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Abstract 

Metabolic networks have largely been exploited as mechanistic tools to predict the behavior of 

microorganisms with a defined genotype in different environments. However, flux predictions by 

constraint-based modeling approaches are limited in quality unless labor intensive experiments 

including the measurement of media intake fluxes, are performed. Using machine learning instead of 

an optimization of biomass flux – on which most existing constraint-based methods are based – 

provides ways to improve flux and growth rate predictions. In this paper, we show how Recurrent 

Neural Networks can surrogate constraint-based modeling and make metabolic networks suitable for 

backpropagation and consequently be used as an architecture for machine learning. We refer to our 

hybrid - mechanistic and neural network – models as Artificial Metabolic Networks (AMN). We 

showcase AMN and illustrate its performance with an experimental dataset of Escherichia coli growth 

rates in 73 different media compositions. We reach a regression coefficient of R2=0.78 on cross-

validation sets. We expect AMNs to provide easier discovery of metabolic insights and prompt new 

biotechnological applications. 

Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Metabolic Flux 

Analysis, Scientific Machine Learning, Hybrid Modeling, Artificial Metabolic Network. 

Abbreviations: AMN: Artificial Metabolic Networks, ANN: Artificial Neural Network, CBM: Constraint-

Based Modelling, (p)FBA: (parsimonious) Flux Balance Analysis, LP(QP): Linear (Quadradic) 

Programming, MFA: Metabolic Flux Analysis, ML: Machine Learning, MM: Mechanistic Modelling, 

RNN: Recurrent Neural Network. 
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Introduction 

The increasing amounts of data available for biological research brings the challenge of data 

integration with machine learning (ML) methods. Systems and Synthetic Biology along with Metabolic 

Engineering are no exception to this trend [1][2][3][4]. Metabolic Engineering relies on models that 

predict the phenotype of a strain from its genotype and environment. In the past three decades, 

Constraint-Based Modelling (CBM) has been the main approach to study the relationship between the 

uptake of nutrients and the metabolic phenotype (i.e., the steady-state flux distribution) of a given 

organism, e.g., E. coli, with a model iteratively refined for 30 years [5]. The main pitfall in CBM is the 

under-determination of the system. As a result, CBM needs to be constrained to obtain realistic flux 

distributions. Constraining consists in setting bounds for some fluxes and restraining the possible 

solutions of the model to the ones compliant with the constraints. To find these constraints, fluxomic 

datasets can be obtained from different experimental flux determination methods. With isotopic 

labeling (like 13-C), one can follow the path of a nutrient in the metabolic network [6]. With 

metabolomics methods, one can derive metabolic fluxes from metabolite concentrations and possibly 

in a time-resolved approach [7]. With transcriptomics methods, RNA sequencing data is used as input 

for models estimating fluxes in an indirect fashion, which, recently has even been achieved at the 

single-cell level [8]. In some cases, data integration of several -omics methods is possible, constituting 

a state-of-the-art multi-omics data integration for Metabolic Flux Analysis (MFA) [9][10][11]. 

Naturally, ML approaches were developed to efficiently integrate the data and enhance the predictive 

power of CBM. However, as described by Sahu et al. [12], in MFA, the interplay between CBM and ML 

is still showing a gap: some approaches use ML as input for CBM, others use CBM as input for ML, but 

none of them can do both, like we attempt to do in this paper with the Artificial Metabolic Networks 

(AMNs) hybrid model. 

The lack of progress towards integrating mechanistic modelling (MM, to which CBM belongs) and 

machine learning in fundamental biology studies is at odds with the widespread adoption of ML 

approaches by the life science communities. MM and ML approaches are based on two different 

paradigms. While the former is aimed at understanding biological phenomena, some systems are too 

complex to be modeled with interpretability. Conversely, the latter does a good job predicting the 

outcomes of complex biological processes using large input/output datasets, but does not provide 

understanding of the underlying mechanisms. The pros of one are the cons of the other, suggesting 

that a hybrid approach should be developed towards enabling a symbiotic relationship between both. 

An emerging field, Scientific Machine Learning (SciML), aims to develop such hybrid models [13]. The 
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main advantage of hybrid modeling is to bring models that comply well with experimental results via 

ML, but that also take mechanistic insights from MM. Recently, Nilsson et al. [14] showed good 

performances of such a model, developed for signaling networks, where they used the supposed 

topology of a signaling network as a platform for learning on experimental data, therefore displaying 

more insights than a black-box approach. Also, Anantharaman et al. [15] showed that an implicit ML 

architecture, here a reservoir specifically designed for surrogating stiff mechanistic Ordinary 

Differential Equations (ODEs) used in quantitative systems pharmacology, can function in a more 

accurate, fast and robust fashion than classical ODE solvers, once these implicit architectures have 

been trained on mechanistic simulations. Another example of hybrid modeling for biological systems 

is the work of Lagergren et al. [16], who estimated the parameters of a mechanistic model using 

“biologically-informed neural networks”. Finally, Culley et al. [17] showed how simulating data with a 

mechanistic metabolic model could enhance machine learning approaches to characterize S. 

cerevisiae growth and bring more biological insights. 

The hybrid AMN model shown here fits in the emerging SciML field. AMNs bridge the gap between 

ML and CBM by solving linear programming (LP) problems for metabolic flux models with a recurrent 

neural network (RNN) that has the same topology as the metabolic network itself. By doing so, our 

model is a mechanistic model, determined by the stoichiometry and any other possible constraint of 

CBM, but also a ML model, as it can be used as a learning architecture, with any MFA suitable data. 

The use of RNNs for solving optimization problems is a long-standing field of research [18] inspired by 

the pioneering work of Hopfield and Tank [19]. A few years later, RNNs were showcased to perform 

well for solving linear problems [20]. Simpler and more efficient networks were developed over the 

years [21][22] integrating both linear and Quadratic Programming (QP) problems to be in the reach of 

the network. In this study, we were able to use those RNNs for solving the LP optimization problems 

of CBM . 

CBM has a critical limitation for experimentalists: while realistic and condition-dependent bounds on 

uptake rates would be critical for growth rate predictions, the conversion from extracellular 

concentrations, i.e., the controlled experimental setting, to such bounds on uptake rates, is unknown.  

The satFBA [23] method exploits kinetic models to predict this conversion, relying on a saturation 

value for each exchange reaction. Consequently, this MM method relies on assumptions, not 

necessarily valid, and knowledge, not necessarily accessible, and does not integrate any large-scale 

regulation phenomena. As a result, classical CBM can predict growth yields but can hardly be used to 

predict actual growth rates [24]. AMNs are showcased in this study for tackling the same issue: 
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predicting metabolites uptake rates from their external concentrations. To do so, where satFBA uses 

another layer of mechanical kinetic modelling, we use a pre-processing dense neural layer, that is 

accessible for learning thanks to the AMN gradient backpropagation abilities.  

AMNs provide a new paradigm for MFA: instead of predicting fluxes and growth rates from an 

optimality principle (suited for CBM), we do so by learning from known flux distributions. First, we 

develop models that can learn from flux distributions and show their good performance. The flux 

distributions used as learning references (the training sets) are produced by parsimonious Flux Balance 

Analysis (pFBA), maximizing the biomass reaction (i.e., the growth rate) and subsequently minimizing 

all the other fluxes (with the biomass reaction fixed at its optimal value). Once the model has been 

trained on adequate simulated pFBA data, we immobilized its parameters, resulting in a gradient 

backpropagation compatible reservoir. This reservoir is then used to tackle the abovementioned issue 

of unknown uptake rates. A dense neural network layer predicting uptake rates from external 

metabolite concentrations is then trained to feed uptake rate to the reservoir. That dense layer can 

be reused by any FBA user to improve the predictive power of a metabolic model, with an adequate 

experimental set-up. 

 

Results 

We first present the basic design and functioning of two alternative neural computation methods that 

surrogate CBM, i.e., the prediction of intracellular fluxes and growth rate based on predefined bounds 

on cellular uptake rates. We use simulation data as reference, generated with pFBA, with different 

models of different sizes and different media compositions. Note that for this part, our methods are 

simply mimicking predictions by classical CBM with a neural network approach. Importantly, they are 

not AMNs per se, but are core methods that ‘replace’ CBM in our AMNs. A crucial step before 

establishing neural network approaches on metabolic networks is to ensure that all reactions are 

unidirectional which has been done by splitting all bi-directional reactions in the model into forward 

and backward reactions. In the resulting model, all reaction fluxes are positive, and flux cycles within 

a single reaction are suppressed by the usage of pFBA (see Methods - Making metabolic networks 

suitable for neural computations).  
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The first method (Fig. 1) learns a weight matrix from example flux distributions, which represents 

consensual flux branching ratios found in the training set. Consequently, we assume that a consensual 

metabolic state exists for most of the flux distributions examples of our training set. As a result, rules 

for generating the training sets are critical for good performance of this method, those are detailed in 

Methods – Generation of training sets with COBRApy. A simple toy model network is shown to 

demonstrate the functioning of this first method in Fig. 1A. With CBM, the flux distribution maximizing 

the rate of the ‘BIOMASS’ reaction providing a nutrient uptake through reaction ‘TPI’ is obtained by 

solving a linear program (Fig. 1B). At steady state, metabolite production fluxes can be calculated from 

reaction fluxes via the transition matrix V2M from fluxes to metabolites (V2Mi,j = {Si,j if Si,j > 0, 0 

elsewhere} more details are given in Fig. 1C), similarly reaction fluxes can be calculated from 

metabolite production fluxes using the matrices M2V and Wsst. For a given metabolite i and a reaction 

j, the weight wij (in matrix Wsst) represents the fraction of metabolite i production flux going to reaction 

j, and is therefore flux distribution dependent. Here we assume that the branching ratios remain 

similar between flux distributions, then attempt to learn "typical" ratios from flux data.  

To learn the weights wij, one first needs to translate the model into a neural-network-like architecture 

(Fig. 1D). Precisely, in Fig. 1D we start from an initial set of given fluxes and then propagate knowledge 

about the fluxes through the entire network, each layer corresponding to one step in flux propagation. 

Mathematically, each layer is composed of two simple operations that update the M and V vectors, 

respectively representing metabolites production fluxes and reaction fluxes. Those operations are 

repeated until convergence, with 𝑣1 being constant because it is known from the start, and the 

equilibrium is reached in cycles (for instance {𝑣2, 𝑣4, 𝑣5}). The network shown in Fig. 1D is the unrolled 

representation of the Recurrent Neural Network (named RNN-W) depicted in Fig. 1E. As it will be 

discussed later, the matrix W can be learned through training, assuming the learned weights are those 

of the matrix Wsst (Fig. 1C) the steady state fluxes of RNN-W iterated 30 times (or more) equal to those 

obtained solving MFA with CBM’s linear programs (Fig. 1F).  
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Fig. 1. Computing steady-state fluxes with stoichiometric and neural models. (A) Simple stoichiometric model. The model 
corresponds to the upper Glycolysis pathways of E. coli (iML1515 model extracted from the BiGG database [25]). The model is 
unidirectional, all fluxes values are positive. (B) Steady-state solution fluxes maximizing biomass production. At steady-state, 
the reaction fluxes (𝑣𝑖) must satisfy stationarity conditions that guarantee mass balance of all metabolites, this is depicted by 
the equation 𝑆𝑉 = 0, where 𝑆 is the stoichiometric matrix representing the connectivity of the model and 𝑉 the vector of fluxes 
to be calculated. 𝑉0

 is the medium represented by a vector of nutrient uptake fluxes (here 𝑣1= TPI = 0.1, symbol “—” indicates 
that no value is provided). The steady-state solution 𝑉 𝑠𝑠𝑡 is calculated by solving a linear program maximizing the objective 
𝑐𝑇𝑉 = 𝑣3 = BIOMASS, here we used the COBRApy package [26] to compute 𝑉 𝑠𝑠𝑡. (C) Stoichiometric model matrices. 𝑉2𝑀 is the 
matrix to compute metabolite production fluxes from reaction fluxes, 𝑀2𝑉 is a matrix to compute reaction fluxes from the 
production fluxes of the reaction substrates. When a metabolite is the substrate of several reactions, each reaction gets a 
fraction of the metabolite production flux, this is depicted in matrix 𝑊𝑠𝑠𝑡. 𝑀𝑠𝑠𝑡 is the vector of metabolite production fluxes at 
steady-state, the operator ⊙ stands for element-wise matrix product, and ReLU(x)=max (0, x). (D) Unrolled neural network built 
from the model. In this theoretical example an initial flux vector is set, representing only the fluxes in the exchange reactions, is 
mapped to a flux vector covering the entire network. In the initial layer (𝑙0) only 𝑣1 has a value (𝑣1

0). In layer 1, 𝑣1 value is passed 
to 𝑚1, the production flux for metabolite 1, 𝑚1

1 = 𝑣1
0.Subsequently a fraction (𝑤21) of 𝑚1 goes to 𝑣2 and the other fraction (𝑤31) 

to 𝑣3, therefore 𝑣2
1 = 𝑤21𝑚1

1, 𝑣3
1 = 𝑤31𝑚1

1 with 𝑤21+𝑤31 = 1. Additionally, 𝑣1 remains as in 𝑙0: 𝑣1
1 = 𝑣1

0. In layer 2, 𝑣1 

continues to feed 𝑚1, 𝑣2 is passed on to 𝑚2 and 𝑚3 , therefore, 𝑚2
2 = 𝑣1

1 and 𝑚3
2 = 𝑣1

1, 𝑚2 then goes to 𝑣3 and 𝑣4, and as in the 

previous layer we have 𝑣3
2 = 𝑤32𝑚2

2 , 𝑣4
2 = 𝑤42𝑚2

2 with 𝑤32+𝑤42 = 1, other fluxes remain the same as in 𝑙1, i.e., 𝑣2
2 = 𝑤21𝑚1

2 , 
𝑣3

2 = 𝑤31𝑚1
2 𝑣1

2 = 𝑣1
1. In layer 3, 𝑚3 receives input from 𝑣4 which in turn activates 𝑣5. In layer 4,𝑚1receives input from both 

𝑣1 and 𝑣5: 𝑚1
4= 𝑣1

3 + 𝑣5
3. (E) Recurrent neural network (RNN) representation. At each iteration step (l)  𝑉𝑙 and 𝑀𝑙 are computed 

using matrices V2M and M2V of panel C, while the matrix W can be learned by training with experimental data or model 
simulations. For example, setting 𝑣1

0 = 0.1 and searching weights for which 𝑣3
𝑛 = 0.5 one finds 𝑤21 = 0.74, 𝑤31 = 0.26, 𝑤32 = 

0.20, and 𝑤42 = 0.80. Taking these weights, the 𝑉𝑛values obtained for n=30 match those of panel B. (F) Heatmap for flux values 
up to 30 RNN iterations. 

 

While the RNN-W method is simple to implement it has several drawbacks. First, the method is not 

performant enough for learning on large metabolic models and datasets, notably because of the large 

number of parameters (cf. Table 1, architecture RNN-W). More problematic is the fact that a fixed set 

of weights – corresponding to assumed fixed branching ratios in flux distributions - may not fit all 

instances of a training set, since these branching ratios are typically changing (for example, in a switch 

between overflow metabolism and respiration). Supplementary Fig. S1 shows an example in which two 

flux distributions, with different uptake fluxes, lead to different weights. Consequently, we cannot 

assume that our model will precisely represent very diverse flux distributions. To overcome this 
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shortcoming, we next present an alternative RNN method for solving CBM optimization problems. 

These other methods are much closer to the LP optimization behind CBM: their input can be exact or 

upper bounds on fluxes, and an objective reaction (or set of reactions) to optimize can be set – or not. 

Our second method is inspired by the works of Ghasabi-Oskoei et al. [21] and Yang et al. [22]. The 

method is still a core method that aims to ‘replace’ CBM but is not the AMN itself. The method makes 

use of RNN to solve linear and quadratic problems, using exact constraint bounds (EB) in Ghasabi-

Oskoei et al. and upper-bounds (UB) in Yang et al. In the same way as the RNN-W method, RNN-EB and 

RNN-UB iteratively compute fluxes to come closer to the steady-state solution. However, calculations 

are more sophisticated (Fig. 2A-B) and integrate the same objective function as in classical CBM (cf. 

Method - Solving LP/QP with RNN methods - for further details). These RNNs can achieve almost 

identical results as pFBA. In both cases we used the same initial conditions as with pFBA: known intake 

fluxes with EB and upper bound for unknown intake fluxes with UB. The results obtained by the two 

RNNs are compared with the flux value to optimize (growth rate in Fig. 2C) or with the global regression 

coefficient (R²) on all fluxes (Fig. 2D). While the match with pFBA is excellent for the prediction of 

growth rates, it becomes a bit worse when comparing the predictions for intracellular fluxes. This is 

due to the fact that the flux solutions of pFBA can be non-unique: many pFBA calculated steady state 

flux distributions may lead to the same growth rate, so for any given growth rate there is no guarantee 

that the RNN calculated fluxes will match the pFBA fluxes. 

While RNN-EB and -UB perform well, their main weakness is the number of iterations needed to reach 

satisfactory performances, at least 400,000 (Fig. 2D). Since our goal is to integrate such RNNs in a 

learning architecture, this drawback has to be tackled. As illustrated in Fig. 3A, our solution is to 

improve our initial guesses for fluxes, by training a prior network (a classical dense ANN architecture) 

to compute initial values for all fluxes (V0) from medium intake fluxes (Vin). This prior network is trained 

along with the RNN with the goal of finding V0 values that are as close as possible to the optimum flux 

values (pFBA steady state fluxes). This is achieved by setting the iteration number of the RNN to low 

values.  

In the remainder of the paper, we name Artificial Metabolic Network (AMN), the hybrid model shown 

in Fig. 3A composed of a prior dense network and an RNN. We note that the RNN acts as a mechanistic 

layer as it contains the stoichiometry and bounds of a metabolic network. In Fig 3B and 3C we present 

two examples of AMNs making use of RNN-EB and RNN-W respectively, further details can be found in 

the section Method - AMN architectures and parameters. Performances of our AMNs are compared 

with other more classical architectures in Table 1. Overall, we find that the architecture RNN-EB 

provides the best performances, especially for cross-validation independent test sets. 
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Fig. 2. RNN architectures and performances. (A) RNN-EB. The constrained linear optimization problem (eqs. 1 and 2 in Method 
section) was solved with a gradient based method that iteratively update flux values and that is proven to converge to the same 
solution as (1). The solution is called “exact bounds” (EB) because the intake fluxes are supposed to be known [21]. The notations 
are those of Fig. 1 for V, V0, S and c, while b = V2M V0.  M is a vector representing the variables of the dual problem (also named 
metabolite shadow prices [27]), R is a vector used to simplify the notations, and δt is a constant (representing the increment at 
the tth iteration). (B) RNN-UB. The general principle of this method is the same as the previous one. However, the equation 
system (eq. 3 in Method section) that is used allows for inequality boundaries, so it is called “upper bounds” (UB). This method 
makes used of an architecture developed by Yang et al. [22] solving linear and quadratic problems given upper bounds. 𝑆𝑒𝑥𝑡  and 
𝑆𝑖𝑛𝑡  are the stoichiometric matrices of the network taking respectively external and internal metabolites and reaction fluxes. 

These matrices are computed from S by removing rows and columns (cf. Fig. S2). 𝑄 = 𝑆𝑖𝑛𝑡
𝑇 (𝑆𝑖𝑛𝑡𝑆𝑖𝑛𝑡

𝑇 )−1, and  𝑃 = 𝑄𝑆𝑖𝑛𝑡  (cf. 
Method – Solving LP/QP with RNNs).  (C) AMNs predicted growth rate vs. FBA calculated growth rate on the same inputs and 
the same model (E. coli core) for both RNN-EB and RNN-UB. (D) Regression coefficient R² improvement for all reaction fluxes of 
E. coli core model with the number of iterations (t). 

 

 

 

 
 
Fig. 3. AMN architectures enabling training. (A) Basic architecture principle. Vin is the vector representing upper or exact bounds 
on exchange reactions, i.e., the medium uptake rates. Each white circle represents one reaction. V0 contains the initial fluxes 
predicted by a dense, fully connected layer. Vn is the final flux vector, according to the mechanistic constraints applied on V0 and 
resulting from S: mass and charge conservation imposed by SV=0. The architectures RNN-W, RNN-EB and RNN-UB of Figs. 1 and 
2 can be used for the mechanistic layer. (B) Architecture example for RNN-EB. Here the weight matrix 𝑊𝜃 is obtained via training 

to compute initial values for V and M, then the RNN-EB cell is run iteratively to return Vn. (C) Architecture example for RNN-W. 
Here the fully connected dense layer is plugged inside the recurrent cell containing the mechanistic layer. At each iteration V0 is 
computed via 𝑊𝜃𝑖𝑛

obtained through training. V and M are updated via 𝑊𝜃𝑟
 (also obtained via training) and the values of V and 

M at the previous iteration. M is calculated using the M2V matrix defined in Fig. 1. 
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Table 1. AMN performance. All SBML models from different strains were downloaded from the BiGG database [25]. AMN 
architectures and parameters section. (1) Training set size and ratio of variable compounds in medium turned on, method used 
when running COBRApy [26] (with pFBA) (2) All: all fluxes are calculated, Biomass: only the growth rate is calculated. (3) Number 
of trainable parameters and epochs, in all cases dropout = 0.25, batch size = 5, the optimizer is Adam and the loss function is 
the mean squared error between predicted and provided fluxes to which the value IISVII2 is added (which should be near zero) 
(4) Measured on 2.4 GHz 8-Core Intel Core i9. (5) Regression coef. and IISVII2 values for X-fold = 5-fold on training and validation 
sets (6) Regression coef. and IISVII2 values on an independent test set of size 1000. 
 
 

SBML 
model 

Size 
Ratio 
Method(1) 

Measure(2) 
Size 

NN type 
Architecture 
Timestep 

Nbr 
Param(3) 
Nbr epoch 

Time 
per epoch 
(s) (4) 

R2  
X-fold(5) 

Q2 
IISVII2 
X-fold(5) 

Q2 
IISVII2 
test(6) 

Ecoli_core 10000 
0.5 
pFBA 

All  
154 

ANN 
Dense  
n/a 

3.61k 
 
1000 

1.0 0.92 ± 0.00 0.92 ± 0.00 
 
0.22 ± 0.06 

0.94 
 
5.54 

Ecoli_core 10000 
0.5 
pFBA 

Biomass  
1 

ANN 
Dense 
n/a 

3.61k 
 
500 

1.0 0.96 ± 0.02 0.95 ± 0.02 
 
n/a 

0.96 
 
n/a 

Ecoli_core 10000 
0.5 
pFBA 

All  
154 

ANN 
SV 
n/a 

3.61k 
 
1000 

2.0 0.92 ± 0.01 0.92 ± 0.01 
 
0.16 ± 0.03 

0.95 
 
2.52 

Ecoli_core 10000 
0.5 
pFBA 

Biomass  
1 

ANN 
SV 
n/a 

3.61k 
 
500 

2.0 0.98 ± 0.01 0.98 ± 0.01 
 
0.04 ± 0.01 

0.99 
 
0.85 

Ecoli_core 10000 
0.5 
pFBA 

All  
154 

AMN 
RNN-EB 
1 

4.74k 
 
1000 

6.3 0.82 ± 0.12 0.83 ± 0.11 
 
1.64 ± 0.48 

0.94 
 
0.54 

Ecoli_core 10000 
0.5 
pFBA 

Biomass 
1 

AMN 
RNN-EB 
5 

4.74k 
 
500 

6.3 1.00 ± 0.00 1.00 ± 0.00 
 
0.03 ± 0.02 

0.99 
 
0.45 

Ecoli_core 10000 
0.5 
pFBA 

Biomass  
1 

AMN 
RNN-W 
5 

14.32k 
 
500 

11.0 0.98 ± 0.01 0.98 ± 0.01 
 
0.02 ± 0.01 

0.70 
 
0.48 

iML1515 10000 
0.5 
pFBA 

Biomass  
1 

AMN 
RNN-EB 
1 

289.43k 
 
500 

60.0 1.00 ± 0.00 1.00 ± 0.00 
 
0.06 ± 0.02 

1.00 
 
0.04 

 

 

 

Once an AMN has been trained on a large dataset of pFBA simulations, we can exploit it in subsequent, 

further learning, this time on experimental data. Precisely, we used the iML1515 AMN of Table 1 for 

characterizing and predicting the growth of E. coli on many different media compositions. To that end, 

we grew E. coli DH5-alpha in 73 different media compositions, with M9-glycerol as a basis and a wide 

variety of possibly added nutrients (see Methods - Culture conditions). As already mentioned in the 

introduction section, the intake rates of E. coli nutrients (i.e., the nutrient exchange reactions values), 
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as well as their relation to external concentrations, remain largely unknown: the quantitative rate for 

each compound may vary between growth media, unlike in the FBA calculations, where the same 

upper bound (or zero, if a compound is absent) is used in all cases. This is a common flaw of classical 

FBA (one that is only partially remedied in satFBA or FBA with molecular crowding [28]). To use the 

architectures of Fig. 3, we thus need to first convert nutrient concentrations into uptake rates. This is 

achieved by adding a dense layer that precedes the AMN (Fig 4A). In this architecture the AMN is no 

longer trainable, only the prior dense layer is, and the AMN acts as a reservoir as in reservoir computing 

[29]. 

 

The predictive power of our AMN-reservoir was assessed by a regression coefficient R2 = 0.96±0.02 on 

training sets; and R2 =0.78 (Fig. 4B) on a test set build from aggregated validation sets during 10-fold 

cross-validation. We obtained similar performance with a state-of-the-art black-box model (XGBoost 

[30]) and a simple multivariate regression model, with the Ordinary Least Squares (OLS) method of the 

statsmodels [31] python package. However, those black-box models have no mechanistic insights to 

propose, and no possible modifications that have a biological sense, like a knockout of a gene that 

would delete a reaction in the metabolic network, which can be accounted for in our AMNs. To 

compare with an ‘out-of-the-box’ CBM approach, we first used an arbitrary value of 10 for the present 

compounds, and 0 for the absent compounds. Applying these values on the corresponding exchange 

reactions upper bounds, and optimizing the biomass reaction rate produced results uncorrelated with 

experimental measurements (Fig. 4C). To enhance these results, we optimized the upper bound values 

of exchange reactions corresponding to absent or present compounds in the medium (see Methods - 

Optimization of exchange reactions upper bounds in FBA). It resulted in a R² = 0.47 performance (Fig. 

4D), showing a poor fit and weak predictive power (no cross-validation scheme here), indicating AMNs 

have a purpose in augmenting the capabilities of CBM without costly experimental work. 
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Fig. 4. Benchmarking growth rate predictions with experimental measurements for E. coli (strain DH5-alpha, model iML1515).  
(A) AMN used in reservoir computing. The non-trainable reservoir (rounded box) is the AMN shown in Figure 3.B (with 
performances given the last row of Table 1) and is connected to a prior trainable network which purpose is to compute medium 
intake fluxes (Vin) from the concentration (Cin) of metabolites added to medium. Taking as input Vin, the non-trainable reservoir 
prints out all fluxes including the growth rate. (B) AMN (RNN-EB architecture) predicted growth rate vs. measured growth rate. 
All points plotted correspond to predicted values not present in the training set. This was compiled using all predicted values 
obtained for each validation sets in 10-fold stratified cross validation repeated 3 times with different initial random seeds.  (C) 
COBRApy calculated growth rate vs. measured growth rate. COBRApy was run taking as input upper bound intake fluxes for 
added metabolites in medium. Intake flux values were set to arbitrary values (0 when the metabolite was absent in the medium 
and 10 when it was present). (D) COBRApy calculated growth rate vs. measured growth rate with optimized medium intake 
fluxes (see section Method - Optimization of exchange reaction - for details on optimization procedure). 

 
 
 

Discussion and conclusion 

In this study, we showed that metabolic networks can be used as a learning architecture for neural 

network approaches. Previous work on RNN for constrained optimization was re-used and adapted to 

enable machine learning methods (such as backpropagation of errors) within metabolic networks. For 

improved scalability and adaptability, we first trained an AMN-reservoir on large, simulated pFBA 

datasets. We then exploited the reservoir to improve the predictive power of MFA on growth rate 

datasets of E. coli.  Figure 4 shows good predictive power of AMN, far outperforming those obtained 

by standard CBM solvers (like COBRApy pFBA solver in Fig. 2C and 2D). 

Determining the uptake rates is a core experimental work needed for making constraint-based MFA 

realistic. Here, we developed an approach that gets rid of such needs for reaching plausible fluxes 

distributions. We did so by backpropagating the error on the growth rate, to find complex relationships 

between the medium concentrations and the medium uptake rates. To that end, we demonstrated the 
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high predictive power of AMNs, and their re-usability in classical CBM approaches. Indeed, the 

constraint-based methods developers and users can now make use of our AMN-reservoir method for 

solving the medium uptake rate issues. In this regard, supplementary Table S2 gives uptake rates for 

the metabolites used in our benchmarking work with E. coli (Fig. 4), which can directly be used with 

CBM software products like COBRApy. 

As mentioned earlier, in classical CBM, plausible flux distributions can be found by constraining some 

fluxes to measured flux values. Here, we avoided costly experimental flux determinations and found 

plausible flux distributions just by learning the consensual metabolic behavior of an organism in 

response to its environment. We also learned the relationship between medium nutrient 

concentrations and the actual nutrient uptake by the bacteria, eventually revealing complex 

regulations between E. coli’s environment to its steady-state metabolic phenotype. Added to the 

possible unveiling of biological mechanisms, AMNs can also be exploited for industrial applications. 

Indeed, since one can design any objective function to optimize with AMNs, they can be used to search 

optimum media for the bioproduction of compounds of interest as well as microorganism-based 

decision-making devices for the multiplexed detection of metabolic biomarker or environmental 

pollutants. 

 

Methods 

Making metabolic networks suitable for neural computations 

AMNs should have a property that is not guaranteed by usual metabolic models: all reactions must be 

unidirectional. In other words, AMN computations have been developed for models showing positive-

only fluxes. We wrote a standardization script that loads an SBML model into COBRApy and screens 

for all two-sided reactions, then duplicating them into two separate reactions; and writes a new 

version of the model with bi-directional reactions split into separate forward and backward reactions. 

To avoid confusion, we add a suffix for these reactions, either “for” or “rev” respectively designating 

the original forward reaction and the reversed reaction. For more clarity, the exchange reactions were 

also duplicated, even if encoded as one-sided, and their suffix was set to “i” for inflow reactions, and 

“o” for outflow reactions. 
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Generation of training sets with COBRApy 

Training sets of metabolic flux distributions were generated using models downloaded from the BiGG 

database [25]. The models were used to generate data using COBRApy [26] following a precise set of 

rules. First, we identified essential exchange reactions for the models we used (E. coli core and 

iML1515). Precisely, if one of these reactions has its upper bound set to zero, the biomass reaction 

optimization is impossible, even if all other exchange reactions are set to a high value, e.g., 1000. In 

other words, we identified the minimal uptake fluxes that enable growth, according to the models. 

During data generation, the upper bounds on these reactions were always set to 1000. 

Two carbon sources always had their exchange reaction turned on, glycerol and arabinose, which were 

given an upper bound of 10. Then, we selected a set of 27 exchange reactions to be the variables of 

our training set: the 20 canonical proteinogenic amino acids (L-histidine, L-leucine, L-phenylalanine, L-

lysine, L-tyrosine, L-valine, L-leucine,  L-methionine, L-isoleucine, L-glutamine, L-cysteine, L-serine, L-

alanine, L-tryptophan, L-asparagine, L-proline, L-threonine, Glycine, L-arginine, L-aspartate), 4 sugars 

(Melibiose, Sucrose, Trehalose, Lactose) and 3 acids (Acetate, Pyruvate, Citrate). Note that these 

exchange reactions corresponding compounds are used as the possibly added compounds in the 

experimental datasets. 

These constitute the so-called set of variable exchange reactions (VER). On these reactions, we first 

applied a binomial drawing rule B(n, p) with n=27 and p ∈ [0, 1], a tunable parameter related to the 

ratio of ‘activated’ VER (to have an upper bound larger than zero). Consequently, the mean number of 

activated variable exchange reactions was close to n x p. For each of those activated VER, one out of 

several levels were randomly drawn from a uniform law, to give the upper bound actual value. In the 

workflow, the number of levels and the maximum value are tunable parameters. To retrieve the FBA-

solved fluxes, we used COBRApy optimization on the biomass reaction without any constraints on the 

network reactions. In the end, each point  (x, y) in the dataset consisted of a vectors of values for all 

the VER (X), and all the fluxes obtained running FBA or pFBA with COBRApy (Y). 

Solving LP/QP with RNN methods 

When intake fluxes are known (EB method), the linear optimization problem solved with FBA for a 

metabolic network with n fluxes and m metabolites can be written as: 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

𝑀𝑎𝑥: 𝑐𝑇𝑉 

                                                                             𝑠𝑡: 𝑆𝑉 = 𝑏                                                                 (1) 

           𝑉 ≥ 0 

and its dual form:           

𝑀𝑖𝑛: 𝑏𝑇𝑀 

                                                                              𝑠𝑡: 𝑆𝑇𝑀 ≤ 𝑐𝑇                                                         (2) 

In the case where intake fluxes are unknown (UB and general case for FBA) it can be written as: 

 

𝑀𝑎𝑥: 𝑐𝑇𝑉 

                                                             𝑠𝑡:  𝑆𝑒𝑥𝑡𝑉 ≤ 𝑏 𝑎𝑛𝑑 𝑆𝑖𝑛𝑡𝑉 = 0                                            (3) 

𝑉 ≥ 0 

 

with V the vector of fluxes, M its dual referred to as shadow prices of metabolites, S the stoichiometric 

matrix, b a vector of dimension m with bi corresponding to input flux of the ith metabolite and c the 

objective vector of dimension n. Keep in mind that b takes positive values only for metabolites 

transported by exchange reactions, consequently bi = 0 for all internal metabolites. Using the notation 

of Fig. 1 we note that b = M2V V0, where V0 is the vector of intake fluxes. In this work c is a null vector 

with 1 for the ‘biomass reaction’ flux. 

The usual method to solve this linear programming problem is the Simplex algorithm [32], which is fast 

and scalable. But, Simplex has no gradient, nor backpropagation compatibility. Thus, it couldn’t be 

integrated in AMNs, which are designed to be hybrid models. 

Another way to solve this problem is through recurrent neural networks (RNN). As this method relies 

on gradient descent and is compatible with backpropagation. The two methods that were used are 

illustrated in Fig. 2A and 2B. The general solving happens by iteratively updating V the vector of all 

reaction fluxes and M the dual vector of shadow prices: 

                                                                  𝑉𝑡+1 = 𝑉𝑡 + 𝛿𝑡𝑑𝑉                                                              (4) 

𝑀𝑡+1 = 𝑀𝑡 + 𝛿𝑡𝑑𝑀 

With 𝑑𝑉 and 𝑑𝑀 depend on the architecture (RNN-EB or RNN-UB).  

For RNN-EB, the constraints are simplified to SV = b and the solution used is given in Figure 2A. For the 

UB method, the stoichiometric matrix S is split into Sint the part of S for internal fluxes and Sext for 

exchange reaction fluxes. In addition, terms to ensure the positivity of the fluxes were added to Sext (cf. 
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Fig S2). The resulting equations are given in Fig. 2B. As the matrix Sint Sint
T should be invertible, we 

guarantee this property by giving its initial form the row echelon form. As a result, M in the UB method 

is of dimension p<m.  

Both methods were proven to converge to the global optimum independently of the initialization. The 

time step was arbitrarily fixed to 3.0 10-4 for EB and 5.0-2 for UB and it was multiplied by 0.7 every 104 

iterations if the objective value was not decreasing. 

For both Fig. 2C and Fig. 2D the results were obtained with 50 simulations and 107 iterations. The 

reference values were obtained using COBRApy and E. coli core  model. Each replicate was generated 

with a different medium computed with the training set generation method (cf. previous section). 

In the first part of this work (i.e., Fig. 2), RNNs are used with the maximization of growth rate as an 

objective function. Whereas, in the second part (i.e., Figs. 3-4, Table 1) RNNs are embedded within 

larger architectures for training purposes, the objective function is no longer needed and c=0. 

AMN architectures and parameters 

We propose three AMNs architectures as described in Fig. 3A (i.e., composed of a dense layer and a 

mechanistic layer): RNN-EB, RNN-UB and RNN-W. RNN-EB and RNN-UB have a mechanistic layer as 

described in Fig. 2A and 2B. The architecture of RNN-W is shown in Fig. 3C. In the architecture ‘ANN 

dense’ and ‘ANN SV’ we omit the mechanistic layer and simply use the output of the first dense layer 

as the final output of the model. For all architecture, we use the Mean Squared Error (MSE) on all fluxes 

as the objective function to minimize while learning. In the architecture ‘ANN SV’ and in all RNN 

architectures we added to the MSE loss function, the term IISVII² to enforce the metabolic network 

constraint, i.e., the mass balance of internal metabolites. 

To summarize the parameters used when training ANN and AMN can be decomposed into different 

categories: 

1. Simulated data parameters. As described in the previous section (Generation of training sets 

with COBRApy), we can tune the size of the training set to be generated. We can also modify the 

mean number of activated VER per data point, the maximum value each VER can take, and the 

number of levels (i.e., the resolution) between 0 and a maximum. We can also modify the actual 

VER list, but this modifies the architecture of the model (initial layer size), so we kept the same 

list in the present work. 
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2. Learning parameters. During learning on simulated data, an AMN has a small set of parameters 

to tune: the loss function, the number of epochs, the batch size, and the X-fold validation, where 

X is the number of folds. 

3. Architecture parameters. One can also select the architecture of the model, amongst the 5 

benchmarked architectures: ‘RNN-W’, ‘RNN-EB’, ‘RNN-UB’, ‘ANN Dense’ and ‘ANN SV’. 

 

Optimization of exchange reactions upper bounds in FBA 

The goal of this optimization was to find the best VER fluxes to match experimentally determined 

growth rates, by using ‘out-of-the-box’ FBA, simply informing the presence or absence of the flux 

according to the experimental medium composition. As a result, the optimized fluxes values were 

assigned (as an upper bound) to the corresponding exchange reaction only when the experimental 

data point has the compound present. The Mean Squared Error (MSE) between all the FBA predictions 

and all the experimentally determined growth rates was the function to minimize. For that, the input 

vector to optimize was composed of the upper bounds for all VER, but also arabinose and glycerol 

(which are present in all media compositions). The Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 

algorithm [33] was used under the SciPy library, as a local optimization method, starting from an initial 

vector filled of the value 5. Final optimized uptake values are shown in supplementary Table S1. 

Culture conditions and growth rate determination 

The basic medium for culturing E. coli DH5-α was a M9-glycerol medium prepared with those final 

concentrations: 100µM CaCl2, 2mM MgSO4, 1X M9 salts (3 g.L-1 KH2PO4, 8.5 g.L-1 Na2HPO4 2H2O, 

0.5 g.L-1 NaCl, 1g.L-1 NH4Cl), 1X trace elements (15 mg.L-1 Na2EDTA 2H20, 4.5 mg.L-1 ZnSO4 7H2O, 

0.3 mg.L-1 CoCl2 6H2O, 1 mg.L-1 MnCl2 4H2O, 1 mg.L-1 H3BO3, 0.4mg.L-1 Na2MoO4 2H20, 3 mg.L-1 

FeSO4 7H2O, 0.3 mg.L-1 CuSO4 5H2O; solution adjusted at pH=4 and stored at 4°C), 1 mg.L-1 Thiamine-

HCl and 0.5g.L-1 glycerol. The additional compounds that could be added (the VER, See Methods - 

Generation of training sets with COBRApy) were all set to a final concentration of 0.1 g.L-1. The pH was 

adjusted at 7.4 prior to a 0.22µm filter sterilization of the medium. Pre-cultures were recovered from 

glycerol -80°C stocks, grew in Luria-Bertani (LB) broth overnight, then used as inoculate in 200µL M9-

glycerol (supplemented with variable compounds) in 96 U-bottom wells plates. The temperature was 

set to 37°C in a plate reader (BioTek HTX Synergy), with continuous orbital shaking, allowing aerobic 

growth for 24 hours. A monitoring every 10 minutes of the optical density at 600 nm was performed 

and the steepest part of the growth curve was retrieved for growth rate determination, by a simple 

logistic regression. 
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Fig. S1. Different weights for different intake fluxes. In the two cases all flux values (vi) satisfy the steady state 
constraints (SV = 0, cf. Fig. 1.B). Following the equations provided in Fig. 1.C, the production fluxes for m1 and m2 
are respectively 1 and 0.5 in (A) and 0.75 and 0.25 in (B). The reaction for flux v4 is taking two substrates m1 and 
m2 and the value for v4 is the minimum metabolite production flux (i.e., the rate limiting metabolite among m1 and 
m2). Consequently, the value for v4 is 0.5 (A) and 0.25 (B). Therefore, the fraction (w41) of m1 contributing to v4 is 
1/2 (A) and 1/3 (B). The weights are different in panel (A) and (B) as they depend on the intake flux values. 
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Fig. S2. Matrices used with the UB method. We show here an example for the same model as in Fig. 1. The goal 
here is to produce two matrices from S, one where we remove the stoichiometric coefficients of the exchange 
reactions (here the only exchange reaction is TPI, the red column of the top-left matrix); the other where we only 
keep exchange reactions. Thus, the stoichiometric matrix S was split between reactions involving internal 
metabolites (Sint) and exchange reactions, importing or exporting external (medium) metabolites in or out of the 
cell (Sext). In Sint external reactions (TPI) and involved metabolites (g3p) are zeroed out. An identity matrix is added 
to Sext to ensure that V≥0 and Sext is filled with negative value to ensure that intake fluxes are positive. 
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Table S1. Optimized intake fluxes for ‘out-of-the-box’ FBA.  ‘VER ID’ indicates the column of  variable exchange 
reactions IDs  in the unidirectional iML1515 model. ‘Name’ indicates the actual human-readable name of the 
compound. The third line is the optimized upper bound value for this compound, in mmol/gDW/h. 
 

 

VER ID Name Optimized UB VER ID Name Optimized UB 

EX_his__L_e_i L-histidine 1.38644249 EX_pro__L_e_i L-proline 0.19732778 

EX_leu__L_e_i L-leucine 1.04517755 EX_thr__L_e_i L-threonine 0.18261263 

EX_phe__L_e_i L-phénylalanine 0.46916847 EX_gly_e_i Glycine 1.18544455 

EX_lys__L_e_i L-lysine 0.91378495 EX_arg__L_e_i L-arginine 0.34324712 

EX_tyr__L_e_i L-tyrosine 1.32356027 EX_glu__L_e_i L-glutamate 0.28930693 

EX_val__L_e_i L-valine 0.82434214 EX_melib_e_i Melibiose 1.20124412 

EX_asp__L_e_i L-aspartate 0.16357178 EX_sucr_e_i Sucrose 0.48828341 

EX_met__L_e_i L-methionine 0.46414337 EX_tre_e_i Trehalose 0.84498494 

EX_ile__L_e_i L-isoleucine 0.4522181 EX_lcts_e_i Lactose 0.08696407 

EX_gln__L_e_i L-glutamine 0.11281941 EX_ac_e_i Acetate 1.43337434 

EX_cys__L_e_i L-cystéine 0.32868508 EX_pyr_e_i Pyruvate 1.74551093 

EX_ser__L_e_i L-serine 0.84441828 EX_cit_e_i Citrate 1.88332571 

EX_ala__L_e_i L-alanine 0.96374981 EX_glyc_e_i Glycerol 0.87195784 

EX_trp__L_e_i L-tryptophan 0.19073675 EX_arab__L_e_i Arabinose 0.51011534 

EX_asn__L_e_i L-asparagine 0.3260942    
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Table S2. Intake fluxes predicted by the architecture of Fig. 4. The Table provides in the two first columns the 
measured (TRUE)  and COBRApy calculated growth rate (PRED) for 38 different media for which measured growth 
rate ≥ 0.05. The other columns provide intake fluxes for medium metabolites. The intake flux values have been 
calculated by the grey dense layer of Figure 4A. The intake flux values can differ quite a lot for one medium to 
another, as intake fluxes of metabolites are not independent from one another. Intake flux values are in 
mmol/gDW/h. Values are provided for minimum (mi) and variable (vi) medium metabolites. The compound name / 
ID are given below the Table. The Table below is also provided as a supplementary .csv file. 
 

 
 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Metabolic Flux Analysis, Scientific Machine Learning, Hybrid Modeling, Artificial Metabolic Network.
	Abbreviations: AMN: Artificial Metabolic Networks, ANN: Artificial Neural Network, CBM: Constraint-Based Modelling, (p)FBA: (parsimonious) Flux Balance Analysis, LP(QP): Linear (Quadradic) Programming, MFA: Metabolic Flux Analysis, ML: Machine Learnin...
	Introduction
	Results
	Our second method is inspired by the works of Ghasabi-Oskoei et al. [21] and Yang et al. [22]. The method is still a core method that aims to ‘replace’ CBM but is not the AMN itself. The method makes use of RNN to solve linear and quadratic problems, ...

	Discussion and conclusion
	Making metabolic networks suitable for neural computations
	AMNs should have a property that is not guaranteed by usual metabolic models: all reactions must be unidirectional. In other words, AMN computations have been developed for models showing positive-only fluxes. We wrote a standardization script that lo...
	Generation of training sets with COBRApy
	Solving LP/QP with RNN methods
	Optimization of exchange reactions upper bounds in FBA
	Culture conditions and growth rate determination

	Acknowledgements
	Author contributions and codes information
	LF and JLF wrote the core of the text of the manuscript. JLF designed the study and wrote all the AMN codes used to produce Figs. 1, 3, 4, S1 and Tables 1 and S2. BM wrote the RNN codes producing Figs. 2 and S2 and wrote the corresponding part in the ...


