequent version of each tool is also
validated by this test suite. This test suite uses the simulator

to execute a set of example COMBINE archives and checks
that the tool produces the expected results. The test suite
uses the specifications for the tool to select appropriate exam-
ple archives. To enable developers to keep BioSimulators
up to date, we provide an API that developers can use to
automatically submit each version of their tools. We anticipate
that this approach will enable us to keep BioSimulators up-to-
date and accurate with minimal effort.

METHODS
Consistent representation of simulation projects and tools

The foundation of BioSimulators is a set of formats, ont-
ologies, and specifications for consistent representation of
simulation projects (one or more simulations of one or more
models using one or more algorithms), the inputs (e.g.,
experimental data for validating simulations) and outputs (data
sets and visualizations of simulation results) of simulation
projects, simulation tools, and the capabilities of simulation
tools (supported formats, frameworks, and algorithms). Where
possible, these conventions embrace existing resources. Using
these resources required filling numerous gaps within and
between them. This included creating new schemas for sim-
ulation results, logs of the execution of simulations, and the
capabilities of simulation tools; formalizing numerous aspects
of SED-ML; adding many new ontology concepts for formats
and algorithms; and correcting hundreds of bugs in various
simulation projects and software tools.

BioSimulators uses the COMBINE archive format to
encapsulate all of the files that constitute a simulation project.
Within COMBINE archives, BioSimulators uses formats such
as BNGL, CellML, GINML, NeuroML/LEMS, RBA XML,
SBML, Smoldyn, VCML, and the XPP ODE format to
describe models and SED-ML to describe analyses of these
models, such as simulations of time courses and steady-states.
Within SED-ML, BioSimulators uses the KiSAO ontology to
describe the algorithms and algorithm parameters for these
analyses. To enable investigators to describe a broad range of
simulations, we significantly expanded the KiSAO ontology
and filled several gaps in SED-ML (11).

To consistently capture the outputs of simulation projects,
we developed schemas for encoding the results of simulations
into HDF5 files and encoding logs of the execution of simu-
lation projects into YAML. We use the PDF format to capture
visualizations of simulation results.

To enable modelers to execute simulators consistently, we
developed specifications for Python APIs and containerized
command-line programs for simulators. To help investiga-
tors find specific tools for particular projects, we developed a
schema for capturing the capabilities of simulation tools. This
schema uses the EDAM, SBO, KiSAO, SIO, and other ont-
ologies to capture the model formats, modeling frameworks,
simulation algorithms, and simulation observables that each
tool supports. We similarly helped expand these ontologies to
better capture the capabilities of a broader range of tools.

More information about these conventions is available in
Section S2 and at https://docs.biosimulations.org.

Standardized interfaces to simulation tools

We developed most of the Python, command-line, and
containerized interfaces to simulation tools by wrapping

https://docs.biosimulations.org

a Conventions: Formats, ontologies, and API specifications
Formats (e.g., SBML, EDAM), frameworks (SBO), algorithms (KiSAO),
simulations (SED-ML), metadata (OMEX Metadata, RDF-XML),

projects (COMBINE), outputs (HDF5, PDF), logs (YAML),

capabilities (JSON), interfaces (Python, CLI, OCI)

Validator for simulation projects
Test that projects (COMBINE archives) are
consistent with these conventions

Test suite for simulation tools
Test that simulation tools are consistent
with these conventions

~

—

/V

Recommendation services
Algorithms, simulation tools

_) Simulation service
runBioSimulations
A Simulation repository

BioSimulators BioSimulations

Capabilities: formats, frameworks, algorithms, observables

Consistent interfaces: Python, CLI, OCI
Metadata: version, license, authors

Figure 2. Overview of the BioSimulators ecosystem. The foundation of BioSimulators (b) is an integrated set of formats, ontologies, and specifications for
simulation projects and simulation tools, and tools for checking that these conventions are used consistently (a). These conventions make it easier to work with
multiple types of simulations. To further help investigators find and run simulation tools, we have also developed user-friendly services for recommending tools,
executing simulations, and visualizing the results of simulations. In addition, we are developing a repository for sharing projects, their results, and visualizations

of these results (c¢).

simulation tools, such as COBRApy and COPASI, with
BioSimulators-utils, a library that we developed for
orchestrating the execution of COMBINE archives. Briefly,
BioSimulators-utils executes each simulation task in each
SED-ML file in a COMBINE archive by (1) resolving the
model for the task, (2) modifying the model according to the
changes specified in SED-ML, (3) using KiSAO to determine
the most similar simulation algorithm that the simulation
tool implements to the algorithm specified for the task,
(4) translating this algorithm and its specified parameters
into the corresponding method of the simulation tool and its
arguments, (5) executing this method with these arguments,
(6) collecting the results of this method, and (7) using these
results to generate the reports and plots specified in the SED-
ML files. This modular design minimizes the effort needed
to create standardized interfaces to simulation tools. The use
of KiSAO to automatically identify suitable alternative algo-
rithms enables investigators to both use SED-ML to precisely
record the algorithms they used to execute simulations with
one tool and execute the SED-ML files with additional tools
that implement similar algorithms. Section S4 contains more
information about BioSimulators-utils.

Recommendations of algorithms and simulation tools

To help investigators navigate the sea of simulation for-
mats, methods, and tools, we developed several interfaces
for recommending resources, including (a) an interactive
table for searching our registry of tools; (b) a web form for
obtaining a list of tools which implement algorithms similar
to a given algorithm, sorted by the maximal similarity of
their algorithms to the given algorithm; and (c) a web form
for identifying simulators which can execute a given project
using the specified or similar algorithms. Briefly, we imp-
lemented these services by (a) determining the formats and
algorithms specified for a given project, (b) using our registry
to determine the capabilities of each tool, (c) using parent-
child and other relationships to encode similarities among
algorithms into KiSAO, (d) using these relationships to query
KiSAO for sets of similar algorithms, (¢) manually assigning
each set a degree of similarity, (f) combining the formats and
algorithms required for a given project, the capabilities of each
tool, and the similarity among algorithms to determine the
maximal degree of similarity at which each tool can execute

a given project, and (g) sorting the tools by this maximal
similarity. More information is available in Section S4.

Validation of simulation projects and tools

To ensure that BioSimulators’ conventions are used consist-
ently and to quickly alert users to issues, we developed a
tool for integrated validation of COMBINE archives (model,
SED-ML, and metadata files) and tools for validating simu-
lation results, logs of the execution of simulations, and the
capabilities of simulators described with the new schemas
outlined above. This included developing the first validation
rules for SED-ML. For example, our tool for validating sim-
ulation projects checks that each SED-ML file is consistent
with the SED-ML schema and that each observable of each
simulation references a valid model variable. To make these
validation tools easy to use, we developed several interfaces,
including web forms, a REST API, a command-line program,
and a Python API. Four model repositories are already using
these tools to debug their models and simulations.

Similarly, we also developed a test suite for checking
whether simulation tools execute projects consistently with
BioSimulators’ conventions. Briefly, the test suite executes
simulation tools with a set of test COMBINE archives and
checks that they produced the expected outputs. These test
archives enable the test suite to probe support for all of
BioSimulator’s conventions, including all of the features of the
COMBINE archive format and SED-ML. To enable us to test
tools involving a broad range of formats and algorithms, the
test suite uses the specifications of tools to select appropriate
archives for their validation from a corpus of curated archives
and then uses these curated archives to computationally
generate additional archives for testing specific aspects of Bio-
Simulators’ conventions. This design enables us to pinpoint
issues with simulation tools, and it makes it easy to expand the
test suite to additional model formats and methods. The test
suite can be executed through a command-line interface or the
GitHub issues deployment described below. More information
about these validation tools is available in Section S3.

Submission of simulation tools to the registry

Developers can submit tools to the registry by submitting
issues to the BioSimulators GitHub repository. Once an issue
is created, GitHub actions is then used to execute the test suite
described above, and any test failures are reported as messages

to the issue. The first time a simulation tool passes the test
suite, our team also manually reviews the capabilities of the
tool and uses the issue to discuss any suggested revisions with
the submitter. This manual review enables us to check aspects
of tools that are challenging to test programmatically, such as
the completeness of their specifications. This combination of
machine and human review enables us to rigorously review
each version of each tool with minimal effort.

We chose to use GitHub issues to manage the submission
of simulation tools for two reasons. First, this enables the
community to see how each tool was validated. Second, this
provides developers an API for programmatically submitting
tools. Importantly, this API makes it easy for developers to
keep their tools up-to-date in BioSimulators. For example,
developers can use this API within GitHub actions. Currently,
half of the containerized tools registered with BioSimulators
automatically release each version to BioSimulators. Third,
GitHub issues enables our team to monitor problems that
developers are encountering and help them.

DESIGN, IMPLEMENTATION, AND DEPLOYMENT

BioSimulators is composed of a set of conventions for consist-
ently representing simulation projects and simulation tools;
a set of tools for validating whether simulation projects
and tools are consistent with these conventions; a collection
of standardized Python APIs, command-line interfaces,
and Docker images for simulation tools; a Docker image
repository for these tools; a database for their specifications;
a REST API for updating and querying this image repository
and database; and a graphical user interface for browsing the
database, validating projects, and getting recommendations
for algorithms and tools.

The interfaces for simulators and the tools for validating
simulation projects and simulators were primarily implem-
ented with Python using libraries such as jlibSEDML,
libCelIML, 1ibCOMBINE, libOmexMeta, libSBML, libSED-
ML, pyBioNetGen, pyNeuroML, RBApy, Smoldyn, and XPP.
The containerized interfaces for simulators were developed
using Docker. The tools for validating logs of the execution
of simulation projects and the specifications of simulation
tools, the database of simulation tools, the REST API to
the database, and the web application were implemented in
TypeScript using NestJS, MongoDB, and Angular.

The database, API, web application, and test suite for
simulation tools are deployed using Mongo Atlas, Google
Cloud, Netlify, and GitHub, respectively. The containerized
simulation tools are stored using GitHub Container Registry.

More information about the architecture, implementation,
and deployment of BioSimulators is available in Section S6.

USE CASES
Sharing, reproducing, and reusing simulations

We believe that BioSimulators makes it easier to share,
reproduce, and reuse simulations by simplifying the
installation and execution of simulators. Once an inves-
tigator has learned BioSimulators’ conventions, they can run
a broad range of simulations involving a variety of tools.
In particular, we believe that simple web applications for
using BioSimulators, such as runBioSimulations (15), will

empower peer reviewers to review simulations more deeply,
leading to better evaluation of modeling studies.

Quality-controlling simulations

We believe that BioSimulators’ tool for integrated validation
of simulation projects is excellent for identifying problems
and other potential issues with simulations. For example,
we are working with multiple model repositories to identify
and correct issues in published simulation projects. More
information is available in Section S7.

Comparing simulation tools

BioSimulators’ registry of simulation tools is ideal for
comparing and testing tools. In particular, by comparing the
outputs of multiple tools, BioSimulators could help identify
potential errors in tools. For example, BioSimulators has
helped the BioNetGen, pyNeuroML, VCell, and other teams
find and fix bugs in their tools.

Multiscale simulation with multiple algorithms and tools

By providing consistent Python APIs for simulation tools, we
believe that BioSimulators makes it easier to combine multiple
simulations of various subsystems and scales into multiscale
simulations. In particular, BioSimulators makes it easier to
combine simulations that require multiple model formats, sim-
ulation algorithms, and simulation tools. For example, the
Vivarium Collective (16) has begun to develop capabilities for
co-simulating multiple BioSimulators tools.

DISCUSSION

In summary, BioSimulators simplifies simulation by making it
easier to find, obtain, and run appropriate tools for particular
projects. Importantly, BioSimulators supports a broad range
of simulation projects by using several formats and ont-
ologies to encapsulate and abstract individual formats and
tools, including model formats such as BNGL, SED-ML,
KiSAO, the COMBINE archive format, HDF5, and Docker.
We anticipate that BioSimulators will enhance several stages
of the modeling life cycle. For example, we anticipate Bio-
Simulators will encourage more reuse of published simula-
tions by simplifying their execution, spur multiscale simula-
tion by making it easier to combine multiple simulations of
various subsystems, promote more predictive simulations by
empowering peer reviewers to deeply review simulations, and
stimulate higher quality simulation repositories by enabling
more holistic validation of simulations. Below, we summarize
how we plan to continue to enhance BioSimulators.

Systemizing additional simulation domains

Going forward, we aim to work with the community
to expand the BioSimulators ecosystem to additional
domains, including adding additional formats, frameworks,
and algorithms to EDAM, SBO, and KiSAO; developing
conventions for using SED-ML with additional model for-
mats; incorporating additional model formats into our sim-
ulation project validation suite; curating additional example
COMBINE archives for our simulation tool test suite; and
developing interfaces to additional simulation tools. Cur-
rently, we are working with the CoLoMoTo community to
expand BioSimulators’ capabilities for logical modeling, such
as calculations of state transition graphs and trap spaces.

Accelerating more holistic simulation workflows

By building on SED-ML, BioSimulators is currently limited
to simple simulation workflows that consist of models,
modification of models, the simulation of models, basic
calculations of simulation results, exporting simulation
results, and 2D line and 3D surface plots. In contrast,
real-world studies often involve additional tasks, such as
aggregating, normalizing, and integrating data from multi-
ple sources; using this data to build and calibrate models;
performing complex data reductions on simulation results; and
generating a variety of visualizations of simulation results.
Going forward, we aim to work with the community to
develop a new version of SED-ML, which can capture a
broader range of tasks, and develop a workflow engine that
can use multiple containerized tools to modularly execute
the individual tasks of these workflows. This design would
also make it easier for software developers to participate in
BioSimulators by lowering the responsibilities of tools from
executing entire workflows to executing individual tasks.

Enhanced recommendations of simulation methods

Finally, we also aim to develop an additional wizard that
helps novices identify appropriate formats, frameworks, algo-
rithms, and tools for their work. Our current recommendation
services require users to have advanced knowledge of simula-
tion methodology. In contrast, we aim to develop a wizard that
asks users questions about the systems and scales they would
like to model and recommends appropriate formats, frame-
works, algorithms, and tools. We anticipate that this would
help more investigators model biology.

AVAILABILITY

BioSimulators is freely available without registration at
https://biosimulators.org. This website contains links to the
simulation tools, REST API, examples, and documentation.
The source code for BioSimulators is openly available under
the MIT license. More information is available in Section S9.

SUPPLEMENTARY DATA

Supplementary Data are available online.

FUNDING

This work was supported by National Institutes of Health
awards P41EB023912, R24GM 137787, and R35GM119771.

Conflict of interest statement.

None declared.

REFERENCES

1. Carrera,J. and Covert, M. W. (2015) Why build whole-cell models?.
Trends Cell Biol., 25, 719-722.

2. Marucci,L., Barberis,M., Karr,J., Ray,O., Race,P. R,
de Souza Andrade,M., Grierson,C., Hoffmann,S. A., Landon,S.,
Rech,E. et al. (2020) Computer-aided whole-cell design: taking a holistic
approach by integrating synthetic with systems biology. Front. Bioeng.
Biotechnol., p. 942.

3. Szigeti,B. et al. (2018) A blueprint for human whole-cell modeling. Curr.
Opin. Syst. Biol., 7, 8-15.

4. Waltemath,D., Karr,J. R., Bergmann,F. T., Chelliah,V., Hucka,M.,
Krantz,M., Liebermeister,W., Mendes,P., Myers,C. J., Pir,P. et al. (2016)
Toward community standards and software for whole-cell modeling.
IEEE Trans. Biomed. Eng., 63, 2007-2014.

10.

11.

12.

13.

14.

15.

16.

. Clerx,M.,

. Keating,S.

. Ebrahim,A., Lerman,J. A., Palsson,B. O. and Hyduke,D. R. (2013)

COBRApy: constraints-based reconstruction and analysis for Python.
BMC Syst. Biol., 7, 1-6.

. Bergmann,F. T., Hoops,S., Klahn,B., Kummer,U., Mendes,P., Pahle,J.

and Sahle,S. (2017) COPASI and its applications in biotechnology. J.
Biotechnol., 261, 215-220.

Cooling M. T, Cooper,J., Garny,A., Moyle K.,
Nickerson,D. P., Nielsen,P. M. and Sorby,H. (2020) CelIML 2.0. J.
Integr. Bioinform., 17, 20200021.

M., Waltemath,D., Konig,M., ZhangF., DrigerA.,
Chaouiya,C., Bergmann,F. T., Finney,A., Gillespie,C. S., Helikar,T.
et al. (2020) SBML Level 3: an extensible format for the exchange and
reuse of biological models. Mol. Syst. Biol., 16, €9110.

. Malik-Sheriff,R. S., Glont,M., Nguyen,T. V., Tiwari,K., Roberts,M. G.,

Xavier,A., VuM. T., Men,J., Maire,M., Kananathan,S. et al. (2020)
BioModels—15 years of sharing computational models in life science.
Nucleic Acids Res., 48, D407-D415.

McDougal,R. A., Morse,T. M., Carnevale,T., Marenco,L., Wang,R.,
Migliore,M., Miller,P. L., Shepherd,G. M. and Hines,M. L. (2017)
Twenty years of ModelDB and beyond: building essential modeling tools
for the future of neuroscience. J. Comput. Neurosci., 42, 1-10.

Smith,L. P., Bergmann,F. T., Garny,A., Helikar,T., Karr,J., Nickerson,D.,
Sauro,H., Waltemath,D. and Konig,M. (2021) The Simulation Experi-
ment Description Markup Language (SED-ML): language specification
for Level 1 Version 4. J. Integr. Bioinform., 18, 20210021.

Bergmann,F. T. et al. (2014) COMBINE archive and OMEX format:
one file to share all information to reproduce a modeling project. BMC
Bioinformatics, 15, 1-9.

Courtot,M., Juty,N., Kniipfer,C., Waltemath,D., Zhukova,A., Driger,A.,
Dumontier,M., Finney,A., Golebiewski,M., Hastings,J. et al. (2011)
Controlled vocabularies and semantics in systems biology. Mol. Syst.
Biol., 7, 543.

Peters,M., Eicher,J. J., van Niekerk,D. D., Waltemath,D. and Snoep,J. L.
(2017) The JWS Online simulation database. Bioinformatics, 33, 1589—
1590.

Shaikh,B., Marupilla,G., Wilson,M., Blinov,M. L., Moraru,I. I. and
Karr,J. R. (2021) RunBioSimulations: an extensible web application
that simulates a wide range of computational modeling frameworks,
algorithms, and formats. Nucleic Acids Res., 49, W597-W602.
Agmon,E., Spangler,R. K., Skalnik,C. J., Poole,W., Peirce,S. M.,
Morrison,J. H. and Covert,M. W. (02, 2022) Vivarium: an interface and
engine for integrative multiscale modeling in computational biology.
Bioinformatics, btac049.

https://biosimulators.org

	 BioSimulators: a central registry of simulation engines and services for recommending specific tools
	Introduction
	Key features
	Streamlined discovery of appropriate tools for projects
	Streamlined acquisition and installation of simulators
	Streamlined execution of simulation tools
	Accurate and up-to-date information about simulators

	Methods
	Consistent representation of simulation projects and tools
	Standardized interfaces to simulation tools
	Recommendations of algorithms and simulation tools
	Validation of simulation projects and tools
	Submission of simulation tools to the registry

	Design, implementation, and deployment
	Use cases
	Sharing, reproducing, and reusing simulations
	Quality-controlling simulations
	Comparing simulation tools
	Multiscale simulation with multiple algorithms and tools

	Discussion
	Systemizing additional simulation domains
	Accelerating more holistic simulation workflows
	Enhanced recommendations of simulation methods

	Availability
	Supplementary data
	Funding
	Conflict of interest statement.

