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Abstract: An aqueous integrated process was developed to obtain several valuable products from
sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation,
it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase
with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-
body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and
extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the
total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid
concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69%
(w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater
(d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm)
but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g
lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and
pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities
for valorization in food or technical applications.

Keywords: fatty acids; extraction; Cryo-SEM; oleosomes; phospholipids

1. Introduction

Seed oil bodies (OBs), also known as oleosomes, are plant intracellular organelles.
They have a specifically organized molecular structure consisting of a triglyceride (TAG)
core surrounded by a phospholipid (PL) monolayer and proteins [1–3], and act as natural
surfactant molecules, with the hydrophobic fatty acid moiety of the PL facing the core
of the oil droplet and the hydrophilic polar head group oriented towards the cellular
environment. The structure of the membranous proteins and their interactions with the
PL monolayer, the TAG matrix and the external cellular medium have been studied in
detail, and it was demonstrated that the synergetic action of phospholipids and proteins
is responsible for the high stability of oil bodies [4,5]. The OBs are major food reserves
used by the plant to drive germination and post-germination growth. They are, therefore,
considered to be a potentially useful source of lipids and proteins. The most widely used
solvent for lipid extraction from seeds is hexane, even in the food industry. This solvent
is highly toxic, flammable, and represents a real danger to health and the environment.
For this reason, the phasing out of hexane use and its replacement by aqueous extraction
methods for lipid extraction from oilseeds is a subject of major interest internationally, with
intensive development of this technological approach. Most aqueous oil extraction (AOE)
methods are based on the use of enzymes. Cellulases are often used to degrade cell walls,
and proteases favor lipid release by removing the proteins at the surface of the oil body.
These enzymes can also be used in conjunction with a pectinase, an enzyme that degrades
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polysaccharides. Even if they are generally exogenous to the seed, in some processing
conditions, the expression of endogenous enzymes is possible and may be beneficial for oil
release [4].

Such enzyme-assisted AOE methods, sometimes combined with protein extraction,
have been studied and applied to different kinds of oilseeds: rapeseed [5,6], canola [7],
sunflower [8–11], sesame [12], maize [13], groundnut [4], almond [14] and safflower [15],
but the most studied matrix is undoubtedly soybean [16–20]. Many studies have re-
ported the development of ultrasound-assisted AOE [21–28], but other methods are also
used, including microwave- [29], pulsed electric field-[9], pressure shockwave- [30] and
surfactant-assisted [31,32] extraction. Unlike conventional extraction with an organic sol-
vent, aqueous extraction from oilseeds often gives rise to emulsions, and the recovery of
lipids and proteins with good yields involves a de-emulsification step leading to disor-
ganization of the inherent structure of the oil body [24,33,34]; however, the use of OBs
as a formulated emulsion may be of considerable utility, as emulsions of this type have
a remarkable physical stability and contain many valuable natural compounds, such as
phospholipids and tocopherols. Several studies have recently focused on isolated OBs, high-
lighting their physical stability [35,36], organization and functional properties [13,35–38]
and their interactions with other substances [39]. Moreover, a specific study of the lipidome
and proteome of OBs isolated from sunflower highlighted the molecular profile of such
organized systems [40]. Oil bodies are used principally in food applications; their natural
stability and advantageous protein and lipid compositions directly suggest uses in many
products of four principal types [41]. They can be used as imitation milk products, such as
soymilk [42] and mayonnaise [43], as natural emulsions for encapsulating flavors, for exam-
ple [44], as natural emulsifiers, given their behavior at interfaces [45], and as oil-body-based
edible films [46].

We describe here a novel process for releasing oil bodies. The main process results in
the release of oil bodies by dispersion in water, resulting in an oil-in-water emulsion in
which the oil droplets are the native oil bodies of the seed. The originality of this process
lies first in the release of the OBs by upscalable purely mechanical means into an aqueous
medium, without the assistance of a surfactant or enzyme and secondly in its versatility
as the use of a high-pressure homogenization allows both particle size reduction and the
improved action of an exogenous lipase to form a complex fatty acid (FA) emulsion. We
obtained a global view of these processes by characterizing and comparing the emulsions
and all the fractions collected at the end of the main and modified processes.

2. Results and Discussion
2.1. Integrated Process for the Release of Sunflower Seed Olesomes

The lignocellulosic shell accounts for a large proportion of the sunflower seed. In-
tegrated aqueous transformation processes therefore begin with a partial dehulling step
(Figure 1, pretreatment). This mechanical shelling makes it possible to prevent the flotation
phenomena generated by the presence of a very high proportion of shells, which can disrupt
shearing with a rotor/stator.

Subsequent steps in the process are designed to promote the release of the lipid bodies
present in the seeds. Thus, in Step 1 (Figure 1), the shelled seeds are crushed in water with
a high-shear rotor/stator-type mill. This initiates the release of the lipid bodies into the
water in the form of an emulsion-type suspension. Some of the lipid bodies are released
from the seed matrix, remaining in their native state. The presence of the water makes it
possible for them to remain in suspension, without their structure being destroyed, which
is not possible with dry grinding. At the macroscopic scale, this step (Step 1, Figure 1)
allows us to pass from the initial size of the seeds (8 to 11 mm before shelling, 4 to 10 mm
after shelling) to a mean particle size in suspension of 0.5 to 1 mm. At this stage, the seed
constituents are in a hydrated state and display very strong aggregation, particularly for
the lipid bodies.
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Figure 1. Schematic diagram of the integrated process of lipid extraction from sunflower seeds.

Step 2 therefore involves gradually increasing the shearing phenomena to promote the
release of lipid bodies and lignocellulosic constituents by reducing the interactions between
them. High-pressure homogenization is the most appropriate technological treatment
for this purpose. The main objective of this step is to reduce the size of the particles
obtained in Step 1 by promoting hydration, to optimize the release of lipid bodies from the
lignocellulosic matrix, thereby quantitatively optimizing the yield of released lipids. This
step involves 3 stages of pressure increase, as described in the experimental procedures
section, to produce a medium consisting of lignocellulosic particles with a diameter of
between 50 and 100 µm and lipid droplets with a diameter of between 1 and 2.5 µm.

Catalytic elements, such as lipases, can be introduced during Step 2 for the hydrolysis
of triglycerides into lipophilic free fatty acids and hydrophilic glycerol. High-pressure
homogenization results in the dispersion of the lipase throughout the medium, while
promoting the oil/water contact surface, in turn promoting the interfacial catalytic activity
of the lipase. After homogenization, the suspension can be incubated with mechanical
agitation, for however long is required to complete the hydrolysis of the triglycerides
present in the sunflower oil.



Biomolecules 2022, 12, 149 4 of 16

This enzymatic transformation of the triglycerides present in the lipid bodies trans-
forms the structure of the oil bodies, resulting in a transition from an oil-in-water type
emulsion to a complex oil-in-water-in-oil and/or water-in-oil-in-water emulsion.

The final step of the process (Step 3) involves a centrifugal separation of the phases
based on differences in density. The upper phase, consisting of the lipid bodies, which can
be considered an oil-in-water emulsion phase, can be separated from the aqueous middle
phase, which is rich in soluble trace elements. The lower phase, consisting of the residual
pellet, is composed of the densest lignocellulosic elements.

The upper creamy layer is an oil-in-water emulsion corresponding to 8% (w/w) of the
total matter recovered at the end of the process. The internal phase of the oil droplets is
mainly composed of triglycerides and this phase can be named “triglyceride emulsion”
in an abbreviated way. An aqueous phase accounting for 54% (w/w) of the total mat-
ter recovered, and a bottom residue rich in lignocellulosic materials (38% w/w) is also
recovered. The integrated process is performed in a non-buffered medium. The seeds
are, therefore, crushed at the native pH of 6.3. This pH is close to the isoelectric point of
the proteins, which is estimated at between 5 and 6 for oleosin proteins [35] and at about
5.5 for water-soluble proteins [47]. The droplets are, therefore, easily flocculated. It is
therefore possible to use reasonably low centrifugation speeds to concentrate the lipids in
the cream phase.

2.2. Composition of Each Fraction

All studies on OB recovery to date have focused on characterizing the components
of the emulsion. A global vision of the whole process for obtaining these emulsions was
lacking, and the by-products were not considered. In this study, we determined of the
composition of each fraction (Table 1).

Table 1. Composition of the triglyceride emulsion, the aqueous phase and the bottom residue
obtained with the integrated process.

% (w/w) Triglyceride Emulsion Aqueous Phase Bottom Residue

Dry matter (%) 46.24 ± 1.18 3.07 ± 0.07 36.77 ± 2.04

Water and volatile
compounds (%) 1 53.76 ± 1.18 96.93 ± 0.07 63.23 ± 2.04

Ash (%) 0.89 ± 0.07 n.d. 1.15 ± 0.08

Lipid (%) 34.19 ± 2.04 0.14 ± 0.05 22.54 ± 1.19

Total nitrogen (%) 1.17 ± 0.12 0.14 ± 0.01 0.75 ± 0.05

Protein (%) 2 6.07 ± 0.65 0.76 ± 0.02 3.98 ± 0.28

Extraneous matter (%) 5.09 ± 1.01 2.18 ± 0.05 9.11 ± 0.79

n.d. = not determined. 1 The water and volatile compound content was determined by difference: 100 − (dry
matter (%) × 100). 2 The protein content was calculated by multiplying total nitrogen content by the standard
sunflower nitrogen-to-protein conversion factor of 5.3.

The extraneous matter was determined by difference: 100-(moisture + ash + lipid +
protein). It consisted mostly of polysaccharides, fibers and other minor components, such
as phospholipids, which are not characterized in detail here. The emulsion contained about
26% (w/w) of total seed lipids, a value close to the results obtained for soybean with a
different aqueous extraction process [48]. Triglycerides generally account for about 95% of
the total weight of sunflower oil bodies [3]; however, proteins account for more than 10%
(w/w) of the total dry weight of the oil-body emulsion, indicating that the emulsion contains
more than just the normal amount of oleosins. There is a concentration, by about 1%, of
proteins in the aqueous phase, and the additional proteins present in the emulsion cannot
be accounted for solely by the proteins brought by the aqueous phase of the emulsion.
The elimination of these non-membranous proteins generally requires a harsh treatment
of sunflower oil bodies with urea [49]. These co-extracted proteins are linked, to a certain
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extent, to the oil bodies, and they may form a second layer around the oil-body surface [13].
These proteins enhance the synergic behavior of phospholipids/oleosins in preventing
coalescence and should remain in the cream to increase its physical stability [5].

2.3. Modification of the Integrated Process to Obtain a New Complex Fatty Acid Emulsion

The integrated process described above was modified by adding an enzymatic triglyc-
eride hydrolysis step to obtain a new kind of emulsion. This hydrolysis was performed by
a Candida rugosa lipase. The enzyme was blended with the medium before homogenization,
to promote an intimate interfacial interaction between the lipase and oil bodies.

In optimal conditions, this enzyme can hydrolyze ester bonds and release glycerol
and free fatty acids (FAs) into the medium. Hence, the internal lipids of the droplets are
mainly free FAs and we thus obtain a “fatty acid emulsion”. To our knowledge, this is the
first time a FA emulsion has been obtained directly by the in situ transformation of seeds.
At the end of the process, the recovery of the three fractions was identical to that for the
initial unmodified process, with a complex FA emulsion as a top creamy layer, together
with an aqueous phase and a bottom residue. The complex FA emulsion accounted for 9%
(w/w) of the total medium, whereas the aqueous phase and the bottom residue accounted
for 54% (w/w) and 37% (w/w), respectively. Table 2 shows the composition of each fraction.
The FA emulsion was more concentrated than the TAG emulsion, with fewer minerals
and more lipids. The ratio of water/lipids (w/w) is lower than in the TAG emulsion (1.1
compared to 1.6). The total nitrogen and calculated protein contents were higher than for
the process without the hydrolysis step, but this difference was not significant, and could
be explained by the amount of enzyme used for hydrolysis. Moreover, there was clearly
much more extraneous matter. We hypothesize that the extraneous matter included the
glycerol released by hydrolysis, which was not determined here. This glycerol would also
be present in the aqueous phase. A large amount of lipid was present in the bottom residue
for both processes. In the enzymatic process, the fatty acid emulsion contained about 33%
(w/w) of the lipids present in the seed, a slight but significantly higher proportion than
was present in the triglyceride emulsion (26% (w/w)). The lipase may have facilitated the
release of destabilized oil bodies by disrupting some lipoprotein linkages.

Table 2. Composition of the FA emulsion, the aqueous phase and the bottom residue obtained with
the modified integrated process, including a lipase.

% (w/w) Fatty Acid Emulsion Aqueous Phase Bottom Residue

Dry matter (%) 56.99 ± 1.34 4.07 ± 0.07 32.50 ± 1.88

Water and volatile
compounds (%) 1 43.01 ± 1.34 95.93 ± 0.07 67.50 ± 1.88

Ash (%) 0.48 ± 0.06 <0.1 0.72 ± 0.04

Lipid (%) 39.55 ± 0.76 0.17 ± 0.02 18.46 ± 0.99

Total nitrogen (%) 1.29 ± 0.08 0.15 ± 0.01 0.70 ± 0.03

Protein (%) 2 6.82 ± 0.44 0.81 ± 0.02 3.71 ± 0.17

Extraneous matter (%) 10.14 ± 1.55 3.11 ± 0.06 9.61 ± 0.79
1 The water and volatile compound content was determined by difference: 100 − (dry matter (%) × 100).
2 The protein content was calculated by multiplying the total nitrogen content by the standard sunflower nitrogen-
to-protein conversion factor of 5.3.

2.4. Observation of Sunflower Seeds and OBs by Cryo-SEM and Determination of the
Size Distribution

The mean size and size distribution of oil bodies in sunflower seeds have been ex-
tensively studied ([2,3]). Cryo-SEM experiments with freeze-fracture can be performed to
observe the inner cellular structures (Figure 2).
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In partially opened cells, some intact spheres with a measured mean diameter close
to 2.5 µm were observed. These spheres may correspond to the food reserves of the seed,
the native OBs. The triglyceride oil-in-water emulsion was also observed by Cryo-SEM
(Figure 3).
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Figure 3. Cryo-SEM image of the triglyceride oil-in-water emulsion prepared by the freeze-
fracture technique.

Oil droplets surrounded by the aqueous phase are clearly visible, and this observation
is consistent with the findings of Nikiforidis et al. for maize germ and sunflower seed
emulsions [50].
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Cryo-SEM images revealed that the FA emulsion had a complex structure (Figure 4).
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Droplets with a diameter close to 2 µm were also observed. Unlike the triglyceride
droplets observed by the same technique and in the same conditions, the inner part of the
droplets appeared to be less smooth, with some relief observable. At higher magnification,
it was possible to observe some spheres and holes in the droplets due to the freeze-fracture
sampling technique. This observation demonstrates the complexity of this new kind
of emulsion.

Granulometric experiments revealed a broad size distribution of the OBs in the triglyc-
eride oil-in-water emulsion (Figure 5).
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The mean diameter (D[4,3]) was 2.6 µm ± 0.1 and the median diameter (d(0.5)) was
2.0 µm ± 0.1, consistent with the usual range for native OBs, as reported by Tzen et al. [2,3].
No significant coalescence phenomenon was observed in this emulsion, suggesting that the
oil bodies were stable. Contrary to the findings of previous studies, our results show that it
is possible to release sunflower seed OBs in their native form through the exclusive use of a
mechanical process, in an aqueous medium, without the need for an enzyme or surfactant.

The mean size (D[4,3]) of the droplets in the FA emulsion was 3.0 µm ± 0.1 and
the median size (d(0.5)) was 2.5 µm ± 0.1, values significantly higher than for the TAG
emulsion but still within the observed range for native OBs (Figure 5). We can conclude
here that the modification of the process by the addition of an enzymatic hydrolysis step
may have slightly decreased the stability of the oil bodies. Indeed, the droplets were still
surrounded by proteins, limiting coalescence, but this process clearly modified the internal
organization of the emulsion. This re-organization may reflect differences in the ratio of
liposoluble and hydrosoluble surfactants, with enzymatic hydrolysis producing additional
non-ionic surfactants while the ratio lipid/water is increased. We can assume that the
interaction of the droplets with extraneous proteins was sufficiently strong to confer at least
a partial resistance to changes in the internal structure of the emulsion but the organization
and composition of the interface of the fatty acid emulsion were, thus, clearly different
from those of the triglyceride emulsion. Hence, we investigated the differences in the
content and composition of non-polar and polar lipids and in the amino-acid distribution
of proteins between fatty acid and triglyceride emulsions.

2.5. Lipids and Proteins of the Emulsions Obtained

Lipids of the triglyceride emulsion were extracted with the Folch method; however,
it appeared that lipids of the fatty acid emulsion could also be extracted with the simple
use of ethanol assisted by ultrasound (see materials and methods). This indicates a higher
permeability of the droplet membrane, which may be explained by differences in lipid and
protein content and composition. The fatty acid profiles of the neutral lipids present in the
two emulsions were very similar and differed little from the fatty acid profile of sunflower
kernels (Table 3). The integrated process did not, therefore, induce changes in the fatty acid
chains.

Table 3. Fatty acid composition of the neutral and polar lipids of the kernel, TAG emulsion and
FA emulsion.

Fatty Acids (%) Kernel TAG Emulsion FA Emulsion

NL PL NL PL NL PL

C14:0 0.1 ± 0.0 n.d. n.d. n.d. n.d. n.d.
C16:0 3.1 ± 0.0 8.5 ± 0.6 3.2 ± 0.0 12.6 ± 1.4 3.3 ± 0.0 10.6 ± 1.1
C18:0 1.4 ± 0.0 2 ± 0.3 1.4 ± 0.0 5.3 ± 1.1 1.5 ± 0.0 5.5 ± 0.5
C20:0 0.1 ± 0.0 n.d. n.d. n.d. n.d. n.d.
C22:0 0.7 ± 0.0 n.d. n.d. n.d. n.d. n.d.

SATURATED 5.5 ± 0.0 10.5 4.6 ± 0.0 17.9 ± 2.5 4.8 ± 0.0 16.1 ± 1.6

C16:1n7 0.1 ± 0.0 n.d. n.d. n.d. n.d. n.d.
C18:1n9 90.9 ± 0.0 84.2 ± 0.9 91.5 ± 0.0 77.2 ± 2.3 92.0 ± 0.0 78.9 ± 2.0
C18:1n7c 1 ± 0.0 0.9 ± 0.0 n.d. 2.2 ± 0.1 n.d. 1.5 ± 0.2
C20:1n9 0.4 ± 0.0 n.d. n.d. n.d. n.d. n.d.

MONOUNSATURATED 92.4 ± 0.0 85.1 ± 0.9 91.5 ± 0.0 79.4 ± 2.4 92 ± 0.0 80.4 ± 2.2

C18:2n6 2.2 ± 0.0 4.3 ± 0.0 2.2 ± 0.0 2.7 ± 0.1 2.0 ± 0.0 3.5 ± 0.2

n.d. = not detected. NL: neutral lipids. PL: phospholipids.

It is not unusual to obtain different fatty acid profiles between neutral and polar lipids,
particularly as phospholipids associate more easily with saturated than with unsaturated
chains. This may explain the lower concentration of oleic acid in phospholipids. Several
differences were also observed between the phospholipids of the kernel and those of the
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emulsions (Tables 3 and 4), which contained larger amounts of saturated chains. It should
be borne in mind that the kernel phospholipids include not only those surrounding the
oil bodies but also those forming the membranes of the various cells. Furthermore, the
phospholipids in cell membranes are generally arranged in a double-layer conformation,
whereas those in oil bodies are organized into monolayers, potentially accounting for the
differences between kernel phospholipids and emulsion phospholipids. We found no
significant difference between the fatty acid profiles of the phospholipids in the FA and
TAG emulsions; however, more pronounced differences in phospholipid contents and
classes were found between sunflower kernel and emulsions.

Table 4. Phospholipid content and classes in sunflower seeds and the different emulsions.

Seed and Emulsions Total
(mg/100 g Lipids)

PA
(rel %)

PE
(rel %)

PC
(rel %)

PI
(rel %)

Sunflower seed 1811.2 ± 122.2 5.2 ± 0.9 11.6 ± 1.2 a 68 ± 3.7 15.2 ± 2.2 b
TAG emulsion 144.4 ± 6 23.4 ± 1.2 12.4 ± 0.5 a 53.4 ± 3.4 10.8 ± 1.9 b
FA emulsion 17.1 ± 4.4 32 ± 2.2 52.8 ± 0.3 15.2 ± 2.4 n.d.

n.d. = not detected. rel %: relative percentage. a,b: values not significantly different (student test with α = 0.05).

The crushing of sunflower seeds in water may lead to the release of a phospholipase.
Hence, the phospholipids in the triglyceride emulsion had a higher relative concentration
of phosphatidic acid (PA), a product of the hydrolysis of other phospholipids, including
phosphatidylcholine (PC) in particular. The phospholipid content of the fatty acid emulsion
was much lower, with phosphatidylinositol (PI) undetectable and a higher percentage
of phosphatidylethanolamine (PE) than of phosphatidylcholine (PC) (Table 4). During
production of the FA emulsion, the medium is incubated for several hours at 43 ◦C, which
may increase the action of the phospholipase enzyme. The lower phospholipid content of
the FA emulsion may also be accounted for by the presence of free fatty acids, which may
partly replace the phospholipids from the interface.

The percentage of protein in the emulsion was similar for the TAG emulsion
(13.1 ± 1.4% w/w dm) and the FA emulsion (12.0 ± 1.4% w/w dm)).

Neither emulsion was washed, and therefore they contained both membranous pro-
teins and other proteins surrounding the oil bodies and forming weak or strong interactions
with them.

The protein compositions of the TAG and FA emulsions were quite similar (Figure 6).
The amino-acid composition of the proteins present in the emulsion differed markedly
from the usual composition of sunflower oleosins, in which glycine and threonine are
more strongly represented [49,51] The difference between the results clearly indicates
that the emulsion obtained is not composed of pure oil bodies, but of lipid droplets
surrounded by different kinds of proteins. The enzymatic process seems to have little
effect on protein composition.

The formation of free fatty acids and partial glycerides modifies the nature of the sur-
factants of the emulsion. With a lipid/water ratio close to 1 and the simultaneous presence
of these new liposoluble surfactants, the emulsion has a complex nature, predominantly
O/W and W/O/W (water-in-oil-in-water). The almost disappearance of phospholipids
may explain the higher solvent permeability of the droplets.
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Figure 6. Relative amino-acid composition of the proteins present in the two kinds of emulsions.

3. Materials and Methods
3.1. Materials

Very high oleic sunflower seeds (variety THO) were purchased from Arterris (Lavaur,
France). This variety is cultivated in the south of France. The seeds were partially dehulled
by an industrial ripple-mill process (Terres Innovia, Pessac, France), and 66% of the initial
hulls were discarded. The dehulled kernels had a lipid content of 53.4% with a high oleic
acid content of 90.4%, as determined by Gas Chromatography (GC) on the resulting oil.
Cyclohexane, chloroform and methanol were purchased from Sigma Aldrich (St Quentin
Fallavier, France). Candida rugosa enzyme powder (Lipolyve CC at 30,000 AU/g) was
purchased from Lyven (Colombelles, France).

3.2. Oil-Body Extraction in an Oil-in-Water Triglyceride Emulsion

We added 400 g of partially dehulled sunflower seeds to 1600 g of demineralized
water under the action of a high-shear rate device (Silverson L4RT, Silverson Machines Ltd.,
Waterside, UK) operating at maximum speed (≈5200 rpm) for two 5-min periods separated
by a break of 2 min. The mixture was immediately homogenized with a high-pressure
homogenizer (Lab 1000, APV, Evreux, France) at 50, 250, and finally 350 bars. The resulting
homogenate was stored at 4 ◦C overnight. It was then split equally between six 500 mL
centrifuge bottles and was separated into 3 fractions by centrifugation (Sigma 6K15 Fisher
Bioblock Scientific, Illkirch, France) at 10,000× g for 10 min at 4 ◦C. Centrifugation was
performed one bottle at a time, and each fraction was collected immediately, to prevent the
dissolution of the emulsion in the aqueous phase. For each centrifuge bottle, the aqueous
phase was passed through a 100 µm-mesh nylon filter and the emulsion was carefully
recovered. The separation resulted in an oil-in-water triglyceride emulsion (top creamy
layer), an aqueous phase and a bottom residue. Each fraction was weighed and stored at
4 ◦C until use.

3.3. Oil-Body Extraction in a Complex Fatty Acid Emulsion

We added 400 g of partially dehulled sunflower seeds to 1600 g of demineralized
water under the action of a high-shear rate device (Silverson L4RT, Silverson Machines
Ltd., Waterside, England) operating at maximum speed (≈5200 rpm) over two five-minute
periods separated by a two-minute break. A Candida rugosa lipase solution (prepared in
advance by dissolving 8 g of enzyme powder in 50 g of demineralized water) was then
added. The mixture was immediately homogenized with a high-pressure homogenizer
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(Lab 1000, APV, Evreux, France) at 50, 250, and finally 350 bars. This step was followed
by hydrolysis for 4 h at 43 ◦C in a constant-temperature reactor, with stirring (1000 rpm).
The resulting homogenate was kept at 4 ◦C overnight and separated into three fractions by
centrifugation, as described above.

3.4. Determination of the Composition of Each Fraction

As six successive centrifugations were performed, we determined the composition of
each fraction six times, to demonstrate the reproducibility of the separation. Dry matter
content was determined according to the French NF V03-909 standard. The amount of
water and volatile compounds was determined by difference: 100 − (dry matter (%) × 100).
Lipid content was determined by accelerated solvent extraction (4 cycles, static phase
10 min, 100 ◦C, 100 bars) with cyclohexane in a ASE 350 Dionex Thermo apparatus (Dionex,
Sunnyvale, CA, US) with the emulsion and bottom residue dry matter as the starting
material. The residual lipid content of the aqueous phase was determined as described
by E. G. Bligh and W. J. Dyer [52]. Total nitrogen content was determined by elemental
analysis on delipidated dry matter for the emulsion and the bottom residue fractions, and
on dry matter for the aqueous phase. Protein content was calculated with the standard
sunflower nitrogen-to-protein conversion factor of 5.3 ([53]). For clarity, the data are
presented as the mean of six determinations for each type of fraction, together with the
standard deviation. The complete dataset is available in the Supplementary Materials.
The amino-acid composition of the proteins was determined with a Biochrom 20+ amino-
acid analyzer (Biochrom Ltd., Cambridge, UK) equipped with a 200 × 4.6 mm column +
precolumn system with sodium-based ion-exchange resins.

3.5. Extraction of Lipids by Folch’s Method

The dried sample is first crushed (coffee grinder or knife mill) and then mixed with
methanol in a 1:10 (w/v) ratio. The mixture is homogenized for one minute with an
Ultraturrax mill. Chloroform is added to reach a ratio of 1:30 (w/v) solid to solvent
and the whole is homogenized for another 2 min. The whole is centrifuged and the
supernatant is filtered while the residue is taken up in the same volume of a solution
of chloroform/methanol (2/1 v/v) and homogenized 3 min. The residue is thus treated
3 times. The supernatant phases are collected and represent a volume V. A solution of KCl
at 8.8 g/L in water (m/V) of a volume of V/4 is added. The mixture is shaken vigorously
and then left to decant. The upper phase is eliminated. The lower phase of a volume V’ is
added with a volume V’/4 of a methanol/KCl 8.8 g/L solution (1/1 v/v). After stirring
and decanting, the lower phase is filtered and dried through anhydrous sodium sulfate,
then the solvent is evaporated under a nitrogen flow.

3.6. Ultrasonic Assisted Extraction of Total Lipids from Fatty Acid Emulsion in Ethanol

Lipids of the fatty acid emulsion can also be extracted with ethanol with ultrasound as-
sistance. Approximately 10 g of fatty acid emulsion is introduced into a plastic Erlenmeyer
flask. 150 mL absolute ethanol is added and the ultrasonic probe is immersed in the mixture
(VCX750, SONICS Vibra Cell, Sonics & Materials, Newtown, CT, USA equipped with a
Ø13 mm fixed tip probe). At room temperature, ultrasound is applied for a total duration
of 5 min (5 s ON/10s OFF) with an amplitude of 60%. The solution is then centrifuged at
5000× g for 15 min at 20 ◦C. We obtain a protein pellet and a clear pale yellow organic phase.
Ethanol and water are evaporated with a rotary evaporator. The extraction is performed in
triplicate. The quantity of lipids extracted is similar to the quantity extracted with Folch
extraction while this method is unefficient in the case of the triglyceride emulsion.

3.7. Solid Phase Extraction (SPE)

To separate the previously extracted lipids between polar and non-polar molecules, a
solid phase extraction method was used. A column was prepared with silica gel ([54]) or a
Supelclean LC-Si SPE 500 mg/6 mL cartridge (Supelco, Bellefonte, PA, USA) was used. It
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is then conditioned by percolating 5 mL of methanol and 5 mL of chloroform through it.
100 mg of lipid extract in 200 µL of chloroform are deposited on the SPE cartridge. After
the sample is deposited, it will elute with 5 mL of chloroform to elute the non-polar lipids.
Once the fraction is recovered, the elution continues with 10 mL of acetone to elute the
glycolipids, and once the second fraction is obtained, with 10 mL of methanol. It is the
fraction obtained by this last elution that contains the phospholipids. The methanol is
then evaporated under nitrogen flow and the phospholipids are analyzed by HPLC/ELSD
chromatography.

3.8. Chromatography HPLC/ELSD

After evaporation of methanol, the extract obtained by SPE is taken up in 1 mL of chlo-
roform then possibly diluted according to the phospholipid content and injected (injection
volume of 20 µL) in a liquid chromatography apparatus connected to an ELSD (Evaporative
Light Scattering Detector) according to the procedure detailed in the literature [55]. The
column used is of type Lichrospher 100 diol (5µ) 150 × 3 mm. The oven is set at a tempera-
ture of 40 ◦C and the detector Alltech 3300 (Büchi, Postfach, Switzerland) is operated at a
temperature of 35 ◦C with an air supply at 4 bars and a flow rate of 1.6 L/h. Two eluents are
prepared and mixed with a concentration gradient over time (see Supplementary Materials).
The different phospholipids are identified by comparing their retention times with those of
commercial standards. Quantification is performed by external calibration.

3.9. Chromatography GC/FID

The fatty acid profile of phospholipids is determined by gas chromatography coupled
with a flame ionization detector. Phospholipids are first hydrolyzed and derivatized
by trans-methylation with 0.2 M trimethylsulfonium hydroxide solution in methanol,
according to AFNOR EN ISO 152966-3. The fatty acid methyl esters are then analyzed
with a gas chromatography equipped with a CP-Select CB column (50 m length, 0.32 mm
internal diameter and 0.50 µm film thickness). Helium is used as the carrier gas, at a
flow rate of 1.2 mL/min; the injector and the FID detector are maintained at 250 ◦C. The
initial oven temperature was set at 185 ◦C for 40 min and then raised to 250 ◦C at a rate of
15 ◦C/min to be maintained at this value for 10 min.

3.10. Measurement of Oil Body Size Distribution

The size distribution of the OBs in emulsions was determined with a Malvern Master-
sizer 2000 laser light scattering instrument coupled with a Hydro2000S sample handling
unit (Malvern, UK). A fraction of the sample was diluted in the analysis medium and
stirred at 3000 rpm. Continuous ultrasound treatment at a tip displacement of 80% was
performed until the droplet aggregates were disrupted. Various measurements were per-
formed during the ultrasound treatment. The mean value obtained value is recorded as the
final stabilized value.

3.11. Cryo-Scanning Electron Microscopy Imaging

Freshly extracted triglyceride and fatty acid emulsions were used to prepare samples
for SEM observation. One drop of the emulsion was frozen in nitrogen slush at −220 ◦C.
The frozen sample was transferred, under vacuum, to the cryo-fracture apparatus (Quorum
PP3000T Cryo Transfer System, Quorum Technologies, Laughtown, United Kingdom)
chamber, in which it was fractured at −145 ◦C. The temperature was then increased to
−95 ◦C, at which it was maintained for 15 min for sublimation. The sample was then
metalized with Pd for 60 s and introduced into the microscope chamber, in which it was
maintained at−145 ◦C during observation, with the electron microscope operating at an
accelerating voltage of 5 kV.
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3.12. Statistical Analysis

Data are presented as the average values of three or more analyses with the standard
deviation. Student tests were performed to compare average values. A significance level of
α = 0.05 was then used.

4. Conclusions

We show here that an integrated aqueous process involving only mechanical steps
successfully releases the reserve lipids of sunflower seeds in the form of emulsified native
oil bodies. The process we describe here requires only water and mechanical treatments,
with no need for exogenous agents such as organic solvents, enzymes or surfactants. The
native size of the oil bodies is conserved, as confirmed by laser particle size distribution
analysis and scanning electron microscopy. This process is tunable, with transformation
steps, such as the use of a recyclable lipase, for example, to mediate the release of the
reserve lipids in the form of free fatty acids in a complex emulsion. Both the emulsions
obtained were rich in lipids and their protein contents and compositions were similar,
but with different phospholipid profiles. These emulsions are naturally stabilized by
native surfactants (e.g., proteins or phospholipids), avoiding the need for fastidious oil
extraction and formulation steps with extraneous chemical surfactants. The emulsion
produced by the initial process, in its natural form (cream) or diluted, may have applications
in food formulations, considering the natural resistance of extracted oil bodies against
coalescence [37]. The emulsion produced by the modified process including a lipase is
rich in free oleic acid and glycerol and could be used in its natural form for more technical
applications, such as lubrication [56] or could undergo emulsion breakage to get an oleic-
rich fatty acid solution to be used in different industrial sectors as pharmacology [57] or
polymer synthesis [58].

Supplementary Materials: The following are available online at https://www.mdpi.com/artic
le/10.3390/biom12020149/s1, Table S1: Fraction distribution of the integrated process; Table S2:
Composition of each batch of triglyceride emulsion; Table S3: Composition of each batch of aqueous
phase from the integrated process; Table S4: Composition of each batch of bottom residue obtained
with the integrated process; Table S5: Fraction distribution of the modified integrated process,
including a lipase; Table S6: Composition of each batch of fatty acid emulsion; Table S7: Composition
of each batch of aqueous phase obtained with the modified integrated process, including a lipase;
Table S8: Composition of each batch of bottom residue obtained with the modified integrated
process including a lipase; Table S9: Details of the eluents used for the chromatographic analysis of
phospholipids; Table S10: Elution gradient in HPLC/ELSD chromatography.
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