
HAL Id: hal-03613655
https://hal.inrae.fr/hal-03613655v2

Preprint submitted on 31 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Artificial Metabolic Networks: enabling neural
computation with metabolic networks

Léon Faure, Bastien Mollet, Wolfram Liebermeister, Jean-Loup Faulon

To cite this version:
Léon Faure, Bastien Mollet, Wolfram Liebermeister, Jean-Loup Faulon. Artificial Metabolic Networks:
enabling neural computation with metabolic networks. 2022. �hal-03613655v2�

https://hal.inrae.fr/hal-03613655v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

1

Hybrid models enabling neural computations
with metabolic networks

Léon Faure1,2, Bastien Mollet2,3, Wolfram Liebermeister1,4, and Jean-Loup Faulon1,2,5*

1University of Paris-Saclay, Saclay, France, 2MICALIS Institute, INRAe, Jouy-en-Josas, France, 3ENS Lyon,
Lyon, France, 4MaIAGE, INRAe, Jouy-en-Josas, France, 5Manchester Institute of Biotechnology,
University of Manchester, Manchester, UK.
*Corresponding author: Jean-loup.Faulon@inrae.fr, ORCID 0000-0003-4274-2953

Abstract

Constraint-based mechanistic models have largely been exploited to predict the phenotype of

microorganisms in different environments. However, phenotype predictions are limited in quality

unless labor intensive experiments including the measurement of media uptake fluxes, are performed.

We show how hybrid - mechanistic and neural – models provide ways to improve phenotype

predictions. Our hybrid models named Artificial Metabolic Networks (AMNs) surrogate constraint-

based modeling, make metabolic networks suitable for backpropagation and, consequently, can serve

as an architecture for machine learning. We first show how learning principles brought by AMNs can

replace the optimization principle of constraint-based modeling with excellent performances for

various in silico training sets. We then illustrate how AMNs outperform mechanistic models with

Escherichia coli growth rates measured in 110 different media compositions reaching regression

coefficients > 0.76 on cross-validation data. We expect our hybrid AMN models to enhance constraint-

based modeling and to prompt new biotechnological applications.

Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Flux Balance Analysis,

Scientific Machine Learning, Hybrid Modeling.

Abbreviations: AMN: Artificial Metabolic Network, ANN: Artificial Neural Network, FBA: Flux Balance

Analysis, GD: Gradient Descent, LP(QP): Linear (Quadratic) Programming, ML: Machine Learning, MM:

Mechanistic Modeling, PINN: Physics Informed Neural Network, RNN: Recurrent Neural Network. R2:

Regression coefficient calculated on training set. Q2: regression coefficient calculated on cross-

validation sets or independent test sets (not seen during training).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

mailto:Jean-loup.Faulon@inrae.fr
https://orcid.org/0000-0003-4274-2953
https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Introduction

The increasing amounts of data available for biological research bring the challenge of data integration

with Machine Learning (ML) to accelerate the discovery process. The most compelling achievement

within this grand challenge is protein folding recently cracked by AlphaFold1, which in the last CASP14

competition predicted structures with a precision similar to structures determined experimentally.

Following this foot step, one may wonder if in the future we will be able to use ML to accurately model

whole cell behaviors.

The curse of dimensionality2, i.e., the fact that fitting many parameters may require prohibitively large

data sets, is perhaps the biggest hurdle that prevents using ML to build cell models. Obviously, cells

are far more complex than single proteins and since the amount of data needed for ML training grows

exponentially with the dimensionality2, as of today, ML methods have not been used alone to model

cellular dynamics.

For the past decades mechanistic (mathematical) models (MMs) have been developed to simulate

whole-cell dynamics (cf. Thornburg et al.3 for one of the latest models). These models encompass

metabolism, signal transduction, as well as gene and RNA regulation and expression. Cellular dynamics

being tremendously complex, MMs are generally based on strong assumptions and oversimplifications

and ultimately suffer from capacities of making predictions beyond the assumptions and the data used

to build them.

The MM and ML approaches are based on two contrary paradigms. While the former is aimed at

understanding biological phenomena with physical and biochemical detail, it has difficulties handling

complex systems; the latter can accurately predict the outcomes of complex biological processes even

without an understanding of the underlying mechanisms, but require large training sets. The pros of

one are the cons of the other, suggesting that hybrid approaches should be developed. In particular,

MMs may be used to tackle the dimensionality curse of ML methods. For instance, one can use MMs

to produce in silico data which can be added to experimental data increasing the training set sizes for

ML. However, with that strategy, if the model is inaccurate, ML will be trained on erroneous data. One

can also embed MMs within the ML process, in this strategy ML and MMs are trained together and

the model parameters can be estimated through training, increasing the model predictive capacities.

The issue with this strategy is the difficulty of making MMs amenable to training.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

In the current paper we propose an MM-ML hybrid approach in which a whole-cell constraint-based

model (CBM), Flux Balance Analysis (FBA), is embedded with ML. For the past three decades, FBA has

been the main approach to study the relationship between nutrient uptake and the metabolic

phenotype (i.e., the metabolic fluxes distribution) of a given organism, e.g., E. coli, with a model

iteratively refined over the years4. FBA assumes that the metabolic phenotype is at steady state, i.e.,

a phenotype that is constant in time and in which all compounds are mass-balanced. Usually such a

steady state is assumed to be reached in the mid-exponential growth phase. The search for a steady

state happens in the space of possible solutions that satisfies the constraints of the metabolic model,

i.e., the mass-balance constraints according to the stoichiometric matrix as well as upper and lower

bounds for each flux in the distribution. In addition, FBA employs an optimality principle, with one

principal objective (usually the ’biomass’ production flux) and possibly secondary objectives (e.g.,

minimize the sum of fluxes in parsimonious Flux Balance Analysis (pFBA), or the flux of a metabolite

of interest). For example, to predict a growth rate in a given environment, one would designate the

‘biomass’ flux (describing the growth rate) as the objective to maximize and set up non-zero upper

bounds on some uptake fluxes. These bounds depend on the amounts of molecule transporters, which

may change between conditions depending on the cell metabolic strategy. Therefore, finding realistic,

condition-dependent bounds on the uptake fluxes requires labor-intensive measurements. In more

sophisticated CBM approaches such as molecular crowding FBA5 (mcFBA) or Resource Balance

Analysis6 (RBA), constraints on the resource availability and allocation are added to obtain more

biologically plausible metabolic phenotypes, but parameterizing such models requires additional data.

To set bounds and validate prediction results, fluxomic data can be obtained from experiments. With

isotopic labeling (like 13-C), one can follow the path of a nutrient in the metabolic network7. Based on

metabolomics, one can derive metabolic fluxes from metabolite concentrations and possibly in a time-

resolved approach8. With transcriptomics, RNA sequencing data is used as input for models to

estimate fluxes indirectly, even at the single-cell level9. Data obtained from several -omics methods

can be integrated, constituting a state-of-the-art multi-omics data integration for flux prediction10–12,

which usually makes use of FBA alongside ML methods. Indeed, ML approaches were naturally

developed to efficiently integrate such data and to enhance predictions by FBA. However, as described

by Sahu et al.13, the interplay between FBA and ML still shows a gap: some approaches use ML results

as input for FBA, others use FBA results as input for ML, but none of them embed FBA into ML, as we

do in this paper with the Artificial Metabolic Networks (AMNs) hybrid models.

Hybrid models have recently been developed under different names in biology for signaling pathways

and gene-regulatory networks (Knowledge Primed Neural Network14, Biologically-Informed Neural

Networks15) and in physics where models solving partial differential equations (PDEs), such as Physics

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

Informed Neural Network16 (PINN), are available in open source repositories such as SciML.ai17. The

goal of these emerging hybrid modeling methods is to generate models that comply well with

observations or experimental results via ML, but that also use mechanistic insights from MM. The

advantages of hybrid models are two-fold: they can be used to parametrize MM methods through

direct training and therefore increasing MM predictability, and they enable ML methods to overcome

the dimensionality curse by being trained on smaller datasets because of the constraints brought by

MM.

The AMN models shown here fit in the emerging hybrid modeling field. AMNs bridge the gap between

ML and FBA by computing steady-state metabolic phenotypes with different methods, that can be

embedded with ML: a method based on recurrent neural network (RNN), and two trainable methods

solving respectively linear programs (LP) and quadratic programs (QP). All these methods are relying

on custom loss functions surrogating the FBA constraints. By doing so, our AMNs are mechanistic

models, determined by the stoichiometry and other FBA constraints, and also ML models, as they are

used as a learning architecture.

We showcase our AMNs with a critical limitation of classical FBA for experimentalists. As already

discussed, realistic and condition-dependent bounds on medium uptake fluxes are critical for growth

rate (or other fluxes) predictions, but there is no simple conversion from extracellular concentrations,

i.e., the controlled experimental setting, to such bounds on uptake fluxes. In fact, these bounds

depend on the internal allocation of protein resources to transporters, which itself depends on the

cell’s metabolic state - the state we are trying to predict. Some methods, such as satFBA18, assumes

fixed transporter levels and converts medium concentrations to possible uptake fluxes by kinetic

models, relying on a Michaelis-Menten value for each uptake reaction. Consequently, this MM

approach relies on more assumptions and requires more data than a classical FBA, and does not

integrate any large-scale regulation or resource allocation phenomena. More advanced and accurate

CBM methods such as Resource Balance Analysis (RBA) are more difficult to set-up and harder to

parametrize. As a result, many users rely on classical FBA, which cannot reliably predict growth rates

from media compositions. AMNs are used in this study for tackling the same issue: predicting

metabolites uptake fluxes from their external concentrations. To do so, where satFBA uses transporter

kinetics with parameters that need to be acquired through additional experimental measurements,

AMNs use a pre-processing neural layer that is accessible for learning. This neural pre-processing layer

aims to capture, effectively, all effects of transporter kinetics and resource allocation in a particular

experimental setting, predicting the adequate input for a metabolic model to give the most accurate

steady-state phenotype prediction possible. Consequently, AMNs provide a new paradigm for the

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

prediction of fluxes and growth rates: instead of relying on a constrained optimization principle

performed for each condition (as in classical FBA), we use a learning procedure on a set of example

flux distributions that attempts to generalize the best model for accurately predicting the metabolic

phenotype of an organism in different conditions.

Results

As an introductory work, we show how the aforementioned idea of knowledge-primed neural

networks inspired an in-house method based on branching ratios of metabolites going to different

reactions (Figure 1). This preliminary work having limitations, we then showcase more versatile

methods that surrogate FBA with gradient-backpropagation compatibility: a method for solving the

linear program (LP) of FBA, and a quadratic program (QP) method solving FBA when measured fluxes

(like growth rate) are provided. These two solvers have adequate gradient and loss functions satisfying

the constraints of an FBA framework (Figure 2). Then, we used these methods inside hybrid models

that can directly learn from sets of flux distributions (Figure 3). These flux distributions used as learning

references (i.e., the training sets) are either acquired experimentally or produced through FBA

simulations (Table 1 and Figure 4). Finally, we developed a non-trainable AMN reservoir to showcase

how the predictive power of FBA can be improved. Indeed, once the AMN has been trained on

adequate in silico FBA data, we can fix its parameters, resulting in a gradient backpropagation

compatible reservoir that mimics FBA (Figure 5). This reservoir can then be used to tackle the above-

mentioned issue of unknown uptake fluxes: adding a pre-processing neural layer and training this layer

with an experimental dataset, one can predict uptake fluxes from external metabolite concentrations.

This neural layer can be reused by any FBA user to improve the predictive power of a metabolic model,

with an adequate experimental set-up.

Alternative computation methods to surrogate FBA

The first method (Fig. 1), inspired by previous work on signaling networks19, learns consensual flux

branching ratios found in example flux distributions (i.e., the training set) and represents these ratios

in the form of a weight matrix. Since the mass conservation law is the central rule when satisfying

metabolic networks constraints, these ratios play a key role in the determination of the metabolic

phenotype, i.e., the paths taken by metabolites in the organism. In this approach, we assume that the

flux branching ratios remain similar between flux distributions with different bounds on the uptake

fluxes. In other words, we postulate that most of the flux distribution examples of our training set

resemble a consensual metabolic state, with consensual branching ratios. Consequently, the method

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

learns from example flux distributions, a weight matrix representing these consensual branching

ratios. A simple toy model network is shown to demonstrate the functioning of this first method in

Fig. 1a. With the usual FBA method, we obtain the flux distribution maximizing the flux of the 𝑣3

reaction (representing a classical ‘biomass’ reaction) with an uptake reaction 𝑣1 (representing a

classical uptake reaction) by solving a linear program (Fig. 1b). At steady state, metabolite production

fluxes can be calculated from reaction fluxes via the transition matrix 𝑃𝑣→𝑚 from fluxes to metabolites,

and similarly, reaction fluxes can be calculated from metabolite production fluxes using the matrices

𝑃𝑚→𝑣 and 𝑊𝑟 (Fig. 1c). For a given metabolite j and a reaction i, the weight wji (in matrix 𝑊𝑟) represents

the fraction of metabolite j production flux going to reaction i.

To learn the weights wji, one first needs to translate the model into a neural-network-like architecture

(Fig. 1d). Precisely, in Fig. 1d we start from an initial set of given fluxes and then propagate knowledge

about the fluxes through the entire network, each layer corresponding to one step in a discrete flux

propagation. Mathematically, each layer is composed of two simple operations that update the M and

V vectors, respectively representing metabolites production fluxes and reaction fluxes. Those

operations are repeated until convergence, with 𝑣1 being constant because it is known from the start

(i.e., the input of the network). The network shown in Fig. 1d is the unrolled representation of the

RNN (named AMN-Wt) depicted in Fig. 1e. As detailed in the Method section – AMN architectures and

parameters, the matrix 𝑊𝑟 can be learned through training, assuming the learned weights are a

consensus of the different 𝑊𝑟 matrices observed in the training set. The steady state fluxes of AMN-

Wt iterated 30 times (or more, here we stopped at 30 because the reference data values were

reached) equal to those obtained in the reference data (Fig. 1f).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Fig. 1. Computing steady-state fluxes with stoichiometric and neural models. a. Simple toy stoichiometric model. The model
is unidirectional, all flux values are positive. b. Steady-state solution fluxes maximizing 𝑣3. At steady state, the reaction fluxes
(𝑣𝑖) must satisfy stationarity conditions that guarantee mass balance of all metabolites, this is depicted by the equation 𝑆𝑉 =
0, where 𝑆 is the stoichiometric matrix representing the connectivity of the model and 𝑉 the vector of fluxes to be calculated.
𝑉𝑖𝑛 is the medium represented by a vector of nutrient uptake fluxes (here 𝑣1= 0.1, symbol “—” indicates that no value is
provided, in practice we use an ‘infinity’ value to represent an unbounded flux). The steady-state solution 𝑉𝑜𝑢𝑡 is calculated
by solving a linear program maximizing the objective 𝑐𝑇𝑉 = 𝑣3, here we used the Cobrapy package22 to compute 𝑉𝑜𝑢𝑡
(simplex-based algorithm). c. Stoichiometric model matrices. 𝑃𝑣→𝑚 is the matrix to compute metabolite production fluxes
from reaction fluxes, 𝑃𝑚→𝑣 is a matrix to compute reaction fluxes from the production fluxes of the reaction substrates. When
a metabolite is the substrate of several reactions, each reaction gets a fraction of the metabolite production flux, this is
depicted in matrix 𝑊𝑟 (r indicates this matrix is used in recurrence). 𝑀𝑜𝑢𝑡 is the vector of metabolite production fluxes at
steady state, the operator ⊙ stands for element-wise matrix product (Hadamard product), and 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥). sj,i
corresponds to the value of S at the jth row (metabolite) and ith column (flux) and zi is the number of negative elements in
column i of S. d. Unrolled neural network built from the model. In this theoretical example an initial flux vector is set,
representing only the uptake fluxes, and is mapped to a flux vector covering the entire network. In the initial layer (𝑙0) only

𝑣1 has a value (𝑣1
0). In layer 1, 𝑣1 value is passed to 𝑚1, the production flux for metabolite 1, 𝑚1

1 = 𝑣1
0. Subsequently a fraction

(𝑤21) of 𝑚1 goes to 𝑣2 and the other fraction (𝑤31) to 𝑣3, therefore 𝑣2
1 = 𝑤21𝑚1

1, 𝑣3
1 = 𝑤31𝑚1

1 with 𝑤21+𝑤31 = 1.
Additionally, 𝑣1 remains as in 𝑙0: 𝑣1

1 = 𝑣1
0. In layer 2, 𝑣1 continues to feed 𝑚1, 𝑣2 is passed on to 𝑚2 and 𝑚3 , therefore, 𝑚2

2
= 𝑣2

1 and 𝑚3
2 = 𝑣2

1, 𝑚2 then goes to 𝑣3 and 𝑣4, and as in the previous layer we have 𝑣3
2 = 𝑤32𝑚2

2 , 𝑣4
2 = 𝑤42𝑚2

2 with 𝑤32+

𝑤42 = 1, other fluxes remain the same as in 𝑙1. In layer 3, 𝑚4 receives input from 𝑣4 which in turn activates 𝑣5. In layer 4,
𝑚1receives input from both 𝑣1 and 𝑣5: 𝑚1

4= 𝑣1
3 + 𝑣5

3. e. Recurrent neural network representation. At each iteration step 𝑉𝑙

and 𝑀𝑙 are computed using matrices 𝑃𝑣→𝑚 and 𝑃𝑚→𝑣 of panel c, while the matrix 𝑊𝑟 can be learned by training with
experimental data or model simulations. For example, setting 𝑣1

0 = 0.1 and searching weights for which 𝑣3
𝑛 = 0.5 one finds

𝑤21 = 0.74, 𝑤31 = 0.26, 𝑤32 = 0.20, and 𝑤42 = 0.80. Taking these weights, the 𝑉𝑛 values obtained for n=30 match those of
panel B. f. Heatmap for flux values up to 30 iterations.

While the AMN-Wt method is simple to implement it suffers from a drawback. As we shall see later in

Table 1, a consensus set of weights leads to a solution when upper bounds (UB) for uptake fluxes are

provided, but not when exact bounds (EB) for uptake fluxes are given. Supplementary Fig. S2 shows an

example in which two flux distributions, with different EBs on uptake fluxes, lead to different weights

for the same networks. Consequently, we cannot assume that AMN-Wt can handle all possible flux

distributions in the EB case. To overcome this shortcoming, we next present two alternative methods

for solving FBA optimization problems that can accommodate both EB and UB cases for uptake fluxes.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

These methods are much closer to the LP or QP optimizations behind FBA, their input can be exact or

upper bounds on fluxes. Let us note here that the alternative methods described next are not AMNs

per se, but are mechanistic models (MM) with gradient backpropagation compatibility that ‘replace’

the Simplex-based LP or QP solving algorithms in our AMNs. Importantly, the two methods address

two important tasks in flux modeling: optimizing a flux distribution for maximal biomass rate (in LP),

as in classical FBA, and fitting a stationary flux distribution to partial flux data (in QP).

The first FBA solver (LP solver, Fig. 2b), derived from a method proposed by Yang et al.23, handles linear

problems using exact constraint bounds (EBs) or upper bounds (UBs) for uptake fluxes (Vin). That

method make use of RNNs for optimization, which is a long-standing field of research24 inspired by the

pioneering work of Hopfield and Tank25. Later, these RNNs were showcased to perform well for solving

linear programs26 and simpler and more efficient solutions were developed over the years23,27. It is

important to point out at this stage that these RNNs are non-trainable networks and differ from the

contemporary RNNs used in ML. The RNNs developed for optimization are instead recurrent

procedures iteratively updating the solution of linear programs. Nonetheless, as we shall see

thereafter, the LP solver of Fig. 2b can backpropagate a gradient and can therefore be connected to

trainable layers.

As the AMN-Wt method, the LP solver, iteratively computes fluxes to come closer to the steady-state

solution (Vout). However, calculations are more sophisticated than for the AMN-Wt, the method

integrates the same objective function (c) than the classical FBA Simplex solver and iteratively update

the flux vector (V), and the vector (M) representing the dual problem variables also named metabolites

shadow prices28 (cf. Method - LP-solver - for further details). To assess the validity of the LP solver, we

calculated 100 different growth rates for E. coli core model29 taken from the BIGG database21 using the

Simplex solver available in the Cobrapy package22. The E. coli core model29 contains 154 reactions, 72

metabolites (after duplicating bidirectional reactions), including 20 metabolites, which can be

imported to the cell through uptake reactions. We generated 100 different uptake fluxes

combinations, varying the 20 uptake fluxes of E. coli core model (cf. Method - Generating Training sets

- for further details). Results presented in Fig. 2d exhibits almost identical results as the reference data,

with the same initialization, both for known uptake fluxes with EB and for unknown uptake fluxes with

UB.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

Fig. 2. FBA solver architectures and performances. a. Schematic procedure for the Simplex solvers. From Vin, which is a vector
describing the bounds of some uptake fluxes, the solvers reach a steady-state solution (Vout) optimizing the objective function
c, satisfying the constraints and bounds of the network (cf. Fig. 1 panel b). One of the most popular solvers is a simplex-based
method in Cobrapy22, taken as reference data for the results shown here. b. Schematic for LP-solver architecture. This in-house
solver surrogates the simplex-based algorithm. Following Yang et al.23 and as further detailed in the Method section (LP-solver
Architecture), the full flux distribution V is updated by ∇V and the metabolites shadow prices M by ∇M through products of
matrices derived from the stoichiometry of the network. c. Schematic for QP-solver architecture. Here target reference fluxes
are given to the solver. The computed fluxes are fitted to the Reference Targets by the means of a custom loss function
integrating also the input constraints along with the stoichiometric constraint of the metabolic network. The flux vector V is
updated by ∇V which is the gradient minimizing the loss function (cf. Method section - QP Architecture - for further details).
d. Matching of growth rate between the Simplex solver and the LP/QP solvers. EB refers to “Exact Bound”, a set-up in which
Vin is composed of the exact flux values for each uptake flux. UB refers to “Upper Bound”, in which Vin is composed of upper
threshold values for each uptake flux. e. Loss vs. Solver iterations. QP takes 1 million iterations to reach close to zero values,
whereas LP takes 10,000 iterations. Plotted is the mean and standard error (95% confidence interval) across all elements of
the set of 100 simulations.

The second solver is loosely inspired by the work on Physics-Informed Neural Networks (PINNs), which

has been developed to solve partial differential equations matching a small set of observations30. With

PINNs, solutions are first approximated with a neural network and then refined to fulfill the constraints

imposed by the differential equations and the boundary conditions. Refining the solutions

necessitates the computation of three loss functions, the first is related to the observed data, the

second to the boundary conditions and the third to the differential equations. As detailed in the

Method - Loss functions derivation and QP solver - sections, we similarly compute losses for the

measured fluxes, the EB or UB boundary constraints, and the metabolic network stoichiometry and

flux positivity constraints. As in PINN we next compute the gradient on these losses to refine the

solution vector V. Unlike with the LP solver, in the present case we do not provide an objective (c) to

maximize, but the actual targeted measured data (Vout), consequently the method is named QP

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

because it is equivalent to solving an FBA problem with a quadratic program. Our QP solver reaches

acceptable losses as the LP one (Fig. 2d) but requires more iterations.

AMNs: metabolic & neural hybrid models for predictive power with mechanistic insights

While the LP and QP solvers perform well, their main weakness is the number of iterations needed to

reach satisfactory performances, more than 10,000 (Fig. 2e). Since our goal is to integrate such

methods in a learning architecture, this drawback has to be tackled. As illustrated in Fig. 3a, our

solution is to improve our initial guesses for fluxes, by training a prior network (a classical dense ANN

architecture) to compute initial values for all fluxes (V0) from exact or upper bounds on uptake fluxes

(Vin). This prior network is trained along with the LP or QP solvers with the goal of finding V0 values that

are as close as possible to the optimum flux values (Vout
 in the reference data set). This is achieved by

setting the iteration number of the LP or QP solvers to low values.

In the remainder of the paper, we name Artificial Metabolic Network (AMN), the hybrid model shown

in Fig. 3a composed of a neural network followed by a LP or QP solver. AMN results are represented in

Fig. 3b with prior networks of different hidden layer sizes. We note that the solver acts as a mechanistic

layer as it contains the stoichiometry and bounds of a metabolic network, whereas the prior network

acts as a neural layer that can be trained.

Fig. 3: AMN architecture enabling training. a. Basic AMN architecture principle. Vin is the vector representing upper or exact
bounds on uptake fluxes. Each white or blue circle represents one reaction. V0 contains the initial fluxes predicted by a dense
neural network. Vout is the final flux vector, computed by the LP or QP solvers. b. Loss vs. Learning Epochs number for E. coli
core model29. The architecture of panel a (with 4 iterations of the QP solver as the mechanistic layer, with upper bounds) was
trained for 50 epochs, measuring the loss on Vout after each epoch. Plotted is the loss mean and standard error (95% confidence
interval) over a training set of 1000 examples generated with the E. coli core model29 (see Methods - Generation of training

sets with FBA). The different curves correspond to different hidden layer sizes used between Vin and V0.

The performances of all AMN architectures are given in Table 1 using FBA simulated data on two

different E. coli metabolic models, E. coli core model29 and iML151520 . These models are composed

respectively of 154 reactions involving 72 metabolites, and 3682 reactions involving 1877 metabolites

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

(after duplicating bidirectional reactions). In both cases the Simplex-based solver of Cobrapy22 was run

to optimize growth rates for different media. Each medium was composed of metabolites found in M9

(minimal media) and additional metabolites (carbon sources, amino acids) crossing the cell membrane.

Table 1. AMNs performances. (1) All SBML models describing different E. coli metabolic models were downloaded from the
BiGG database21, ‘Core’ stands for the E. coli core model29, EB (UB) stands for exact bounds (upper bounds) for medium uptake
fluxes, the iML151520 model was reduced following the procedure described in Methods - ‘Making metabolic models suitable
for neural computations’. (2) Training set size and range for the number of metabolites added to M9 growth medium, and
method used when running Cobrapy22. (3) YES or NO if the model contains a neural layer or a mechanistic layer. (4) MM stands
for Mechanistic Model, AMN stands for Artificial Metabolic Network. Architectures are described in Methods - ‘AMN
architectures and parameters’. (5) Number of trainable parameters and epochs, in all cases dropout = 0.25, batch size = 5, the
optimizer is Adam and the loss function is the mean squared error between predicted and provided fluxes to which loss
constraints are added, see Methods - ‘Loss functions derivation’ for additional details. (6) Regression coefficient and Loss
values for training set (R²), and cross-validation sets (Q²) between provided growth rate and predicted growth rate. (7)
Regression coefficient and Loss values for growth rates for independent test sets not seen during training. Test set sizes are
10% of training set sizes. For (6) and (7) the performance is displayed as the mean over 5 folds (or over a training set when no
cross-validation scheme is performed, i.e., for the MM performances).

SMBL
model

Bound

(1)

Size

Range

(2)

Neural layer

Mechanistic
layer

(3)

Architecture

Timestep

(4)

Nbr
param.

Nbr
epochs
(5)

Training R2

Loss constraint

(6)

5-fold Q2

Loss constraint

(6)

Test set Q2

Loss constraint

(7)

Core

EB

100

1-6

NO

YES

MM_LP

104

n/a

n/a

1.000 ± 0.000

3.2e-9 ± 3.2e-8

n/a

n/a

n/a

n/a

Core

UB

100

1-6

NO

YES

MM_LP

104

n/a

n/a

1.000 ± 0.000

5e-7 ± 2.8e-6

n/a

n/a

n/a

n/a

Core

EB

100

1-6

NO

YES

MM_QP

106

n/a

n/a

1.000 ± 0.000

7.8e-6 ± 6.1e-6

n/a

n/a

n/a

n/a

Core

UB

100

1-6

NO

YES

MM_QP

106

n/a

n/a

1.000 ± 0.000

7.1e-6 ± 5.7e-6

n/a

n/a

n/a

n/a

Core

EB

1000

1-6

YES

YES

AMN_LP

4

17 808

500

0.98 ± 7.9e-3

2.8e-3 ± 0.6e-3

0.98 ± 7.4e-4

2.8e-3 ± 0.5e-3

0.98

3.0e-3

Core

UB

1000

1-6

YES

YES

AMN_LP

4

25 152

500

0.98 ± 9.7e-3

2.5e-3 ± 0.4e-3

0.97 ± 1.0e-2

2.5e-3 ± 0.4e-3

0.99

3.1e-3

Core

EB

1000

1-6

YES

YES

AMN_QP

4

8904

500

0.99 ± 4.2e-3

2.3e-3 ± 0.5e-3

0.99 ± 4.7e-3

2.3e-3 ± 0.5e-3

0.98

3.0e-3

Core

UB

1000

1-6

YES

YES

AMN_QP

4

8904

500

0.97 ± 9.9e-3

2.5e-3 ± 0.6e-3

0.97 ± 1.3e-2

2.5e-3 ± 0.6e-3

0.97

2.0e-3

Core

UB

1000

1-6

YES

YES

AMN_Wt

4

13 622

500

0.99 ± 1.3e-3

0.9e-3 ± 0.000

0.99 ± 2.2e-3

0.9e-3 ± 0.000

1.0

0.000

iML1515

UB

11000

1-4

YES

YES

AMN_LP

4

839 266

100

1.0 ± 1.0e-3

0.000 ± 0.000

1.0 ± 1.0e-3

0.000 ± 0.000

1.0

0.000

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

iML1515

UB

11000

1-4

YES

YES

AMN_QP

4

295 050

100

1.0 ± 1.4e-3

0.000 ± 0.000

1.0 ± 1.4e-3

0.000 ± 0.000

1.0

0.000

iML1515

UB

11000

1-4

YES

YES

AMN_Wt

4

634 238

100

1.0 ± 0.1e-3

0.000 ± 0.000

0.99 ± 0.4e-3

0.000 ± 0.000

1.000

0.000

All architectures presented in Table 1 exhibit excellent regression coefficients and losses for training

sets, validation sets and test sets, and this for both models E. coli core29 and iML151520. The MM

architectures (without neural layers) can compute losses for metabolic constraints (boundary and

stoichiometry) but cannot be used to make predictions on cross-validation or test sets. The AMN

architectures can be used to both make predictions (Q2) and compute losses. It is interesting to observe

the good performances of AMN-Wt when UB training sets are provided. Indeed, while

counterexamples can be found for which AMN-Wt will not work with EB training sets (cf. Fig. S2), we

argue in Supplementary Information – AMN-Wt architecture – that AMN-Wt is able to handle UB

training sets because the initial inputs (UB values for uptake fluxes) are transformed into suitable exact

bound values during training. Yet, the consensual weight matrix (Wr in Fig. 1 or Fig. S1) calculated

during training does not have a direct physical meaning. Weights in Wr arise at branch point

metabolites that are consumed by at least two reactions (like m1 and m2 in Fig. 1). Consequently, the

weights should correspond to flux split ratios, for instance, taking the example of Fig. 1, the metabolite

production flux m1 is spliced into w21m1 and w31m1. We show in Fig. S3, that the flux split ratios are

conserved for nutrients leading to different metabolite production fluxes if the Michaelis-Menten

kinetics parameters (Vmax and Km) of the enzymes catalyzing the reactions involved in the split remain

constant. However, Chubukov et al.31 have shown experimentally that it was not the case (for B.

subtilis) and different nutrients do provide different ratios. This behavior is due to varying enzyme

activities, which themselves depend on enzyme concentrations, post-translational modification, and

gene regulations. Chubukov et al.31 clearly show with experimental evidence that different nutrients

give rise to different concentrations for many enzymes, implying that nutrients do have an effect on

gene regulations.

In classical FBA, all regulations explaining a given flux distribution are completely ignored, and the flux

distribution computation entirely relies on manually setting bounds on uptake fluxes. Therefore, when

performing classical FBA, one needs to consider each condition independently from the other, to reach

different metabolic phenotypes. Similarly, AMNs attempt to take regulations into account in the neural

layer, while keeping the mechanistic layer for metabolic phenotype computations. However, unlike in

FBA, AMNs attempt to learn the relationship between a set of flux bounds (on uptake reactions) and

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

the whole steady-state metabolic phenotype. As a result, AMNs are generalizing this relationship for a

set of conditions, and not just one as in FBA.

We note that even though weights do not have a physical meaning, AMN-Wt stills exhibits excellent

performances, showing that the consensual Wr matrix and the initial V0 vector (computed through a

neural layer from the upper bound Vin) are performant enough. We also note that the weight issue

does not arise with AMN-LP and AMN-QP as these architectures do not rely on flux split ratios.

AMNs can be directly trained on experimental datasets with good predictive power

To train AMNs on an experimental dataset, we grew E. coli DH5-alpha in 110 different media

compositions, with M9 supplemented with 4 amino acids as a basis and 10 different carbon sources as

possibly added nutrients. From 1 up to 4 carbon sources were simultaneously added in the medium at

a concentration of 0.4 g.L-1 (more details in Methods - Culture conditions). We determined which

compositions to test by choosing all the 1-carbon source media compositions and randomly picking

one hundred of the 2-, 3- and 4-carbon sources media compositions (more details in Methods -

Generation of an experimental training set). The growth of E. coli was monitored in 96-well plates, by

measuring the optical density at 600nm (OD600) over 24 hours. The raw OD600 was then passed to a

maximal growth rate determination method, based on a linear regression performed on log(OD600)

data (more details in Methods - Growth rate determination).

The experimental dataset was used to train all AMN architectures (-LP, -QP, -Wt). For AMN -LP/-QP we

used the architecture plotted in Fig. 3, for AMN-Wt we used the architecture of Fig. S1. In all cases the

mechanistic layer was derived from the stoichiometric matrix of the iML151520 E. coli reduced model

(cf. Method section - Making metabolic networks suitable for neural computations). For all AMNs

upper bounds for nutrient uptake fluxes’ upper bounds were provided, as exact values remain

unknown. Results are provided in Fig. 4.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

Fig. 4: Benchmarking growth rate predictions by AMNs with experimental measurements. In all panels the experimental
measurements were carried on E. coli grown in M9 mixed carbon sources (strain DH5-alpha, model iML151520). Training and
10-fold stratified cross-validation were performed 3 times with different initial random seeds each for 1000 epochs. All points
plotted correspond to predicted values not present in the training set. This was compiled using all predicted values obtained
for each cross-validation set. In all cases, means are plotted for both axes (measured and predicted), error bars are standard
deviations. Supplementary File ‘Data_Fig4.xlsx’ compiles raw results used for this figure (see Data availability). a. Performance
of the AMN-LP architecture. The neural layer of AMN-LP is composed of an input layer of size 38, an hidden layer of size 500,
and an output layer of size 550 corresponding to all fluxes and 1083 metabolite shadow prices of a reduced iML1515 model20.
The mechanistic layer takes as input the 550+1083 outputs of the neural layer and minimizes the loss between measured and
predicted ‘biomass’ reaction fluxes and the losses of the metabolic network constraints. b. Performance of the AMN-QP
architecture. The neural layer of AMN-QP is composed of an input layer of size 38, an hidden layer of size 500, and an output
layer of size 550 corresponding to all fluxes of the iML151520 reduced model. c. Performance of the AMN-Wt architecture. The
neural layer of AMN-Wt (matrix Wi in Figure S1) is composed of an input layer of size 38, an hidden layer of size 500, and an
output layer of size 550 corresponding to all fluxes of the iML151520 reduced model, the size of the recurrent Wr matrix of Fig.
S1 is 550x550.

AMNs can be used in a reservoir computing framework to enhance the predictive power of

traditional FBA solvers

Once an AMN has been trained on a large dataset of simulated data, we can fix its parameters and

exploit it in subsequent further learning. As already mentioned in the introduction section, the uptake

fluxes of E. coli nutrients, as well as their relation to external concentrations, remain largely unknown:

the quantitative rate for each compound may vary between growth media, unlike in classical FBA

calculations, where the same upper bound (or zero, if a compound is absent) is used in all cases. This

is a common flaw of FBA, that is only partially remedied in satFBA18 or mcFBA5, as those relies on

supplementary knowledge (and additional experimental measurements). To use the architectures of

Fig. 3, we thus need to first convert nutrient concentrations into uptake fluxes. This is achieved by

adding a neural layer that precedes the AMN (Fig. 5a). In this architecture the AMN is no longer

trainable, only the prior neural layer is, and the AMN acts as a reservoir as in reservoir computing32.

Among the various architectures we benchmarked, we took as a reservoir the AMN-QP of Table 1 trained

on iML151520 UB dataset.

The predictive power of our AMN-reservoir was assessed by a regression coefficient R2 = 0.97 (Fig. 5c)

on training set, and Q2 = 0.76 (Fig. 5b) on a test set built from aggregated validation sets during 10-fold

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

cross-validation. To compare with an ‘out-of-the-box’ FBA approach, we first used an arbitrary value

for the present compounds, and a zero value for the absent compounds. Applying these values on the

corresponding uptake fluxes upper bounds, and optimizing the ‘biomass’ reaction flux produced results

poorly correlated with experimental measurements. To enhance these results, we searched optimized

upper bound values for uptake fluxes (see Methods - Optimization of uptake fluxes upper bounds in

FBA). It resulted in a R² = 0.51 performance (Fig. 5f), showing a much weaker fit than our AMN-

reservoir. Overall, our results indicate that AMNs can be used to substantially increase the predictive

capabilities of FBA without costly experimental work.

Fig. 5: Reservoir computing for improving the predictive power of FBA modeling (strain DH5-alpha, model iML151520). a.
AMN used in reservoir computing. The non-trainable AMN-reservoir (dotted gray box) is the AMN shown in Figure 3.b (AMN-
QP trained on iML1515 with UB bounds with performances given in the second to last row of Table 1) and is connected to a
prior trainable network which purpose is to compute medium uptake fluxes (Vin) from the concentration (Cmed) of metabolites
added to medium. Taking as input Vin, the non-trainable reservoir prints out all fluxes including the growth rate. b.
Performance of the reservoir computing model shown in panel a, in terms of predicted growth rate vs. measured growth rate.
As in Fig. 4, all points plotted correspond to predicted values not present in the training set. This was compiled using all
predicted values obtained for each validation set in 10-fold stratified cross validation repeated 3 times with different initial
random seeds. c. Performance of the AMN-reservoir with training points instead of predictions. All points plotted correspond
to computed values in the same cross-validation scheme as in panel b, using the points of the training sets instead of validation
sets. d. Performance of Cobrapy22 when extracting Vin from panel b predictions to be used as inputs. e. Performance of
Cobrapy22 when extracting Vin from panel c computations to be used as inputs. f. R² between measured growth and computed
growth by Cobrapy22, using different scalers on Cmed to compute Vin. Here, Cobrapy22 was run taking as input upper bound
uptake fluxes for added metabolites in medium. Intake flux values were set to , and then scaled (0 when the metabolite was
absent in the medium and 1*scaler when it was present - see section Method, Optimization of uptake fluxes upper bounds in
FBA, for details on optimization procedure)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

Discussion and conclusion

In this study, we showed how a neural network approach, with metabolic networks as a learning

architecture, can be used to address metabolic modeling problems. Previous work on RNNs and PINNs

for solving constrained optimization problems was re-used and adapted to develop three models

(AMN-Wt, -LP and -QP) enabling gradient backpropagation within metabolic networks. The models

exhibited excellent performances on FBA generated training sets (Table 1). We also demonstrated the

models could directly be trained on an experimental E. coli growth rate dataset with good predictive

abilities (Fig. 4). For improved scalability and adaptability, we trained an AMN-reservoir on a large FBA

generated training set, and used the reservoir to improve FBA predictions on the experimental

dataset. Figure 5 shows that our AMNs far outperform the results obtained by the simplex-based

Cobrapy22 FBA solver.

Determining uptake fluxes is a core experimental work required for making FBA predictions realistic.

Here, we developed approaches that get rid of such needs for reaching plausible fluxes distributions.

We did so by backpropagating the error on the growth rate, to find complex relationships between the

medium concentrations and the medium uptake fluxes. To this end, we demonstrated the high

predictive power of AMNs, and their re-usability in classical FBA approaches. Indeed, FBA developers

and users may now make use of our AMN-reservoir method for relating medium uptake fluxes to

growth medium concentrations. In this regard, Supplementary File ‘Data_Fig5.xlsx' (see Data

availability) gives uptake fluxes for the metabolites used in our benchmarking work with E. coli (Fig. 5),

these upper bounds for uptake fluxes that can directly be used by Cobrapy22 to reproduce Fig. 5d and

5e.

Making FBA suitable for training like we have done in this paper opens the door to improve FBA models.

For instance, in addition to uptake fluxes, AMNs could also be used to search for the coefficients of the

biomass reaction appropriate to best fit measurements. So far, these coefficients are derived based on

literature, but also using experimental data: growth rate, flux, and macromolecular fractions measures

can help finding optimal coefficients20. However, these experiments are limited in number and

performed once for the reaction parametrization, in a single experimental setup, meaning these

coefficients are hardly extrapolated to all possible conditions. Some studies already underline this issue

and attempt to efficiently integrate experimental data in the biomass reaction parametrization33. With

AMNs, a trainable layer containing the reaction’s coefficients could be added, adapting the biomass

reaction to any experimental setup.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

Another task that AMNs could handle is gene regulation which is not explicitly taken into account in

classical FBA. Here a set of genes (including enzymes) corresponding to operons could be encoded via

trainable layers either turned on or off. Such AMNs could be trained on a variety of experimental

inputs (wider than the carbon source composition as shown in this study) to grasp the complexity of

the regulation processes happening in the cell to better explain the end-point metabolic steady-state

phenotype of the organism.

Returning back to the curse of dimensionality issue mentioned in the introduction, we systematically

searched training set sizes for which ‘black-box’ ML methods would yield performances similar to our

AMN hybrid models. To that end, we trained a simple dense ANN model on training sets of increasing

sizes. Results obtained with E. coli core29 show that at least 500,000 entries are needed in the training

sets to reach losses below 10-1 (cf. in Supplementary information – AMN and ANN training set sizes

and Fig. S7), which according to Table 1 are still 2 orders of magnitude higher than all AMNs losses

trained on only 1000 entries. This clearly demonstrates the capacity of hybrid models to reduce

training set sizes by constraining the search space through the mechanistic layer.

Beyond FBA and black-box ML improvements, AMNs can also be exploited for industrial applications.

Indeed, since arbitrary objective functions can be designed and AMNs can be directly be trained on

experimental measurements, AMNs can also be used to optimize media for the bioproduction of

compounds of interest or to find the best gene deletion and insertion strategy in typical metabolic

engineering projects. In this latter case, a trainable 0/1 layer turning on or off reactions can be added

prior to the mechanistic layers of our AMNs. Another potential application is the engineering of

microorganism-based decision-making devices for the multiplexed detection of metabolic biomarkers

or environmental pollutants. Here, AMNs could be used to search for internal metabolite production

fluxes enabling one to differentiate positive samples containing biomarkers or pollutants from negative

ones. Such a device has already been engineered in cell-free systems34, and AMNs could be used to

build a similar device in vivo by adding a trainable layer after the mechanistic layer which purpose

would be to select metabolite production fluxes that best split positive from negative samples.

Methods

Making metabolic networks suitable for neural computations

The set-up of our AMNs requires all reactions to be unidirectional, that is, the solutions must show

positive-only fluxes (which is not guaranteed by usual genome-scale metabolic models). To split

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

reactions of a given metabolic network into separate forward and reverse reactions, we wrote a

standardization script that loads an SBML model into Cobrapy22 and screens for all two-sided reactions,

then duplicating them into two separate reactions; and writes a new version of the model with bi-

directional reactions split into separate forward and backward reactions. To avoid confusion, we add

a suffix for these reactions, either “for” or “rev” respectively designating the original forward reaction

and the reversed reaction. The uptake reactions were also duplicated, even if encoded as one-sided,

and their suffix was set to “i” for inflow reactions (addition of matter to the system), and “o” for

outflow reactions (removal of matter from the system).

As detailed in the next subsection, our unidirectional models are used to build training sets. The

duplicated iML151520 model is quite large, comprising 3682 reactions and 1877 metabolites. A

substantial number of reactions in that model have a zero flux for many different media and it is

unnecessary to keep these reactions during the training process. Prior training, we therefore generate

a reduced model by removing zero flux reactions along with the metabolites no longer contributing to

any reactions. Using that procedure, we were able to reduce iML151520 model to only 550 reactions

and 1083 metabolites.

Generation of training sets with FBA

Our reference flux data are obtained from FBA simulations, using the GNU Linear Programming Kit

(‘GLPK’, a simplex-based method) on Cobrapy22, with different models of different sizes. Throughout

this paper, when ‘reference data’ is mentioned, it refers to data computed with this method.

Reference data for metabolic flux distributions were generated using models downloaded from the

BiGG database21. The models were used to generate data using Cobrapy22 following a precise set of

rules. First, we identified essential uptake reactions for the models we used (E. coli core29 and

iML151520). Precisely, if one of these reactions has its flux upper bound set to zero, the ‘biomass’

reaction optimization is impossible, even if all other uptake fluxes bounds are set to a high value, e.g.,

1000. In other words, we identified the minimal uptake fluxes enabling growth according to the

models. During reference data generation, the upper bounds on these reactions were set to 10. For E.

coli core29 we found 7 of such obligate reactions (for the uptake of CO2, H+, H20, NH4, O2, Phosphate,

and Glycerol as the carbon source). For iML151520 we had the same 7 obligate reactions and additional

salt and ions uptake reactions (for the uptake of Fe2+, Fe3+, Mn2+, Zinc, Mg, Calcium, Ni2+, Cu2+,

Selenate, Co2+, Molybdate, Sulfate, K+, Sodium, Chloride, Tungstate, Selenite). With iML151520, we

also added as obligate reactions the uptake of four amino acids (Alanine, Proline, Threonine and

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Glycine) in order to be consistent with our experimental training set where the four amino acids were

systematically added to M9 (cf. next subsection).

To generate different media compositions, we added to the obligate reactions, a set of variable uptake

reactions. For the E. coli core model29 we added 13 variable uptake reactions (for the uptake of Acetate,

Acetaldehyde, Oxoglutarate, Ethanol, Formate, Fructose, Fumarate, Glutamine, Glutamate, Lactate,

Malate, Pyruvate, and Succinate). For each generated medium, variable uptake reactions were

selected following a binomial distribution B(n, p) with n=13 and p = 0.5, p being a tunable parameter

related to the ratio of selected reaction. Consequently, the mean number of selected variable uptake

reactions was n x p = 6.5. Next for each selected reaction, the upper bound value of the reaction flux

was drawn randomly between 2 and 10. For the iML151520 model, to limit the combinatorial search

space, the selected variable uptake reactions were those of the experimental training set and

consequently between 1 and 4 variable uptake reaction were added (cf. next subsection). The upper

bound values for each selected variable reaction were chosen randomly between 0 and 2.2 (0

excluded). The 2.2 threshold was chosen to produce predicted growth rates that were in the range of

those observed experimentally.

After generating the set of media for E. coli core29 and iML151520 we ran Cobrapy22 for each medium

with FBA and recorded the steady state value for all fluxes including the growth rate (flux of the

‘biomass’ reaction). These rates were used as a training set for all models presented in Table 1. For all

UB training sets, the variable uptake flux values were those used by Cobrapy22 to generate the training

set. For EB training sets, the variable uptake flux values were those calculated by Cobrapy22 at steady

state.

Generation of an experimental training set

Ten carbon sources (Ribose, Maltose, Melibiose, Trehalose, Fructose, Galactose, Acetate, Lactate,

Succinate, Pyruvate) were picked for being the variables of our training sets. These could ensure

observable growth as a sole carbon source with a concentration of 0.4 g.L-1 in our M9 preparations.

The selected carbon sources enter different parts of the metabolic network: 6 sugars enter the upper

glycolysis pathway, and 4 acids enter the lower glycolysis pathway or the TCA cycle. With a binary (i.e.,

presence or absence of each carbon source) approach when generating the combinations to test for

making the experimental training set, we generated all possible combinations of 1, 2, 3 or 4 carbon

sources simultaneously present in the medium. Naturally, we picked all 1-carbon source media

combinations for experimental determination (only 10 points). Then, we randomly selected 100 more

combinations to experimentally determine, by randomly picking 20 points from the 2-, 40 points from

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

the 3- and 40 points from the 4-carbon source combinations sets. The python scripts to generate these

combinations and pick the ones for making our experimental training set are available in our Github

package (see Codes availability section). After picking the combinations to test, we experimentally

determined the maximum specific growth rate of E. coli for each combination of carbon sources in M9

(see next two subsections). The mean over replicates for each media composition was computed as

the corresponding growth rate value to make the final experimental training set (cf. Method - Growth

rate determination).

Culture conditions

The base medium for culturing E. coli DH5-α (DH5a) was a M9 medium prepared with those final

concentrations: 100µM CaCl2, 2mM MgSO4, 1X M9 salts (3 g.L-1 KH2PO4, 8.5 g.L-1 Na2HPO4 2H2O, 0.5

g.L-1 NaCl, 1g.L-1 NH4Cl), 1X trace elements (15 mg.L-1 Na2EDTA 2H20, 4.5 mg.L-1 ZnSO4 7H2O, 0.3 mg.L-

1 CoCl2 6H2O, 1 mg.L-1 MnCl2 4H2O, 1 mg.L-1 H3BO3, 0.4mg.L-1 Na2MoO4 2H20, 3 mg.L-1 FeSO4 7H2O,

0.3 mg.L-1 CuSO4 5H2O; solution adjusted at pH=4 and stored at 4°C), 1 mg.L-1 Thiamine-HCl and

0.04g.L-1 amino acid mix so that each amino acid (L-Alanine, L-Proline, L-Threonine, Glycine) was at a

final concentration of 5 mg.L-1 in the medium. The additional carbon sources that could be added were

individually set to a final concentration of 0.4 g.L-1. The pH was adjusted at 7.4 prior to a 0.22µm filter

sterilization of the medium. Pre-cultures were recovered from glycerol -80°C stocks, grew in Luria-

Bertani (LB) broth overday, then used as inoculate in 200µL M9 (supplemented with variable

compounds) in 96 U-bottom wells plates overnight, then passed to a replicate of the plate on the next

day. The temperature was set to 37°C in a plate reader (BioTek HTX Synergy), with continuous orbital

shaking, allowing aerobic growth for 24 hours. A monitoring every 10 minutes of the optical density at

600 nm (OD600) was performed. A figure for summarizing the experimental workflow is available in

Supplementary Fig. S6.

Growth rate determination

The maximal growth rate was determined by sliding a window of 1 hour-size, performing a linear

regression on the log(OD600) data in each window. We then retrieve the maximum specific growth rate

as the maximum regression coefficient over all windows. If several growth phases are visible, one can

omit a part of the growth curve for the maximal growth rate determination (for this study we always

retrieved the maximal growth rate on the first growth phase, so as we are certain that the media

contains all added carbon sources). 8 replicates for each medium composition were performed (on a

single column of a 96-well plate). Outliers were manually removed after visual inspection of the growth

curves or clear statistical deviation of the computed growth rate from the remaining replicates. The

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

number of preserved replicates range from 2 to 8, with an average of 4.6 (± 1.6) replicates per medium

composition. The mean and standard deviations over replicates were computed to be used for training

AMNs and making figures. The code for processing raw data and all the raw data itself is available in

the Github package (see Code availability and Data availability sections).

Loss functions derivation

Loss functions are necessary to assess the performances of all MM (MM-LP, -QP) and AMN

architectures (AMN-Wt, -QP, and -LP) and also to compute the gradients of the QP solvers.

To perform the derivation, we assume we have a metabolic model with 𝑛 reactions and 𝑚

metabolites. Let 𝑉 = (𝑣1, … , 𝑣𝑛)𝑇 be the reaction flux vector and 𝑆 the 𝑚 × 𝑛 stoichiometric matrix

of the model. We assume some metabolites can be imported in the model, with each a corresponding

uptake reaction. Let 𝑉𝑖𝑛 be the vector of 𝑛𝑖𝑛upper bounds (or exact values) for these uptake reactions,

and let 𝑃𝑖𝑛 the 𝑛𝑖𝑛 × 𝑛 projection matrix such that 𝑉𝑖𝑛 = 𝑃𝑖𝑛𝑉. We also assume some reaction fluxes

have been experimentally measured, let 𝑉𝑜𝑢𝑡 be the vector of measured values. With 𝑃𝑜𝑢𝑡 the

𝑛𝑜𝑢𝑡 × 𝑛 projection matrix for measured fluxes, 𝑉 is calculated solving the following quadratic

program (QP):

𝑚𝑖𝑛(‖𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡‖

2) (1)

subjected to:

𝑆 𝑉 = 0
𝑃𝑖𝑛𝑉 ≤ 𝑉𝑖𝑛
𝑉 ≥ 0

For each solution (𝑉) of eq. (1), four losses apply. The first is related to the fit to the reference

targeted values and the three additional losses are related to the boundary, stoichiometric and flux

positivity constraints of the metabolic network.

The first loss is simply the Mean Square Error (MSE) between predictions (𝑉) and

measurements(𝑉𝑜𝑢𝑡):

𝐿1 =
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉 − 𝑉𝑜𝑢𝑡 ‖

2 (2)

The second loss is linked to the network stoichiometric constraint (𝑆 𝑉 = 0), which in its normalized

form (loss per constraint) is:

𝐿2 =
1

𝑚
 ‖𝑆𝑉‖2 (3)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

The third loss evaluates how well boundary constraints are respected (𝑃𝑖𝑛𝑉 ≤ 𝑉𝑖𝑛):

𝐿3 =
1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛)‖2 (4)

The last loss enforces all fluxes to be positive:

𝐿4 =
1

𝑛
‖𝑅𝑒𝐿𝑈(−𝑉)‖2 (5)

We note that when exact bound are provided, 𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛, and 𝐿3 becomes obsolete as the values of

𝑉 corresponding to 𝑉𝑖𝑛 are not updated by the LP/QP solvers and AMN programs.

The total loss (𝐿) is calculated as the mean sum of the previous losses:

𝐿 = (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4) / 4𝑁 (6)

where 𝑁 is the sample batch size.

𝐿 can also be computed as the MSE between the vectors

(𝑃𝑜𝑢𝑡𝑉,
‖𝑆𝑉‖

√𝑚
,

‖𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)‖

√𝑛𝑖𝑛
,

‖𝑅𝑒𝐿𝑈(−𝑉)‖

√𝑛
) and (𝑉𝑜𝑢𝑡 , 0, 0, 0) (7)

QP solver

The QP solver solves the quadratic program given by eq. (1) in the Loss functions derivation subsection.

While the QP system can be solved by a simplex algorithm, solutions can also be approximated

calculating 𝑉 minimizing the loss of eq. (6):

𝑚𝑖𝑛 (
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉 − 𝑉𝑜𝑢𝑡 ‖

2 +
1

𝑚
‖𝑆𝑉‖2 +

1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛)‖2 +

1

𝑛
 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2) (8)

vector 𝑉 can thus be found solving:

𝜕 (
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉−𝑉𝑜𝑢𝑡 ‖

2 +
1
𝑚

‖𝑆𝑉‖2+
1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)‖2+

1
𝑛

 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)

𝜕𝑉
= 0 (9)

𝑉 satisfying (3) can be found iteratively:

𝑉(𝑡+1) = 𝑉(𝑡) + 𝑑𝑡 𝛻𝑉 (10)
𝑉(0) = 𝑃𝑖𝑛

𝑇 𝑉𝑖𝑛

where 𝑡 is the iteration number, 𝑑𝑡 the learning rate, and:

𝛻𝑉 =
2

𝑛𝑜𝑢𝑡
 𝑃𝑜𝑢𝑡

𝑇 (𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡) +
2

𝑚
 𝑆𝑇𝑆𝑉 +

2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇 𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) −
2

𝑛
 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉) (11)

where 𝐷𝑖𝑛 =
𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)

𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)
 and 𝐷𝑉 =

𝑅𝑒𝐿𝑈(−𝑉)

𝑅𝑒𝐿𝑈(−𝑉)
 using an Hadamard division:

𝐴

𝐴
= (

𝑎𝑖𝑗

𝑎𝑖𝑗
) (= 0 when

𝑎𝑖𝑗 = 0)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

When exact bounds are provided (EB case), the gradient becomes:

𝛻𝑉 = (
2

𝑛𝑜𝑢𝑡
 𝑃𝑜𝑢𝑡

𝑇 (𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡) +
2

𝑚
 𝑆𝑇𝑆𝑉 −

2

𝑛
 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉)) ⨀ (1𝑛×1 − 𝑃𝑖𝑛

𝑇 1𝑛𝑖𝑛×1) (12)

where ⨀ stands for Hadamard product and 1𝑛×1 (1𝑛𝑖𝑛×1) is a constant (=1) vector of dimension
𝑛 (𝑛𝑖𝑛)

Details on gradient calculations can be found in the Supplementary Information – section QP solver

equations.

LP solver

When uptake fluxes are known (EB method), the linear optimization problem solved with FBA for a

metabolic network with n fluxes and m metabolites can be written as:

𝑀𝑎𝑥: 𝑐𝑇𝑉 (13)

𝑠𝑡:
𝑆𝑉 = 𝑏
𝑉 ≥ 0

and its dual form:

𝑀𝑖𝑛: 𝑏𝑇𝑀

 𝑠𝑡: 𝑆𝑇𝑀 ≤ 𝑐𝑇 (14)

In the case where only uptake fluxes upper bounds are known (UB method) it can be written as:

𝑀𝑎𝑥: 𝑐𝑇𝑉

𝑠𝑡: 𝑆𝑖𝑞𝑉 ≤ 𝑏 𝑎𝑛𝑑 𝑆𝑒𝑞𝑉 = 0 (15)

𝑉 ≥ 0

its dual form being eq. (14).

In eqs. (13-15), V is the vector of fluxes, M its dual, referred to as metabolite shadow prices, S the

stoichiometric matrix, b a vector of dimension m with bi corresponding to input fluxes of medium

metabolites and c the objective vector of dimension n. In the UB case, Siq is the stoichiometric matrix

involving only internal reactions and Seq is the stoichiometric matrix with uptake reactions. Both

matrices that can be derived from S are given in Figs. S3 and S4 in Supplementary Information. Keeping

in mind that b takes positive values only for metabolites transported by uptake reactions, consequently

bi = 0 for all internal metabolites. Using the notation of Fig. 1 we note that 𝑏 = 𝑃𝑚→𝑣𝑉0, where V0 is

the vector of uptake fluxes. In this work c is a null vector with 1 for the ‘biomass’ reaction flux.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

The usual method to solve this linear programming problem is the Simplex algorithm35, which is fast

and scalable. But simplex has no gradient, nor backpropagation compatibility. Thus, it cannot be

integrated in AMNs and in any training procedure.

The optimization-RNN proposed by Yang et al.23 is an alternative to solve LP problems, as this method

is compatible with backpropagation. The general solving happens by iteratively updating V the vector

of all reaction fluxes and M the dual vector of shadow prices using the following gradients:

𝛻𝑉 = ((𝐼 − 𝑃)[𝑐𝐹𝐵𝐴 − 𝑆𝑖𝑞
𝑇𝑅𝑖𝑞] − 𝑄𝑅𝑖𝑛𝑡)

𝛻𝑀 =
1

2
(𝑅𝑖𝑞 − 𝑀) (16)

where:

𝑅𝑖𝑞 = 𝑅𝑒𝐿𝑈(𝑀 + 𝑆𝑖𝑞𝑉 − 𝑑)

𝑅𝑒𝑞 = 𝑆𝑒𝑞𝑉 − 𝑏

𝑄 = 𝑆𝑒𝑞
𝑇 (𝑆𝑒𝑞 𝑆𝑒𝑞

𝑇)
−1

𝑃 = 𝑄 𝑆𝑒𝑞

Further details on this derivation and in particular the form of the matrices 𝑆𝑒𝑞 , 𝑆𝑖𝑞 and vectors 𝑏, 𝑑 in

the EB and UB cases can be found in the Supplementary Information – section LP-solver equations.

The method converges for both EB and UB cases to the global optimum independently of the

initialization. The learning rate was arbitrarily fixed to 0.3 for both EB and UB.

For both Fig. 2d and Fig. 2e the results were obtained with 100 simulations and 106 iterations. The

reference values were obtained using Cobrapy22 and the E. coli core model29. Each replicate was

generated with a different medium computed with the training set generation method (see Method

section ‘Training Set Generation’).

AMN architectures and parameters

As listed in Table 1, we propose three AMNs architectures: AMN-Wt, AMN-LP and AMN-QP. The AMNs

are run with training sets with exact medium values given at steady state (EB) or only upper bound

values (UB). The architecture of RNN-Wt is shown in Fig. 1e and detailed in Supplementary Information

– AMN-Wt architecture. The architectures of AMN-LP/QP are shown in Fig. 3a. All ANMs take as input

a vector of fluxes of size 𝑛𝑖𝑛 for medium uptake fluxes (Vin), then transforms via a dense neural network

the input vector into an initial vector of size n for all fluxes (V0), which is refined through an iterative

procedure computing 𝑉(𝑡+1) from 𝑉(𝑡). With all AMNs a 𝑛𝑖𝑛 x 𝑛 weight matrix transforming Vin to V0 is

learned during training, and we name this transforming layer the neural layer. With AMN-LP/QP, 𝑉(𝑡)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

is iteratively updated in a mechanistic layer by the gradient (𝛻𝑉) of LP/QP solvers (cf. previous

subsections in Method). With AMN-Wt, the mechanistic layer computes 𝑉(𝑡+1) from 𝑉(𝑡)using the

transformations shown in Supplementary Information – Fig. S1, which include a 𝑛 x 𝑚 weight matrix

(𝑊𝑟). That weight matrix is learned during training. With all AMN architectures, the values of V

corresponding to Vin are not updated in the neural or mechanistic layers when training with exact

values for medium uptake (EB training sets).

For all architecture, we use the Mean Squared Error (MSE, eq. (2)) on all fluxes as the objective function

to minimize while learning. In all AMN architectures we add to the MSE loss function, the terms

corresponding to the 3 losses derived from the constraints of the metabolic model (eqs. (3-5)).

The parameters used when training AMNs can be decomposed into two categories:

1. Simulated data parameters. As described in the previous section (Generation of Training Sets

with FBA), we can tune the size of the training set to be generated. We can also modify the mean

number of selected variable intake medium fluxes, and the number of levels (i.e., the resolution)

of the fluxes. We can also modify the actual variable intake medium flux list, but this modifies

the architecture of the model (initial layer size), so we kept the same list for each model in the

present work.

2. Learning parameters. During learning on simulated data, an AMN has a small set of parameters

to tune: the number and size of hidden layers, the number of epochs, the batch size, the dropout

ratio and the number of folds in cross-validation.

Optimization of uptake fluxes upper bounds in FBA

The goal of this optimization was to find the best scaler for fluxes to best match experimentally

determined growth rates, by using ‘out-of-the-box’ FBA, simply informing the presence or absence of

the flux according to the experimental medium composition. The optimal scaler was found using the

Cobrapy software package22 by simply searching for the maximum R² between experimental and FBA-

predicted growth rates. The plot showing how the R² behaves as a function of the scaler is shown in

Fig. 5f.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

Data availability

All raw and processed experimental data can be found in our Github repository at

https://github.com/brsynth/amn_release/tree/main/Dataset_experimental. Some supplementary

files (including ‘Data_Fig4.xlsx’ and ‘Data_Fig5.xlsx’) and all other datasets used to produce figures of

this study can be also found in our Github repository, at

https://github.com/brsynth/amn_release/tree/main/Result.

Code availability

All codes are available within a documented GitHub repository at

https://github.com/brsynth/amn_release. The GitHub repository includes tutorials in Google Colab

notebooks. All AMN codes make use of Cobrapy22, numpy36, scipy37, Pandas38, tensorflow39, sci-kit

learn40 and keras41 libraries.

References

1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–

589 (2021).

2. Bellman, R. Dynamic Programming. (Princeton University Press, 1957).

3. Thornburg, Z. R. et al. Fundamental behaviors emerge from simulations of a living minimal cell.

Cell 185, 345-360.e28 (2022).

4. Reed, J. L. & Palsson, B. Ø. Thirteen years of building constraint-based in silico models of

Escherichia coli. J. Bacteriol. 185, 2692–2699 (2003).

5. Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by

Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. U. S. A. 104, 12663–

12668 (2007).

6. Goelzer, A. et al. Quantitative prediction of genome-wide resource allocation in bacteria. Metab.

Eng. 32, 232–243 (2015).

7. Niedenführ, S., Wiechert, W. & Nöh, K. How to measure metabolic fluxes: a taxonomic guide for

13C fluxomics. Curr. Opin. Biotechnol. 34, 82–90 (2015).

8. Willemsen, A. M. et al. MetDFBA: incorporating time-resolved metabolomics measurements into

dynamic flux balance analysis. Mol. Biosyst. 11, 137–145 (2015).

9. Alghamdi, N. et al. A graph neural network model to estimate cell-wise metabolic flux using single-

cell RNA-seq data. Genome Res. 31, 1867–1884 (2021).

10. Kim, M., Rai, N., Zorraquino, V. & Tagkopoulos, I. Multi-omics integration accurately predicts

cellular state in unexplored conditions for Escherichia coli. Nat. Commun. 7, 13090 (2016).

11. Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling

identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://github.com/brsynth/amn_release/tree/main/Dataset_experimental
https://github.com/brsynth/amn_release/tree/main/Result
https://github.com/brsynth/amn_release
https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

12. Zampieri, G., Vijayakumar, S., Yaneske, E. & Angione, C. Machine and deep learning meet genome-

scale metabolic modeling. PLoS Comput. Biol. 15, e1007084 (2019).

13. Sahu, A., Blätke, M.-A., Szymański, J. J. & Töpfer, N. Advances in flux balance analysis by

integrating machine learning and mechanism-based models. Comput. Struct. Biotechnol. J. 19,

4626–4640 (2021).

14. Fortelny, N. & Bock, C. Knowledge-primed neural networks enable biologically interpretable deep

learning on single-cell sequencing data. Genome Biol. 21, 190 (2020).

15. Lagergren, J. H., Nardini, J. T., Baker, R. E., Simpson, M. J. & Flores, K. B. Biologically-informed

neural networks guide mechanistic modeling from sparse experimental data. PLoS Comput. Biol.

16, e1008462 (2020).

16. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential

equations. J. Comput. Phys. 378, 686–707 (2019).

17. SciML: Open Source Software for Scientific Machine Learning. https://sciml.ai/.

18. Müller, S., Regensburger, G. & Steuer, R. Resource allocation in metabolic networks: kinetic

optimization and approximations by FBA. Biochem. Soc. Trans. 43, 1195–1200 (2015).

19. Nilsson, A., Peters, J. M., Meimetis, N., Bryson, B. & Lauffenburger, D. A. Artificial neural networks

enable genome-scale simulations of intracellular signaling. Nat. Commun. 13, 3069 (2022).

20. Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat.

Biotechnol. 35, 904–908 (2017).

21. Norsigian, C. J. et al. BiGG Models 2020: multi-strain genome-scale models and expansion across

the phylogenetic tree. Nucleic Acids Res. 48, D402–D406 (2020).

22. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based

Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

23. Yang, Y., Cao, J., Xu, X., Hu, M. & Gao, Y. A new neural network for solving quadratic programming

problems with equality and inequality constraints. Math. Comput. Simul. 101, 103–112 (2014).

24. Jin, L., Li, S., Hu, B. & Liu, M. A survey on projection neural networks and their applications. Appl.

Soft Comput. 76, 533–544 (2019).

25. Hopfield, J. J. & Tank, D. W. “Neural” computation of decisions in optimization problems. Biol.

Cybern. 52, 141–152 (1985).

26. Wang, J. & Chankong, V. Recurrent neural networks for linear programming: Analysis and design

principles. Comput. Oper. Res. 19, 297–311 (1992).

27. Ghasabi-Oskoei, H. & Mahdavi-Amiri, N. An efficient simplified neural network for solving linear

and quadratic programming problems. Appl. Math. Comput. 175, 452–464 (2006).

28. Varma, A. & Palsson, B. O. Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic

precursors and cofactors. J. Theor. Biol. 165, 477–502 (1993).

29. Orth, J. D., Fleming, R. M. T. & Palsson, B. Ø. Reconstruction and Use of Microbial Metabolic

Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus 4,

(2010).

30. Cuomo, S. et al. Scientific Machine Learning Through Physics–Informed Neural Networks: Where

we are and What’s Next. J. Sci. Comput. 92, 88 (2022).

31. Chubukov, V. et al. Transcriptional regulation is insufficient to explain substrate-induced flux

changes in Bacillus subtilis. Mol. Syst. Biol. 9, 709 (2013).

32. Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115,

100–123 (2019).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

28

33. Lachance, J.-C. et al. BOFdat: Generating biomass objective functions for genome-scale metabolic

models from experimental data. PLoS Comput. Biol. 15, e1006971 (2019).

34. Pandi, A. et al. Metabolic perceptrons for neural computing in biological systems. Nat. Commun.

10, 3880 (2019).

35. Karloff, H. The Simplex Algorithm. in Linear Programming 23–47 (Birkhäuser Boston, 2009).

36. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

37. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.

Methods 17, 261–272 (2020).

38. McKinney. pandas: a foundational Python library for data analysis and statistics. Python for high

performance and scientific computing.

39. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed

Systems. arXiv [cs.DC] (2016).

40. Pedregosa, Varoquaux & Gramfort. Scikit-learn: Machine learning in Python. the Journal of

machine.

41. Chollet, F. et al. Keras. https://keras.io (2015).

Acknowledgements

JLF would like to acknowledge funding provided by the ANR funding agency grant numbers ANR-18-

CE44-0015 (SynBioDiag project) and ANR-21-CE45-0021-01 (AMN project) and the BIOS UE HORIZON

program (grant number 101070281). LF is supported by INRAE’s MICA department and by INRAE’s

metaprogram DIGIT-BIO. BM is supported by an Ecole Normale Supérieure Scholarship. We thank

Aymeric Gaudin (CentraleSupélec Engineering School) for early development in reservoir computing

with AMN, Ivan Radkevich (University of Paris Saclay) for his work on custom RNN cells and Tom

Lorthios and Hadi Jbara (AgroParisTech and University of Paris Saclay) for their help on collecting data

for experimental training sets.

Author contributions

LF and JLF wrote the core of the text of the manuscript. JLF designed the study and wrote the QP solver

of Fig. 2 and all the AMN and RC codes used to produce data for Figs. 1, 3, 4, 5 and Table 1. BM wrote

the LP-solver producing Figs. 2, S4 and S5 and wrote the corresponding part in the method section. LF

benchmarked all codes, wrote the codes transforming SBML models into unidirectional networks and

processing experimental data, and handled the colab and git implementations. LF also performed all

experimental work reported in Figs. 4 and 5 and wrote the corresponding experimental method

section. WL contributed to designing the project and was involved in the discussions and writing the

manuscript. All authors read, edited, and approved the manuscript.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.01.09.475487doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.09.475487
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Flux Balance Analysis, Scientific Machine Learning, Hybrid Modeling.
	Abbreviations: AMN: Artificial Metabolic Network, ANN: Artificial Neural Network, FBA: Flux Balance Analysis, GD: Gradient Descent, LP(QP): Linear (Quadratic) Programming, ML: Machine Learning, MM: Mechanistic Modeling, PINN: Physics Informed Neural N...
	Introduction
	Results
	Alternative computation methods to surrogate FBA
	AMNs: metabolic & neural hybrid models for predictive power with mechanistic insights
	AMNs can be directly trained on experimental datasets with good predictive power
	AMNs can be used in a reservoir computing framework to enhance the predictive power of traditional FBA solvers

	Discussion and conclusion
	Methods
	Making metabolic networks suitable for neural computations
	Generation of training sets with FBA
	Generation of an experimental training set
	Culture conditions
	Growth rate determination
	Loss functions derivation
	QP solver
	LP solver
	AMN architectures and parameters
	Optimization of uptake fluxes upper bounds in FBA

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions

