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Abstract 

Constraint-based mechanistic models have largely been exploited to predict the phenotype of 

microorganisms in different environments. However, phenotype predictions are limited in quality 

unless labor intensive experiments including the measurement of media uptake fluxes, are performed. 

We show how hybrid - mechanistic and neural – models provide ways to improve phenotype 

predictions. Our hybrid models named Artificial Metabolic Networks (AMNs) surrogate constraint-

based modeling, make metabolic networks suitable for backpropagation and, consequently, can serve 

as an architecture for machine learning. We first show how learning principles brought by AMNs can 

replace the optimization principle of constraint-based modeling with excellent performances for 

various in silico training sets.  We then illustrate how AMNs outperform mechanistic models with 

Escherichia coli growth rates measured in 110 different media compositions reaching regression 

coefficients > 0.76 on cross-validation data.  We expect our hybrid AMN models to enhance constraint-

based modeling and to prompt new biotechnological applications. 

Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Flux Balance Analysis, 

Scientific Machine Learning, Hybrid Modeling. 

Abbreviations: AMN: Artificial Metabolic Network, ANN: Artificial Neural Network, FBA: Flux Balance 

Analysis, GD: Gradient Descent, LP(QP): Linear (Quadratic) Programming, ML: Machine Learning, MM: 

Mechanistic Modeling, PINN: Physics Informed Neural Network, RNN: Recurrent Neural Network. R2: 

Regression coefficient calculated on training set. Q2: regression coefficient calculated on cross-

validation sets or independent test sets (not seen during training). 
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Introduction 

The increasing amounts of data available for biological research bring the challenge of data integration 

with Machine Learning (ML) to accelerate the discovery process. The most compelling achievement 

within this grand challenge is protein folding recently cracked by AlphaFold1, which in the last CASP14 

competition predicted structures with a precision similar to structures determined experimentally. 

Following this foot step, one may wonder if in the future we will be able to use ML to accurately model 

whole cell behaviors. 

The curse of dimensionality2, i.e., the fact that fitting many parameters may require prohibitively large 

data sets,  is perhaps the biggest hurdle that prevents using ML to build cell models. Obviously, cells 

are far more complex than single proteins and since the amount of data needed for ML training grows 

exponentially with the dimensionality2, as of today, ML methods have not been used alone to model 

cellular dynamics. 

For the past decades mechanistic (mathematical) models (MMs) have been developed to simulate 

whole-cell dynamics (cf. Thornburg et al.3 for one of the latest models). These models encompass 

metabolism, signal transduction, as well as gene and RNA regulation and expression. Cellular dynamics 

being tremendously complex, MMs are generally based on strong assumptions and oversimplifications 

and ultimately suffer from capacities of making predictions beyond the assumptions and the data used 

to build them. 

The MM and ML approaches are based on two contrary paradigms. While the former is aimed at 

understanding biological phenomena with physical and biochemical detail, it has difficulties handling 

complex systems; the latter can accurately predict the outcomes of complex biological processes even 

without an understanding of the underlying mechanisms, but require large training sets. The pros of 

one are the cons of the other, suggesting that hybrid approaches should be developed. In particular, 

MMs may be used to tackle the dimensionality curse of ML methods. For instance, one can use MMs 

to produce in silico data which can be added to experimental data increasing the training set sizes for 

ML. However, with that strategy, if the model is inaccurate, ML will be trained on erroneous data. One 

can also embed MMs within the ML process, in this strategy ML and MMs are trained together and 

the model parameters can be estimated through training, increasing the model predictive capacities. 

The issue with this strategy is the difficulty of making MMs amenable to training. 
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In the current paper we propose an MM-ML hybrid approach in which a whole-cell constraint-based 

model (CBM), Flux Balance Analysis (FBA), is embedded with ML. For the past three decades,  FBA has 

been the main approach to study the relationship between nutrient uptake and the metabolic 

phenotype (i.e., the metabolic fluxes distribution) of a given organism, e.g., E. coli, with a model 

iteratively refined over the years4. FBA assumes that the metabolic phenotype is at steady state, i.e., 

a phenotype that is constant in time and in which all compounds are mass-balanced. Usually such a 

steady state is assumed to be reached in the mid-exponential growth phase. The search for a steady 

state happens in the space of possible solutions that satisfies the constraints of the metabolic model, 

i.e., the mass-balance constraints according to the stoichiometric matrix as well as upper and lower 

bounds for each flux in the distribution. In addition, FBA employs an optimality principle, with one 

principal objective (usually the ’biomass’ production flux) and possibly secondary objectives (e.g., 

minimize the sum of fluxes in parsimonious Flux Balance Analysis (pFBA), or the flux of a metabolite 

of interest). For example, to predict a growth rate in a given environment, one would designate the 

‘biomass’ flux (describing the growth rate) as the objective to maximize and set up non-zero upper 

bounds on some uptake fluxes. These bounds depend on the amounts of molecule transporters, which 

may change between conditions depending on the cell metabolic strategy. Therefore, finding realistic, 

condition-dependent bounds on the uptake fluxes requires labor-intensive measurements. In more 

sophisticated CBM approaches such as molecular crowding FBA5 (mcFBA) or Resource Balance 

Analysis6 (RBA), constraints on the resource availability and allocation are added to obtain more 

biologically plausible metabolic phenotypes, but parameterizing such models requires additional data. 

To set bounds and validate prediction results, fluxomic data can be obtained from experiments. With 

isotopic labeling (like 13-C), one can follow the path of a nutrient in the metabolic network7. Based on 

metabolomics, one can derive metabolic fluxes from metabolite concentrations and possibly in a time-

resolved approach8. With transcriptomics, RNA sequencing data is used as input for models to 

estimate fluxes indirectly, even at the single-cell level9. Data obtained from several -omics methods 

can be integrated, constituting a state-of-the-art multi-omics data integration for flux prediction10–12, 

which usually makes use of FBA alongside ML methods. Indeed, ML approaches were naturally 

developed to efficiently integrate such data and to enhance predictions by FBA. However, as described 

by Sahu et al.13, the interplay between FBA and ML still shows a gap: some approaches use ML results 

as input for FBA, others use FBA results as input for ML, but none of them embed FBA into ML, as we 

do in this paper with the Artificial Metabolic Networks (AMNs) hybrid models. 

Hybrid models have recently been developed under different names in biology for signaling pathways 

and gene-regulatory networks (Knowledge Primed Neural Network14, Biologically-Informed Neural 

Networks15) and in physics where models solving partial differential equations (PDEs), such as Physics 
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Informed Neural Network16 (PINN), are available in open source repositories such as SciML.ai17. The 

goal of these emerging hybrid modeling methods is to generate models that comply well with 

observations or experimental results via ML, but that also use mechanistic insights from MM. The 

advantages of hybrid models are two-fold: they can be used to parametrize MM methods through 

direct training and therefore increasing MM predictability, and they enable ML methods to overcome 

the dimensionality curse by being trained on smaller datasets because of the constraints brought by 

MM.  

The AMN models shown here fit in the emerging hybrid modeling field. AMNs bridge the gap between 

ML and FBA by computing steady-state metabolic phenotypes with different methods, that can be 

embedded with ML: a method based on recurrent neural network (RNN), and two trainable methods 

solving respectively linear programs (LP) and quadratic programs (QP). All these methods are relying 

on custom loss functions surrogating the FBA constraints. By doing so, our AMNs are mechanistic 

models, determined by the stoichiometry and other FBA constraints, and also ML models, as they are 

used as a learning architecture. 

We showcase our AMNs with a critical limitation of classical FBA for experimentalists. As already 

discussed, realistic and condition-dependent bounds on medium uptake fluxes are critical for growth 

rate (or other fluxes) predictions, but there is no simple conversion from extracellular concentrations, 

i.e., the controlled experimental setting, to such bounds on uptake fluxes. In fact, these bounds 

depend on the internal allocation of protein resources to transporters, which itself depends on the 

cell’s metabolic state - the state we are trying to predict. Some methods, such as satFBA18, assumes 

fixed transporter levels and converts medium concentrations to possible uptake fluxes by kinetic 

models, relying on a Michaelis-Menten value for each uptake reaction. Consequently, this MM 

approach relies on more assumptions and requires more data than a classical FBA, and does not 

integrate any large-scale regulation or resource allocation phenomena. More advanced and accurate 

CBM methods such as Resource Balance Analysis (RBA) are more difficult to set-up and harder to 

parametrize. As a result, many users rely on classical FBA, which cannot reliably predict growth rates 

from media compositions. AMNs are used in this study for tackling the same issue: predicting 

metabolites uptake fluxes from their external concentrations. To do so, where satFBA uses transporter 

kinetics with parameters that need to be acquired through additional experimental measurements, 

AMNs use a pre-processing neural layer that is accessible for learning. This neural pre-processing layer 

aims to capture, effectively, all effects of transporter kinetics and resource allocation in a particular 

experimental setting, predicting the adequate input for a metabolic model to give the most accurate 

steady-state phenotype prediction possible. Consequently, AMNs provide a new paradigm for the 
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prediction of fluxes and growth rates: instead of relying on a constrained optimization principle 

performed for each condition (as in classical FBA), we use a learning procedure on a set of example 

flux distributions that attempts to generalize the best model for accurately predicting the metabolic 

phenotype of an organism in different conditions. 

Results 

As an introductory work, we show how the aforementioned idea of knowledge-primed neural 

networks inspired an in-house method based on branching ratios of metabolites going to different 

reactions (Figure 1). This preliminary work having limitations, we then showcase more versatile 

methods that surrogate FBA with gradient-backpropagation compatibility: a method for solving the 

linear program (LP) of FBA, and a quadratic program (QP) method solving FBA when measured fluxes 

(like growth rate) are provided. These two solvers have adequate gradient and loss functions satisfying 

the constraints of an FBA framework (Figure 2). Then, we used these methods inside hybrid models 

that can directly learn from sets of flux distributions (Figure 3). These flux distributions used as learning 

references (i.e., the training sets) are either acquired experimentally or produced through FBA 

simulations (Table 1 and Figure 4). Finally, we developed a non-trainable AMN reservoir to showcase 

how the predictive power of FBA can be improved. Indeed, once the AMN has been trained on 

adequate in silico FBA data, we can fix its parameters, resulting in a gradient backpropagation 

compatible reservoir that mimics FBA (Figure 5). This reservoir can then be used to tackle the above-

mentioned issue of unknown uptake fluxes: adding a pre-processing neural layer and training this layer 

with an experimental dataset, one can predict uptake fluxes from external metabolite concentrations. 

This neural layer can be reused by any FBA user to improve the predictive power of a metabolic model, 

with an adequate experimental set-up. 

Alternative computation methods to surrogate FBA 

The first method (Fig. 1), inspired by previous work on signaling networks19, learns consensual flux 

branching ratios found in example flux distributions (i.e., the training set) and represents these ratios 

in the form of a weight matrix. Since the mass conservation law is the central rule when satisfying 

metabolic networks constraints, these ratios play a key role in the determination of the metabolic 

phenotype, i.e., the paths taken by metabolites in the organism. In this approach, we assume that the 

flux branching ratios remain similar between flux distributions with different bounds on the uptake 

fluxes. In other words, we postulate that most of the flux distribution examples of our training set 

resemble a consensual metabolic state, with consensual branching ratios. Consequently, the method 
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learns from example flux distributions, a weight matrix representing these consensual branching 

ratios. A simple toy model network is shown to demonstrate the functioning of this first method in 

Fig. 1a. With the usual FBA method, we obtain the flux distribution maximizing the flux of the 𝑣3 

reaction (representing a classical ‘biomass’ reaction) with an uptake reaction 𝑣1 (representing a 

classical uptake reaction) by solving a linear program (Fig. 1b). At steady state, metabolite production 

fluxes can be calculated from reaction fluxes via the transition matrix 𝑃𝑣→𝑚 from fluxes to metabolites, 

and similarly, reaction fluxes can be calculated from metabolite production fluxes using the matrices 

𝑃𝑚→𝑣 and 𝑊𝑟 (Fig. 1c). For a given metabolite j and a reaction i, the weight wji (in matrix 𝑊𝑟) represents 

the fraction of metabolite j production flux going to reaction i.  

To learn the weights wji, one first needs to translate the model into a neural-network-like architecture 

(Fig. 1d). Precisely, in Fig. 1d we start from an initial set of given fluxes and then propagate knowledge 

about the fluxes through the entire network, each layer corresponding to one step in a discrete flux 

propagation. Mathematically, each layer is composed of two simple operations that update the M and 

V vectors, respectively representing metabolites production fluxes and reaction fluxes. Those 

operations are repeated until convergence, with 𝑣1 being constant because it is known from the start 

(i.e., the input of the network). The network shown in Fig. 1d is the unrolled representation of the 

RNN (named AMN-Wt) depicted in Fig. 1e. As detailed in the Method section – AMN architectures and 

parameters, the matrix 𝑊𝑟  can be learned through training, assuming the learned weights are a 

consensus of the different 𝑊𝑟  matrices observed in the training set. The steady state fluxes of AMN-

Wt iterated 30 times (or more, here we stopped at 30 because the reference data values were 

reached) equal to those obtained in the reference data (Fig. 1f).  
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Fig. 1. Computing steady-state fluxes with stoichiometric and neural models. a. Simple toy stoichiometric model. The model 
is unidirectional, all flux values are positive. b. Steady-state solution fluxes maximizing 𝑣3. At steady state, the reaction fluxes 
(𝑣𝑖) must satisfy stationarity conditions that guarantee mass balance of all metabolites, this is depicted by the equation 𝑆𝑉 = 
0, where 𝑆 is the stoichiometric matrix representing the connectivity of the model and 𝑉 the vector of fluxes to be calculated. 
𝑉𝑖𝑛  is the medium represented by a vector of nutrient uptake fluxes (here 𝑣1= 0.1, symbol “—” indicates that no value is 
provided, in practice we use an ‘infinity’ value to represent an unbounded flux). The steady-state solution 𝑉𝑜𝑢𝑡  is calculated 
by solving a linear program maximizing the objective 𝑐𝑇𝑉 = 𝑣3, here we used the Cobrapy package22 to compute 𝑉𝑜𝑢𝑡  
(simplex-based algorithm). c. Stoichiometric model matrices. 𝑃𝑣→𝑚  is the matrix to compute metabolite production fluxes 
from reaction fluxes, 𝑃𝑚→𝑣 is a matrix to compute reaction fluxes from the production fluxes of the reaction substrates. When 
a metabolite is the substrate of several reactions, each reaction gets a fraction of the metabolite production flux, this is 
depicted in matrix 𝑊𝑟  (r indicates this matrix is used in recurrence). 𝑀𝑜𝑢𝑡 is the vector of metabolite production fluxes at 
steady state, the operator ⊙ stands for element-wise matrix product (Hadamard product), and 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥). sj,i 
corresponds to the value of S at the jth row (metabolite) and ith column (flux) and zi is the number of negative elements in 
column i of S. d. Unrolled neural network built from the model. In this theoretical example an initial flux vector is set, 
representing only the uptake fluxes, and is mapped to a flux vector covering the entire network. In the initial layer ( 𝑙0) only 

𝑣1 has a value (𝑣1
0). In layer 1, 𝑣1 value is passed to 𝑚1, the production flux for metabolite 1, 𝑚1

1 = 𝑣1
0. Subsequently a fraction 

(𝑤21) of 𝑚1 goes to 𝑣2 and the other fraction (𝑤31) to 𝑣3, therefore 𝑣2
1 = 𝑤21𝑚1

1, 𝑣3
1 = 𝑤31𝑚1

1 with 𝑤21+𝑤31 = 1. 
Additionally, 𝑣1 remains as in 𝑙0: 𝑣1

1 = 𝑣1
0. In layer 2, 𝑣1 continues to feed 𝑚1, 𝑣2 is passed on to 𝑚2 and 𝑚3 , therefore, 𝑚2

2 
= 𝑣2

1 and 𝑚3
2 = 𝑣2

1, 𝑚2 then goes to 𝑣3 and 𝑣4, and as in the previous layer we have 𝑣3
2 = 𝑤32𝑚2

2 , 𝑣4
2 = 𝑤42𝑚2

2 with 𝑤32+ 

𝑤42 = 1, other fluxes remain the same as in 𝑙1. In layer 3, 𝑚4 receives input from 𝑣4 which in turn activates 𝑣5. In layer 4, 
𝑚1receives input from both 𝑣1 and 𝑣5: 𝑚1

4= 𝑣1
3 + 𝑣5

3. e. Recurrent neural network representation. At each iteration step  𝑉𝑙 

and 𝑀𝑙 are computed using matrices 𝑃𝑣→𝑚  and 𝑃𝑚→𝑣 of panel c, while the matrix 𝑊𝑟  can be learned by training with 
experimental data or model simulations. For example, setting 𝑣1

0 = 0.1 and searching weights for which 𝑣3
𝑛 = 0.5 one finds 

𝑤21 = 0.74, 𝑤31 = 0.26, 𝑤32 = 0.20, and 𝑤42 = 0.80. Taking these weights, the 𝑉𝑛 values obtained for n=30 match those of 
panel B. f. Heatmap for flux values up to 30 iterations. 

While the AMN-Wt method is simple to implement it suffers from a drawback. As we shall see later in 

Table 1, a consensus set of weights leads to a solution when upper bounds (UB) for uptake fluxes are 

provided, but not when exact bounds (EB) for uptake fluxes are given. Supplementary Fig. S2 shows an 

example in which two flux distributions, with different EBs on uptake fluxes, lead to different weights 

for the same networks. Consequently, we cannot assume that AMN-Wt can handle all possible flux 

distributions in the EB case. To overcome this shortcoming, we next present two alternative methods 

for solving FBA optimization problems that can accommodate both EB and UB cases for uptake fluxes. 
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These methods are much closer to the LP or QP optimizations behind FBA, their input can be exact or 

upper bounds on fluxes. Let us note here that the alternative methods described next are not AMNs 

per se, but are mechanistic models (MM) with gradient backpropagation compatibility that ‘replace’ 

the Simplex-based LP or QP solving algorithms in our AMNs. Importantly, the two methods address 

two important tasks in flux modeling: optimizing a flux distribution for maximal biomass rate (in LP), 

as in classical FBA, and fitting a stationary flux distribution to partial flux data (in QP). 

The first FBA solver (LP solver, Fig. 2b), derived from a method proposed by Yang et al.23,  handles linear 

problems using exact constraint bounds (EBs) or upper bounds (UBs) for uptake fluxes (Vin). That 

method make use of RNNs for optimization, which is a long-standing field of research24 inspired by the 

pioneering work of Hopfield and Tank25. Later, these RNNs were showcased to perform well for solving 

linear programs26 and simpler and more efficient solutions were developed over the years23,27. It is 

important to point out at this stage that these RNNs are non-trainable networks and differ from the 

contemporary RNNs used in ML. The RNNs developed for optimization are instead recurrent 

procedures iteratively updating the solution of linear programs. Nonetheless, as we shall see 

thereafter, the LP solver of Fig. 2b can backpropagate a gradient and can therefore be connected to 

trainable layers.  

As the AMN-Wt method, the LP solver, iteratively computes fluxes to come closer to the steady-state 

solution (Vout). However, calculations are more sophisticated than for the AMN-Wt, the method 

integrates the same objective function (c) than the classical FBA Simplex solver and iteratively update 

the flux vector (V), and the vector (M) representing the dual problem variables also named metabolites 

shadow prices28 (cf. Method - LP-solver - for further details). To assess the validity of the LP solver, we 

calculated 100 different growth rates for E. coli core model29 taken from the BIGG database21 using the 

Simplex solver available in the Cobrapy package22.  The E. coli core model29 contains 154 reactions, 72 

metabolites (after duplicating bidirectional reactions), including 20 metabolites, which can be 

imported to the cell through uptake reactions. We generated 100 different uptake fluxes 

combinations, varying the 20 uptake fluxes of E. coli core model  (cf. Method - Generating Training sets 

- for further details). Results presented in Fig. 2d exhibits almost identical results as the reference data, 

with the same initialization, both for known uptake fluxes with EB and for unknown uptake fluxes with 

UB.  
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Fig. 2. FBA solver architectures and performances. a.  Schematic procedure for the Simplex solvers. From Vin, which is a vector 
describing the bounds of some uptake fluxes, the solvers reach a steady-state solution (Vout) optimizing the objective function 
c, satisfying the constraints and bounds of the network (cf. Fig. 1 panel b). One of the most popular solvers is a simplex-based 
method in Cobrapy22, taken as reference data for the results shown here. b. Schematic for LP-solver architecture. This in-house 
solver surrogates the simplex-based algorithm. Following Yang et al.23 and as further detailed in the Method section (LP-solver 
Architecture), the full flux distribution V is updated by ∇V and the metabolites shadow prices M by ∇M through products of 
matrices derived from the stoichiometry of the network. c. Schematic for QP-solver architecture. Here target reference fluxes 
are given to the solver. The computed fluxes are fitted to the Reference Targets by the means of a custom loss function 
integrating also the input constraints along with the stoichiometric constraint of the metabolic network. The flux vector V is 
updated by ∇V which is the gradient minimizing the loss function (cf. Method section - QP Architecture - for further details). 
d. Matching of growth rate between the Simplex solver and the LP/QP solvers. EB refers to “Exact Bound”, a set-up in which 
Vin is composed of the exact flux values for each uptake flux. UB refers to “Upper Bound”, in which Vin is composed of upper 
threshold values for each uptake flux. e. Loss vs. Solver iterations. QP takes 1 million iterations to reach close to zero values, 
whereas LP takes 10,000 iterations. Plotted is the mean and standard error (95% confidence interval) across all elements of 
the set of 100 simulations. 

 
The second solver is loosely inspired by the work on Physics-Informed Neural Networks (PINNs), which 

has been developed to solve partial differential equations matching a small set of observations30. With 

PINNs, solutions are first approximated with a neural network and then refined to fulfill the constraints 

imposed by the differential equations and the boundary conditions. Refining the solutions 

necessitates the computation of three loss functions, the first is related to the observed data, the 

second to the boundary conditions and the third to the differential equations. As detailed in the 

Method - Loss functions derivation and QP solver - sections, we similarly compute losses for the 

measured fluxes, the EB or UB boundary constraints, and the metabolic network stoichiometry and 

flux positivity constraints. As in PINN we next compute the gradient on these losses to refine the 

solution vector V. Unlike with the LP solver, in the present case we do not provide an objective (c) to 

maximize, but the actual targeted measured data (Vout), consequently the method is named QP 
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because it is equivalent to solving an FBA problem with a quadratic program. Our QP solver reaches 

acceptable losses as the LP one (Fig. 2d) but requires more iterations. 

AMNs: metabolic & neural hybrid models for predictive power with mechanistic insights 

While the LP and QP solvers perform well, their main weakness is the number of iterations needed to 

reach satisfactory performances, more than 10,000 (Fig. 2e). Since our goal is to integrate such 

methods in a learning architecture, this drawback has to be tackled. As illustrated in Fig. 3a, our 

solution is to improve our initial guesses for fluxes, by training a prior network (a classical dense ANN 

architecture) to compute initial values for all fluxes (V0) from exact or upper bounds on uptake fluxes 

(Vin). This prior network is trained along with the LP or QP solvers with the goal of finding V0 values that 

are as close as possible to the optimum flux values (Vout
 in the reference data set). This is achieved by 

setting the iteration number of the LP or QP solvers to low values. 

In the remainder of the paper, we name Artificial Metabolic Network (AMN), the hybrid model shown 

in Fig. 3a composed of a neural network followed by a LP or QP solver. AMN results are represented in 

Fig. 3b with prior networks of different hidden layer sizes. We note that the solver acts as a mechanistic 

layer as it contains the stoichiometry and bounds of a metabolic network, whereas the prior network 

acts as a neural layer that can be trained.  

 
Fig. 3: AMN architecture enabling training. a. Basic AMN architecture principle. Vin is the vector representing upper or exact 
bounds on uptake fluxes. Each white or blue circle represents one reaction. V0 contains the initial fluxes predicted by a dense 
neural network. Vout is the final flux vector, computed by the LP or QP solvers. b. Loss vs. Learning Epochs number for E. coli 
core model29. The architecture of panel a (with 4 iterations of the QP solver as the mechanistic layer, with upper bounds) was 
trained for 50 epochs, measuring the loss on Vout after each epoch. Plotted is the loss mean and standard error (95% confidence 
interval) over a training set of 1000 examples generated with the E. coli core model29 (see Methods - Generation of training 

sets with FBA). The different curves correspond to different hidden layer sizes used between Vin and V0.  
 

The performances of all AMN architectures are given in Table 1 using FBA simulated data on two 

different E. coli metabolic models, E. coli core model29 and iML151520 . These models are composed 

respectively of 154 reactions involving 72 metabolites, and 3682 reactions involving 1877 metabolites 
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(after duplicating bidirectional reactions). In both cases the Simplex-based solver of Cobrapy22 was run 

to optimize growth rates for different media. Each medium was composed of metabolites found in M9 

(minimal media) and additional metabolites (carbon sources, amino acids) crossing the cell membrane.  

Table 1. AMNs performances. (1) All SBML models describing different E. coli metabolic models were downloaded from the 
BiGG database21, ‘Core’ stands for the E. coli core model29, EB (UB) stands for exact bounds (upper bounds) for medium uptake 
fluxes, the iML151520 model was reduced following the procedure described in Methods - ‘Making metabolic models suitable 
for neural computations’. (2) Training set size and range for the number of metabolites added to M9 growth medium, and 
method used when running Cobrapy22. (3) YES or NO if the model contains a neural layer or a mechanistic layer. (4) MM stands 
for Mechanistic Model, AMN stands for Artificial Metabolic Network. Architectures are described in Methods - ‘AMN 
architectures and parameters’. (5) Number of trainable parameters and epochs, in all cases dropout = 0.25, batch size = 5, the 
optimizer is Adam and the loss function is the mean squared error between predicted and provided fluxes to which loss 
constraints are added, see Methods - ‘Loss functions derivation’ for additional details. (6) Regression coefficient and Loss 
values for training set (R²), and cross-validation sets (Q²) between provided growth rate and predicted growth rate. (7) 
Regression coefficient and Loss values for growth rates for independent test sets not seen during training. Test set sizes are 
10% of training set sizes. For (6) and (7) the performance is displayed as the mean over 5 folds (or over a training set when no 
cross-validation scheme is performed, i.e., for the MM performances). 

 

SMBL 
model 
 
Bound 
 
(1) 

Size 
 
Range 
 
 
(2) 

Neural layer 
 
Mechanistic 
layer 
 
(3) 

Architecture 
 
Timestep 
 
 
(4) 

Nbr 
param. 
 
Nbr 
epochs 
(5) 

Training R2  
 
Loss constraint 
 
 
(6) 

5-fold Q2  

 

Loss constraint 
 
 
(6) 

Test set Q2 

 

Loss constraint 
 
 
(7) 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

104 

n/a 
 

n/a 

1.000 ± 0.000 
 

3.2e-9 ± 3.2e-8 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
UB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

104 

n/a 
 

n/a 

1.000 ± 0.000 
 

5e-7 ± 2.8e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_QP 
 

106 

n/a 
 

n/a 

1.000 ± 0.000 
 

7.8e-6 ± 6.1e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
UB 

100 
 

1-6 

NO 
 

YES 

MM_QP 
 

106 

n/a 
 

n/a 

1.000 ± 0.000 
 

7.1e-6 ± 5.7e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
EB 

1000 
 

1-6 

YES 
 

YES 

AMN_LP 
 

4 

17 808 
 

500 

0.98 ± 7.9e-3 
 

2.8e-3 ± 0.6e-3 

0.98 ± 7.4e-4 
 

2.8e-3 ± 0.5e-3 

0.98 
 

3.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_LP 
 

4 

25 152 
 

500 

0.98 ± 9.7e-3 
 

2.5e-3 ± 0.4e-3 

0.97 ± 1.0e-2 
 

2.5e-3 ± 0.4e-3 

0.99 
 

3.1e-3 

Core 
 
EB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

4 

8904 
 

500 

0.99 ± 4.2e-3 
 

2.3e-3 ± 0.5e-3 

0.99 ± 4.7e-3 
 

2.3e-3 ± 0.5e-3 

0.98 
 

3.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

4 

8904 
 

500 

0.97 ± 9.9e-3 
 

2.5e-3 ± 0.6e-3 

0.97 ± 1.3e-2 
 

2.5e-3 ± 0.6e-3 

0.97 
 

2.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_Wt 
 

4 

13 622 
 

500 

0.99 ± 1.3e-3 
 

0.9e-3 ± 0.000 

0.99 ± 2.2e-3 
 

0.9e-3 ± 0.000 

1.0 
 

0.000 

iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_LP 
 

4 

839 266 
 

100 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 
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iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_QP 
 

4 

295 050 
 

100 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 

iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_Wt 
 

4 

634 238 
 

100 

1.0 ± 0.1e-3 
 

0.000 ± 0.000 

0.99 ± 0.4e-3 
 

0.000 ± 0.000 

1.000 
 

0.000 

 

 

All architectures presented in Table 1 exhibit excellent regression coefficients and losses for training 

sets, validation sets and test sets, and this for both models E. coli core29 and iML151520. The MM 

architectures (without neural layers) can compute losses for metabolic constraints (boundary and 

stoichiometry) but cannot be used to make predictions on cross-validation or test sets. The AMN 

architectures can be used to both make predictions (Q2) and compute losses. It is interesting to observe 

the good performances of AMN-Wt when UB training sets are provided. Indeed, while 

counterexamples can be found for which AMN-Wt will not work with EB training sets (cf. Fig. S2), we 

argue in Supplementary Information – AMN-Wt architecture –  that AMN-Wt is able to handle UB 

training sets because the initial inputs (UB values for uptake fluxes) are transformed into suitable exact 

bound values during training. Yet, the consensual weight matrix (Wr in Fig. 1 or Fig. S1) calculated 

during training does not have a direct physical meaning. Weights in Wr arise at branch point 

metabolites that are consumed by at least two reactions (like m1 and m2 in Fig. 1). Consequently, the 

weights should correspond to flux split ratios, for instance, taking the example of Fig. 1, the metabolite 

production flux m1 is spliced into w21m1 and w31m1. We show in Fig. S3, that the flux split ratios are 

conserved for nutrients leading to different metabolite production fluxes if the Michaelis-Menten 

kinetics parameters (Vmax and Km) of the enzymes catalyzing the reactions involved in the split remain 

constant. However, Chubukov et al.31 have shown experimentally that it was not the case (for B. 

subtilis) and different nutrients do provide different ratios. This behavior is due to varying enzyme 

activities, which themselves depend on enzyme concentrations, post-translational modification, and 

gene regulations. Chubukov et al.31 clearly show with experimental evidence that different nutrients 

give rise to different concentrations for many enzymes, implying that nutrients do have an effect on 

gene regulations. 

In classical FBA, all regulations explaining a given flux distribution are completely ignored, and the flux 

distribution computation entirely relies on manually setting bounds on uptake fluxes. Therefore, when 

performing classical FBA, one needs to consider each condition independently from the other, to reach 

different metabolic phenotypes. Similarly, AMNs attempt to take regulations into account in the neural 

layer, while keeping the mechanistic layer for metabolic phenotype computations.  However, unlike in 

FBA, AMNs attempt to learn the relationship between a set of flux bounds (on uptake reactions) and 
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the whole steady-state metabolic phenotype. As a result, AMNs are generalizing this relationship for a 

set of conditions, and not just one as in FBA.  

We note that even though weights do not have a physical meaning, AMN-Wt stills exhibits excellent 

performances, showing that the consensual Wr matrix and the initial V0 vector (computed through a 

neural layer from the upper bound Vin) are performant enough. We also note that the weight issue 

does not arise with AMN-LP and AMN-QP as these architectures do not rely on flux split ratios. 

AMNs can be directly trained on experimental datasets with good predictive power 

To train AMNs on an experimental dataset, we grew E. coli DH5-alpha in 110 different media 

compositions, with M9 supplemented with 4 amino acids as a basis and 10 different carbon sources as 

possibly added nutrients. From 1 up to 4 carbon sources were simultaneously added in the medium at 

a concentration of 0.4 g.L-1 (more details in Methods - Culture conditions). We determined which 

compositions to test by choosing all the 1-carbon source media compositions and randomly picking 

one hundred of the 2-, 3- and 4-carbon sources media compositions (more details in Methods - 

Generation of an experimental training set). The growth of E. coli was monitored in 96-well plates, by 

measuring the optical density at 600nm (OD600) over 24 hours. The raw OD600 was then passed to a 

maximal growth rate determination method, based on a linear regression performed on log(OD600) 

data (more details in Methods - Growth rate determination).  

The experimental dataset was used to train all AMN architectures (-LP, -QP, -Wt). For AMN -LP/-QP we 

used the architecture plotted in Fig. 3, for AMN-Wt we used the architecture of Fig. S1. In all cases the 

mechanistic layer was derived from the stoichiometric matrix of the iML151520 E. coli reduced model 

(cf. Method section - Making metabolic networks suitable for neural computations). For all AMNs 

upper bounds for nutrient uptake fluxes’ upper bounds were provided, as exact values remain 

unknown. Results are provided in Fig. 4. 
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Fig. 4: Benchmarking growth rate predictions by AMNs with experimental measurements. In all panels the experimental 
measurements were carried on E. coli grown in M9 mixed carbon sources (strain DH5-alpha, model iML151520). Training and 
10-fold stratified cross-validation were performed 3 times with different initial random seeds each for 1000 epochs. All points 
plotted correspond to predicted values not present in the training set. This was compiled using all predicted values obtained 
for each cross-validation set. In all cases, means are plotted for both axes (measured and predicted), error bars are standard 
deviations. Supplementary File ‘Data_Fig4.xlsx’ compiles raw results used for this figure (see Data availability). a. Performance 
of the AMN-LP architecture. The neural layer of AMN-LP is composed of an input layer of size 38, an hidden layer of size 500, 
and an output layer of size 550 corresponding to all fluxes and 1083 metabolite shadow prices of a reduced iML1515 model20. 
The mechanistic layer takes as input the 550+1083 outputs of the neural layer and minimizes the loss between measured and 
predicted ‘biomass’ reaction fluxes and the losses of the metabolic network constraints. b. Performance of the AMN-QP 
architecture. The neural layer of AMN-QP is composed of an input layer of size 38, an hidden layer of size 500, and an output 
layer of size 550 corresponding to all fluxes of the iML151520 reduced model. c. Performance of the AMN-Wt architecture. The 
neural layer of AMN-Wt (matrix Wi in Figure S1) is composed of an input layer of size 38, an hidden layer of size 500, and an 
output layer of size 550 corresponding to all fluxes of the iML151520 reduced model, the size of the recurrent Wr matrix of Fig. 
S1 is 550x550.  
 
 

AMNs can be used in a reservoir computing framework to enhance the predictive power of 

traditional FBA solvers 

Once an AMN has been trained on a large dataset of simulated data, we can fix its parameters and 

exploit it in subsequent further learning. As already mentioned in the introduction section, the uptake 

fluxes of E. coli nutrients, as well as their relation to external concentrations, remain largely unknown: 

the quantitative rate for each compound may vary between growth media, unlike in classical FBA 

calculations, where the same upper bound (or zero, if a compound is absent) is used in all cases. This 

is a common flaw of FBA, that is only partially remedied in satFBA18 or mcFBA5, as those relies on 

supplementary knowledge (and additional experimental measurements). To use the architectures of 

Fig. 3, we thus need to first convert nutrient concentrations into uptake fluxes. This is achieved by 

adding a neural layer that precedes the AMN (Fig. 5a). In this architecture the AMN is no longer 

trainable, only the prior neural layer is, and the AMN acts as a reservoir as in reservoir computing32. 

Among the various architectures we benchmarked, we took as a reservoir the AMN-QP of Table 1 trained 

on iML151520 UB dataset.  

The predictive power of our AMN-reservoir was assessed by a regression coefficient R2 = 0.97 (Fig. 5c)  

on training set, and Q2 = 0.76 (Fig. 5b) on a test set built from aggregated validation sets during 10-fold 
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cross-validation. To compare with an ‘out-of-the-box’ FBA approach, we first used an arbitrary value 

for the present compounds, and a zero value for the absent compounds. Applying these values on the 

corresponding uptake fluxes upper bounds, and optimizing the ‘biomass’ reaction flux produced results 

poorly correlated with experimental measurements. To enhance these results, we searched optimized 

upper bound values for uptake fluxes (see Methods - Optimization of uptake fluxes upper bounds in 

FBA). It resulted in a R² = 0.51 performance (Fig. 5f), showing a much weaker fit than our AMN-

reservoir. Overall, our results indicate that AMNs can be used to substantially increase the predictive 

capabilities of FBA without costly experimental work.  

 
 
Fig. 5: Reservoir computing for improving the predictive power of FBA modeling (strain DH5-alpha, model iML151520). a. 
AMN used in reservoir computing. The non-trainable AMN-reservoir (dotted gray box) is the AMN shown in Figure 3.b (AMN-
QP trained on iML1515 with UB bounds with performances given in the second to last row of Table 1) and is connected to a 
prior trainable network which purpose is to compute medium uptake fluxes (Vin) from the concentration (Cmed) of metabolites 
added to medium. Taking as input Vin, the non-trainable reservoir prints out all fluxes including the growth rate. b. 
Performance of the reservoir computing model shown in panel a, in terms of predicted growth rate vs. measured growth rate. 
As in Fig. 4, all points plotted correspond to predicted values not present in the training set. This was compiled using all 
predicted values obtained for each validation set in 10-fold stratified cross validation repeated 3 times with different initial 
random seeds. c. Performance of the AMN-reservoir with training points instead of predictions. All points plotted correspond 
to computed values in the same cross-validation scheme as in panel b, using the points of the training sets instead of validation 
sets. d. Performance of Cobrapy22 when extracting Vin from panel b predictions to be used as inputs. e. Performance of 
Cobrapy22 when extracting Vin from panel c computations to be used as inputs. f. R² between measured growth and computed 
growth by Cobrapy22, using different scalers on Cmed to compute Vin. Here, Cobrapy22 was run taking as input upper bound 
uptake fluxes for added metabolites in medium. Intake flux values were set to , and then scaled (0 when the metabolite was 
absent in the medium and 1*scaler when it was present - see section Method, Optimization of uptake fluxes upper bounds in 
FBA, for details on optimization procedure) 
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Discussion and conclusion 

In this study, we showed how a neural network approach, with metabolic networks as a learning 

architecture, can be used to address metabolic modeling problems. Previous work on RNNs and PINNs 

for solving constrained optimization problems was re-used and adapted to develop three models 

(AMN-Wt, -LP and -QP) enabling gradient backpropagation within metabolic networks. The models 

exhibited excellent performances on FBA generated training sets (Table 1). We also demonstrated the 

models could directly be trained on an experimental E. coli growth rate dataset with good predictive 

abilities (Fig. 4). For improved scalability and adaptability, we trained an AMN-reservoir on a large FBA 

generated training set, and used the reservoir to improve FBA predictions on the experimental 

dataset.  Figure 5 shows that our AMNs far outperform the results obtained by the simplex-based 

Cobrapy22 FBA solver. 

Determining uptake fluxes is a core experimental work required for making FBA predictions realistic. 

Here, we developed approaches that get rid of such needs for reaching plausible fluxes distributions. 

We did so by backpropagating the error on the growth rate, to find complex relationships between the 

medium concentrations and the medium uptake fluxes. To this end, we demonstrated the high 

predictive power of AMNs, and their re-usability in classical FBA approaches. Indeed, FBA developers 

and users may now make use of our AMN-reservoir method for relating medium uptake fluxes to 

growth medium concentrations. In this regard, Supplementary File ‘Data_Fig5.xlsx' (see Data 

availability) gives uptake fluxes for the metabolites used in our benchmarking work with E. coli (Fig. 5), 

these upper bounds for uptake fluxes that can directly be used by Cobrapy22 to reproduce Fig. 5d and 

5e. 

Making FBA suitable for training like we have done in this paper opens the door to improve FBA models. 

For instance, in addition to uptake fluxes, AMNs could also be used to search for the coefficients of the 

biomass reaction appropriate to best fit measurements. So far, these coefficients are derived based on 

literature, but also using experimental data: growth rate, flux, and macromolecular fractions measures 

can help finding optimal coefficients20. However, these experiments are limited in number and 

performed once for the reaction parametrization, in a single experimental setup, meaning these 

coefficients are hardly extrapolated to all possible conditions. Some studies already underline this issue 

and attempt to efficiently integrate experimental data in the biomass reaction parametrization33. With 

AMNs, a trainable layer containing the reaction’s coefficients could be added, adapting the biomass 

reaction to any experimental setup.  
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Another task that AMNs could handle is gene regulation which is not explicitly taken into account in 

classical FBA. Here a set of genes (including enzymes) corresponding to operons could be encoded via 

trainable layers either turned on or off.  Such AMNs could be trained on a variety of experimental 

inputs (wider than the carbon source composition as shown in this study) to grasp the complexity of 

the regulation processes happening in the cell to better explain the end-point metabolic steady-state 

phenotype of the organism. 

Returning back to the curse of dimensionality issue mentioned in the introduction, we systematically 

searched training set sizes for which ‘black-box’ ML methods would yield performances similar to our 

AMN hybrid models. To that end, we trained a simple dense ANN model on training sets of increasing 

sizes. Results obtained with E. coli core29 show that at least 500,000 entries are needed in the training 

sets to reach losses below 10-1 (cf. in Supplementary information – AMN and ANN training set sizes 

and Fig. S7), which according to Table 1 are still 2 orders of magnitude higher than all AMNs losses 

trained on only 1000 entries. This clearly demonstrates the capacity of hybrid models to reduce 

training set sizes by constraining the search space through the mechanistic layer. 

Beyond FBA and black-box ML improvements, AMNs can also be exploited for industrial applications. 

Indeed, since arbitrary objective functions can be designed and AMNs can be directly be trained on 

experimental measurements, AMNs can also be used to optimize media for the bioproduction of 

compounds of interest or to find the best gene deletion and insertion strategy in typical metabolic 

engineering projects. In this latter case, a trainable 0/1 layer turning on or off reactions can be added 

prior to the mechanistic layers of our AMNs. Another potential application is the engineering of 

microorganism-based decision-making devices for the multiplexed detection of metabolic biomarkers 

or environmental pollutants. Here, AMNs could be used to search for internal metabolite production 

fluxes enabling one to differentiate positive samples containing biomarkers or pollutants from negative 

ones. Such a device has already been engineered in cell-free systems34, and AMNs could be used to 

build a similar device in vivo by adding a trainable layer after the mechanistic layer which purpose 

would be to select metabolite production fluxes that best split positive from negative samples. 

 

Methods 

Making metabolic networks suitable for neural computations 

The set-up of our AMNs requires all reactions to be unidirectional, that is, the solutions must show 

positive-only fluxes (which is not guaranteed by usual genome-scale metabolic models). To split 
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reactions of a given metabolic network into separate forward and reverse reactions, we wrote a 

standardization script that loads an SBML model into Cobrapy22 and screens for all two-sided reactions, 

then duplicating them into two separate reactions; and writes a new version of the model with bi-

directional reactions split into separate forward and backward reactions. To avoid confusion, we add 

a suffix for these reactions, either “for” or “rev” respectively designating the original forward reaction 

and the reversed reaction. The uptake reactions were also duplicated, even if encoded as one-sided, 

and their suffix was set to “i” for inflow reactions (addition of matter to the system), and “o” for 

outflow reactions (removal of matter from the system). 

As detailed in the next subsection, our unidirectional models are used to build training sets. The 

duplicated iML151520 model is quite large, comprising 3682 reactions and 1877 metabolites. A 

substantial number of reactions in that model have a zero flux for many different media and it is 

unnecessary to keep these reactions during the training process. Prior training, we therefore generate 

a reduced model by removing zero flux reactions along with the metabolites no longer contributing to 

any reactions. Using that procedure, we were able to reduce iML151520 model to only 550 reactions 

and 1083 metabolites. 

Generation of training sets with FBA 

Our reference flux data are obtained from FBA simulations, using the GNU Linear Programming Kit 

(‘GLPK’, a simplex-based method) on Cobrapy22, with different models of different sizes. Throughout 

this paper, when ‘reference data’ is mentioned, it refers to data computed with this method. 

Reference data for metabolic flux distributions were generated using models downloaded from the 

BiGG database21. The models were used to generate data using Cobrapy22 following a precise set of 

rules. First, we identified essential uptake reactions for the models we used (E. coli core29 and 

iML151520). Precisely, if one of these reactions has its flux upper bound set to zero, the ‘biomass’ 

reaction optimization is impossible, even if all other uptake fluxes bounds are set to a high value, e.g., 

1000. In other words, we identified the minimal uptake fluxes enabling growth according to the 

models. During reference data generation, the upper bounds on these reactions were set to 10. For E. 

coli core29 we found 7 of such obligate reactions (for the uptake of CO2, H+, H20, NH4, O2, Phosphate, 

and Glycerol as the carbon source). For iML151520 we had the same 7 obligate reactions and additional 

salt and ions uptake reactions (for the uptake of Fe2+, Fe3+, Mn2+, Zinc, Mg, Calcium, Ni2+, Cu2+, 

Selenate, Co2+, Molybdate, Sulfate, K+, Sodium, Chloride, Tungstate, Selenite). With iML151520, we 

also added as obligate reactions the uptake of four amino acids (Alanine, Proline, Threonine and 
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Glycine) in order to be consistent with our experimental training set where the four amino acids were 

systematically added to M9 (cf. next subsection). 

To generate different media compositions, we added to the obligate reactions, a set of variable uptake 

reactions. For the E. coli core model29 we added 13 variable uptake reactions (for the uptake of Acetate, 

Acetaldehyde, Oxoglutarate, Ethanol, Formate, Fructose, Fumarate,  Glutamine, Glutamate, Lactate, 

Malate, Pyruvate, and Succinate). For each generated medium, variable uptake reactions were 

selected following a binomial distribution B(n, p) with n=13 and p = 0.5, p being a tunable parameter 

related to the ratio of selected reaction. Consequently, the mean number of selected variable uptake 

reactions was n x p = 6.5. Next for each selected reaction, the upper bound value of the reaction flux 

was drawn randomly between 2 and 10. For the iML151520 model, to limit the combinatorial search 

space, the selected variable uptake reactions were those of the experimental training set and 

consequently between 1 and 4 variable uptake reaction were added (cf. next subsection). The upper 

bound values for each selected variable reaction were chosen randomly between 0 and 2.2 (0 

excluded). The 2.2 threshold was chosen to produce predicted growth rates that were in the range of 

those observed experimentally. 

After generating the set of media for E. coli core29 and iML151520 we ran Cobrapy22 for each medium 

with FBA and recorded the steady state value for all fluxes including the growth rate (flux of the 

‘biomass’ reaction).  These rates were used as a training set for all models presented in Table 1. For all 

UB training sets, the variable uptake flux values were those used by Cobrapy22 to generate the training 

set. For EB training sets, the variable uptake flux values were those calculated by Cobrapy22 at steady 

state. 

Generation of an experimental training set 

Ten carbon sources (Ribose, Maltose, Melibiose, Trehalose, Fructose, Galactose, Acetate, Lactate, 

Succinate, Pyruvate) were picked for being the variables of our training sets. These could ensure 

observable growth as a sole carbon source with a concentration of 0.4 g.L-1 in our M9 preparations. 

The selected carbon sources enter different parts of the metabolic network: 6 sugars enter the upper 

glycolysis pathway, and 4 acids enter the lower glycolysis pathway or the TCA cycle. With a binary (i.e., 

presence or absence of each carbon source) approach when generating the combinations to test for 

making the experimental training set, we generated all possible combinations of 1, 2, 3 or 4 carbon 

sources simultaneously present in the medium. Naturally, we picked all 1-carbon source media 

combinations for experimental determination (only 10 points). Then, we randomly selected 100 more 

combinations to experimentally determine, by randomly picking 20 points from the 2-, 40 points from 
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the 3- and 40 points from the 4-carbon source combinations sets. The python scripts to generate these 

combinations and pick the ones for making our experimental training set are available in our Github 

package (see Codes availability section). After picking the combinations to test, we experimentally 

determined the maximum specific growth rate of E. coli for each combination of carbon sources in M9 

(see next two subsections). The mean over replicates for each media composition was computed as 

the corresponding growth rate value to make the final experimental training set (cf. Method - Growth 

rate determination). 

Culture conditions 

The base medium for culturing E. coli DH5-α (DH5a) was a M9 medium prepared with those final 

concentrations: 100µM CaCl2, 2mM MgSO4, 1X M9 salts (3 g.L-1 KH2PO4, 8.5 g.L-1 Na2HPO4 2H2O, 0.5 

g.L-1 NaCl, 1g.L-1 NH4Cl), 1X trace elements (15 mg.L-1 Na2EDTA 2H20, 4.5 mg.L-1 ZnSO4 7H2O, 0.3 mg.L-

1 CoCl2 6H2O, 1 mg.L-1 MnCl2 4H2O, 1 mg.L-1 H3BO3, 0.4mg.L-1 Na2MoO4 2H20, 3 mg.L-1 FeSO4 7H2O, 

0.3 mg.L-1 CuSO4 5H2O; solution adjusted at pH=4 and stored at 4°C), 1 mg.L-1 Thiamine-HCl and 

0.04g.L-1 amino acid mix so that each amino acid (L-Alanine, L-Proline, L-Threonine, Glycine) was at a 

final concentration of 5 mg.L-1 in the medium. The additional carbon sources that could be added were 

individually set to a final concentration of 0.4 g.L-1. The pH was adjusted at 7.4 prior to a 0.22µm filter 

sterilization of the medium. Pre-cultures were recovered from glycerol -80°C stocks, grew in Luria-

Bertani (LB) broth overday, then used as inoculate in 200µL M9 (supplemented with variable 

compounds) in 96 U-bottom wells plates overnight, then passed to a replicate of the plate on the next 

day. The temperature was set to 37°C in a plate reader (BioTek HTX Synergy), with continuous orbital 

shaking, allowing aerobic growth for 24 hours. A monitoring every 10 minutes of the optical density at 

600 nm (OD600) was performed. A figure for summarizing the experimental workflow is available in 

Supplementary Fig. S6. 

Growth rate determination 

The maximal growth rate was determined by sliding a window of 1 hour-size, performing a linear 

regression on the log(OD600) data in each window. We then retrieve the maximum specific growth rate 

as the maximum regression coefficient over all windows. If several growth phases are visible, one can 

omit a part of the growth curve for the maximal growth rate determination (for this study we always 

retrieved the maximal growth rate on the first growth phase, so as we are certain that the media 

contains all added carbon sources). 8 replicates for each medium composition were performed (on a 

single column of a 96-well plate). Outliers were manually removed after visual inspection of the growth 

curves or clear statistical deviation of the computed growth rate from the remaining replicates. The 
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number of preserved replicates range from 2 to 8, with an average of 4.6 (± 1.6) replicates per medium 

composition. The mean and standard deviations over replicates were computed to be used for training 

AMNs and making figures. The code for processing raw data and all the raw data itself is available in 

the Github package (see Code availability and Data availability sections). 

Loss functions derivation 

Loss functions are necessary to assess the performances of all MM (MM-LP, -QP) and AMN 

architectures (AMN-Wt, -QP, and -LP) and also to compute the gradients of the QP solvers.  

To perform the derivation, we assume we have a metabolic model with 𝑛 reactions and 𝑚 

metabolites. Let 𝑉 = (𝑣1, … , 𝑣𝑛)𝑇 be the reaction flux vector and 𝑆 the 𝑚 ×  𝑛 stoichiometric matrix 

of the model. We assume some metabolites can be imported in the model, with each a corresponding 

uptake reaction. Let 𝑉𝑖𝑛  be the vector of 𝑛𝑖𝑛upper bounds (or exact values) for these uptake reactions, 

and let 𝑃𝑖𝑛  the 𝑛𝑖𝑛  ×  𝑛 projection matrix such that 𝑉𝑖𝑛 = 𝑃𝑖𝑛𝑉. We also assume some reaction fluxes 

have been experimentally measured, let 𝑉𝑜𝑢𝑡 be the vector of measured values. With 𝑃𝑜𝑢𝑡  the 

𝑛𝑜𝑢𝑡  ×  𝑛 projection matrix for measured fluxes, 𝑉 is calculated solving the following quadratic 

program (QP): 

 
𝑚𝑖𝑛( ‖𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡‖

2)                                                                                                                                             (1) 
 
subjected to: 
 
𝑆 𝑉 = 0 
𝑃𝑖𝑛𝑉 ≤ 𝑉𝑖𝑛 
𝑉 ≥ 0 
 

For each solution (𝑉) of eq. (1), four losses apply. The first is related to the fit to the reference 

targeted values and the three additional losses are related to the boundary, stoichiometric and flux 

positivity constraints of the metabolic network. 

 

The first loss is simply the Mean Square Error (MSE) between predictions (𝑉) and 

measurements(𝑉𝑜𝑢𝑡):  

𝐿1 =
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉 − 𝑉𝑜𝑢𝑡 ‖

2           (2) 

 

The second loss is linked to the network stoichiometric constraint (𝑆 𝑉 = 0), which in its normalized 

form (loss per constraint) is: 

𝐿2 =
1

𝑚
 ‖𝑆𝑉‖2              (3) 
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The third loss evaluates how well boundary constraints are respected (𝑃𝑖𝑛𝑉 ≤  𝑉𝑖𝑛): 

𝐿3 =  
1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛 )‖2           (4) 

 

The last loss enforces all fluxes to be positive: 

𝐿4 =  
1

𝑛
‖𝑅𝑒𝐿𝑈(−𝑉)‖2            (5) 

We note that when exact bound are provided, 𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛, and 𝐿3 becomes obsolete as the values of 

𝑉 corresponding to 𝑉𝑖𝑛 are not updated by the LP/QP solvers and AMN programs.  

The total loss (𝐿) is calculated as the mean sum of the previous losses: 

𝐿 = (𝐿1  + 𝐿2 + 𝐿3 + 𝐿4) / 4𝑁           (6) 

where 𝑁 is the sample batch size.  

𝐿 can also be computed as the MSE between the vectors  

(𝑃𝑜𝑢𝑡𝑉,
‖𝑆𝑉‖

√𝑚
,

‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖

√𝑛𝑖𝑛
,

‖𝑅𝑒𝐿𝑈(−𝑉)‖

√𝑛
) and (𝑉𝑜𝑢𝑡 , 0, 0, 0)        (7) 

QP solver  

The QP solver solves the quadratic program given by eq. (1) in the Loss functions derivation subsection. 

While the QP system can be solved by a simplex algorithm, solutions can also be approximated 

calculating 𝑉 minimizing the loss of eq. (6): 

𝑚𝑖𝑛 (
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉 − 𝑉𝑜𝑢𝑡 ‖

2 +  
1

𝑚
‖𝑆𝑉‖2 +  

1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛 )‖2 +

1

𝑛
 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)   (8) 

 
vector 𝑉 can thus be found solving: 
 

𝜕 (
1

𝑛𝑜𝑢𝑡
‖𝑃𝑜𝑢𝑡𝑉−𝑉𝑜𝑢𝑡 ‖

2 + 
1
𝑚

‖𝑆𝑉‖2+ 
1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖2+

1
𝑛

 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)

𝜕𝑉
= 0                    (9) 

 
𝑉 satisfying (3) can be found iteratively: 
 
𝑉(𝑡+1) = 𝑉(𝑡) + 𝑑𝑡 𝛻𝑉          (10) 
𝑉(0) = 𝑃𝑖𝑛

𝑇 𝑉𝑖𝑛 

 
where 𝑡 is the iteration number, 𝑑𝑡 the learning rate, and: 
 

𝛻𝑉 =
2

𝑛𝑜𝑢𝑡
 𝑃𝑜𝑢𝑡

𝑇 (𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡) +
2

𝑚
 𝑆𝑇𝑆𝑉 + 

2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) −
2

𝑛
 𝐷𝑉  𝑅𝑒𝐿𝑈(−𝑉)          (11) 

 

where  𝐷𝑖𝑛 =
𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)

𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)
 and  𝐷𝑉 =  

𝑅𝑒𝐿𝑈(−𝑉)

𝑅𝑒𝐿𝑈(−𝑉)
 using an Hadamard division: 

𝐴

𝐴
= (

𝑎𝑖𝑗

𝑎𝑖𝑗
)    (= 0 when 

𝑎𝑖𝑗 = 0) 
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When exact bounds are provided (EB case), the gradient becomes: 
 

𝛻𝑉 = (
2

𝑛𝑜𝑢𝑡
 𝑃𝑜𝑢𝑡

𝑇 (𝑃𝑜𝑢𝑡 𝑉 − 𝑉𝑜𝑢𝑡)  +
2

𝑚
 𝑆𝑇𝑆𝑉 −

2

𝑛
 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉))  ⨀ (1𝑛×1 − 𝑃𝑖𝑛

𝑇 1𝑛𝑖𝑛×1)                      (12) 

where ⨀ stands for Hadamard product and 1𝑛×1 (1𝑛𝑖𝑛×1) is a constant (=1) vector of dimension 
𝑛 (𝑛𝑖𝑛) 

 
Details on gradient calculations can be found in the Supplementary Information – section QP solver 

equations. 

 

LP solver  

When uptake fluxes are known (EB method), the linear optimization problem solved with FBA for a 

metabolic network with n fluxes and m metabolites can be written as: 

𝑀𝑎𝑥: 𝑐𝑇𝑉           (13) 

𝑠𝑡: 
𝑆𝑉 = 𝑏                                                                           
𝑉 ≥ 0 

 
and its dual form:    
       
𝑀𝑖𝑛: 𝑏𝑇𝑀 

 𝑠𝑡: 𝑆𝑇𝑀 ≤  𝑐𝑇                                                                         (14) 
 

In the case where only uptake fluxes upper bounds are known (UB method) it can be written as: 

𝑀𝑎𝑥: 𝑐𝑇𝑉 

𝑠𝑡:  𝑆𝑖𝑞𝑉 ≤  𝑏 𝑎𝑛𝑑 𝑆𝑒𝑞𝑉 = 0                                         (15) 

𝑉 ≥ 0 

 

its dual form being eq. (14). 

In eqs. (13-15), V is the vector of fluxes, M its dual, referred to as metabolite shadow prices, S the 

stoichiometric matrix, b a vector of dimension m with bi corresponding to input fluxes of medium 

metabolites and c the objective vector of dimension n. In the UB case, Siq is the stoichiometric matrix 

involving only internal reactions and Seq is the stoichiometric matrix with uptake reactions. Both 

matrices that can be derived from S are given in Figs. S3 and S4 in Supplementary Information. Keeping 

in mind that b takes positive values only for metabolites transported by uptake reactions, consequently 

bi = 0 for all internal metabolites. Using the notation of Fig. 1 we note that 𝑏 = 𝑃𝑚→𝑣𝑉0, where V0 is 

the vector of uptake fluxes. In this work c is a null vector with 1 for the ‘biomass’ reaction flux. 
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The usual method to solve this linear programming problem is the Simplex algorithm35, which is fast 

and scalable. But simplex has no gradient, nor backpropagation compatibility. Thus, it cannot be 

integrated in AMNs and in any training procedure.  

The optimization-RNN proposed by Yang et al.23 is an alternative to solve LP problems, as this method 

is compatible with backpropagation. The general solving happens by iteratively updating V the vector 

of all reaction fluxes and M the dual vector of shadow prices using the following gradients: 

𝛻𝑉 = ((𝐼 − 𝑃)[ 𝑐𝐹𝐵𝐴 − 𝑆𝑖𝑞
𝑇𝑅𝑖𝑞]  − 𝑄𝑅𝑖𝑛𝑡)  

𝛻𝑀 =  
1

2
(𝑅𝑖𝑞  − 𝑀)                        (16) 

 

where: 

𝑅𝑖𝑞 =  𝑅𝑒𝐿𝑈(𝑀 + 𝑆𝑖𝑞𝑉 − 𝑑)  

𝑅𝑒𝑞 =  𝑆𝑒𝑞𝑉 − 𝑏 

𝑄 =  𝑆𝑒𝑞
𝑇 (𝑆𝑒𝑞 𝑆𝑒𝑞

𝑇 )
−1

 

𝑃 = 𝑄 𝑆𝑒𝑞  

 

Further details on this derivation and in particular the form of the matrices 𝑆𝑒𝑞 , 𝑆𝑖𝑞  and vectors 𝑏, 𝑑 in 

the EB and UB cases can be found in the Supplementary Information – section LP-solver equations. 

The method converges for both EB and UB cases to the global optimum independently of the 

initialization. The learning rate was arbitrarily fixed to 0.3 for both EB and UB. 

For both Fig. 2d and Fig. 2e the results were obtained with 100 simulations and 106 iterations. The 

reference values were obtained using Cobrapy22 and the E. coli core model29. Each replicate was 

generated with a different medium computed with the training set generation method (see Method 

section ‘Training Set Generation’). 

AMN architectures and parameters 

As listed in Table 1, we propose three AMNs architectures: AMN-Wt, AMN-LP and AMN-QP. The AMNs 

are run with training sets with exact medium values given at steady state (EB) or only upper bound 

values (UB). The architecture of RNN-Wt is shown in Fig. 1e and detailed in Supplementary Information 

– AMN-Wt architecture. The architectures of AMN-LP/QP are shown in Fig. 3a.  All ANMs take as input 

a vector of fluxes of size 𝑛𝑖𝑛 for medium uptake fluxes (Vin), then transforms via a dense neural network 

the input vector into an initial vector of size n for all fluxes (V0), which is refined through an iterative 

procedure computing 𝑉(𝑡+1) from 𝑉(𝑡). With all AMNs a 𝑛𝑖𝑛 x 𝑛 weight matrix transforming Vin to V0 is 

learned during training, and we name this transforming layer the neural layer. With AMN-LP/QP,  𝑉(𝑡) 
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is iteratively updated in a mechanistic layer by the gradient (𝛻𝑉) of LP/QP solvers (cf. previous 

subsections in Method). With AMN-Wt, the mechanistic layer computes 𝑉(𝑡+1) from 𝑉(𝑡)using the 

transformations shown in Supplementary Information – Fig. S1, which include a 𝑛 x 𝑚 weight matrix 

(𝑊𝑟). That weight matrix is learned during training. With all AMN architectures, the values of V 

corresponding to Vin are not updated in the neural or mechanistic layers when training with exact 

values for medium uptake (EB training sets). 

For all architecture, we use the Mean Squared Error (MSE, eq. (2)) on all fluxes as the objective function 

to minimize while learning. In all AMN architectures we add to the MSE loss function, the terms 

corresponding to the 3 losses derived from the constraints of the metabolic model (eqs. (3-5)). 

The parameters used when training AMNs can be decomposed into two categories: 

1. Simulated data parameters. As described in the previous section (Generation of Training Sets 

with FBA), we can tune the size of the training set to be generated. We can also modify the mean 

number of selected variable intake medium fluxes, and the number of levels (i.e., the resolution) 

of the fluxes. We can also modify the actual variable intake medium flux list, but this modifies 

the architecture of the model (initial layer size), so we kept the same list for each model in the 

present work. 

2. Learning parameters. During learning on simulated data, an AMN has a small set of parameters 

to tune: the number and size of hidden layers, the number of epochs, the batch size, the dropout 

ratio and the number of folds in cross-validation. 

 

Optimization of uptake fluxes upper bounds in FBA 

The goal of this optimization was to find the best scaler for fluxes to best match experimentally 

determined growth rates, by using ‘out-of-the-box’ FBA, simply informing the presence or absence of 

the flux according to the experimental medium composition. The optimal scaler was found using the 

Cobrapy software package22 by simply searching for the maximum R² between experimental and FBA-

predicted growth rates. The plot showing how the R² behaves as a function of the scaler is shown in 

Fig. 5f.  
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Data availability 

All raw and processed experimental data can be found in our Github repository at 

https://github.com/brsynth/amn_release/tree/main/Dataset_experimental. Some supplementary 

files (including ‘Data_Fig4.xlsx’ and ‘Data_Fig5.xlsx’) and all other datasets used to produce figures of 

this study can be also found in our Github repository, at 

https://github.com/brsynth/amn_release/tree/main/Result. 

 

Code availability 

All codes are available within a documented GitHub repository at 

https://github.com/brsynth/amn_release. The GitHub repository includes tutorials in Google Colab 

notebooks. All AMN codes make use of Cobrapy22, numpy36, scipy37, Pandas38, tensorflow39, sci-kit 

learn40 and keras41 libraries. 
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