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Recently, the frequency of natural and environmental disasters has increased signicantly, causing constant changes on the Earth's surface. Synthetic Aperture Radar (SAR) data have been proved to be useful for operational change monitoring tasks. The multiscale framework presented in this paper aims at detecting and analyzing changes using SAR image time series composed of large-size images. Spatio-temporal changes are initially detected at the subimage scale analysis stage to determine regions and image acquisition dates related to the change occurrence. Detailed changes are then identied at the pixel scale analysis stage between selected acquisitions at each recognized region. This framework was used for ood monitoring over a large area along the central coast of Vietnam (from Thua Thien Hue province to Quang Nam province). We exploited a Sentinel-1 image time series acquired during two rainy seasons and typhoon seasons in the Western Pacic (from September to December of the two years 2017 and 2018). The proposed framework detected ooded areas with a high overall accuracy of 90.4% and could analyze dierent types of changes that occurred in this time series, i.e. dirac, periodic, chaotic changes, and temporal stability.

Introduction

The Earth's surface is aected by dierent natural and environmental disasters, such as volcanic eruptions, earthquakes, tsunamis, oods, deforestations, forest res, etc.

These catastrophic events are also major threats to human life and the world economy [START_REF] Guo | Understanding global natural disasters and the role of earth observation[END_REF]. The development of Earth observation satellites has allowed the acquisition of a large amount of information about the Earth's surface. Synthetic Aperture Radar (SAR) images, with the independence of light and weather conditions, have been widely exploited as an ideal tool for studying natural hazards and environmental problems [START_REF] Hu | Detecting seasonal landslide movement within the cascade landslide complex (washington) using time-series sar imagery[END_REF], [START_REF] Mason | Automatic near real-time selection of ood water levels from high resolution synthetic aperture radar images for assimilation into hydraulic models: A case study[END_REF], [START_REF] Peltier | Assessing the reliability and consistency of InSAR and GNSS data for retrieving 3D-displacement rapid changes, the example of the 2015 Piton de la Fournaise eruptions[END_REF], [START_REF] Belenguer-Plomer | Burned area detection and mapping using sentinel-1 backscatter coecient and thermal anomalies[END_REF], [START_REF] Reiche | Improving near-real time deforestation monitoring in tropical dry forests by combining dense sentinel-1 time series with landsat and alos-2 palsar-2[END_REF]). SAR image time series (ITS) densely and regularly provided by new generation satellites (Sentinel-1, for instance) are often large datasets with images of high quality, i.e., high resolution and large coverage (large-size images), short repeat cycles (large number of images) and multipolarization (dual-pol/quad-pol data), that require robust algorithms for big data processing. The temporal evolution analysis of objects of interest from repetitive SAR acquisitions allows natural and environmental hazard characterization [START_REF] Atzori | Insar fullresolution analysis of the 2017-2018 m>6 earthquakes in mexico[END_REF], [START_REF] Alpers | Oil spill detection by imaging radars: Challenges and pitfalls[END_REF], [START_REF] Giustarini | Flood hazard mapping combining hydrodynamic modeling and multi annual remote sensing data[END_REF], [START_REF] Le | Multitemporal insar coherence change analysis: Application to volcanic eruption monitoring[END_REF]), damage assessment [START_REF] Monti-Guarnieri | Coherent change detection for multipass sar[END_REF], Le et al. (2019b)), post-disaster recovery monitoring [START_REF] Solari | Fast detection of ground motions on vulnerable elements using sentinel-1 insar data[END_REF], and also the improvement of near-real-time disaster forecasts (e.g., ood forecasts in [START_REF] Hostache | Near-real-time assimilation of SAR derived ood maps for improving ood forecasts[END_REF]).

In this context, the ecient exploitation of information provided by SAR ITS for change and deformation detection and monitoring is, therefore, an attractive issue. Indeed, diverse approaches to change detection and analysis using SAR ITS have been proposed recently in the literature. Classical detectors based on log-ratio [START_REF] Rignot | Change detection techniques for ERS 1 SAR data[END_REF], statistical similarity measure [START_REF] Inglada | A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis[END_REF] developed Preprint submitted to Elsevier for change detection between a pair of SAR images have been extended to multitemporal SAR images for both single-and multi-polarization [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF], [START_REF] Quin | MIMOSA: An automatic change detection method for SAR time series[END_REF], [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF], Le et al. (2015a), Le et al. (2015b)). Several approaches provide a general view of the temporal variation over observed areas via a symmetric matrix containing change information between all possible image pairs in the time series. In [START_REF] Atto | Multidate divergence matrices for the analysis of SAR image time series[END_REF], a Multi-Date Divergence Matrix (MDDM) consisting of dissimilarity between wavelet and curvelet features of each image (or subimage) pair was built for the whole ITS to identify dates when changes occurred. Spatial changes were then detected between images of these dates. The framework proposed in [START_REF] Le | Adaptive multitemporal SAR image ltering based on the change detection matrix[END_REF] aims at building a Change Detection Matrix (CDM) for each pixel stack of the time series, exhaustively. Changes detected in the CDM are results of similarity tests between every two dates. The NORCAMA [START_REF] Su | NORCAMA: Change analysis in sar time series by likelihood ratio change matrix clustering[END_REF] computes a Change Criterion Matrix (CCM) using likelihood ratio test at each pixel position. Then changes detected in CCM are separated into some types by clustering and recognizing classication steps.

In this paper, we focus on the detection of changes induced by ood events. For ood detection and monitoring, in situ methods can obtain highly accurate assessments. However, they have limitations due to the high costs of implementation, the dependence on external factors, and the diculty in undertaking at a large scale [START_REF] Kussul | Flood Monitoring from SAR Data[END_REF].

Remote sensing based methods (i.e., airborne or spaceborne observations) can deal with large ooded areas for continuous monitoring [START_REF] Kuenzer | Flood mapping and ood dynamics of the mekong delta: Envisat-asar-wsm based time series analyses[END_REF]. Numerous studies on ood monitoring have used optical data [START_REF] Ahamed | A modis-based automated ood monitoring system for southeast asia[END_REF], [START_REF] Chignell | Multi-temporal independent component analysis and landsat 8 for delineating maximum extent of the 2013 colorado front range ood[END_REF], [START_REF] Wang | An ecient method for mapping ood extent in a coastal oodplain using landsat tm and dem data[END_REF], [START_REF] Ticehurst | The strengths and limitations in using the daily modis open water likelihood algorithm for identifying ood events[END_REF]) and/or SAR data [START_REF] Amarnath | An evaluation of ood inundation mapping from modis and alos satellites for pakistan[END_REF], [START_REF] Clement | Multi-temporal synthetic aperture radar ood mapping using change detection[END_REF], [START_REF] Boni | A prototype system for ood monitoring based on ood forecast combined with cosmo-skymed and sentinel-1 data[END_REF], [START_REF] Tsyganskaya | Detection of temporary ooded vegetation using sentinel-1 time series data[END_REF], [START_REF] Landuyt | Flood mapping based on synthetic aperture radar: An assessment of established approaches[END_REF]). The high cloud cover at ooded areas, particularly in rainy seasons, often obscures the ground observations from optical images. Thus, SAR images are the most suitable data for this task. Overall, among the main algorithms for water detection, such as backscatter based thresholding approaches [START_REF] Chini | A hierarchical split-based approach for parametric thresholding of sar images: Flood inundation as a test case[END_REF][START_REF] Manjusree | Optimization of threshold ranges for rapid ood inundation mapping by evaluating backscatter proles of high incidence angle sar images[END_REF], [START_REF] Mason | Detection of ooded urban areas in high resolution synthetic aperture radar images using double scattering[END_REF], [START_REF] Martinez | Mapping of ood dynamics and spatial distribution of vegetation in the amazon oodplain using multitemporal sar data[END_REF], [START_REF] Martinis | Towards operational near real-time ood detection using a split-based automatic thresholding procedure on high resolution terrasar-x data[END_REF]), classication based approaches (including pixel-based [START_REF] Chapman | Mapping regional inundation with spaceborne l-band sar[END_REF], Manjusree et al. ( 2012)), object-oriented [START_REF] Martinis | Unsupervised extraction of ood-induced backscatter changes in sar data using markov image modeling on irregular graphs[END_REF][START_REF] Evans | Using alos/palsar and radarsat-2 to map land cover and seasonal inundation in the brazilian pantanal[END_REF]), region growing [START_REF] Wan | Automatic extraction of ood inundation areas from sar images: a case study of jilin, china during the 2017 ood disaster[END_REF][START_REF] Marti-Cardona | Wetland inundation monitoring by the synergistic use of envisat/asar imagery and ancilliary spatial data[END_REF]), and fuzzy classication [START_REF] Martinis | A fully automated terrasar-x based ood service[END_REF], [START_REF] Twele | Sentinel-1-based ood mapping: a fully automated processing chain[END_REF])), change detection based approaches [START_REF] Giustarini | A change detection approach to ood mapping in urban areas using terrasar-x[END_REF], [START_REF] Schlaer | Flood detection from multi-temporal sar data using harmonic analysis and change detection[END_REF], [START_REF] Clement | Multi-temporal synthetic aperture radar ood mapping using change detection[END_REF]), the thresholding methods are the most widely used. Based on the backscatter signal, these methods separate a water surface (with low intensities/ amplitudes) from a non-water one (with high intensities/ amplitudes) by using a predened threshold value. On a scene composed of urban areas and suburbs, the threshold selection is more challenging. In the case of oods, in sparsely populated areas, the backscatter values decrease due to radar returning from water bodies. However, in densely built areas, radar backscatter values increase because of double bounce scattering between buildings and water surface. Therefore, these two areas should be discriminated by user analysis and two dierent threshold values should be selected. [START_REF] Chini | Sentinel-1 insar coherence to detect oodwater in urban areas: Houston and hurricane harvey as a test case[END_REF] addressed this issue by taking advantage of the InSAR coherence feature to detect oodwater in urban areas.

In general, almost all recent approaches addressing the Earth surface change detection and analysis using SAR ITS have focused on detecting either spatial changes [START_REF] Quin | MIMOSA: An automatic change detection method for SAR time series[END_REF] or temporal changes [START_REF] Colin-Koeniguer | Colored visualization of multitemporal SAR data for change detection: issues and methods[END_REF]. Few approaches have devoted eort to determine both spatial and temporal changes and the analysis of their nature. However, they might not be appropriate when dealing with images covering a large area, but where changes only occur in a small region [START_REF] Atto | Multidate divergence matrices for the analysis of SAR image time series[END_REF], or with a big dataset as they were tested on small ones (Le et al. (2015b), [START_REF] Su | NORCAMA: Change analysis in sar time series by likelihood ratio change matrix clustering[END_REF]). Therefore, a method is lacking that would exploit the information provided by a long SAR ITS composed of large-size images to identify spatio-temporal changes. In this study, we propose a framework that tackles this issue. The proposed approach is a multiscale processing strategy for a change analysis based on the CDM method (Le et al. (2015b)) suited to handle a long SAR ITS covering a large study area, which was briey introduced in [START_REF] Le | Change detection in multitemporal sar images using a strategy of multistage analysis[END_REF], Le et al. (2019a)). This work is applied to ood monitoring over a large area in the central coastal regions of Vietnam using a Sentinel-1 SAR ITS. Flooding is one of the major natural hazards in Vietnam that causes an annual huge loss of life and property. With more than 3200 km long of coastline and 70% of the population living in coastal regions [START_REF] Bangalore | Exposure to oods, climate change, and poverty in Vietnam[END_REF], Vietnam is usually at high risk of ooding due to tropical storms, in particular, at the central coast. The paper is organized as follows:

Section 2 describes the study area and the data used for ood monitoring. Section 3 is dedicated to the proposed multiscale framework. Section 4 presents the obtained results and discussion. Finally, conclusions and perspectives are given in section 5.

Case study and dataset

The coastal region in this study stretches three provinces: Thua Thien Hue, Da Nang and Quang Nam, between 14 o 57' N to 16 44' N and 107 o 00' E to 108 o 44' E (see Fig. 1). The tropical monsoon climate is found in this region. There are two distinct seasons, the dry season from January to August with high temperature, hot and humid climate, and the rainy season from September to December [START_REF] Matsumoto | Seasonal transition of summer rainy season over indochina and adjacent monsoon region[END_REF]. The rainy season coincides with the operation period of typhoons and tropical depressions in the Western Pacic, and the northeast monsoon. Therefore, the rainfall concentrates mainly in this season, accounting for 65% to 80% of the total annual precipitation of the region [START_REF] Bui | Forecast of coastal oods in the southern central region in the context of climate change and sea level rise[END_REF] Inherited and developed from SAR systems on ERS-1, 2 and Envisat, Sentinel-1 mission provides independent operational capability for medium-to high-resolution radar mapping of the Earth with enhanced temporal resolution, coverage, reliability for applications requiring long time series. The repeat cycle of each Sentinel-1 is 12 days (175 orbits per cycle), so that 6 days for both Sentinel-1A and B. Sentinel-1 SAR sensor operates at C-band frequency (5.405 GHz) and supports operation in single and dual polarizations.

Sentinel-1 uses the four observation modes: Stripmap (SM), Interferometric Wide swath (IW), Extra Wide Swath (EW), and Wave. Each mode can produce products at SAR Level-0, Level-1 SLC, Level-1 GRD, and Level-2 OCN. 3. Methods

Data preprocessing

The Sentinel-1 time series was preprocessed by several steps described in Fig. 2 before applying the proposed framework. We used the Sentinel Application Platform (SNAP), version 6.0, with Graph Processing Tool (GPT) for all preprocessing steps in this study.

First, we calibrated acquired SLC Sentinel-1 images so that the radar signal is converted into γ 0 . The radar backscatter γ 0 best expresses the actual area visible to the radar (in the plane perpendicular to the slant range plane) that can be retrieved [START_REF] Small | Flattening Gamma: Radiometric terrain correction for SAR imagery[END_REF].

Then we used the Sentinel-1 TOPS operators to implement the swath and polarization selection and the deburst of Sentinel-1 data, i.e., S-1 TOPS Split, S-1 TOPS Merge, and S-1 TOPS Deburst operators in this paper. Afterward, Sentinel-1 images were multilooked (e.g., four looks in range) to reduce speckle. In our work, no additional speckle ltering is needed to avoid smoothing change information of the time series that can aect the obtained change detection matrix. Finally, all images of the time series were coregistered to stack all pixels associated with the same position on the ground. Besides, we also extracted the subset of the ITS to t the study area and masked the sea region using the fractional land/water mask processing in SNAP.

Multiscale framework for change analysis

Let us consider a time series of N cocalibrated and coregistered SAR images sorted by acquisition date I = {I t } 1 t N , with I t the image at time t. The framework proposed for rapid analysis of changes from a long SAR ITS made up of large-size images includes two stages of analysis (Fig. 3):

i) subimage scale stage: change regions and image acquisitions of interest (i.e., image acquisition dates related to change events) are quickly detected thanks to CDM approach [START_REF] Le | Adaptive multitemporal SAR image ltering based on the change detection matrix[END_REF] at the subimage scale analysis instead of the pixel scale analysis in the original. ii) pixel scale stage: from regions and image acquisitions of interest extracted in the previous stage, detailed changes in these regions are determined.

Subimage scale stage

At this analysis stage, we split each large-size image of the time series into subimages, called tiles, and hence the whole time series is also split into tile stacks. Then we apply the multitemporal change analysis using the CDM approach to each tile stack. The quadtree data structure was rst introduced in [START_REF] Samet | The quadtree and related hierarchical data structures[END_REF] which refers to a hierarchical set of maximal blocks (tiles) that partition a region (an image). An image is iteratively divided into four equal-sized quadrants, subquadrants. The initial image to be decomposed is the root of the quadtree, and the quadrants (subquadrants) are nodes, including internal node with four children and leaf node with no children (see Fig. 4 and 5). At each decomposition level, we can test several predened criteria for each quadrant (e.g., criteria of homogeneity). If the quadrant meets the criteria, it will not be further decomposed, on the opposite, it will be subdivided into four new subquadrants.

This procedure nishes whenever every quadrant/ subquadrant meets the criteria or when the size of quadrants reaches the minimum value. The minimum size of quadrants is set such that statistical representativeness is guaranteed. In this paper, we used a variance threshold value (λ) which is the weighted variance of the whole image γ 0 . If the variance of a quadrant (an image tile) is greater or equal to λ, the quadrant will be split further. Therefore the image is split sparsely in relatively uniform areas and more intensively where variation is large. This test criterion was applied to each image of the time series to determine the homogeneity of tiles in the quadtree decomposition.

Let Q denote the quadtree decomposition operator, each image I t of the ITS is decomposed into homogeneous tiles of various sizes as follows:

I S(i,j,k) t = Q [S t (i, j, k)] (I t ) , (1) 
where I S(i,j,k) t is an image tile of size P × P pixels (with P = 2 (m-k) , 2 m and 2 n -the maximum and minimum sizes of a tile, respectively) at decomposition level k (0 k n), S t (i, j, k) is the quadtree structure of the decomposed image I t , and (i, j) is the upper left coordinate of the tile.

The texture varies from one image to another in the time series making the quadtree • Change detection matrix at subimage scale

We apply the CDM approach to the split ITS for detecting and analyzing changes in each tile stack (i, j) to reduce the computational cost of the pixel-based CDM. A tile-based CDM (TCDM) version constructed by two steps is presented hereafter.

• Bi-date TCDM: For each tile stack (i, j), we calculate a similarity matrix by taking a similarity measure D between each pair of tiles of two dierent dates (t, ) as follows:

H (t, ) (i, j) = D I S(i,j,k) t , I S(i,j,k) 1 t, N
.

(2)

The bi-date TCDM M (a binary matrix) is then obtained by comparing values of similarity in H to a threshold T in order to determine changed (denoted as 1) and unchanged (denoted as 0) tiles in the tile stack:

M (t, ) (i, j) = H (t, ) (i, j) 0 ≶ 1 T .
(3)

• Multidate TCDM: From the bi-date TCDM, we redene changed and unchanged tiles using multidate information. 

Ψ I S(i,j,k) t = I S(i,j,k) | M (t, ) (i, j) = 0 1 N . (4) 
Similar to the previous step, we then compute the multidate TCDM M by applying the same similarity measure D and a threshold T to temporal neighborhoods of each pair of dates (t, ):

Ĥ(t, ) (i, j) = D Ψ I S(i,j,k) t , Ψ I S(i,j,k) 1 t, N , (5) 
M(t, ) (i, j) = Ĥ(t, ) (i, j) 0 ≶ 1 T . (6) 
The matrix obtained after two steps of temporal change analysis can expose changes occurred over time in each stack. We recall here the characteristic forms of certain types of change (Fig. 6) that can be observed from the appearance of TCDMs (see more details in [START_REF] Le | Change information extraction from synthetic aperture radar image time series[END_REF]). Two extreme cases are the temporal stability (Fig. ). We can also discover more complex change types from the TCDMs. The rampe change in Fig. 6 i and j reports a gradual one with increasing magnitude from date t k to date t or till the end of the time series (for example, changes related to cultivated activities, soil/coast erosion). The periodic change in Fig. 6 k and l also shows a gradual change, however, it occurs in a period from date t k to date t and repeats cyclically (e.g., seasonal change).

• Change dynamics of image time series

Each TCDM contains change information corresponding to a tile stack. By taking into account all 1 elements of a TCDM representing changed tiles, we denote an index of change dynamics that measures the level of change in a tile stack as follows:

δ(i, j) = 2 N (N -1) N t=1 N =t+1 M(t, ) (i, j). (7)
The range of this index is a sequence starting at 0 that indicates the absolute stability, and nishing at 1 that presents the extreme instability of the considered tile stack.

The map of change dynamics of ITS allows us to extract regions of interest from various levels of change. For example, regions with high indexes δ often show regular changes. But some areas with low indexes δ may signify changes linked to a specic event. In this paper, we selected regions of interest manually after analyzing the obtained map of change dynamics and TCDMs. However, regions of interest can be identied automatically based on the index of change dynamics. We can select tiles having a specic δ value or having δ values within a certain range. The TCDMs in these extracted regions reveal acquisitions of interest associated with change events.

Pixel scale stage

After locating regions and image acquisitions of interest, we implement a pixel-wise analysis at these regions between two images acquired on determined dates (t, ) to obtain a change map CM (t, ) :

G (t, ) = L I S t , I S t = , (8) 
CM (t, ) = G (t, ) 0 ≶ 1 T , (9) 
where L measures the similarity degree G (t, ) at region I S between dates t and .

It is worth noting that similarity measures D and L in two stages of the proposed framework can be the same or dierent. The selection of a similarity measure and a threshold depends on the work scale, data used, for instance, the spatial resolution, the type of SAR data (i.e., single-, multi-polarization SAR, InSAR, etc.), the required accuracy, the cost and time constraints, etc. Several similarity measures for SAR data and automatic thresholding algorithms were reviewed in Le et al. (2015b). In this work, we used the Kullback-Leibler distance (KLD) between two Log-normal distributions (Lognormal KLD) as the similarity measure to identify the dierence of shapes of the local probability density functions(PDF) of images in the ITS [START_REF] Inglada | A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis[END_REF], and the minimum error thresholding (Kittler-Illingworth) method [START_REF] Kittler | Minimum error thresholding[END_REF] for the selection of threshold values in all stages of the framework. In Atto et al.

(2013), Log-normal KLD is computed as follows:

KLD Logn (I t , I ) = 1 2 (α It -α I ) 2 1 β 2 It + 1 β 2 I + 1 2 β 2 I β 2 It + β 2 It β 2 I -1, ( 10 
)
with α the log-scale and β the shape parameters of probability distributions of the two SAR images (I t , I ) in the comparison.

Results and discussion

Thanks to the quadtree-based splitting step of the TCDM approach, we only processed 65,640 tile stacks instead of 125,829,120 initial pixel stacks. The TCDM computation time is about 2 hours on an Intel ® Xeon ® Silver 4110 CPU @ 2.1 GHz, 32 cores with 64 GBytes of RAM. By analyzing TCDMs and map of change dynamics obtained at the subimage scale, we can identify changed regions and image acquisitions of interest.

Then we can obtain a detailed change map for each detected region using KLD between selected image pairs at the pixel scale.

4.1. Change analysis at subimage scale

Analysis of change dynamics

The map of change dynamics in Fig. 7 gives a general view on the behavior and the trend of the variation over time of the observed area at the subimage (tile) scale. Each homogeneous tile of the map has a value that reects the level of change from 0 to 1.

We can see three regions along the coast marked in red rectangles with higher indexes of change dynamics (0.6 ≤ δ ≤ 0.8) than the others. They are the coasts of Thua Thien Hue province, Da Nang city, and Quang Nam province, respectively. Besides changes due to regular evolution, these areas were also aected by oods occurred during acquisition period. Some small areas marked in white ellipses are lakes and hydropower reservoirs with high indexes δ due to their water extent changes. Cultivated areas appear on the map with moderate indexes of change dynamics, from 0.3 to 0.5, since the progressive change of crops at these areas was observed during the same growth period of two years (i.e., from September to December of 2017 and 2018). Except for the masked sea area in the upper triangular portion of the map (δ = 0), it could be seen that mountainous areas are quite stable. These areas (almost located in the lower triangular portion of the map) have small δ values (0.1 ≤ δ ≤ 0.2). From the map of change dynamics, we selected three regions along the coast marked in red rectangles in Fig. 7, and also lake and reservoir areas for further analysis at the pixel scale.

Analysis of TCDMs

Fig. 8 shows the TCDMs and temporal proles of ooded tiles selected in three identied regions of interest. From TCDMs, we detected that in the acquisition period, the study area was aected by three oods observed on November 10, 2017, November 22, 2017, and December 11, 2018 (i.e., the fth, the sixth, and the eighteenth dates in the time series). On the TCDMs of ooded areas, dirac changed can be determined. The TCDMs reveal that some areas were impacted by only one of three oods (Fig. 8 a, b, c), but some areas were ooded two times (Fig. 8 d, e, f ), and even three times (Fig. 8 g) during two rainy seasons of 2017 and 2018. The backscatter mean values of tiles on ood dates are lower than those on other dates (Fig. 8 h, i, j, k, l, m, n). Therefore, the temporal proles can help us better understand the nature of change types detected by TCDMs. For example, TCDM in Fig. 9 f shows a dirac change detected on November 10, 2017 (the fth date of the time series) at a mountainous area which looks like a change caused by a ood. However, looking at its temporal prole (Fig. 9 l), the tile backscatter mean value on the fth date is higher than values on other dates. Thus, this change was not due to a ood but a landslide. Indeed, the typhoon Damrey on November 4, 2017 caused prolonged heavy rains that triggered landslides and ash oods in several mountainous regions in Thua Thien Hue and Quang Nam provinces in the study area. 2017(TaiNguyenMoiTruong, 2017)).

In addition to dirac change at ooded areas, we can also identify other types of change in the study area (see Fig. 9). At rice eld areas, periodic change (i.e., seasonal change according to crop evolution) can be observed (Fig. 9 a andc). In the case of ooding, we can see in Fig. 9 a and b that on the fth, the sixth, and the eighteenth dates of the time series, the rice eld area was also ooded like its surrounding areas. And Fig. 9 d shows the opposite case of a rice eld stack selected outside of the ooded areas. Aquaculture lagoons along the coast of Thua Thien Hue province (region 1) are covered by water almost all the time. The backscatter signal at this area changes from one date to another in the time series, therefore its TCDM shows a chaotic change (Fig. 9 e). During the three oods, water overowed the banks of many lagoons. Therefore, TCDMs observed at regions around these lagoons also present dirac changes as in Fig. 8. As marked in white ellipses in Fig. 7, the study area has many hydropower reservoirs (e.g., Huong

Dien, Binh Dien in Thua Thien Hue province, A Vuong, Song Tranh, etc. in Quang Nam province) and lakes (e.g., Khe Ngang, Ta Trach, etc. in Thua Thien Hue province, Hoi Khe, Chua Truoc Dong, etc. in Da Nang city, Khe Tan, Thach Ban, Phu Ninh, etc. in Quang Nam province) and the same phenomenon as the case of aquaculture lagoons can be observed (see Fig. 9 g and h). At almost all lakes and reservoirs, water overowed their banks during the observed oods. At rocky mountain areas, the TCDM in Fig. 9 i shows temporal stability in the tile stack, consistent with the map of change dynamics.

Thus, from information provided by the map of change dynamics and TCDMs, alongside the analysis of temporal proles of tile stacks at each specic region, it is possible to preliminarily identify areas aected by oods and acquisition dates of images related to these events. The TCDMs and map of change dynamics are helpful to determine changed regions and images involving these changes, in particular when dealing with a long SAR ITS covering a large area but without additional data sources to get more information about the study area.

Regions and image acquisitions of interest

The three regions along the coast marked in red rectangles, and several lakes and hydropower reservoirs in Fig. 7 were selected for the pixel scale analysis stage. The rst region is the coastal region of Thua Thien Hue province. The second one includes the coastal area of Da Nang city and a small part of Quang Nam province, and zones along two sides of Cam Le river of Da Nang city and Thu Bon river of Quang Nam province.

The last one is the rest of the coastal region of Quang Nam province.

As described above, TCDMs disclosed three ooding times observed by the acquired ITS of the study area, i.e., [START_REF] Nhandan | Thua thien -hue: Mua lon, nhieu noi chim trong bien nuoc[END_REF][START_REF] Lake | Rice eld not aected by oods; (c), (i) Aquaculture lagoon aected by three oods on November 10, 2017[END_REF]and December 11, 2018 regions were superimposed on the mean image of the time series and combined in an RGB color image. the inundation map provides a clear view of the frequently ooded areas of the observed region. We can further exploit these maps for the ood-damaged assessment and the ood vulnerability mapping.

Accuracy assessment

We can observe a relatively high proportion of changed (ooded) pixels at each selected region, suggesting that the proposed TCDM works correctly. Detected inundation areas are located in low-lying land regions. For a quantitative assessment of obtained change detection results, we used comparison samples extracted based on the ood map on November 7, 2017, derived from MODIS and Sentinel-1 data over Thua Thien Hue province (see Fig. 11 b) to compare to the ood map obtained by the proposed framework on November 10, 2017 (the rst ood). We adopted the following evaluation metrics to measure the limited errors, i.e., False Alarm (FA), Missed Alarm (MA), and Overall

Error (OE). We also used the Critical Success Index (CSI) [START_REF] Schaefer | The critical success index as an indicator of warning skill[END_REF] 

where T P, F P, T N, F N are true positive, false positive, true negative, and false negative, respectively, in the confusion matrix (Table 2).

Among the total of 13891 comparison samples, the change map has 6405 correct and 166 false changed pixels, while 1165 changed pixels are misclassied into unchanged class. 

Figure 1 :

 1 Figure 1: Location of the study area (© University of Texas Libraries (left), and Thua Thien Hue Department of Tourism (right)).

  From such a dataset, we can observe not only the abrupt and cyclical changes caused by oods but also seasonal changes related to aquaculture and agriculture areas. Besides, for the assessment of change detection results, we used a ood map of Thua Thien Hue province regarding the typhoon Damrey in 2017 provided by[START_REF] Brakenridge | Dfo ood event 4533[END_REF], Dartmouth Flood Observatory at the University of Colorado, from MODIS and Sentinel-1 data (see Fig.11 a).

Figure 2 :

 2 Figure 2: Preprocessing chain for Sentinel-1 image time series.

Figure 3 :

 3 Figure 3: Flowchart of the multiscale change analysis for SAR ITS.

Figure 4 :

 4 Figure 4: A quadtree with four levels of decomposition.

  structures of images dierent. In order to split the ITS {I t } 1 t N into tile stacks, we took the intersection of all separate quadtree structures and restructured it with respect to maximum and minimum sizes of tiles as the nal quadtree structure of the time series S = N t=1 S t . A tile stack of an ITS split by quadtree decomposition is denoted by {I S(i,j,k) t } 1 t N .

Figure 5 :

 5 Figure 5: SAR image split into tiles based on the quadtree decomposition. (a) Sentinel-1 SAR image of Thang Binh district, Quang Nam province, Vietnam, acquired on September 11, 2017, (b) Quadtreebased tiles of the image in Fig. 5a, (c) Final quadtree-based tiles of the time series.

  6 a and b) and the chaotic change (Fig.6 c and d). The former shows that no changes occurred in the stack, and the latter often describes a rapid surface evolution (e.g., glacier displacement). Two typical change types that can be detected by TCDMs are the dirac (Fig.6 e and f) and the step changes (Fig.6 g and h). The dirac change occurs on only one date in the time series and expresses the behavior of the radiometric temporal signal like a dirac pulse (for instance, a ood event observed on only one date (image)). The step change arises from date t k and lasts for a certain period or till the end of the time series. This type of change presents an abrupt change (e.g., changes due to natural disasters like volcano eruption, earthquake, etc.

Fig. 9 f

 9 Fig. 9 f, l show the TCDM and temporal prole of a tile selected at Tra My commune, Bac Tra My district, Quang Nam province, where a landslide occurred on November 5,

  Fig.10shows the inundation maps of three oods during two rainy seasons in 2017 and 2018 of Thua Thien Hue province, Da Nang city, Quang Nam province. We can simultaneously observe the eects of all three oods and identify the frequently ooded areas on these maps. The red, green and blue colors indicate ooded areas induced by the rst, the second and the third oods. The yellow, magenta and cyan colors express areas aected by two oods: the rst and the second, the rst and the third, and the second and the third, respectively. And white color points out areas aected by all three oods. Specically, in Thua Thien Hue province, all three oods aected coastal areas, such as Quang Dien, Phu Vang, Phu Loc, Phong Dien, Huong Tra, Huong Thuy districts, and Hue city. In particular, in low-lying regions of Quang Dien, Phong Dien, Huong Tra, and Huong Thuy districts, the damage to cultivation and aquaculture areas was severe.In Da Nang city, the rst ood had a minor eect on this city, mainly on one side of Cam Le River. The second and the third aected Cam Le (both sides of the river), some parts of Ngu Hanh Son, Hoa Vang and Hai Chau districts. Like Thua Thien Hue, Quang Nam is also one of the most frequently ooded provinces of Vietnam. We can see that the rst ood aected both sides of the Thu Bon river (i.e., Dien Ban, Dai Loc, Duy Xuyen districts), and the coastal regions of Hoi An city, Thang Binh, Phu Ninh and Tam Ky districts. The second one had a smaller impact, mainly in Thang Binh and Phu Ninh districts. And the third one had the most widespread inuence of the three oods, in Dien Ban, Duy Xuyen, Hoi An, Thang Binh, Phu Ninh, Tam ky districts. Overall,

F

  to assess the obtained binary change map. CSI combines the FA and MA into one score and does not consider the nonooded fraction within the test-site. This index ranges from [0, 1], the higher values indicating the better performance of the change detection operator. These metrics are calculated as follows:

  these stacks for change analysis at the subimage scale. The proposed TCDM approach allows the fast and correct detection of regions and image acquisitions of interest (i.e., changed areas and acquisition dates of images involving change events). Then we derived detailed change maps of detected regions between image acquisitions of interest at the pixel scale. In order to better interpret, the obtained change maps were combined in an RGB color image. The proposed framework was successfully applied to monitor inundation areas along the coastal regions of Thua Thien Hue, Da Nang and Quang Nam provinces of Vietnam by using a SAR ITS composed of 19 ascending Sentinel-1 images. Obtained TCDMs were capable of identifying dierent kinds of change in this time series (i.e., dirac change, periodic change, chaotic change, and temporal stability). The results indicate that during two rainy seasons from September to December of the two years 2017 and 2018, the coastal regions from Thua Thien Hue to Quang Nam suered three oods observed by images acquired on November 10 and 22, 2017, and on December 11, 2018. Most of the coastal districts of these provinces were aected, some of them were seriously ooded, such as Phong Dien, Huong Tra, Phu Vang, etc., of Thua Thien Hue, Hoa Vang, Cam le of Da Nang, and Dien Ban, Dai Loc, Duy Xuyen, Thang Binh, Phu Ninh, etc., of Quang Nam. The established inundation map has the potential to be exploited in further tasks like ood-damaged assessment, and spatial prediction of ood-susceptible areas.For further applications of the proposed framework, when using SAR data of dierent sensors covering dierent regions, an appropriate similarity measure should be used to t the size of split tiles. With sensors of low or medium resolution, we can use a similarity measure between tiles containing a large number of samples to detect changes in the study area (e.g., the KLD in this paper). With high resolution ones, a similarity measure between tiles of small neighborhoods (like the coecient of variation) can be used to preserve the details of high resolution data. The TCDM analysis shows that many kinds of change can be detected by TCDMs. Change detection results of the proposed framework are expected to be classied into dierent types of landcover change based on TCDMs, and improved by using global terrain data.

Figure 6 :

 6 Figure 6: Six types of changes can be observed by TCDMs. Left: temporal proles; Right: TCDMs' appearances. (a), (b) Temporal stability; (c), (d) Chaotic change; (e), (f) Dirac change; (g), (h) Step change; (i), (j) Rampe change; (k), (l) Periodic change.

Figure 7 :

 7 Figure 7: Map of change dynamics showing the frequency of all kinds of changes occurred in the study area. (1), (2), (3): three regions of interest; (a), (b), (c), (d), (e), (f), (g): locations of observed tiles in Fig. 8; (+): location of observed tile in Fig. 9 f.

Figure 8 :

 8 Figure 8: TCDMs and temporal proles at regions aected by oods. Left: TCDMs; Right: temporal proles of tile stacks. (a), (h) Flood on November 10, 2017; (b), (i) Flood on November 22, 2017; (c), (j) Flood on December 11, 2018; (d), (k) Floods on November 10, 2017 and November 22, 2017; (e), (l) Floods on November 10, 2017 and December 11, 2018; (f), (m) Floods on November 22, 2017 and December 11, 2018; (g), (n) Floods on November 10, 2017, November 22, 2017 and December 11, 2018.

Figure 9 :

 9 Figure 9: TCDMs and temporal proles at several specic regions. Left: TCDMs; Right: temporal proles of tile stacks. (a), (g) Rice eld aected by three oods on November 10, 2017, November 22, 2017 and December 11, 2018; (b), (h) Rice eld not aected by oods; (c), (i) Aquaculture lagoon aected by three oods on November 10, 2017, November 22, 2017 and December 11, 2018; (d), (j) Lake; (e), (k) Rocky mountain area with almost no change; (f), (l) A dirac change not caused by a ood.

Figure 10 :

 10 Figure 10: Inundation map of the study area in two rainy seasons, from September to December of 2017 and 2018 (opened in Google Earth).

Figure 11 :

 11 Figure 11: Accuracy assessment of ood detection. (a) Flood map of Thua Thien Hue province on November 7, 2017, regarding the typhoon Damrey, © Brakenridge and Kettner (2017) (Red: ooding mapped from NASA MODIS and Copernicus Sentinel-1 data, Gray: previously-mapped ooding, Blue: reference normal water extent); (b) Flood map of Thua Thien Hue province on November 10, 2017 produced by the proposed framework from Sentinel-1 data and comparison samples manually extracted from the map in Fig 11 a (White: ooded areas, Blue: ooded samples, Maroon: non-ooded samples, Green: false alarms, Red: missed alarms).

Table 1 :

 1 Description of Sentinel-1 data.

	Specications	Sentinel-1 data
	Operator	European Space Agency (ESA)
	Satellite	Sentinel-1A
	Launched date	April 03, 2014
	Satellite orbit	Ascending, track 55
	Repeat cycle	12 days
	Imaging frequency	C-band at 5.4 GHz
	Imaging mode	IW
	Data product	SLC Level-1
	Resolution	3.5 m×22 m (range×azimuth)
	Pixel spacing	2.3 m×14.1 m (range×azimuth)
	Polarization	VV
	Swath	IW1, IW2
	Number of images	19 images
	Acquisition dates	17/09/11; 17/09/23; 17/10/05;

(YY/MM/DD) 17/10/29; 17/11/10; 17/11/22; 17/12/04; 17/12/16; 17/12/28; 18/09/06; 18/09/18; 18/09/30; 18/10/12; 18/10/24; 18/11/05; 18/11/17; 18/11/29; 18/12/11; 18/12/23

The time series used in this study composed of 19 IW Level-1 Single-Look Complex (SLC) Sentinel-1 images were acquired from the ascending track 55 with a repeat cycle of 12 days, in two periods: from

September 11, 2017, to December 28, 2017, and from September 06, 2018, to December 23, 2018

. Table

1

summarizes the principal parameters of the dataset used.

  To build temporal neighborhoods for each tile

I

S(i,j,k) t , unchanged tiles corresponding to date t, having the same statistical properties as I S(i,j,k) t with respect to D and T in the similarity test (3), are aggregated as follows:

  Accordingly, limited errors are 9.6% of OE, 2.5% of FA, and 15,4% of MA. The obtained change detection result has overall accuracy of 90.4% and the CSI of 82.8%. We can see that the ood detection results of the two maps in Fig 11 are quite consistent, with few false alarms. The comparison map reports the ooding state on November 7, 2017,

	whilst the ood map produced in this paper describes the state on November 10, 2017,
	resulting in changes in the ood delineation between the two maps that might explain
	false alarms.

Table 2 :

 2 Confusion matrix of change detection result.In this study, we have developed a methodology for a multiscale change analysis from a long SAR image time series composed of large-size image. We proposed to use a quadtree decomposition to split the ITS into tile stacks, and then apply the CDM approach to

	Class		Validation samples	Total
			Changed Unchanged	
	Change map	Changed	6405	166	6571
		Unchanged 1165	6155	7320
	Total		7570	6321	13891
	5. Conclusions				
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(the fth, sixth and eighteenth dates in the time series). Firstly, on November 4, 2017, Damrey -one of the strongest storms hit Vietnam in 2017, caused widespread damage from Thua Thien Hue to Binh Thuan provinces and the Central Highlands. Heavy rain brought by the typhoon the following days caused the rst ood. According to the Commanding Committee for Natural Disaster Prevention and Control and Search and Rescue of Thua Thien Hue province, the precipitation from 19:00 November 3, 2017 to 13:00 November 5, 2017 was about 500 to 600 mm at mountainous area. The precipitation was higher than that in some areas, such as 769 mm at Khe Tre, 840 mm at A Luoi, and up to 1,855 mm at Bach Ma (nhandan, 2017). Then, typhoon Kirogi weakened to a tropical depression struck central and southern Vietnam on November 19, 2017. Heavy rain caused the second ood in many parts of this region. In Thua Thien Hue, from 7:00 November 19, 2017 to 19:00 November 20, 2017, precipitation recorded at some stations was: 290 mm at Ho Truoi, 357 mm at Ta Luong, 246 mm at A Luoi, 400 mm at Bach Ma (PCTTTKCN, 2017). Finally, downpours from December 7 to December 10, 2018 induced the third ood in the study site. For example, at some rainfall stations in Hue on December 10, 2018, the precipitation was 513 mm at Phong Binh, 484 mm at Bach Ma, 256 mm at Binh Thanh, 255 mm at Ho Truoi (dantri, 2018). To determine areas aected by each ood in detail, we have chosen the three following image pairs for the calculation of KLD at pixel scale: images acquired on October 29, 2017 (before the rst ood) and November 10, 2017 (during the rst ood); on October 29, 2017 and[START_REF] Lake | Rice eld not aected by oods; (c), (i) Aquaculture lagoon aected by three oods on November 10, 2017[END_REF] (before and during the second ood, respectively); and the pair of images acquired on November 29, 2018 and[START_REF] Lake | Rice eld not aected by oods; (c), (i) Aquaculture lagoon aected by three oods on November 10, 2017[END_REF] (before and during the third ood).

Inundation maps at pixel scale

The KLD was calculated between three selected pairs of γ 0 calibrated amplitude images acquired before and during each ood to obtain the similarity maps. The KI