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Abstract

Recently, the frequency of natural and environmental disasters has increased signi�cantly,

causing constant changes on the Earth's surface. Synthetic Aperture Radar (SAR) data

have been proved to be useful for operational change monitoring tasks. The multiscale

framework presented in this paper aims at detecting and analyzing changes using SAR

image time series composed of large-size images. Spatio-temporal changes are initially

detected at the subimage scale analysis stage to determine regions and image acquisition

dates related to the change occurrence. Detailed changes are then identi�ed at the

pixel scale analysis stage between selected acquisitions at each recognized region. This

framework was used for �ood monitoring over a large area along the central coast of

Vietnam (from Thua Thien Hue province to Quang Nam province). We exploited a

Sentinel-1 image time series acquired during two rainy seasons and typhoon seasons in

the Western Paci�c (from September to December of the two years 2017 and 2018). The

proposed framework detected �ooded areas with a high overall accuracy of 90.4% and

could analyze di�erent types of changes that occurred in this time series, i.e. dirac,

periodic, chaotic changes, and temporal stability.

Keywords: Change analysis; Flood monitoring; Vietnam central coastal regions; SAR

image time series; Sentinel-1; Tile-based change detection matrix.
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1. Introduction1

The Earth's surface is a�ected by di�erent natural and environmental disasters, such2

as volcanic eruptions, earthquakes, tsunamis, �oods, deforestations, forest �res, etc.3

These catastrophic events are also major threats to human life and the world economy4

(Guo, 2010). The development of Earth observation satellites has allowed the acquisi-5

tion of a large amount of information about the Earth's surface. Synthetic Aperture6

Radar (SAR) images, with the independence of light and weather conditions, have been7

widely exploited as an ideal tool for studying natural hazards and environmental prob-8

lems (Hu et al. (2016), Mason et al. (2012), Peltier et al. (2017), Belenguer-Plomer et al.9

(2019), Reiche et al. (2018)). SAR image time series (ITS) densely and regularly pro-10

vided by new generation satellites (Sentinel-1, for instance) are often large datasets with11

images of high quality, i.e., high resolution and large coverage (large-size images), short12

repeat cycles (large number of images) and multipolarization (dual-pol/quad-pol data),13

that require robust algorithms for big data processing. The temporal evolution analysis14

of objects of interest from repetitive SAR acquisitions allows natural and environmen-15

tal hazard characterization (Atzori et al. (2019), Alpers et al. (2017), Giustarini et al.16

(2015), Le et al. (2019c)), damage assessment (Monti-Guarnieri et al. (2018), Le et al.17

(2019b)), post-disaster recovery monitoring (Solari et al., 2018), and also the improve-18

ment of near-real-time disaster forecasts (e.g., �ood forecasts in Hostache et al. (2018)).19

In this context, the e�cient exploitation of information provided by SAR ITS for change20

and deformation detection and monitoring is, therefore, an attractive issue.21

Indeed, diverse approaches to change detection and analysis using SAR ITS have22

been proposed recently in the literature. Classical detectors based on log-ratio (Rignot23

and VanZyl, 1993), statistical similarity measure (Inglada and Mercier, 2007) developed24
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for change detection between a pair of SAR images have been extended to multitemporal25

SAR images for both single- and multi- polarization (Lombardo and Olivier (2001),26

Quin et al. (2014), Conradsen et al. (2016), Le et al. (2015a), Le et al. (2015b)). Several27

approaches provide a general view of the temporal variation over observed areas via a28

symmetric matrix containing change information between all possible image pairs in the29

time series. In Atto et al. (2013), a Multi-Date Divergence Matrix (MDDM) consisting30

of dissimilarity between wavelet and curvelet features of each image (or subimage) pair31

was built for the whole ITS to identify dates when changes occurred. Spatial changes32

were then detected between images of these dates. The framework proposed in Le et al.33

(2014) aims at building a Change Detection Matrix (CDM) for each pixel stack of the34

time series, exhaustively. Changes detected in the CDM are results of similarity tests35

between every two dates. The NORCAMA (Su et al., 2015) computes a Change Criterion36

Matrix (CCM) using likelihood ratio test at each pixel position. Then changes detected37

in CCM are separated into some types by clustering and recognizing classi�cation steps.38

In this paper, we focus on the detection of changes induced by �ood events. For39

�ood detection and monitoring, in situ methods can obtain highly accurate assessments.40

However, they have limitations due to the high costs of implementation, the dependence41

on external factors, and the di�culty in undertaking at a large scale (Kussul et al., 2011).42

Remote sensing based methods (i.e., airborne or spaceborne observations) can deal with43

large �ooded areas for continuous monitoring (Kuenzer et al., 2013). Numerous studies44

on �ood monitoring have used optical data (Ahamed and Bolten (2017), Chignell et al.45

(2015), Wang et al. (2002),Ticehurst et al. (2014)) and/or SAR data (Amarnath and46

Rajah (2016), Clement et al. (2018), Boni et al. (2016), Tsyganskaya et al. (2018),Lan-47

duyt et al. (2019)). The high cloud cover at �ooded areas, particularly in rainy seasons,48

often obscures the ground observations from optical images. Thus, SAR images are the49

most suitable data for this task. Overall, among the main algorithms for water detec-50

tion, such as backscatter based thresholding approaches (Chini et al. (2017), Manjusree51

et al. (2012), Mason et al. (2014), Martinez and Le-Toan (2007), Martinis et al. (2009)),52
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classi�cation based approaches (including pixel-based (Chapman et al. (2015), Manjus-53

ree et al. (2012)), object-oriented (Martinis et al. (2011), Evans et al. (2010)), region54

growing (Wan et al. (2019), Marti-Cardona et al. (2013)), and fuzzy classi�cation (Mar-55

tinis et al. (2015), Twele et al. (2016))), change detection based approaches (Giustarini56

et al. (2013), Schla�er et al. (2015), Clement et al. (2018)), the thresholding methods are57

the most widely used. Based on the backscatter signal, these methods separate a water58

surface (with low intensities/ amplitudes) from a non-water one (with high intensities/59

amplitudes) by using a prede�ned threshold value. On a scene composed of urban ar-60

eas and suburbs, the threshold selection is more challenging. In the case of �oods, in61

sparsely populated areas, the backscatter values decrease due to radar returning from62

water bodies. However, in densely built areas, radar backscatter values increase because63

of double bounce scattering between buildings and water surface. Therefore, these two64

areas should be discriminated by user analysis and two di�erent threshold values should65

be selected. Chini et al. (2019) addressed this issue by taking advantage of the InSAR66

coherence feature to detect �oodwater in urban areas.67

In general, almost all recent approaches addressing the Earth surface change detection68

and analysis using SAR ITS have focused on detecting either spatial changes (Quin et al.,69

2014) or temporal changes (Colin-Koeniguer et al., 2018). Few approaches have devoted70

e�ort to determine both spatial and temporal changes and the analysis of their nature.71

However, they might not be appropriate when dealing with images covering a large area,72

but where changes only occur in a small region (Atto et al., 2013), or with a big dataset as73

they were tested on small ones (Le et al. (2015b), Su et al. (2015)). Therefore, a method74

is lacking that would exploit the information provided by a long SAR ITS composed75

of large-size images to identify spatio-temporal changes. In this study, we propose a76

framework that tackles this issue. The proposed approach is a multiscale processing77

strategy for a change analysis based on the CDM method (Le et al. (2015b)) suited to78

handle a long SAR ITS covering a large study area, which was brie�y introduced in (Le79

et al. (2018), Le et al. (2019a)). This work is applied to �ood monitoring over a large80
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area in the central coastal regions of Vietnam using a Sentinel-1 SAR ITS. Flooding is81

one of the major natural hazards in Vietnam that causes an annual huge loss of life and82

property. With more than 3200 km long of coastline and 70% of the population living in83

coastal regions (Bangalore et al., 2019), Vietnam is usually at high risk of �ooding due84

to tropical storms, in particular, at the central coast. The paper is organized as follows:85

Section 2 describes the study area and the data used for �ood monitoring. Section 3 is86

dedicated to the proposed multiscale framework. Section 4 presents the obtained results87

and discussion. Finally, conclusions and perspectives are given in section 5.88

2. Case study and dataset89

The coastal region in this study stretches three provinces: Thua Thien Hue, Da Nang90

and Quang Nam, between 14o 57' N to 16 44' N and 107o 00' E to 108o 44' E (see91

Fig. 1). The tropical monsoon climate is found in this region. There are two distinct92

seasons, the dry season from January to August with high temperature, hot and humid93

climate, and the rainy season from September to December (Matsumoto, 1997). The94

rainy season coincides with the operation period of typhoons and tropical depressions95

in the Western Paci�c, and the northeast monsoon. Therefore, the rainfall concentrates96

mainly in this season, accounting for 65% to 80% of the total annual precipitation of97

the region (Bui, 2011). Due to such weather, �oods often occur in this area during the98

rainy season. According to the reports of the Vietnam Disaster Management Authority,99

in 2017, the East Sea of Vietnam (the South China Sea) su�ered 16 typhoons and 4100

tropical depressions, with 7 typhoons directly a�ecting Vietnam. Natural disasters (i.e.,101

�oods, �ash �oods, and associated landslides) led to 325 deaths; 61 went missing. Total102

physical damage of US$ 2,567 million has been estimated, the most serious in the last103

5 years (vnexpress, 2018). In 2018, 9 typhoons impacted the East Sea of Vietnam, in104

which 3 ones made landfall in Vietnam. Natural disasters caused 221 deaths and missing105

people, and an estimated economic loss of US$ 862 million (vnexpress, 2018). In this106

paper, Sentinel-1 SAR observations of the �oods that a�ected the central coastal regions107
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Figure 1: Location of the study area (© University of Texas Libraries (left), and Thua Thien Hue
Department of Tourism (right)).

of Vietnam during two rainy seasons in 2017 and 2018 are exploited to apply and validate108

the proposed method.109

The study area during two rainy seasons of the years 2017 and 2018 was under investi-110

gation for �ood monitoring using a Sentinel-1 C-band SAR ITS. Sentinel-1 is composed of111

a constellation of two satellites, Sentinel-1A (launched on April 03, 2014) and Sentinel-1B112

(launched on April 22, 2016), moving on the same orbital plane with 180o phasing apart.113

Inherited and developed from SAR systems on ERS-1, 2 and Envisat, Sentinel-1 mission114

provides independent operational capability for medium- to high-resolution radar map-115

ping of the Earth with enhanced temporal resolution, coverage, reliability for applications116

requiring long time series. The repeat cycle of each Sentinel-1 is 12 days (175 orbits per117

cycle), so that 6 days for both Sentinel-1A and B. Sentinel-1 SAR sensor operates at118

C-band frequency (5.405 GHz) and supports operation in single and dual polarizations.119

Sentinel-1 uses the four observation modes: Stripmap (SM), Interferometric Wide swath120

(IW), Extra Wide Swath (EW), and Wave. Each mode can produce products at SAR121

Level-0, Level-1 SLC, Level-1 GRD, and Level-2 OCN.122
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Table 1: Description of Sentinel-1 data.

Speci�cations Sentinel-1 data
Operator European Space Agency (ESA)
Satellite Sentinel-1A
Launched date April 03, 2014
Satellite orbit Ascending, track 55
Repeat cycle 12 days
Imaging frequency C-band at 5.4 GHz
Imaging mode IW
Data product SLC Level-1
Resolution 3.5 m×22 m (range×azimuth)
Pixel spacing 2.3 m×14.1 m (range×azimuth)
Polarization VV
Swath IW1, IW2
Number of images 19 images
Acquisition dates 17/09/11; 17/09/23; 17/10/05;

(YY/MM/DD) 17/10/29; 17/11/10; 17/11/22;

17/12/04; 17/12/16; 17/12/28;

18/09/06; 18/09/18; 18/09/30;

18/10/12; 18/10/24; 18/11/05;

18/11/17; 18/11/29; 18/12/11;

18/12/23

The time series used in this study composed of 19 IW Level-1 Single-Look Complex123

(SLC) Sentinel-1 images were acquired from the ascending track 55 with a repeat cycle124

of 12 days, in two periods: from September 11, 2017, to December 28, 2017, and from125

September 06, 2018, to December 23, 2018. Table 1 summarizes the principal parameters126

of the dataset used. From such a dataset, we can observe not only the abrupt and127

cyclical changes caused by �oods but also seasonal changes related to aquaculture and128

agriculture areas. Besides, for the assessment of change detection results, we used a129

�ood map of Thua Thien Hue province regarding the typhoon Damrey in 2017 provided130

by Brakenridge and Kettner (2017), Dartmouth Flood Observatory at the University of131

Colorado, from MODIS and Sentinel-1 data (see Fig. 11 a).132
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3. Methods133

3.1. Data preprocessing134

The Sentinel-1 time series was preprocessed by several steps described in Fig. 2 before135

applying the proposed framework. We used the Sentinel Application Platform (SNAP),136

version 6.0, with Graph Processing Tool (GPT) for all preprocessing steps in this study.137

First, we calibrated acquired SLC Sentinel-1 images so that the radar signal is converted138

into γ0. The radar backscatter γ0 best expresses the actual area visible to the radar (in139

the plane perpendicular to the slant range plane) that can be retrieved (Small, 2011).140

Then we used the Sentinel-1 TOPS operators to implement the swath and polarization141

selection and the deburst of Sentinel-1 data, i.e., S-1 TOPS Split, S-1 TOPSMerge, and S-142

1 TOPS Deburst operators in this paper. Afterward, Sentinel-1 images were multilooked143

(e.g., four looks in range) to reduce speckle. In our work, no additional speckle �ltering144

is needed to avoid smoothing change information of the time series that can a�ect the145

obtained change detection matrix. Finally, all images of the time series were coregistered146

to stack all pixels associated with the same position on the ground. Besides, we also147

extracted the subset of the ITS to �t the study area and masked the sea region using the148

fractional land/water mask processing in SNAP.149

3.2. Multiscale framework for change analysis150

Let us consider a time series of N cocalibrated and coregistered SAR images sorted by151

acquisition date I = {It}16t6N , with It the image at time t. The framework proposed152

for rapid analysis of changes from a long SAR ITS made up of large-size images includes153

two stages of analysis (Fig. 3):154

i) subimage scale stage: change regions and image acquisitions of interest (i.e., image155

acquisition dates related to change events) are quickly detected thanks to CDM156

approach (Le et al., 2014) at the subimage scale analysis instead of the pixel scale157

analysis in the original.158
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Figure 2: Preprocessing chain for Sentinel-1 image time series.

Figure 3: Flowchart of the multiscale change analysis for SAR ITS.
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Figure 4: A quadtree with four levels of decomposition.

ii) pixel scale stage: from regions and image acquisitions of interest extracted in the159

previous stage, detailed changes in these regions are determined.160

3.2.1. Subimage scale stage161

At this analysis stage, we split each large-size image of the time series into subimages,162

called tiles, and hence the whole time series is also split into tile stacks. Then we apply163

the multitemporal change analysis using the CDM approach to each tile stack.164

• Quadtree based - adaptive tile selection165

For SAR image splitting purpose, in Le et al. (2018) and Le et al. (2019a), each image166

of the time series was divided into tiles of arbitrary size p× q. In Bovolo and Bruzzone167

(2007), the authors proposed a Split-Based Approach (SBA) for splitting log-ratio SAR168

images into subimages of the same size, and then they computed threshold values for169

each subimage based on its statistics. The size of subimages is de�ned depending on170

sensor resolution and expected change extension on the ground such that the amount of171

changed pixels in a subimage is statistically signi�cant for the threshold selection. This172

approach was also applied in Martinis et al. (2009), Martinis et al. (2015), Pulvirenti et al.173

(2014). Chini et al. (2017) applied a quadtree decomposition in the approach Hierarchical174

SBA (HSBA) to split a di�erence SAR image or single-�ood SAR image into subregions175

with di�erent sizes. With this image splitting, desirable subregions with respect to some176

statistical characteristics can be selected, for example, subregions showing a bimodal177
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behavior with two Gaussian balanced populations for threshold determination (Chini178

et al., 2017). However, SBA and HSBA approaches were proposed for a pair of SAR179

images or a single image. When applying them to a time series (with the number of180

images being more than two), if we analyze pairs of images separately, tile sizes of each181

splitting result will be di�erent, preventing the creation of tile stacks. In this paper, we182

propose a quadtree based - adaptive tile selection for splitting a SAR ITS into tile stacks.183

The quadtree data structure was �rst introduced in Samet (1984) which refers to a184

hierarchical set of maximal blocks (tiles) that partition a region (an image). An image185

is iteratively divided into four equal-sized quadrants, subquadrants. The initial image to186

be decomposed is the root of the quadtree, and the quadrants (subquadrants) are nodes,187

including �internal node� with four children and �leaf node� with no children (see Fig. 4188

and 5). At each decomposition level, we can test several prede�ned criteria for each189

quadrant (e.g., criteria of homogeneity). If the quadrant meets the criteria, it will not be190

further decomposed, on the opposite, it will be subdivided into four new subquadrants.191

This procedure �nishes whenever every quadrant/ subquadrant meets the criteria or192

when the size of quadrants reaches the minimum value. The minimum size of quadrants193

is set such that statistical representativeness is guaranteed. In this paper, we used a194

variance threshold value (λ) which is the weighted variance of the whole image γ0. If195

the variance of a quadrant (an image tile) is greater or equal to λ, the quadrant will be196

split further. Therefore the image is split sparsely in relatively uniform areas and more197

intensively where variation is large. This test criterion was applied to each image of the198

time series to determine the homogeneity of tiles in the quadtree decomposition.199

Let Q denote the quadtree decomposition operator, each image It of the ITS is200

decomposed into homogeneous tiles of various sizes as follows:201

IS(i,j,k)t = Q [St(i, j, k)] (It) , (1)

where IS(i,j,k)t is an image tile of size P × P pixels (with P = 2(m−k), 2m and 2n - the202

maximum and minimum sizes of a tile, respectively) at decomposition level k (0 6 k 6 n),203
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St(i, j, k) is the quadtree structure of the decomposed image It, and (i, j) is the upper204

left coordinate of the tile.205

The texture varies from one image to another in the time series making the quadtree206

structures of images di�erent. In order to split the ITS {It}16t6N into tile stacks, we207

took the intersection of all separate quadtree structures and restructured it with respect208

to maximum and minimum sizes of tiles as the �nal quadtree structure of the time209

series S̃ =

N⋂
t=1

St. A tile stack of an ITS split by quadtree decomposition is denoted by210

{I S̃(i,j,k)t }16t6N .211

Figure 5: SAR image split into tiles based on the quadtree decomposition. (a) Sentinel-1 SAR image
of Thang Binh district, Quang Nam province, Vietnam, acquired on September 11, 2017, (b) Quadtree-
based tiles of the image in Fig. 5a, (c) Final quadtree-based tiles of the time series.

• Change detection matrix at subimage scale212

We apply the CDM approach to the split ITS for detecting and analyzing changes213

in each tile stack (i, j) to reduce the computational cost of the pixel-based CDM. A214

tile-based CDM (TCDM) version constructed by two steps is presented hereafter.215

◦ Bi-date TCDM: For each tile stack (i, j), we calculate a similarity matrix by taking216

a similarity measure D between each pair of tiles of two di�erent dates (t, `) as217

follows:218

H(t,`)(i, j) = D
(
I S̃(i,j,k)t , I S̃(i,j,k)`

)
16t,`6N

. (2)

12



The bi-date TCDM M (a binary matrix) is then obtained by comparing values of219

similarity in H to a threshold T in order to determine changed (denoted as 1) and220

unchanged (denoted as 0) tiles in the tile stack:221

M(t,`)(i, j) =

[
H(t,`)(i, j)

0
≶
1
T

]
. (3)

◦ Multidate TCDM: From the bi-date TCDM, we rede�ne changed and unchanged

tiles using multidate information. To build temporal neighborhoods for each tile

I S̃(i,j,k)t , unchanged tiles corresponding to date t, having the same statistical prop-

erties as I S̃(i,j,k)t with respect to D and T in the similarity test (3), are aggregated

as follows:

Ψ
(
I S̃(i,j,k)t

)
=
{
I S̃(i,j,k)` |M(t,`)(i, j) = 0

}
16`6N

. (4)

Similar to the previous step, we then compute the multidate TCDM M̂ by applying222

the same similarity measure D and a threshold T to temporal neighborhoods of223

each pair of dates (t, `):224

Ĥ(t,`)(i, j) = D
(

Ψ
(
I S̃(i,j,k)t

)
,Ψ
(
I S̃(i,j,k)`

))
16t,`6N

, (5)

M̂(t,`)(i, j) =

[
Ĥ(t,`)(i, j)

0

≶
1
T

]
. (6)

The matrix obtained after two steps of temporal change analysis can expose changes225

occurred over time in each stack. We recall here the characteristic forms of certain types226

of change (Fig. 6) that can be observed from the appearance of TCDMs (see more details227

in Le (2015)). Two extreme cases are the temporal stability (Fig. 6 a and b) and the228

chaotic change (Fig. 6 c and d). The former shows that no changes occurred in the stack,229

and the latter often describes a rapid surface evolution (e.g., glacier displacement). Two230

typical change types that can be detected by TCDMs are the dirac (Fig. 6 e and f) and231

the step changes (Fig. 6 g and h). The dirac change occurs on only one date in the time232
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series and expresses the behavior of the radiometric temporal signal like a dirac pulse233

(for instance, a �ood event observed on only one date (image)). The step change arises234

from date tk and lasts for a certain period or till the end of the time series. This type235

of change presents an abrupt change (e.g., changes due to natural disasters like volcano236

eruption, earthquake, etc.). We can also discover more complex change types from the237

TCDMs. The rampe change in Fig. 6 i and j reports a gradual one with increasing238

magnitude from date tk to date t` or till the end of the time series (for example, changes239

related to cultivated activities, soil/coast erosion). The periodic change in Fig. 6 k and l240

also shows a gradual change, however, it occurs in a period from date tk to date t` and241

repeats cyclically (e.g., seasonal change).242

• Change dynamics of image time series243

Each TCDM contains change information corresponding to a tile stack. By taking244

into account all �1� elements of a TCDM representing changed tiles, we denote an index245

of change dynamics that measures the level of change in a tile stack as follows:246

δ(i, j) =
2

N(N − 1)

N∑
t=1

N∑
`=t+1

M̂(t,`)(i, j). (7)

The range of this index is a sequence starting at 0 that indicates the absolute stability,247

and �nishing at 1 that presents the extreme instability of the considered tile stack.248

The map of change dynamics of ITS allows us to extract regions of interest from249

various levels of change. For example, regions with high indexes δ often show regular250

changes. But some areas with low indexes δ may signify changes linked to a speci�c251

event. In this paper, we selected regions of interest manually after analyzing the obtained252

map of change dynamics and TCDMs. However, regions of interest can be identi�ed253

automatically based on the index of change dynamics. We can select tiles having a254

speci�c δ value or having δ values within a certain range. The TCDMs in these extracted255

regions reveal acquisitions of interest associated with change events.256
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3.2.2. Pixel scale stage257

After locating regions and image acquisitions of interest, we implement a pixel-wise258

analysis at these regions between two images acquired on determined dates (t, `) to obtain259

a change map CM(t,`):260

G(t,`) = L
(
I S̃t , I S̃`

)
t 6=`

, (8)

CM(t,`) =

[
G(t,`)

0
≶
1
T

]
, (9)

where L measures the similarity degree G(t,`) at region I S̃ between dates t and `.261

It is worth noting that similarity measures D and L in two stages of the proposed262

framework can be the same or di�erent. The selection of a similarity measure and a263

threshold depends on the work scale, data used, for instance, the spatial resolution,264

the type of SAR data (i.e., single-, multi-polarization SAR, InSAR, etc.), the required265

accuracy, the cost and time constraints, etc. Several similarity measures for SAR data and266

automatic thresholding algorithms were reviewed in Le et al. (2015b). In this work, we267

used the Kullback-Leibler distance (KLD) between two Log-normal distributions (Log-268

normal KLD) as the similarity measure to identify the di�erence of shapes of the local269

probability density functions(PDF) of images in the ITS (Inglada and Mercier, 2007), and270

the minimum error thresholding (Kittler-Illingworth) method (Kittler and Illingworth,271

1986) for the selection of threshold values in all stages of the framework. In Atto et al.272

(2013), Log-normal KLD is computed as follows:273

KLDLogn(It, I`) =
1

2
(αIt − αI`)2

(
1

β2
It

+
1

β2
I`

)

+
1

2

(
β2
I`
β2
It

+
β2
It
β2
I`

)
−1,

(10)

with α the log-scale and β the shape parameters of probability distributions of the two274

SAR images (It, I`) in the comparison.275
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4. Results and discussion276

Thanks to the quadtree-based splitting step of the TCDM approach, we only pro-277

cessed 65,640 tile stacks instead of 125,829,120 initial pixel stacks. The TCDM compu-278

tation time is about 2 hours on an Intel® Xeon® Silver 4110 CPU @ 2.1 GHz, 32 cores279

with 64 GBytes of RAM. By analyzing TCDMs and map of change dynamics obtained280

at the subimage scale, we can identify changed regions and image acquisitions of interest.281

Then we can obtain a detailed change map for each detected region using KLD between282

selected image pairs at the pixel scale.283

4.1. Change analysis at subimage scale284

4.1.1. Analysis of change dynamics285

The map of change dynamics in Fig. 7 gives a general view on the behavior and the286

trend of the variation over time of the observed area at the subimage (tile) scale. Each287

homogeneous tile of the map has a value that re�ects the level of change from 0 to 1.288

We can see three regions along the coast marked in red rectangles with higher indexes289

of change dynamics (0.6 ≤ δ ≤ 0.8) than the others. They are the coasts of Thua Thien290

Hue province, Da Nang city, and Quang Nam province, respectively. Besides changes due291

to regular evolution, these areas were also a�ected by �oods occurred during acquisition292

period. Some small areas marked in white ellipses are lakes and hydropower reservoirs293

with high indexes δ due to their water extent changes. Cultivated areas appear on the294

map with moderate indexes of change dynamics, from 0.3 to 0.5, since the progressive295

change of crops at these areas was observed during the same growth period of two years296

(i.e., from September to December of 2017 and 2018). Except for the masked sea area297

in the upper triangular portion of the map (δ = 0), it could be seen that mountainous298

areas are quite stable. These areas (almost located in the lower triangular portion of299

the map) have small δ values (0.1 ≤ δ ≤ 0.2). From the map of change dynamics, we300

selected three regions along the coast marked in red rectangles in Fig. 7, and also lake301

and reservoir areas for further analysis at the pixel scale.302
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4.1.2. Analysis of TCDMs303

Fig. 8 shows the TCDMs and temporal pro�les of �ooded tiles selected in three304

identi�ed regions of interest. From TCDMs, we detected that in the acquisition period,305

the study area was a�ected by three �oods observed on November 10, 2017, November306

22, 2017, and December 11, 2018 (i.e., the �fth, the sixth, and the eighteenth dates in307

the time series). On the TCDMs of �ooded areas, dirac changed can be determined. The308

TCDMs reveal that some areas were impacted by only one of three �oods (Fig. 8 a, b,309

c), but some areas were �ooded two times (Fig. 8 d, e, f), and even three times (Fig. 8310

g) during two rainy seasons of 2017 and 2018. The backscatter mean values of tiles on311

�ood dates are lower than those on other dates (Fig. 8 h, i, j, k, l, m, n). Therefore, the312

temporal pro�les can help us better understand the nature of change types detected by313

TCDMs. For example, TCDM in Fig. 9 f shows a dirac change detected on November 10,314

2017 (the �fth date of the time series) at a mountainous area which looks like a change315

caused by a �ood. However, looking at its temporal pro�le (Fig. 9 l), the tile backscatter316

mean value on the �fth date is higher than values on other dates. Thus, this change317

was not due to a �ood but a landslide. Indeed, the typhoon Damrey on November 4,318

2017 caused prolonged heavy rains that triggered landslides and �ash �oods in several319

mountainous regions in Thua Thien Hue and Quang Nam provinces in the study area.320

Fig. 9 f, l show the TCDM and temporal pro�le of a tile selected at Tra My commune,321

Bac Tra My district, Quang Nam province, where a landslide occurred on November 5,322

2017 (TaiNguyenMoiTruong, 2017).323

In addition to dirac change at �ooded areas, we can also identify other types of change324

in the study area (see Fig. 9). At rice �eld areas, periodic change (i.e., seasonal change325

according to crop evolution) can be observed (Fig. 9 a and c). In the case of �ooding, we326

can see in Fig. 9 a and b that on the �fth, the sixth, and the eighteenth dates of the time327

series, the rice �eld area was also �ooded like its surrounding areas. And Fig. 9 d shows328

the opposite case of a rice �eld stack selected outside of the �ooded areas. Aquaculture329

lagoons along the coast of Thua Thien Hue province (region 1) are covered by water330
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almost all the time. The backscatter signal at this area changes from one date to another331

in the time series, therefore its TCDM shows a chaotic change (Fig. 9 e). During the332

three �oods, water over�owed the banks of many lagoons. Therefore, TCDMs observed333

at regions around these lagoons also present dirac changes as in Fig. 8. As marked in334

white ellipses in Fig. 7, the study area has many hydropower reservoirs (e.g., Huong335

Dien, Binh Dien in Thua Thien Hue province, A Vuong, Song Tranh, etc. in Quang Nam336

province) and lakes (e.g., Khe Ngang, Ta Trach, etc. in Thua Thien Hue province, Hoi337

Khe, Chua Truoc Dong, etc. in Da Nang city, Khe Tan, Thach Ban, Phu Ninh, etc. in338

Quang Nam province) and the same phenomenon as the case of aquaculture lagoons can339

be observed (see Fig. 9 g and h). At almost all lakes and reservoirs, water over�owed340

their banks during the observed �oods. At rocky mountain areas, the TCDM in Fig. 9 i341

shows temporal stability in the tile stack, consistent with the map of change dynamics.342

Thus, from information provided by the map of change dynamics and TCDMs, along-343

side the analysis of temporal pro�les of tile stacks at each speci�c region, it is possible to344

preliminarily identify areas a�ected by �oods and acquisition dates of images related to345

these events. The TCDMs and map of change dynamics are helpful to determine changed346

regions and images involving these changes, in particular when dealing with a long SAR347

ITS covering a large area but without additional data sources to get more information348

about the study area.349

4.1.3. Regions and image acquisitions of interest350

The three regions along the coast marked in red rectangles, and several lakes and351

hydropower reservoirs in Fig. 7 were selected for the pixel scale analysis stage. The �rst352

region is the coastal region of Thua Thien Hue province. The second one includes the353

coastal area of Da Nang city and a small part of Quang Nam province, and zones along354

two sides of Cam Le river of Da Nang city and Thu Bon river of Quang Nam province.355

The last one is the rest of the coastal region of Quang Nam province.356

As described above, TCDMs disclosed three �ooding times observed by the acquired357

ITS of the study area, i.e., November 10, 2017, November 22, 2017 and December 11, 2018358
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(the �fth, sixth and eighteenth dates in the time series). Firstly, on November 4, 2017,359

Damrey - one of the strongest storms hit Vietnam in 2017, caused widespread damage360

from Thua Thien Hue to Binh Thuan provinces and the Central Highlands. Heavy rain361

brought by the typhoon the following days caused the �rst �ood. According to the362

Commanding Committee for Natural Disaster Prevention and Control and Search and363

Rescue of Thua Thien Hue province, the precipitation from 19:00 November 3, 2017 to364

13:00 November 5, 2017 was about 500 to 600 mm at mountainous area. The precipitation365

was higher than that in some areas, such as 769 mm at Khe Tre, 840 mm at A Luoi,366

and up to 1,855 mm at Bach Ma (nhandan, 2017). Then, typhoon Kirogi weakened to a367

tropical depression struck central and southern Vietnam on November 19, 2017. Heavy368

rain caused the second �ood in many parts of this region. In Thua Thien Hue, from 7:00369

November 19, 2017 to 19:00 November 20, 2017, precipitation recorded at some stations370

was: 290 mm at Ho Truoi, 357 mm at Ta Luong, 246 mm at A Luoi, 400 mm at Bach371

Ma (PCTTTKCN, 2017). Finally, downpours from December 7 to December 10, 2018372

induced the third �ood in the study site. For example, at some rainfall stations in Hue on373

December 10, 2018, the precipitation was 513 mm at Phong Binh, 484 mm at Bach Ma,374

256 mm at Binh Thanh, 255 mm at Ho Truoi (dantri, 2018). To determine areas a�ected375

by each �ood in detail, we have chosen the three following image pairs for the calculation376

of KLD at pixel scale: images acquired on October 29, 2017 (before the �rst �ood) and377

November 10, 2017 (during the �rst �ood); on October 29, 2017 and November 22, 2017378

(before and during the second �ood, respectively); and the pair of images acquired on379

November 29, 2018 and December 11, 2018 (before and during the third �ood).380

4.2. Inundation maps at pixel scale381

The KLD was calculated between three selected pairs of γ0 calibrated amplitude382

images acquired before and during each �ood to obtain the similarity maps. The KI383

thresholding method was then applied to derive change maps (binary change detection384

results) at each selected region. The obtained change map has the pixel size of 15.5 m385

x 15.5 m. To better interpret the obtained results, binary change maps of the selected386
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regions were superimposed on the mean image of the time series and combined in an RGB387

color image. Fig. 10 shows the inundation maps of three �oods during two rainy seasons in388

2017 and 2018 of Thua Thien Hue province, Da Nang city, Quang Nam province. We can389

simultaneously observe the e�ects of all three �oods and identify the frequently �ooded390

areas on these maps. The red, green and blue colors indicate �ooded areas induced by391

the �rst, the second and the third �oods. The yellow, magenta and cyan colors express392

areas a�ected by two �oods: the �rst and the second, the �rst and the third, and the393

second and the third, respectively. And white color points out areas a�ected by all three394

�oods.395

Speci�cally, in Thua Thien Hue province, all three �oods a�ected coastal areas, such396

as Quang Dien, Phu Vang, Phu Loc, Phong Dien, Huong Tra, Huong Thuy districts, and397

Hue city. In particular, in low-lying regions of Quang Dien, Phong Dien, Huong Tra,398

and Huong Thuy districts, the damage to cultivation and aquaculture areas was severe.399

In Da Nang city, the �rst �ood had a minor e�ect on this city, mainly on one side of400

Cam Le River. The second and the third a�ected Cam Le (both sides of the river), some401

parts of Ngu Hanh Son, Hoa Vang and Hai Chau districts. Like Thua Thien Hue, Quang402

Nam is also one of the most frequently �ooded provinces of Vietnam. We can see that403

the �rst �ood a�ected both sides of the Thu Bon river (i.e., Dien Ban, Dai Loc, Duy404

Xuyen districts), and the coastal regions of Hoi An city, Thang Binh, Phu Ninh and405

Tam Ky districts. The second one had a smaller impact, mainly in Thang Binh and Phu406

Ninh districts. And the third one had the most widespread in�uence of the three �oods,407

in Dien Ban, Duy Xuyen, Hoi An, Thang Binh, Phu Ninh, Tam ky districts. Overall,408

the inundation map provides a clear view of the frequently �ooded areas of the observed409

region. We can further exploit these maps for the �ood-damaged assessment and the410

�ood vulnerability mapping.411

4.3. Accuracy assessment412

We can observe a relatively high proportion of changed (�ooded) pixels at each se-413

lected region, suggesting that the proposed TCDM works correctly. Detected inundation414
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areas are located in low-lying land regions. For a quantitative assessment of obtained415

change detection results, we used comparison samples extracted based on the �ood map416

on November 7, 2017, derived from MODIS and Sentinel-1 data over Thua Thien Hue417

province (see Fig. 11 b) to compare to the �ood map obtained by the proposed framework418

on November 10, 2017 (the �rst �ood). We adopted the following evaluation metrics to419

measure the limited errors, i.e., False Alarm (FA), Missed Alarm (MA), and Overall420

Error (OE). We also used the Critical Success Index (CSI) (Schaefer, 1990) to assess the421

obtained binary change map. CSI combines the FA and MA into one score and does not422

consider the non�ooded fraction within the test-site. This index ranges from [0, 1], the423

higher values indicating the better performance of the change detection operator. These424

metrics are calculated as follows:425

FA = 1− TP

TP + FP
,

MA = 1− TP

TP + FN
,

OE = 1− TP + TN

TP + FP + FN + TN
,

CSI =
TP

TP + FP + FN
.

(11)

where TP, FP, TN, FN are true positive, false positive, true negative, and false negative,426

respectively, in the confusion matrix (Table 2).427

Among the total of 13891 comparison samples, the change map has 6405 correct and428

166 false changed pixels, while 1165 changed pixels are misclassi�ed into unchanged class.429

Accordingly, limited errors are 9.6% of OE, 2.5% of FA, and 15,4% of MA. The obtained430

change detection result has overall accuracy of 90.4% and the CSI of 82.8%. We can431

see that the �ood detection results of the two maps in Fig 11 are quite consistent, with432

few false alarms. The comparison map reports the �ooding state on November 7, 2017,433

whilst the �ood map produced in this paper describes the state on November 10, 2017,434

resulting in changes in the �ood delineation between the two maps that might explain435

false alarms.436
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Table 2: Confusion matrix of change detection result.
Class Validation samples Total

Changed Unchanged
Change map Changed 6405 166 6571

Unchanged 1165 6155 7320

Total 7570 6321 13891

5. Conclusions437

In this study, we have developed a methodology for a multiscale change analysis from a438

long SAR image time series composed of large-size image. We proposed to use a quadtree439

decomposition to split the ITS into tile stacks, and then apply the CDM approach to440

these stacks for change analysis at the subimage scale. The proposed TCDM approach441

allows the fast and correct detection of regions and image acquisitions of interest (i.e.,442

changed areas and acquisition dates of images involving change events). Then we derived443

detailed change maps of detected regions between image acquisitions of interest at the444

pixel scale. In order to better interpret, the obtained change maps were combined in an445

RGB color image.446

The proposed framework was successfully applied to monitor inundation areas along447

the coastal regions of Thua Thien Hue, Da Nang and Quang Nam provinces of Vietnam448

by using a SAR ITS composed of 19 ascending Sentinel-1 images. Obtained TCDMs449

were capable of identifying di�erent kinds of change in this time series (i.e., dirac change,450

periodic change, chaotic change, and temporal stability). The results indicate that during451

two rainy seasons from September to December of the two years 2017 and 2018, the452

coastal regions from Thua Thien Hue to Quang Nam su�ered three �oods observed by453

images acquired on November 10 and 22, 2017, and on December 11, 2018. Most of the454

coastal districts of these provinces were a�ected, some of them were seriously �ooded,455

such as Phong Dien, Huong Tra, Phu Vang, etc., of Thua Thien Hue, Hoa Vang, Cam le456

of Da Nang, and Dien Ban, Dai Loc, Duy Xuyen, Thang Binh, Phu Ninh, etc., of Quang457

Nam. The established inundation map has the potential to be exploited in further tasks458

22



like �ood-damaged assessment, and spatial prediction of �ood-susceptible areas.459

For further applications of the proposed framework, when using SAR data of di�erent460

sensors covering di�erent regions, an appropriate similarity measure should be used to �t461

the size of split tiles. With sensors of low or medium resolution, we can use a similarity462

measure between tiles containing a large number of samples to detect changes in the study463

area (e.g., the KLD in this paper). With high resolution ones, a similarity measure464

between tiles of small neighborhoods (like the coe�cient of variation) can be used to465

preserve the details of high resolution data. The TCDM analysis shows that many466

kinds of change can be detected by TCDMs. Change detection results of the proposed467

framework are expected to be classi�ed into di�erent types of landcover change based on468

TCDMs, and improved by using global terrain data.469
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Figure 6: Six types of changes can be observed by TCDMs. Left: temporal pro�les; Right: TCDMs'
appearances. (a), (b) Temporal stability; (c), (d) Chaotic change; (e), (f) Dirac change; (g), (h) Step
change; (i), (j) Rampe change; (k), (l) Periodic change.
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Figure 7: Map of change dynamics showing the frequency of all kinds of changes occurred in the study
area. (1), (2), (3): three regions of interest; (a), (b), (c), (d), (e), (f), (g): locations of observed tiles in
Fig. 8; (+): location of observed tile in Fig. 9 f.
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Figure 8: TCDMs and temporal pro�les at regions a�ected by �oods. Left: TCDMs; Right: temporal
pro�les of tile stacks. (a), (h) Flood on November 10, 2017; (b), (i) Flood on November 22, 2017; (c),
(j) Flood on December 11, 2018; (d), (k) Floods on November 10, 2017 and November 22, 2017; (e),
(l) Floods on November 10, 2017 and December 11, 2018; (f), (m) Floods on November 22, 2017 and
December 11, 2018; (g), (n) Floods on November 10, 2017, November 22, 2017 and December 11, 2018.
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Figure 9: TCDMs and temporal pro�les at several speci�c regions. Left: TCDMs; Right: temporal
pro�les of tile stacks. (a), (g) Rice �eld a�ected by three �oods on November 10, 2017, November
22, 2017 and December 11, 2018; (b), (h) Rice �eld not a�ected by �oods; (c), (i) Aquaculture lagoon
a�ected by three �oods on November 10, 2017, November 22, 2017 and December 11, 2018; (d), (j) Lake;
(e), (k) Rocky mountain area with almost no change; (f), (l) A dirac change not caused by a �ood.
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Figure 10: Inundation map of the study area in two rainy seasons, from September to December of 2017
and 2018 (opened in Google Earth).
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Figure 11: Accuracy assessment of �ood detection. (a) Flood map of Thua Thien Hue province on
November 7, 2017, regarding the typhoon Damrey, © Brakenridge and Kettner (2017) (Red: �ooding
mapped from NASA MODIS and Copernicus Sentinel-1 data, Gray: previously-mapped �ooding, Blue:
reference normal water extent); (b) Flood map of Thua Thien Hue province on November 10, 2017
produced by the proposed framework from Sentinel-1 data and comparison samples manually extracted
from the map in Fig 11 a (White: �ooded areas, Blue: �ooded samples, Maroon: non-�ooded samples,
Green: false alarms, Red: missed alarms).
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