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Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which
are related to response to abiotic and biotic stresses. Although recent studies increased
our knowledge on the nature of these mechanisms, epigenetics remains under-
investigated and still poorly understood in many, especially non-model, plants,
Epigenetic modifications are traditionally divided into two main groups, DNA
methylation and histone modifications that lead to chromatin remodeling and the
regulation of genome functioning. In this review, we outline the most recent and
interesting findings on crop epigenetic responses to the environmental cues that are
most relevant to climate change. In addition, we discuss a speculative point of view, in
which we try to decipher the “epigenetic alphabet” that underlies crop adaptation
mechanisms to climate change. The understanding of these mechanisms will pave the
way to new strategies to design and implement the next generation of cultivars with a
broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with
a limited loss of (epi)genetic variability.
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1 EPIGENETICS – BEYOND THE CLASSIC
GENETIC ALPHABET

The term “epigenetics” derives from “epigenesis,” coined by the
physician and physiologist William Harvey at around 1650, for
the conception of development as a gradual process of increasing
complexity from initially homogeneous material present in the
egg of different animals. This idea was originally proposed by
Aristotle (Van Speybroeck et al., 2002). However, this concept
deeply changed over time, and in 1942 the embryologist Conrad
Waddington introduced the term “epigenetics” into modern
biology defining it as “the whole complex of developmental
processes” that lies between “genotype and phenotype”
(Waddington, 1942).

In recent years, our understanding of the role of epigenetic
mediated responses to environmental stimuli, especially to
stresses, has greatly improved (Mladenov et al., 2021).
Environmental stress factors, due to climate change, affect
plant growth and pose a growing threat to sustainable
agriculture and food security (Altieri et al., 2015). These
factors include intense drought periods, excessive rainfalls
eventually causing flooding, extreme temperatures, and heat
waves, among others (Schiermeier, 2018). Although the acute
responses of crops to single stresses are considered individually
and in single occurrence are extensively studied, stresses typically
occur in a chronic or recurring way and mostly in a combined
manner. Recent studies suggest that plants have “a stress
memory” that is guiding, or supervising in a way, their
adaptation to chronic, recurring, and combined environmental
stresses (Walter et al., 2013). In general, irrespective of whether
environmental stimuli are chronic or not (such as drought,
hyperosmotic, salinity, heat, pathogens, etc.), they can induce
diverse epigenetic mechanisms, where key genes, such as Dicer-
like 4 (DCL4) and Retrotransposon-like 1 (RTL1), play an
important role.

Epigenetic mechanisms involved in plant responses to
environmental stresses are not encoded by the classical four-
letter genetic alphabet (Faltýnek et al., 2020). Hence, epigenetic
modifications are usually chemically expressed by expanding the
standard four-letter genetic alphabet by the addition of a special
mark to a letter (nucleobases), thus creating a specific “epigenetic
alphabet” (Figure 1).

1.1 From A to S—“Basic” Epigenetic
Alphabet
1.1.1 A-O: Histone Variants and Histone
Post-Transcriptional Modifications
Chromatin structuring and remodeling, which are key regulatory
processes for controlling the accessibility of genes to the
transcriptional machinery, play an important role in plant
responses to climate change (Song et al., 2021) (Figure 2).

The basic functional unit of the chromatin is the nucleosome,
which consists of a histone octamer made of two copies of each of
the histone H2A, H2B, H3, and H4 wound by 147 bp of DNA.
The histone H1 binds to the “linker DNA” comprising 20–80
nucleotides that separate two nucleosomes (Annunziato, 2008).

Canonical histones, except for H4, have minor variants which can
be incorporated into the nucleosome throughout the cell cycle.
Canonical histones and their variants differ only by a few amino
acid residues, but their exchange in the nucleosome can modulate
the exposure of DNA and regulation of transcription by directly
influencing the chromatin structure. For example, the H2A.Z
variant located in gene bodies ensures the repression of heat and
osmotic stress-related genes in the absence of stress, while
eviction of H2A.Z allows their transcriptional induction upon
stress (Cortijo et al., 2017; Sura et al., 2017). Mutants of the
SWR1-like chromatin remodeling complex which are impaired in
H2A.Z installment show enhanced resistance to pathogens,
highlighting H2A.Z importance for adaptive response to both
abiotic and biotic stresses (March-Díaz et al., 2008). Another
example is provided by the stress-inducible H1 variant H1.3 in
Arabidopsis thaliana, which modulates stomata under non-stress
or light and water-limited conditions (Rutowicz et al., 2015).

In addition, post-translational modifications of histones may
lead to changes of chromatin structure and packaging and modify
the accessibility of cis-regulatory elements to transcription factors
and associated protein complexes (Zhang X. et al., 2020). Among
the 26 histone post-translational modifications (HPTMs)
described in the literature (Zhao et al., 2015), two have been
intensively studied in the context of the response to stress, namely
acetylation and methylation, while recent work suggest that
ubiquitination and phosphorylation are also involved in this
process. As all other HPTMs, these marks are established by
histone writers complexes such as histone acetyltransferases
(HAT), methyltransferases (HMT), kinases, and ubiquitinases,
and removed by “erasers” including deacetylases (HDA),
demethylases (HDM), phosphatases, and de-ubiquitinases (Xu
et al., 2017; Maeji and Nishimura, 2018). Acetylation which
occurs on lysine residues (K) on histones H3 and H4
respectively at positions 9, 14, 18, 23, and 27, and positions 5,
8, 12, 16, and 20, neutralizes the positive charge of histones

FIGURE 1 | Deciphering the alphabet of epigenetic responses to the
environmental stresses in plants. Different types of epigenetic modifications in
response to different abiotic and biotic stresses. A-O—Histone modifications;
P-R—Cytosine methylation; S—Adenine methylation.
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thereby weakening the interaction between histones and DNA. In
contrast, deacetylation has the opposite effect and results in
chromatin condensation (Shahbazian and Grunstein, 2007;
Prakash and Fournier, 2018). Consistently, histone acetylation
has been associated with active gene expression (reviewed in Hu
Y. et al., 2019). Several studies have demonstrated that the
abundance and/or distribution of acetylated histones change in
plants facing abiotic stresses or pathogen attacks (reviewed in Hu
Y. et al., 2019; Lu et al., 2018; Park et al., 2018). Furthermore
mutants affected in either of these enzymatic activities present
altered responses to abiotic stresses (reviewed in Hu Y. et al.,
2019). Among the HAT, several studies have shown that the
GCN5 protein plays a central role in coordinating the response to
heat and salt stress in A. thaliana (Hu et al., 2015; Zheng et al.,
2018). Inversely, deacetylation which leads transcriptional
repression affects the transcriptome landscape under abiotic
stress conditions (Park et al., 2018).

The mono-, di- or tri-methylation of histone tails, which
occurs at arginine (R) or lysine (K), alters the hydrophobicity
of histone side chains thereby the interaction with reader proteins
and the transcriptional machinery. However, R and K
methylation has diverse effects on chromatin organization and
gene expression depending on the position of the modified amino
acid (Lämke and Bäurle, 2017). Asymmetric H4R3me2
(dimethylation (me2) of the third arginine (R3) of Histone 4

(H4), H3K4me3, H3K36me2/3 are associated with active
transcription, while symmetric H4R3me2, H3K9me2/3, and
H3K27me3, that exist symmetrically on the two copies of
identical histones in the same nucleosome, correlate with
transcriptional silencing (Bobadilla and Berr, 2016; Ueda and
Seki, 2020). Numerous works that either analyzed the dynamics
of histone methylation or the reponse of mutants affected in
HMT aor HDMT activities have now shown the importance of
histone methylation in the development and responses to stresses
(reviewed in Ueda and Seki, 2020). Importantly, data suggest that
the removal of repressive methylation marks is necessary for
some stresses to unlock the expression of stress related genes
(Shen Y. et al., 2014; Huang et al., 2019b).

In contrast to acetylation and methylation, histone
ubiquitination and phosphorylation have been only sparsely
studied. Monoubiquitination of histone lysine H2Bub is
considered an active mark in salt and drought stress response
(Chen et al., 2020). However, the mono-ubiquitination of
histones is an important HPTM that occurs on histones H2A
and H2B at lysine K121 and K143 respectively (March and
Farrona, 2018). Whereas H2B mono-ubiquitination (H2B ub)
marks active genes in association with methylation at K4 and K36
of histone H3, H2Aub, which is established by the PRC1
(Polycomb Repressive Complex 1) upon recruitment at
H3K27me3 marks established by the PRC2, maintain the

FIGURE 2 |Roles of DNA-methylation in environmental stress responses andmemories in plants. Changes in DNA-methylation landscape are part of the response
of plants to environmental stresses. De novo methylation, which is targeted at specific loci by small-RNAs, is established by the RNA-dependent-DNA-Methylation
pathway (RdDM) whereas, DNA demethylation at specific loci requires functional DNA Glycosylase Lyase also called DNA demethylase such as Repressor of Silencing 1
(ROS1). Modification of DNA methylation patterns at genes may result in changes in gene expression level leading to gene induction or repression. In addition,
stress induced DNA methylation variations may occur at transposable elements (TEs) and determine their inactive or active state. When hypomethylated and
transcriptionally active, TEs may indirectly influence the expression of genes located in their vicinity, whereas their hypermethylation has the reverse effect. Additionally,
the mobility of TEs may generate new regulatory patterns or mutations leading to loss of gene function when their insertion occurs in genes. Maintenance of stress
induced patterns of DNA methylation through cell division (Mitosis or meiosis), results in an epigenetic memory. This memory requires the context-specific DNA-
methyltransferases METHYLTRANSFERASE-1 (MET1), CHROMOMETHYLASE-3 (CMT3) for CG and CHG sequence context, respectively. Methylation in the CHH
sequence context is maintained by CMT2 or by the RdDM pathway in heterochromatic and euchromatic regions, respectively.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8187273

Guarino et al. Plant Epigenetics and Climate Change

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


chromatin in a closed state and is associated with the repression
of gene expression (March and Farrona, 2018). It is only recently
that a possible role H2Bub in the response to drought stress was
established in cotton (Chen et al., 2019). and in A. thaliana and
rice, respectively, by regulating cutin biosynthesis (Ménard et al.,
2014; Patwari et al., 2019) and ABA signaling (Ma et al., 2019).

Finally, the phosphorylation of histone H3 which can occur on
threonine and arginine has been essentially studied in the context
of the cell cycle (Houben et al., 2007) and its putative role in stress
responses is not well understood so far. However,
phosphorylation at H3T3 is increased in pericentromeric
regions under drought conditions to repress transcription,
acting in an antagonistic manner to H3K4me3 (Wang Z.
et al., 2015).

In addition to the response to stresses, HPTMs have also been
implicated in stress memory such as histone methylation which
can be maintained for a relatively long period in primed plants
(Lämke, and Bäurle, 2017).

1.1.2 P-S: DNA Methylation
DNA methylation plays an important role in the regulation of
gene expression and plant reaction to environmental stresses
(Kumar and Mohapatra, 2021a) (Figure 3), In plants, DNA
methylation predominantly occurs by the addition of a methyl
group to the fifth position of the pyrimidine ring of cytosine bases
or the sixth position of the purine ring of adenine bases, which is
referred to as 5-methylcytosine [5 mC] or N6-methyladenine
[6 mA] DNA methylation, respectively (Liu and He, 2020).

1.1.2.1 Cytosine Methylation
Cytosine methylation in plants occurs in the two symmetrical q
sequences contexts CG, and CHG, and in the non-symmetrical
one CHH (where H is A, C, or T). Cytosine methylation is high at
heterochromatic regions (centromeres, transposable elements
(TE), other repetitive elements) is involved in their
transcriptional silencing (Transcriptional Gene Silencing,

TGS). In contrast, methylation levels are low in euchromatic
regions (Liu and He, 2020).

Mechanisms involved in the regulation of DNA methylation
depend on the sequence contexts and therefore occur following
three different mechanisms. In the CG context, the DNA methyl
transferase (DNMT) MET1 together with additional cofactors
including VARIANT IN METHYLATION (VIM), and decrease
IN DNA METHYLATION 1 (DDM1) methylate the
unmethylated cytosine incorporated during DNA replication
in the newly synthesized DNA strand (Law and Jacobsen,
2010), whereas the chromomethylase 3 (CMT3) and to a
lower extend CMT2 will fulfill a similar function at CHG
motives (Du et al., 2012). Methylation maintenance at CHH
asymmetrical motives requires reinstalling methylation at the
newly synthesized unmethylated DNA strand by the Domain
Rearranged methyltransferase 2 (DRM2) and the RNA-
dependent DNA methylation (RdDM) in euchromatic regions,
or CMT2 methyltransferase in heterochromatic regions enriched
in histone H1 where the RdDM pathway is inhibited (Zemach
et al., 2013; Zhang H. et al., 2018). De novo methylation that
occurs at non-methylated sites in any sequence context is
mediated through the RdDM pathway, and requires small
interfering RNAs (siRNAs), scaffold RNAs and several
additional proteins (Zhang H. et al., 2018).

In addition, active DNA demethylation is gaining significant
attention because it is involved in many biological processes in
plants, and in the response to various stresses (Liu and Lang,
2020). 5 mC can be either passively removed by simple dilution
after DNA replication, or actively eliminated by specific enzymes,
namely the 5-methylcytosine glycosylase-lyase that belongs to the
DEMETER (DME)/REPRESSOROF SILENCING (ROS1) family
in A, thaliana and DEMETER-LIKE (DML). These DMLs are bi-
functional enzymes exercising the 5 mC creating an abasic site,
likely repaired by unknown DNA polymerases and ligases
activities. The whole process results in a net loss of cytosine
methylation (Law and Jacobsen, 2010).

FIGURE 3 | Histone modifications in response to environmental stresses. HAT, histone acetyltransferase; HDA, histone deacetylase; HMT, histone
methyltransferase; ROS, reactive oxygen species; ABA, abscisic acid.
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Variations in DNA methylation can occur during inbreeding,
plant aging, and in the response to different stresses (Quadrana
and Colot, 2016; Zhang Q. et al., 2018). These variations may
underlay phenotypic variation (Noshay and Springer, 2021) as
demonstrated by analyzing Epigenetic Inbred Lines (EpiRILs) in
A, thaliana (Quadrana and Colot, 2016). In addition, EpiRILs
allowed demonstrating that differences in the epigenetic
landscape of plants can lead to a significant plastic response to
stresses (Kooke et al., 2015), as DNA methylation changes were
observed in stressed plants (reviewed in Zhang Q. et al., 2018). In
addition, impairing enzymes involved in DNA methylation leads
to variable survival in response to stresses, highlighting the
fundamental role of DNA methylation in the plant responses
to stresses (Yao et al., 2012; Shen X. et al., 2014; Wibowo et al.,
2016).

1.1.2.2 Adenine Methylation
The recent discovery that adenine can also be methylated
although at very low rates, add another layer of complexity to
the epigenetic processes affecting plant genomic DNA (reviewed
in Chachar et al., 2021). As for cytosine methylation, 6 mA DNA
methyltransferases have been identified, as well as associated
demethylases (Chachar et al., 2021). Interestingly, 6 mA
associates with active gene expression, which contrasts with
the main function associated with cytosine methylation
(Zhang Q. et al., 2018; Liang et al., 2018). Recent evidence
also suggests that rice plants with various levels of 6 mA
present variable responses under different abiotic stresses,
suggesting a potential role of 6 mA in the plant responses to
environmental stimuli (Zhang Q. et al., 2018).

6 mA is directly involved in heterochromatin regulation in
mouse embryonic cells. It also participates in the regulation of
mRNA encoding HAT or HMT, and is involved in the
recruitment of histone modifiers during transcription thereby
affecting the deposition of specific epigenetic marks in animals
(reviewed in Kan et al., 2021). However, further studies are
needed to elucidate if 6 mA has similar roles in plants.

1.2 From T to Z?—RNA-Mediated
Epigenetic Modifications
The regulation of gene expression in response to stresses, both at
the transcriptional and post-transcriptional levels, confers
plasticity, and adaptability to plants (Wang et al., 2017; Song
X. et al., 2019). This regulation is induced by small and long non-
coding RNAs (sRNAs 20–24 nt, and lncRNAs > 200 nt), thus
adding new letters to the “epigenetic alphabet,” beyond ones
created by histone modifications and DNA methylation
(Figure 1).

Non-coding RNA may be involved in the constitutive
repression of transposon elements. MicroRNAs (miRNAs) are
essential factors able to determine the specificity of post-
transcriptional regulations. They originate from the cleavage of
endogenous transcripts of miRNA (MIR) genes by DICER-LIKE
1 (DCL1). Loaded into AGO1, miRNAs regulate the gene
expression by degradation or translational repression of target
mRNAs. Although miRNAs are primarily involved in the PTGS

regulation of gene expression, recent evidence suggests that they
may also participate in epigenetic pathways, although indirectly.
For example, modulation of miRNA populations was suggested to
shape the epigenetic memory of stresses by modulating the
expression of epigenetic regulators in Norway spruce
(Yakovlev and Fossdal, 2017). In addition, miRNA may play
direct although minor roles in DNA methylation through the
non-canonical RdDM pathway (Cuerda-Gil and Slotkin, 2016),
including in response to environmental stimuli (Iwasaki et al.,
2019).

Small interfering RNAs (siRNAs) arise from the processing of
intermediate double-stranded RNAs synthesized by RNA-
dependent RNA polymerases (RDRs) (Song X. et al., 2019).
Among them, TE-derived siRNAs are produced upon
transcription and/or transpositional reactivation of TEs in
response to stress (Hou et al., 2019). The plant-specific RNA
polymerase IV generates single-stranded siRNA precursors,
converted into double-stranded RNAs (dsRNAs) by RDR2.
These dsRNAs are processed by DCL3 for producing 24-nt
mature siRNA and loaded preferentially into AGO4 (Law and
Jacobsen, 2010). At the same loci, another plant-specific RNA
polymerase V generates non-coding transcripts allowing the
recruitment of the siRNA-AGO4 complex through sequence
complementarity, as well as DRM2 (Du et al., 2015).
Consequently, de novo DNA methylation occurs at different
loci (Erdmann and Picard, 2020) in all cytosine sequence
contexts (Law and Jacobsen, 2010). Distinct Dicer-type
nucleases are involved in miRNAs/siRNAs production. They
are subsequently recruited by distinct proteins of the AGO
family (Iki, 2017), which act together within the miRNA-
induced silencing complex to target complementary sequences
of coding and non-coding RNAs (Song X. et al., 2019).

LncRNAs regulate gene expression at the epigenetic,
transcriptional, post-transcriptional, translational, and post-
translational levels (Sun et al., 2018; Zhang et al., 2019; Wu
et al., 2020). LncRNAs are transcribed by RNA polymerase II, III,
IV, and V, and have specific spatial structures and spatiotemporal
expression patterns. They are divided into five categories
according to their position in the genome, next to or far from
protein-coding genes: sense, antisense, bidirectional, intronic
(incRNA), and large intergenic lncRNA. Many plant lncRNAs
are differentially expressed by abiotic and biotic stresses (Wang
et al., 2018; Yin et al., 2019) and were suggested to play an
important role in this context (Urquiaga et al., 2021).

Recent technical advances have revealed widespread and
sparse modification of mRNAs, providing an additional layer
of complexity to the regulation of gene expression. Prevalent
mRNA modifications, namely the N6-methyladenosine (m6A)
and 5-methylcytidine (m5C), are modulated by specific writers
(RNA methyltransferase, e.g., AlkB), readers, and erasers (RNA
demethylase). The writer complex, also known as
“methylosome,” adds m6A at conserved sites and comprises a
catalytic heterodimer METTL3/METTL14; MTA in A. thaliana,
associated with the regulatory proteins FIP37 (FKBP12
INTERACTING PROTEIN 37)) and VIRILIZER. The
corresponding mutants are embryo lethal (Zhong et al., 2008;
Shen et al., 2016; Růžička et al., 2017). Furthermore, m6A
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stabilizes transcripts required for salt and osmotic stress response
(Anderson et al., 2018), suggesting roles for m6A beyond
development. Polymethylated mRNAs (i.e. carrying many
m6A modifications) facilitate inter/intramolecular interactions,
a property referred to as “multivalency.” Multivalency enables
m6A mRNAs to participate in assemblies comprising proteins,
RNAs, and metabolites called “biomolecular condensates” due to
their capacity to concentrate molecules. Condensate formation
may rely on liquid-liquid phase separation (LLPS), whereby a
solution de-mixes into two or more distinct phases (Huang et al.,
2021). Proteins with intrinsically disordered regions (IDR) in
many cases can promote LLPS. For example, the IDR-enriched
YTH domain proteins EVOLUTIONARILY CONSERVED
C-TERMINAL REGION2/3/4 (ECT2/3/4), which can read
m6A, modulate leaf development and localize in the
biomolecular condensates known as stress granules (SGs)
(Kosmacz et al., 2019). Yet, there is a lack of understanding of
ECT functions in the SGs. SGs form rapidly upon stress onset to
readjust the transcriptome by degrading or storing mRNAs and
thus optimizing adaptation (Gutierrez-Beltran et al., 2015). As
has been shown for animals, ECTs may regulate SGs formation
during stress (Fu and Zhuang, 2020), thereby adjusting the
transcriptome landscape indirectly by recruiting m6A-modified
RNA molecules in SGs, whereby they are kept inert.

Several studies suggest that the m6A writers AlkB homologs
(ALKHB) regulate stress responses due to their gene expression
levels modulation upon stress (Hu H. et al., 2019). A. thaliana has
13 ALKHB proteins, and ALKBH9B demethylates m6A and
affects viral spread (Martínez-Pérez et al., 2017), while
ALKBH10B influences flowering by controlling SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE (SPL) 3, SPL9, and
FLOWERING LOCUS T mRNA levels (Duan et al., 2017).
This link is indirect and merits further investigation.

Apart from m6A, we know little about other mRNA
modifications in plants. Recent evidence suggests a link
between m5C and RNA mobility. Mobile mRNAs are rich in
m5C (Yang et al., 2019). Yet, the molecular machinery involved in
recognizing and distributing m5C mRNA is still unknown.
Furthermore, there is evidence, mainly from animal systems,
that mRNA modification also plays a direct role in epigenetics
(Kumar and Mohapatra, 2021b; Kan et al., 2021). Whether
similar roles for epi-modification of plant mRNAs exist in
plants requires further investigation.

2 EPIGENETIC ALPHABET—(DE)CODING
THE STRESS RESPONSE

Climate change is altering the environments in which all
organisms develop and thrive. Plant species, as sessile
organisms, can adjust to these novel conditions through
phenotypic plasticity, natural selection and eventually can
change habitat to follow their optimal growing conditions,
these possibilities being not mutually exclusive. Epigenetic
modifications that occur in plants are also part of their
response to changes in their environment. Those epigenetic
changes are adding to natural mutations, with epigenetic

marks creating an enlarged version of the genetic alphabet,
thus increasing the variety of phenotypes within the stress-
affected habitat (Faltýnek et al., 2020). When heritable to the
progeny, they become a certain kind of “norm,” enabling us to
further decode stress response in crop of interest and apply it for
resilience improvement.

In the context of stress responses, these histone-modifying
complexes are directed by stress-induced transcription factors
to their appropriate targets. For example, the COMPASS H3K4
methyltransferase complex is recruited by bZIP transcription
factors and brings about methylation of H3K4 (Song et al.,
2015). Furthermore, among the numerous messengers, such as
calcium, redox signaling, membrane integrity, G-proteins,
mitogen-activated protein kinases (MAPKs), plant stress
hormones (salicylic, jasmonic and abscisic acid, ethylene)
that modulate the response of plants to stresses, the Reactive
Oxygen Species (ROS) and the Reactive Nitrogen Species (RNS)
have received increasing attention over the last decade as they
are key players of the integrated responses of plants to these
stresses, in addition to their fundamental functions in plant
development (Sewelam et al., 2016; Huang et al., 2019a; Kumar
et al., 2020). Indeed, the plant responses to different abiotic
stresses, such as heat, chilling, excessive light, drought, ozone
exposure, UV-B irradiation, osmotic shock, heavy metals, and
organic pollutants involves a rapid oxidative burst that leads to
the generation and/or accumulation of oxidants such as ROS
and RNS. These reactive species are essential signaling systems
that participate to multiple processes, necessary to adjust the
metabolism or physiology either at the whole plant or tissue
level or in a specific subcellular compartment (Waszczak et al.,
2018).

Redox intermediates play also a critical role in the regulation
of epigenetic mechanisms in response to plant stresses. They
govern DNA methylation levels: increases in ROS caused DNA
hypomethylation both in tobacco (Choi and Sano, 2007;
Poborilova et al., 2015) and pea (Berglund et al., 2017).
Similarly, in rice, RNS caused a heritable hypomethylation
(Ou et al., 2015). In addition, redox intermediates often
regulate enzymes involved in histone methylation and
acetylation (Ojima et al., 2012). In maize, ROS, generated by
heat stress, induced histone hyperacetylation (Wang P. et al.,
2015). Heritable changes induced by the environment have been
shown in Linum usitatissimum L. (Cullis, 1986), in
Mesembryanthemum crystallinum L. (Bohnert et al., 1995),
and Brassica nigra L. (Waters and Schaal, 1996). Since the ‘90s
hypermethylation of heterochromatic loci has been reported in
tobacco, either in response to osmotic stress (Kovar�ik et al., 1997)
or in silenced genes in transgenic plants (Meyer et al., 1992;
Meyer and Heidmann, 1994). On the contrary, hypomethylation
has been documented in chicory root tips (Demeulemeester et al.,
1999) andA. thaliana (Finnegan et al., 1998) when exposed to low
temperature. Epigenetic changes have been observed in tissue
cultures, while methylation polymorphisms have been frequently
observed during the propagation of tissue cultures at the level of
repeated sequence (Smulders et al., 1995) and may contribute to
somaclonal variation (Kaeppler et al., 2000). All these variations
in genome methylation might be part of the plant’s adaptation
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mechanisms to abiotic stresses (Martienssen and Richards, 1995;
Kovarík et al., 1997).

Furthermore, under abiotic constraints, plants show multiple
alterations in their sRNAome, leading to changes in the
accumulation of individual sRNAs or through their specific
induction in stress conditions, as shown in annual plants (Liu
et al., 2017; Pan et al., 2017; He et al., 2019) and cultivated
perennials plants (Leclercq et al., 2020). The respective
proportions of the different sRNA classes may also be
modified in response to stress, adjusting a genome-wide gene
expression reprogramming to different sRNA-dependent
regulation mechanisms. Few examples are known in plants
responding to developmental or abiotic cues. A switch
between 24 and 21 nt sRNA has been observed in rubber trees
upon the occurrence of the stress-induced Tapping Panel Dryness
syndrome (Gébelin et al., 2013), as well as in apple trees during
the vegetative-to-floral transition with changes within 24 nt
sRNA population (Guo et al., 2017). In cereals, different
cultivars showed altered abundance in miRNAs contents
which was associated with differences in stress sensitivity and
in the modulation of a wide set of genes referable to drought
tolerance (Bakhshi et al., 2017; Fard et al., 2017). A summary of
the most recent epigenetic modifications, in response to different
types of stresses, as well as the alphabet of epigenetic responses to
the environmental stresses in plants are presented in Figures 1, 4;
Table 1, respectively.

2.1 Drought Stress
Water availability is one of the most important and prevalent
environmental cues which affect the growth, development, and
productivity of plants, and ultimately, their survival. Many
known epigenetic regulations were shown to play a significant
role in acclimation and adaptation to drought stress (Varotto
et al., 2020) Concerning climatic change, one of the most
important abiotic stresses, water scarcity, is becoming
increasingly critical for the survival of plants and crop

productivity and yield. Moreover, in long-lived perennial
tree species, the water balance in the organ tissues is crucial
for growth, survival, and reproductive capability, and
influences their distribution along with the environment
and climate gradient (Jenkins et al., 2018). Therefore,
understanding how plants respond to water stress/scarcity
would allow us to inform breeders to select new varieties more
resilient to this kind of stress. Hence, many studies on
epigenetic changes associated with water stress/scarcity or
drought have occurred in recent years both in crops and
woody species (Ashapkin et al., 2020; Varotto et al., 2020;
Kapazoglou et al., 2021).

MYB96 transcription factor was identified in A. thaliana (Lee
and Seo, 2019), and AREB1 in poplar as a HAT recruiter in
response to drought stress, which affects the acetylation of the
H3K9 and thereby the expression of NAC genes (Li et al., 2018).
HDA6 and HDA15 regulate genes participating in the jasmonate
signaling network and production of Rho of plants (RHO
GTPases) by deacetylation of H3K914ac and
H4K5K8K12K16ac, respectively, (Jiang et al., 2020). HDA9 is
one of the major histone deacetylases, which regulates the
expression of drought-responsive genes in A. thaliana (Lee
and Seo, 2019). The increased expression of BdHD1 in
Brachypodium caused lower acetylation of H3K9 affecting 230
genes and leading to an abscisic acid hypersensitive phenotype
(Song J. et al., 2019). H3K4 methylation is widespread histone
methylation in response to drought stress. In A. thaliana, the
lower levels of H3K4me3 or H4R3sme2 cause increased drought
stress tolerance (Liu et al., 2018), while H3T3ph, the
phosphorylation of H3 at the threonine of the pericentromeric
part, causes an increase in osmotic tolerance (Wang Z. et al.,
2015). Monoubiquitination of H2A and H2B is also related to
drought tolerance. In fact, H2Bub acts on changing abscisic acid
signaling and wax biosynthesis and thereby enhancing drought
tolerance not only in A. thaliana but in cotton and rice, as well
(Chen et al., 2019).

FIGURE 4 | Epigenetic mechanisms involved in plant response to stress. Histone modifications (A) include acetylation/deacetyaltion and methylation/
demethylation, while DNA methylation (B) includes cytosine methylation and adenine methylation processes.
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TABLE 1 | Most recent examples of epigenetic modifications in plants in response to different types of abiotic stresses. Duration of epigenetic state, type of epigenetic
modification, key proteins involved (M: mediators; T: their targets).

Species Stress condition Epigenetic state
duration

Epigenetic and post-transcriptional
modifications

Key proteins
involved

References

Histone
modifications

DNA
methylation

Non-
coding RNA

Drought/Osmotic
Arabidopsis
thaliana

Four cycles of 2 h
dehydration/22 h
rehydration

Up to 5 days H3K4me3 — — T: RD29B, RAB18 Ding et al.
(2012)

Arabidopsis
thaliana

One or two cycles of 2 h
dehydration/22 h
rehydration

5 days H3K4me3,
H3K27me3

— — M: CLF Liu et al. (2014)

Arabidopsis
thaliana

1–8 h dehydration Up to 5 h after
rehydration from a 4 h
stress

H3K9Ac — — T: RD20, RD29A Kim et al.
(2012)

Oryza sativa 7–9 days without watering NDa
— — mir162b T: TRE1 Tian et al.

(2015)
Oryza sativa 7–9 days without watering

in seedlings or during
panicle development

ND — — miR164 T: NACs Fang et al.
(2014)

Arabidopsis
thaliana

−0.5 MPa PEG for 10 days ND — — miR393 T: TIR1, AFB2 Chen et al.
(2012)

Arabidopsis
thaliana

12 days without watering 12 days H4R3sme2 — — M: CAU1/PRMT5/SKB1 Fu et al. (2013)
T: CAS

Arabidopsis
thaliana

30% PEG for 7 days 7 days H3T3ph — — M: MLK1/2 Wang et al.
(2015a)T: pericentromeric

regions
Arabidopsis
thaliana

14 days without watering 14 days H4Ac — — T: PDC, ALDH2B7 Kim et al.
(2017)

Arabidopsis
thaliana

7 days without watering 14 days H3K4me3 — — M: ATX4, ATX5 Liu et al. (2018)
T: AHG3

Gossypium
hirsutum

7 days in MS medium with
up to 40% PEG

12 days H2Bub — — M: AtHUB2 Chen et al.
(2019)T: GhDREBH3K4me3

Arabidopsis
thaliana

14 days without watering 14 days H3Kac, H4ac — — M: HDA15, MYB96 Lee and Seo,
(2019)T: RHO gtpase

Popolus
trichocarpa

7 days without watering 7 days H3K9ac — — M: AREB1-ADA2b-
GCN5

Li et al., 2019

T: PtrNAC006,
PtrNAC007, PtrNAC120

Oryza sativa 5–7 days without watering 5–7 days H2Bub1 — — M: OsHUB2, OsOTLD1 Ma et al.
(2019)T: MODD

Zea mays Water content threshold of
25% of the available water
for 10 days

7 days H3K4me3,
H3K9ac

— — T: ZEP1, NCAD6, AP2/
EREBP, NAC, MADS4,
MADS15

Forestan et al.
(2020)

Glycine max 13 days without watering — — — miR169g T: NFY Ni et al. (2013)
Oryza sativa 7 days without watering — — — miR162b T: TRE1 Tian et al.

(2015)
Arabidopsis
thaliana

11–15 days without
watering

— — — miR168a M: AGO1 Li et al. (2012)

Arabidopsis
thaliana

14 days without watering — — — miR396a,
miR396b

T: GRF Liu et al. (2009)

Hyperosmotic
Arabidopsis
thaliana

Priming with 50 mM NaCl,
10 days recovery, 14 days
in 80 mM NaCl

10 days H3K27me3 — — T: SOS5, LRP1,
SCARECROW

Sani et al.
(2013)

Medicago
truncatula

204 mM NaCl for 1 week ND H3K4me2 mCHH Yaish et al.
(2018)

Salt
Arabidopsis
thaliana

Priming in 100 mM NaCl
for 24 h, recovery for 48 h,
200 mM NaCl

5 days H3K4me3 — — M: HY5 Feng et al.
(2016)T: P5CS1

Arabidopsis
thaliana

200 mM NaCl for 6 h ND H4R3sme2 — — M: SKB1 Zhang et al.
(2011)T: LSM4

Medicago
sativa

200 mM NaCl up to 24 h ND H3K9Ac — — T: MsMYB4 Dong et al.
(2020)

(Continued on following page)
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In maize, the levels of H3K4me3, H3K27me3, and H3K9ac
were investigated after exposure to prolonged drought conditions
and in the recovery period. Modifications of H3K4me3 and
H3K9ac were found to be positively correlated with the gene
transcription level. Histone modifications of H3K4me3, H3K9ac
indeed serve as a blueprint for stress memory. Transcription
levels of stress-responsive genes for abscisic acid synthesis and
signaling pathways were either maintained longer, even after the
recovery period (example: ZEP1, NCAD6, AP2/EREBP, NAC), or
some responsive genes stored the signal for a delayed response
(example: MADS4,15) (Forestan et al., 2020).

Modifications of DNA methylation of genes, promoters, or
transcription factors in response to drought stress have been
detected in various plant species (Akhter et al., 2021; Czajka et al.,
2021). Under drought stress conditions, plants exhibit dynamic
and variable methylation levels, however the methylation changes
are not always related to known transcriptome regulation
associated with that stress. In mulberry plants, the overall
methylation level of plants subjected to drought stress was
8.64% higher than that of well-watered ones (Li et al., 2020),
while about 29% of DNA methylation processes were detected to
be irreversible in rice plants exposed to drought stress (Wang
et al., 2010). The degree, level and polymorphism of DNA
methylation were different in wheat (Duan et al., 2020) or rice
(Zheng et al., 2013; Wang et al., 2016) varieties differing in their
response to water deficit. In general, drought increases the level of
DNA methylation in non-adapted plants, however, if plants were
previously adapted to the stress, the DNA methylation level
decreased (Rendina González et al., 2018). Under drought
conditions, hypermethylation events occur in the drought-

susceptible genotypes while drought-tolerant genotypes present
hypomethylation behavior (Gayacharan and Joel, 2013). DNA
methylation can persist through some generations leading to
transgenerational plasticity of the offspring (Herman and Sultan,
2016). Zheng et al. (2017) found that rice exposed to drought
conditions had several stable methylation changes in stress-
responsive genes which were passed on to progeny for
multiple generations (Zheng et al., 2017).

The BRAHMA-type ATP-dependent chromatin remodeling
factors (CHR12 or SW1/SNF2) play an essential regulating role in
response to drought in A. thaliana (Han et al., 2012). Thousands
of regulatory RNAs were identified in response to drought stress
including miRNA, hc-siRNA, sRNA, and lncRNA-mediated
regulation of gene expression and post-transcriptional
modifications in several crops (Jha et al., 2020).

2.2 Salinity
High salinity causes ion toxicity and hyperosmotic stress, which
inhibit plant development and productivity (Wani et al., 2020).
Although the involvement of DNA methylation and different
histone modification marks in regulating salt tolerance was
demonstrated in various crops, the specific roles of DNA
methylation in salt stress responses remain to be clarified (Liu
and Lang, 2020). Salt stress induces, in different plant species,
opposite effects on 5 mC (methylation or demethylation) of
transcriptional regulators, to differentially modulate the
downstream expression of salinity-related genes. In soybean
and rice, salt stress induces 5 mC demethylation at the
promoter of specific transporters, associated with a higher
expression and with increased tolerance to salinity stress (Zhu

TABLE 1 | (Continued) Most recent examples of epigenetic modifications in plants in response to different types of abiotic stresses. Duration of epigenetic state, type of
epigenetic modification, key proteins involved (M: mediators; T: their targets).

Species Stress condition Epigenetic state
duration

Epigenetic and post-transcriptional
modifications

Key proteins
involved

References

Histone
modifications

DNA
methylation

Non-
coding RNA

Glycine max 200 mM NaCl, 4 h ND HDAC — miR482bd-5 HEC1 Cadavid et al.
(2020)

Arabidopsis
thaliana

100–150 mM NaCl for
9 days

— — — miR393 T: TIR1, AFB2 Chen et al.
(2015)

Heat
Arabidopsis
thaliana

Acclimation: 37°C for 1 h,
23°C for 90 min, and 44°C
for 45 min

3 days H3K4me2 — — M: HsfA2 Lämke et al.
(2016)H3K4me3 T: HSPs

Arabidopsis
thaliana

Acclimation: 37°C for 1 h,
23°C for 90 min, and 44°C
for 45 min

3 days Histone
occupancy

— — M: FGT1 Brzezinka et al.
(2016)T: HSPs

Brassica rapa 42°C for 3 h per day for
7 days

Transgenerational — — miR168 AGO1 Bilichak et al.
(2015)

Arabidopsis
thaliana

Basal: 44°C for 50 min ND — — TAS1
(tasiRNA)

HTT1/2 Li Shuxia et al.
(2014)Acquired: 37°C for 1 h, 2 h

22°C, 44°C for 3.5 h
—

Arabidopsis
thaliana

37°C for 24 h Transgenerational — — siRNA — Ito et al. (2011)

Arabidopsis
thaliana

37°C for 2 h ND — — miR408 CSD1, CSD2, GST-U25,
CCS1, SAP12

Ma et al.
(2015)

aND, No data available.
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et al., 2015; Zhang W. et al., 2020). In other cases, salinity stress
induces an increase in 5 mC levels that may influence the
expression of transporters or miRNA, thereby improving the
salt tolerance (Ganie et al., 2016; Kumar et al., 2017). Most of the
observed methylation/demethylation changes were stable after
plant recovery, implying a possible establishment of a stress
memory.

In salt-stressed rice, different DNA methylation patterns were
identified in 14 zinc-finger-containing genes (Ahmad et al., 2019).
Most methylation/demethylation changes were stable after
recovery, implying a possible establishment of stress memory.
In Foxtail millet (Setaria italica L.), a crop that is considered more
tolerant to environmental stresses compared with other cereal
crops, a strong decrease in DNAmethylation levels was found in a
salt-tolerant line when compared with a salt-sensitive variety
under salt stress conditions. Promoter regions and coding
sequences of several genes were hypomethylated including
ABC transporters, WRKY transcription factors, serine-
threonine protein phosphatases, and genes related to disease
resistance and retrotransposon activation (Pandey et al., 2017).
Methylation changes under salt stress were also observed in
wheat. For example, the transcriptional level of the GAPC1
(Cytosolic glyceraldehyde-3-phosphate dehydrogenase) gene
was induced under both osmotic and salinity stresses,
accompanied by decreased methylation of CG and CHG
cytosine residues in the promoter region of this gene. GAPC
(Cytosolic glyceraldehyde-3-phosphate dehydrogenase) catalyzes
a key reaction during glycolysis and was suggested to positively
regulate stress responses in plants (Fei et al., 2017).

In maize seedlings, expansin genes were induced in response
to salinity, leading to cell enlargement. Expansin-related genes
showed elevated promoter H3K9ac levels accompanied by global
accumulation of H3K9ac and H4K5ac under salt stress (Li Hui
et al., 2014). Elevated levels of H3K9ac and H3K27ac marks were
identified in the coding region of the peroxidase (POX) encoding
gene in beet plants, which was transcriptionally activated by salt
treatments. These marks were linked with high POX transcript
abundance in both sugar beet (Beta vulgaris L.) and wild beet
[Beta vulgaris subsp. maritima (L.) Arcang.], but the degree and
the site of acetylation were different between the species and
subspecies (Yolcu et al., 2016). Lastly, in alfalfa (Medicago sativa
L.) alterations in the methylation status of the promoter region of
the transcription factor MsMYB4 were detected following salinity
stress. Activation of MsMYB4 was associated with an increased
level of histone H3K4 trimethylation and H3K9 acetylation in it’s
the corresponding promoter (Dong et al., 2020).

2.3 Cold/High Temperature
Since temperature is a key factor governing plants/crops growth
and development, either high or low temperatures limit their
productivity and yield. The link between epigenetic processes and
plant responses to non-optimal temperature conditions was
demonstrated on the molecular, biochemical, and cellular
levels (Ueda and Seki, 2020). Recent studies show that the
expression of 29 genes in a cold-tolerant rice line was altered
under cold stress, in correlation with changes in DNA
methylation, mostly at promoter regions (Guo et al., 2019).

Similarly, even histone modifications are involved in cold/heat
stress response through gene expression tuning (Bannister and
Kouzarides, 2011; Kim et al., 2015). This is due to a large number
of DNase I hypersensitive sites (DHSs) induced by cold stress,
translating this event into enhanced chromatin accessibility.

For instance, in plants is known that the euchromatin mark
H3K4me3, which indicates the tri-methylation at the 4th lysine
residue of the histone H3 protein, is commonly associated with
the activation of transcription of nearby genes (Zhang et al.,
2009). In contrast, H3K27me3, indicating the tri-methylation of
lysine 27 on histone H3 protein, is associated with one of the
major gene silencing systems in plants (Zhang et al., 2007).
Genome-wide distributions of these histone modifications and
their association with gene expression have been well-
documented in several plant species as A. thaliana and potato
(Zhou et al., 2010). The cold stress may induce the H3K27me3
deposition, which, in turn, has been demonstrated to be involved,
for instance, in Flowering Locus C downregulation.

However, several cases of bivalent histone modifications of
H3K4me3 and H3K27me3 are known and associated with cold
stress related genes (about 6,500). In particular, Zeng et al. (2019)
demonstrated that active genes (transcribed in both conditions)
displayed enhanced chromatin accessibility upon cold storage.
Upregulated genes, associated with this bivalent mark, were
enriched in functions and related to the stress response, while
the downregulated genes were involved in the developmental
processes. The authors hypothesized that the bivalent H3K4me3-
H3K27me3 mark represents, in potato tubers, a distinct
chromatin environment with greater accessibility, which might
facilitate the access of regulatory proteins required for gene
upregulation or downregulation in response to cold stress.

Regarding heat stress, CHH methylation patterns differed
between two rice lines showing different levels of heat
tolerance (He et al., 2020). In barley (Hordeum vulgare L.),
increasing air temperature by 3°C led to increased levels and
altering DNA methylation patterns while in cotton (Gossypium
hirsutum L.) prolonged heat stress led to methylation changes in
the promoter of anther-expressed genes. These changes
promoted a series of redox processes to support a different
development program under stress conditions (Zhang X. et al.,
2020).

2.4 Visible and Ultraviolet Light
Light is essential for photosynthesis and also for conveying
information on environmental conditions such as wavelength
composition, direction, intensity, and photoperiod. Plant
photoreceptors are specialized in perceiving light stimuli
ranging from ultraviolet (UV) to visible and far-red (FR)
irradiation that induce downstream signaling events including
major transcriptional reprogramming. There is increasing
evidence of how light triggers changes in chromatin
compaction, nuclear morphology as well as influencing histone
modifications and gene repositioning (Perrella et al., 2020). Plant
photoreceptors and downstream signaling components interact
and modulate the action of chromatin remodeling enzymes and
transcriptional regulators that confer light-induced chromatin
changes through the deposition of epigenetic marks. Early studies
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revealed that histone acetylation is associated with the induction
of gene expression in response to light. These initial observations
were further verified by physiological and molecular experiments
on mutants of histone acetyltransferase (GCN5, HAF2) and
deacetylase enzymes (HDA15, HDA6) (Bourbousse et al.,
2020; Perrella et al., 2020). Furthermore, the role of histone
H2B mono-ubiquitination was linked to light-induced
activation of gene expression in light-grown A. thaliana
seedlings by facilitating the activity of RNA Polymerase II
(Bourbousse et al., 2012). Changes in histone methylation
levels have been also associated with shade avoidance
responses, which are triggered by a decrease in the R/FR ratio
due to canopy coverage. Shade induces growth-promoting genes
leading to the elongation of hypocotyls, stems, and petioles in
search of light (Martínez-García and Moreno-Romero, 2020). An
increase in H3K4me3 and H3K36me3 levels and recruitment of
the histone methylation reader MRG2 on growth-promoting loci
such as YUCCA8 has been reported to mediate shade-induced
physiological responses in A. thaliana.

Studies in A. thaliana and maize have shown that UV-B
induces an increase in histone H3 and H4 acetylation levels
(Casati et al., 2006; Casati et al., 2008; Campi et al., 2012).
Members of multiple histone acetyltransferase families, such as
HAM1, HAM2, HAC1, HAG3, and HAF1, have also been shown
to regulate different UV-B signaling responses (Fina et al., 2017).
Furthermore, UV-B can negatively regulate the transcript levels
of the Polycomb Repressive Complex two components MSII and
CURLY LEAF that control H3K27me3 deposition on the
flowering regulating loci MIR156 and FLC (Dotto et al., 2018).
As a result, UV-B leads to delayed flowering in A. thaliana (Dotto
et al., 2018). The UV-B receptor UVR8 also plays a role in
controlling a UV-B-dependent increase in the acetylation
status of histone H3 lysine K9 and K14 on target genes
(Velanis et al., 2016). Furthermore, UVR8 regulates DNA
methylation by directly associating and inhibiting DRM2
(Jiang et al., 2021). In addition to regulating plant
development, UV-irradiation induces DNA damage responses
leading to changes in chromatin and epigenome dynamics.
However, the exact molecular interplay among DNA-damage
repair and acclimation responses to high light and temperature
requires further investigation (Molinier, 2017).

2.5 Heavy Metals and Metalloids
Among the abiotic stresses affecting plant wellness, heavy metal
(HM) contamination represents a serious threat also to humans
and animals. In plants, exposure to excessive amounts of both
essential and non-essential HMs induced toxic effects, activating a
broad array of alterations (Edelstein and Ben-Hur, 2018). In this
relation,many recent studies suggest that climate change has both a
direct and indirect effect on HM leaching and bioavailability (Fan
and Shibata, 2015; Xia et al., 2016). The raising temperatures and
the related increase in atmospheric CO2 levels, which indirectly
increase chemical weathering due to both temperature and lower
pH, lead to the release of metals in the earth’s crust and soils
(Whitehead et al., 2009; Benítez-Gilabert et al., 2010). On the other
hand, precipitation has an impact on surface runoff, river
discharge, and thus indirectly on river water quality. Surface

runoff is an important carrier of contaminants from the
surrounding land (brownfields) to the receiving surface water.
The consequences of these effects are leading to degradation in
water and sediment quality that could have negative impact on the
ecosystems. Growing evidence highlights important roles in plant
adaptation to highly HM and metalloids contaminated
environments of epigenetic variations, often responsible for
modulating gene expression (Cicatelli et al., 2014; Kumar,
2018). This phenomenon is mediated by a complex interplay
among different molecular factors: changes in DNA methylation
patterns, histone modifications and chromatin remodeling (Dutta
et al., 2018). A recent study suggests that DNA demethylation is
one of the molecular strategies adopted by Arundo donax L. plants
to counteract the stress caused by soil arsenic pollution (Guarino
et al., 2020).

ManyHM-related RNAs have been identified and several findings
are indicating their important role as trans-acting epigenetic signals,
involved in specific gene regulatory networks activated in response to
HM stress in plants (Ding et al., 2020). For instance, aluminum can
induce a hypomethylation of the NtGPDL gene in tobacco. This
carries the information for an aluminum stress-activated
glycerophosphodiesterase (Choi and Sano, 2007). In wheat,
hypermethylation was obtained with the highest concentrations of
aluminum and hypomethylation with the lowest ones (Hossein Pour,
2019). Gallo-Franco et al. (2020) calculated the methylation level of
26 genes from the IR64, Nipponbare, and Pokkali varieties of rice
plants using data in the scientific literature and the Rice SNP Seek
database. All three varieties were hypermethylated with the highest
levels in the Nipponbare variety, and the ART1 and STAR1 genes
were differently methylated. These genes encode and regulate the
transcription of transmembrane proteins useful for aluminum
detoxification. Similarly, Gullì et al. (2018) showed that a
specimen of Noccaea caerulescens grown in an area with nickel-
rich soil showed a genome that was more methylated than the
control. The overexpressed genes were the MET1 DNA
methyltransferase, the HDA8 histone deacetylase, and the DRM2
DNA methyltransferase involved in RdDM. All three were
upregulated from 3 to 16-fold.

2.6 Nanomaterials
A large number of new materials is produced for human use.
Their environmental dispersal under climate change conditions
has led to increased pollution and risk to the health of plants,
animals, and humans. Waste dispersed in the environment
undergoes degradation processes that cause the dispersion of
nanoparticles and pollutants with varying toxicological
characteristics (Nejdl et al., 2020).

Nanomaterials are particles smaller than 100 nm that can be of
natural or artificial origin. The first category includes those
formed by natural processes such as volcanic activities and air
particles while the second includes those synthesized for
biomedical and industrial purposes. Studying the effects of
nanomaterials on the plants is therefore critical to
understanding the impact of the pollutant on the ecosystem.
Nanoplastics as new pollutants can get adsorbed by plants. The
main route of plant intoxication is the root route with the uptake
of nanoparticles from the polluted soil (Deng et al., 2014). Roots
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can take up nanoparticles symplastically or apoplastically. In the
former, internalization occurs via endocytosis or via aquaporins,
the number of which affects the uptake (Rico et al., 2011). In the
latter, nanoparticles cross the spaces between cells, if their size is
smaller (Zhao et al., 2012). Absorption can also occur through
leaves but to lesser extent (Deng et al., 2014). Other general effects
include the production of ROS resulting in increased lipid
peroxidation, DNA degradation, and cell death (Tarrahi et al.,
2021). So far, few studies have addressed the possible involvement
of epigenetic processes in the response of plants to these types of
stress. However, the observation that ROS are part of the cell
response to nanomaterials could suggest that ROS-mediated
epigenetic regulation is also involved.

Carbon-based nanomaterials are to date used for a lot of
industrial purposes and studied for their nanotoxicology in plants
(Marmiroli and White, 2016). It has been shown how carbon
nanotubes can pierce the root walls of plants and enter both
apoplastically and symplastically (Tripathi et al., 2017). Once
adsorbed, they can reach organelles such as mitochondria and
chloroplasts and especially in the nucleus of plant cells (Jordan
et al., 2018). In Allium cepa L. several variations were observed
depending on the concentration of the Multi-Walled
Nanomaterials (MWNM) used. The cutting sequence of the
restriction enzyme Hpa II was found to be hypomethylated at
low concentration and hypermethylated at high concentration
(Ghosh et al., 2015). Single-wall and multi-wall carbon nanotubes
were found to promote rice root growth, by eliciting similar
molecular pathways and epigenetic regulation (Yan et al., 2016).

Contrasting results were obtained for silver nanoparticles
(AgNPs), a large family of materials used from the home
appliance industry to the cosmetic industry. AgNPs formulation
Argovit™ showed no cyto- or genotoxic damage or epigenetic effects
inA. cepa (Casillas-Figueroa et al., 2020). However, inA. thaliana, the
evaluated concentrations resulted in increased expression of genes
involved in glutathione biosynthesis, glutathione S- transferase, and
glutathione reductase (Nair and Chung, 2014).

3 FROM ALPHABET TO SYNTAX –

RECOMMENDATIONS FOR THE FUTURE

Enormous progress has been made in understanding the role of
epigenetic regulation in crop response to different stresses.
However, in order to make step and translate an “epigenetic
alphabet” into “epigenetic syntax” and evolve from
“experimental” to “classical” methodology in crop breeding,
epigenetics needs to overcome four main challenges:

(1) Need for improved experimental procedures, especially in
sequencing technology (longer reads, deeper single-cell
sequencing, more efficient sample preparation kits,
sequencing portable device improvements);

(2) Need for improved workflows of data analysis, as epigenomic
data are currently dispersed, obtained with different
methodologies and approaches. Indeed, there is an urgent
need of defining and delivering approved methodological
standards for both wet-lab and in silico analysis. The first

steps are made in this direction with solutions offered to
improve data workflow systems with cloud services and use
of open data for bioinformatics research (Rezaul Karim et al.,
2018) and development of standardized workflows for epigenetic
data such as ARPEGGIO (Milosavljevic et al., 2021);

(3) Need for enhanced knowledge on crop species at all
epigenetic levels as well as interactions between
epigenetic machinery and other TF or DNA binding
proteins to gain insight into the interactions between
epigenome and changes in DNA sequences. Future
directions to hasten application of epigenetic
modifications in crop breeding strategies for specific
agronomical traits have been proposed by several authors
(Gallusci et al., 2017; Varotto et al., 2020; Kakoulidou et al.,
2021), and need to be applied on wider scale in order to
transfer knowledge from model plants to crops;

(4) Need to better integrate epigenomic data with other “omics”
data, since epigenomic data are difficult to match with data
obtained at other “omics” levels. This highlights the need for
agreeing which standards and workflows have to be followed
in experiments comprising different “omics” analyses.
Hence, constructive and methodological guidelines on how
to perform multi-omics data integration (MOI) in plants are
needed. Studies of Jamil et al. (2020) who propose three levels
of MOI—element-based, pathway-based and mathematical-
based integration and Grabowski and Rappsilber (2019) who
provide practical guide on how to move from data to insight
while using easily accessible data sources, could be good
models for future work in “omics” data integration.

Overcoming above-mentioned challenges will facilitate: i)
elucidation of the role of other mechanisms, besides
chromatin-based mechanisms, in somatic and inter-
generational stress memory and understanding if there is a
universal mechanism of stress memory or if different cases of
stress memory are modulated in a different way; ii)
demonstrating if targeted, gene-specific epigenome or epi-
transcriptome modifications anticipated responses to stresses,
that will allow the identification of key regulatory mechanisms
for tailored responses to the new challenges driven by climate
change; iii) understanding how epigenetic changes can produce
new stable phenotypes in a few generations, allowing the plant
survival in their natural habitats; iv) clarification of the role of
chromatin structure modifications in hypersensitivity reaction,
contributing to plasticity and plant adaptation in a world context
of climate change; v) clarification of the role of RdDMmachinery,
together with other DNA methylation mechanisms targeting and
often silencing repetitive elements, highly represented in the plant
genome and vi) identification of the difference between
correlation and causality, that is if a chromatin regulator is
required for a particular stress response, it does not necessarily
imply that it modulates the stress response, as it may be a passive
response affecting gene expression, rather than being an
endogenous regulation of the process. Consequently, silencing
of a chromatin regulator may cause a stress response not through
the action of stress-responsive genes, but indirectly due to
phenotypic, metabolic, and developmental modifications.
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The interdisciplinary effort of scientists involved in plant
biology and crop improvement in resolving the above-
mentioned issues and gaining new insights into epigenetics
mechanisms involved in plant stress response should pave the
way for further understanding of an epigenetic alphabet of plants
and its translation into epigenetic syntaxes for further
exploitation of epigenetic variation in crop breeding for
climate resilience.
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