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ORIGINAL ARTICLE

Genetic Trends Estimation in IRRIs Rice 
Drought Breeding Program and Identification 
of High Yielding Drought-Tolerant Lines
Apurva Khanna1, Mahender Anumalla1, Margaret Catolos1, Jérôme Bartholomé2, Roberto Fritsche‑Neto1, 
John Damien Platten1, Daniel Joseph Pisano1, Alaine Gulles1, Ma Teresa Sta. Cruz1, Joie Ramos1, Gem Faustino1, 
Sankalp Bhosale1 and Waseem Hussain1*  

Abstract 

Estimating genetic trends using historical data is an important parameter to check the success of the breeding pro‑
grams. The estimated genetic trends can act as a guideline to target the appropriate breeding strategies and optimize 
the breeding program for improved genetic gains. In this study, 17 years of historical data from IRRI’s rice drought 
breeding program was used to estimate the genetic trends and assess the breeding program’s success. We also iden‑
tified top‑performing lines based on grain yield breeding values as an elite panel for implementing future population 
improvement‑based breeding schemes. A two‑stage approach of pedigree‑based mixed model analysis was used 
to analyze the data and extract the breeding values and estimate the genetic trends for grain yield under non‑stress, 
drought, and in combined data of non‑stress and drought. Lower grain yield values were observed in all the drought 
trials. Heritability for grain yield estimates ranged between 0.20 and 0.94 under the drought trials and 0.43–0.83 under 
non‑stress trials. Under non‑stress conditions, the genetic gain of 0.21% (10.22 kg/ha/year) for genotypes and 0.17% 
(7.90 kg/ha/year) for checks was observed. The genetic trend under drought conditions exhibited a positive trend 
with the genetic gain of 0.13% (2.29 kg/ha/year) for genotypes and 0.55% (9.52 kg/ha/year) for checks. For combined 
analysis showed a genetic gain of 0.27% (8.32 kg/ha/year) for genotypes and 0.60% (13.69 kg/ha/year) for checks 
was observed. For elite panel selection, 200 promising lines were selected based on higher breeding values for grain 
yield and prediction accuracy of > 0.40. The breeding values of the 200 genotypes formulating the core panel ranged 
between 2366.17 and 4622.59 (kg/ha). A positive genetic rate was observed under all the three conditions; however, 
the rate of increase was lower than the required rate of 1.5% genetic gain. We propose a recurrent selection breeding 
strategy within the elite population with the integration of modern tools and technologies to boost the genetic gains 
in IRRI’s drought breeding program. The elite breeding panel identified in this study forms an easily available and 
highly enriched genetic resource for future recurrent selection programs to boost the genetic gains.
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Background
Rice (Oryza sativa L.) is one of the world’s major staple 
crops providing up 20% of the world’s dietary energy 
and feeding more than 3.5 billion people in the world 
(Wing et al. 2018). Globally, rice is cultivated in an area 
of 162Mha with an annual production of 755 mt (FAO 
2019). Among the area under rice cultivation, more 
than 30% is under rainfed ecosystems subject to severe 
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drought or water-limited conditions (Dixit et  al. 2014). 
Drought is the major limitation for rice production in 
rainfed ecosystems leading to yield loss of 13–35% every 
year (Muthu et al. 2020) and affecting 46Mha of rainfed 
lowland and 10Mha of upland rice ecosystems in the 
Asian-Pacific region (Pandey et  al. 2007). In Sub-Saha-
ran Africa, drought covers 19% of the total cultivated 
rice area and is one of the major causes of low rice grain 
yields (Van Oort and Zwart 2018). Low grain yield under 
drought conditions is further elevated by the pressing cli-
matic changes due to the increasing frequency of drought 
severity events, thus further limiting the rice productivity 
(Lenaerts et al. 2019).

Direct selection for grain yield under drought has been 
a major focus of the Rainfed Rice Breeding (RRB) pro-
gram at the International Rice Research Institute (IRRI). 
Direct selection for grain yield over secondary traits 
under drought has been proven effective in improving 
drought tolerance, and as a result, many drought-tolerant 
rice varieties have been developed (Kumar et  al. 2014, 
2018; Sandhu and Kumar 2017; Bhandari et al. 2020; Dar 
et al. 2020). However, due to the complex nature of grain 
yield under drought; mainly characterized by the small 
and large effect genes; their epistatic interactions, and 
interaction with environment; and other abiotic stresses, 
genetic improvement in drought has been a significant 
challenge.

Despite these challenges, IRRI has constantly been 
striving to innovate and develop drought-tolerant rice 
varieties and disseminate them to farmers in Africa 
and Asia–Pacific regions. STRASA (Stress Tolerant 
Rice for Africa and South Asia) Project (2005–2019) at 
IRRI, funded by the Bill and Melinda Gates Foundation 
(BMGF) was one of the most successful research pro-
grams that led to the successful development and release 
of more than 30 high-yielding drought-tolerant rice vari-
eties in Asia and Africa (https:// strasa. irri. org/). Under 
this project, imperative efforts were made to incorporate 
the major drought-tolerant QTLs (qDTY1.1, qDTY2.1, 
qDTY2.2, qDTY3.1, qDTY4.1, qDTY12.1 qDTY6.3, etc.) 
into the background of the mega rice varieties like IR64, 
Swarna, and TDK-1, which led to the development of 
several high yielding drought-tolerant rice varieties 
(Bernier et al. 2007; Venuprasad et al. 2009; Vikram et al. 
2011; Mishra et al. 2013; Yadaw et al. 2013; Sandhu et al. 
2014, 2019, 2021; Kumar et  al. 2014, 2020; Henry et  al. 
2015, 2019; Dixit et  al. 2017, 2020; Sandhu and Kumar 
2017; Bhandari et al. 2020; Majumder et al. 2021; Yadav 
et  al. 2021). The most popular drought-tolerant rice 
varieties include—DRR dhan 42, CR Dhan 801, Sahb-
hagi dhan in India, Sukha dhan 4, Bahuguni dhan 11 in 
Nepal, and Katihan 2, Katihan 3, Sahod Ulan 15, Sahod 
Ulan 19 in the Philippines, Yaenelo 4 in Myanmar, 

MPTSA and ATETE in Malawi, CAR 14 in Cambodia, 
and BRRI Dhan66, BRRI Dhan 71 in Bangladesh (https:// 
strasa. irri. org/ varie tal- relea ses/ droug ht). Despite these 
endeavors and the success of the phenotypic selection 
coupled with marker-based selection strategies, the pro-
gress in the genetic improvement of the drought breed-
ing program has been limited. For example, the average 
estimated rate of genetic gain in rice drought breeding 
programs in IRRI-India ranges from 0.68% (under non-
stress conditions) to 1.8% (severe drought conditions) 
(Kumar et al. 2021), which is not sufficient to meet future 
rice demands. Hence, it is crucial to increase rice pro-
ductivity at a greater rate to ensure food security and 
prevent potential food crises in the future (Peng et  al. 
2004; Li et al. 2018). Aiming 1.5% or above genetic gain 
in rice under drought is a huge challenge and is largely 
hampered by complex genetics of drought-elevated by 
extreme climatic changes and increase in the frequency 
of drought events, and availability of limited land to grow 
rice.

To suffice the increasing food demands, it is important 
to breed drought-tolerant rice varieties with expected 
genetic gains. Rice breeders must be smart to implement 
the advanced tools and technologies into the existing 
breeding pipeline and re-design it for accelerating genetic 
gains. The Accelerated Genetic Gain in Rice Alliance 
(AGGRi) project funded by BMGF is one of the IRRI’s 
ongoing projects aimed at modernizing the IRRI-NARES 
(National Agriculture Research Extension System) rice 
breeding program and accelerate the genetic gain from 
the current level of less than 1% to at least 1.5% or above 
annually.

Genetic gain is an important parameter to check the 
progress and success of the breeding programs. The 
genetic gain estimations can be associated with the ongo-
ing breeding program to target the appropriate breeding 
strategies and act as a guide to optimize and modernize 
the rice breeding program for accelerated genetic gains. 
The rate of genetic gain in the IRRI’s rice drought breed-
ing program has never been estimated. On the other 
note, the historical or current elite breeding lines are an 
important genetic resource that can be directly used in 
the population improvement-based breeding programs 
to improve the genetic gains. Further, integrating the 
modern genomic tools and technologies with the popu-
lation improvement-based breeding programs using elite 
lines as a genetic resource will boost the genetic gains 
(Xu et  al. 2017). However, it is important to select the 
appropriate lines from the historical breeding pool repre-
senting the overall genetic diversity in the breeding pool 
and should have high mean performance for grain yield 
and possess the major genes or haplotypes for mendelian 
traits.

https://strasa.irri.org/
https://strasa.irri.org/varietal-releases/drought
https://strasa.irri.org/varietal-releases/drought
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Thus, to assess genetic gains in the IRRI’s rice drought 
breeding program and select the valuable elite lines as a 
future genetic resource, this study was conducted to (1) 
estimate the genetic trends for grain yield in IRRI’s rice 
drought breeding program by leveraging 17 years of his-
torical data from the advanced yield trials (AYT) man-
aged under drought and non-stress conditions and, (2) 
identify high yielding drought-tolerant lines based on the 
grain yield breeding values as a future genetic resource 
for recurrent selection program. The AYT trials included 
premium released varieties from IRRI globally, there-
fore, are the potential reservoirs to select some of the 
high-yielding drought-tolerant lines as a future genetic 
resource.

Materials and Methods
Description and Pre‑processing of Historical Data
For this study, historical data from yield trials conducted 
under non-stress and drought conditions (at the repro-
ductive stage) at IRRI, Philippines from 2003 to 2019 
(17  years) were used. The trials in each year were con-
ducted in two seasons-dry (from January to April) and 
wet (from late June to September) season. For all the tri-
als, drought stress was implemented at the reproductive 
stage (panicle initiation stage) by draining the field com-
pletely. The PVC pipes were used and installed a week 
before stress imposition to help keep a track on the water 
table depths in the fields. The complete management of 
the drought stress and non-stress breeding trials at IRRI 
is detailed by Venuprasad et al. (2009).

The combination of year, season, and treatment were 
treated as a trial or environment. In total, the historical 
data harbored 19,916 data points with 2497 unique lines. 
The data was pre-processed, and the quality of phenotype 
records was checked initially to ensure high-quality tri-
als and phenotypes are retained for downstream analysis. 
The data was checked for extreme or unexpected values, 
missing percentages, and valid experimental design. The 
trials having more than 20% of missing data for grain 
yield, lack of replications or proper experimental design 
were dropped initially. Further, the extreme observa-
tions were checked in the data before outlier detection 
as they may increase the error variance, which may affect 
the performance of the outlier detection (Gonzalez et al. 
2018). After preprocessing, data were checked for outlier 
detection using the Bonferroni-Holm test for studen-
tized residuals test (Bernal-Vasquez et  al. 2016; Philipp 
et al. 2019). The 88 data points detected as outliers were 
removed from the data to make sure only high-quality 
data points are retained for reliable estimates. In total, 
53 trials harboring 19,828 data points with 2490 unique 
lines were retained for downstream analysis. The com-
plete information on the trials, including the year, season, 

treatment, experimental design, number of plots, repli-
cations, and blocks, are provided in the Additional file 1: 
Table  S1. Trials were performed in varied experimental 
designs including alpha lattice, augmented randomized 
complete block, and randomized complete block designs 
(RCBD). Three major agronomic traits days to 50% flow-
ering (DTF), plant height (PH), and grain yield (kg/ha) 
were retrieved and used for downstream analysis.

Extraction of Pedigree
The pedigree data of 2490 unique lines were extracted 
from the breeding data management system (Breeding 
4 Results (B4R), 2021, https:// b4r. irri. org) which has the 
passport to comprehensive information of the genotype, 
phenotype, and pedigree data of breeding lines. Addi-
tional information on the parents and grandparents up 
to seven generations, cross-type for each line, and breed-
ing strategy were extracted using the IRRI genealogy 
management system (McLaren et al. 2005; Collard et al. 
2019) using customized R scripts. These advanced breed-
ing lines were bred utilizing various crossing strategies 
including single, double, three-way, complex crosses and 
backcrosses.

Statistical Modelling of Phenotypic Data
A two-stage approach of mixed model analysis was used 
to analyze the data and extract the breeding values for 
grain yield, DTF, and PH (Piepho et al. 2008, 2012; Smith 
and Cullis 2018) under non-stress, drought, and by ana-
lyzing drought and non-stress together. The two-stage 
approach was adopted to account for different experi-
mental designs across the environments (Damesa et  al. 
2017). In the first stage, per year adjusted means as 
BLUEs for each genotype were estimated in each envi-
ronment. The mixed model used consisted of genotypes 
as fixed effects, and season replications and or blocks 
were used as random effects. BLUEs for each genotype 
per year was obtained using the following linear mixed 
model:

where, yijkl represents adjusted means for ith observation 
in jth replication, kth block and lth season, μ is the overall 
mean,  gi is the fixed effect of ith genotype,  rj is the ran-
dom effect of replications in each trial,  bk is the random 
block effect,  sl is the random effect for season and εijkl is 
the residual error. The random effects were distributed 
independently and identically. In this model, DTF was 
used as a covariate for reducing the error on yield caused 
due to the presence of different maturity genotypes. Fur-
ther, the present study focused on the effect of drought 
on the grain yield during the reproductive stage, thus 

(1)yijkl = µ+ gi + rj + bk + sl + εijkl

https://b4r.irri.org


Page 4 of 14Khanna et al. Rice           (2022) 15:14 

excluding the impact of drought on the vegetative growth 
stage.

The above model was used for the trials which were 
performed using an alpha-lattice breeding design. For 
environments with augmented RCBD experimental 
design, replications were considered equal to blocks, and 
hence block effect was removed. Likewise, BLUEs and 
standard error values were calculated respectively for 
each genotype per year for the DTF and PH traits using 
Eq. 1.

The combined analysis using a linear mixed model was 
used to extract the single value BLUEs adjusted across 
the non-stress and drought treatments. The model used 
follows as:

all the terms are described in Eq. 1 except the tm which 
is the fixed effect of mth treatment (non-stress and 
drought). We assume different variances across non-
stress and drought treatments in the model to get the 
adjusted means.

Heritabilities for grain yield in each environment 
across non-stress and drought conditions were calcu-
lated for each environment (Cullis et al. 2006; Piepho and 
Möhring 2007). The same model described above was 
used to calculate the heritability with genotypes as a ran-
dom effect. The equation to calculate heritability follows 
as:

where VBLUP is the mean–variance difference of two 
BLUPs and σ2g is the variance of genotypes. It is impor-
tant to note that the above equation used to calculate 
heritability may not be appropriate if the data is highly 
unbalanced. However, in our case, the unbalancedness in 
data was not so high as we estimated the heritability per 
trial, i.e., each growing season in each year.

In the second stage analysis, a pedigree-based mixed 
model approach was used to extract the breeding values 
each in non-stress, drought, and combined data. Addi-
tionally, the BLUE’s estimated from the first stage analysis 
were weighted by the inverse of their squared standard 
errors and used as response variable in the second stage 
analysis (Möhring and Piepho 2009). The BLUEs sub-
jected with weights were used to take care of the hetero-
geneous error variances. The model used was as follows:

where yij is the BLUE values implied with weights for 
ith observation in jth year, μ is the overall mean, gi is 
the breeding value of ith genotype with  gi ∼ N (0, Aσ2

g) 

(2)yijklm = gi + rj + bk + sl + tm + εijklm

(3)H2
= 1−

VBLUP

2σ 2
g

(4)yij = µ+ gi + yej + εij

where σ2
g is the genetic variance and A is the additive 

genetic relationship matrix based on pedigrees, yej is the 
random effect of year, and εij is the residual error, with 
εij ∼ N(0, Rσ2

ε), where R is the identity error covariance 
matrix and σ2

ε is the error variance. The reliability of the 
breeding values (Isik et  al. 2017) of each genotype was 
estimated using the following equation:

Two-stage mixed model data analysis was performed in 
the R software (R Core Team 2020) using the ASReml-R 
4 package (Butler et al. 2017). The R package AGHMatrix 
was used for constructing the pedigree A-matrix (Ama-
deu et  al. 2016). The analytical pipeline and codes are 
available on the GitHub (https:// github. com/ whuss ain2/ 
Genet ic_ Trend_ Rice_ Droug ht).

Estimation of the Genetic Trends
The genetic gain was estimated separately for three con-
ditions: (a) non-stress trials, (b) drought trials, and (c) 
combined data (adjusted means across non-stress and 
drought trials). For the genetic gain trend, breeding val-
ues were regressed on the year of origin of the line. The 
genetic trend was also estimated for released varieties 
and checks by regressing the breeding value of checks on 
the year of origin in non-stress trials, drought trials, and 
combined data.

Identification of Breeding Panel
Breeding values obtained by combined analysis of non-
stress and drought data were used for the identification 
of elite genotypes as a future breeding resource. A total 
of 200 lines were selected from the 2490 unique histori-
cal lines based on the higher breeding values and predic-
tion accuracy of > 0.4. In addition to the lines with higher 
breeding values and reliabilities for grain yield, lines 
harboring the key QTLs responsive for various biotic 
and abiotic stresses were also selected for formulating 
the breeding panel. To make sure genotypes selected are 
diverse and represent the whole collection of lines in his-
torical lines, the pedigree matrix was used in the analysis 
to account for similarity among the lines. The similarity 
and diversity among the selected lines in comparison to 
the whole collection were visualized through bi-plot. For 
bi-plot, principal component analysis (PCA) was per-
formed on the pedigree-based relationship matrix using 
the princomp() function in R software. Bi-plot was visu-
alized using the factoextra R package (Kassambara and 
Mundt 2017).

(5)r = 1−
PEV

σ 2
g

https://github.com/whussain2/Genetic_Trend_Rice_Drought
https://github.com/whussain2/Genetic_Trend_Rice_Drought
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Results
Descriptive Features of Historical Drought Data
The three main traits grain yield, PH, and DTF grown 
under non-stress and drought conditions were used 
for analysis. The difference in phenotypic trait val-
ues for all three traits was observed in non-stress and 
drought conditions. The difference in trait value was 
also evident across the years. The raw mean grain yield 
under the non-stress conditions ranged from 514.40 
to 9943.80 (kg/ha) and under the drought conditions 
201.10–6181.21 (kg/ha) (Fig.  1a). In each trial, lower 
yield values were observed under drought conditions as 
compared to trials under non-stress conditions indicat-
ing the impact of drought on the phenotypes. The DTF 
values under the non-stress conditions ranged from 
60 to 119 days and in the drought conditions it ranged 
from 63 to 129 days (Additional file 2: Figure S1). Fur-
ther, we observed a wide distribution in DTF for the 
genotypes, and genotypes based on breeding values 
were classified into three maturity groups based on 
the breeding values i.e., early (85–109  days), medium 
(110–124 days), and late (DTF ≥ 125 days). The DTF of 
68% of the lines from the complete unique set of lines 
under drought implication falls into the medium dura-
tion maturity category. The remaining genotypes make 
up 15% and 16% for early and late duration groups, 
respectively. Similarly, under the non-stress conditions, 
the percentage of lines falling into three maturity cat-
egories were, early (15%), medium (76%), and late (9%) 
respectively. Because of the wide distribution in DTF, 
we used DTF as covariate in the phenotypic data mod-
eling to adjust for the grain yield. Similarly, for PH we 
observed a wide distribution in phenotypic values and 
PH in the data set ranged from 40 to 195 (cm) under 
non-stress conditions and 40–90 (cm) under drought 
conditions (Additional file  2: Figure S2). The dataset 
has ample diversity among the tested genotypes hav-
ing a diverse range for PH between 40 and 195 cm. Low 
plant height was observed under drought conditions, 
consistent with the previous reports (Ahmadikhah 
and Marufinia 2016; Mishra and Panda 2017; Hussain 
et  al. 2018; Panda et  al. 2021). Heritability for grain 
yield estimates ranged between 0.20 and 0.94 under the 
drought trials and 0.43–0.83 under non-stress growing 
trials for the non-stress trials (Fig. 1b). Out of 17 trials, 
8 trials showed lower heritability values under drought 
conditions as compared to non-stress trials. Reduction 
in heritability under drought conditions is a common 
phenomenon (Henry et  al. 1997; Kumar et  al. 2007) 
which indicates that genotypes are not able to express 
the higher genetic potential for grain yield.

Historical Data Connectivity
Historical data sets usually have very low connectivity 
as new lines are being tested every year, and only a lim-
ited number of times the new lines are being tested. In 
the current data set, we observe appropriate connectiv-
ity of the different genotypes across the years (Fig.  1c), 
and this connectivity was mainly created by long-term 
checks (IR64, Swarna, Sahbhagi Dhan, IRRI 154) across 
the years. Further, over the breeding cycles and years, the 
superior genotypes were forwarded and re-tested in the 
succeeding years which made the dataset well connected 
to previous years (Additional file  2: Figure S3). Further 
to ensure good connectivity and get reliable estimates 
of the breeding values, relationship matrix (Additional 
file 2: Figure S4) based on pedigrees of 2490 unique lines 
was incorporated in the second stage of mixed model 
analysis. Additionally, during the analysis, the trials were 
separated into two growing conditions (non-stress and 
drought), and seasons (wet and dry), good connectiv-
ity across seasons and growing conditions was observed 
among the lines (Additional file 2: Figure S5).

Estimation of Breeding Values
Breeding values obtained from second-stage analysis 
by fitting a pedigree matrix were used to estimate the 
genetic trends and used to identify the best lines based 
on higher breeding values for the formulation of the core 
panel. The range of the breeding values for the genotypes 
under drought stress was between 642.79 and 3267.60 
(kg/ha). Under the non-stress growing conditions, the 
breeding values of the genotypes ranged between 3447.93 
and 6933.32 (kg/ha). The breeding values adjusted across 
drought and non-stress growing conditions ranged 
between 1026.93 and 4622.59 (kg/ha). The histogram of 
the breeding values along with the mean and standard 
deviations is given in the (Additional file 2: Figure S6).

Estimation of Genetic Trends
The genetic trend was estimated for the genotypes and, 
also for checks and released varieties in non-stress grow-
ing conditions, drought conditions, and in combined 
data. Under non-stress growing conditions, the genetic 
gain of 0.21% with a yield advantage of 10.22  kg/ha per 
year was observed for genotypes (Fig.  2a), and genetic 
gain of 0.17% was observed for checks and released lines 
representing an increase of 7.90 kg/ha per year (Fig. 3a). 
The genetic trend under the drought conditions exhib-
ited a positive trend with a genetic gain of 0.13% for 
genotypes (Fig. 2b) and 0.55% for released lines (Fig. 3b). 
Yield advantages of 2.29 kg/ha for genotypes and 9.52 kg/
ha for checks was observed. The regression estimates 
for combined analysis (adjusted breeding values across 
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non-stress and drought growing conditions) showed a 
genetic gain of 0.27% for genotypes (Fig.  2c) and 0.60% 
(Fig. 3c) for checks with a yield advantage of 8.32 kg/ha 
for genotypes and 13.69 kg/ha for checks. Further genetic 
gain trends were plotted using non-parametric approach 

with the method Local weighted regression or loess to 
get information on the short-term and long-term genetic 
trends in the breeding program (Additional file  2: Fig-
ure S7). We correlate the genetic trends with the breed-
ing strategies adopted by the drought breeding program 

Fig. 1 a Boxplot showing the raw mean grain yield (kg/ha) under non‑stress and drought conditions from the year 2003–2019. The x‑axis shows 
the trial names, which are combinations of year, season, and growing condition. In the boxplots, it is clear the grain yield is higher under non‑stress 
conditions as compared to drought conditions indicating the impact of drought on the yield trials. b Heritabilities of the trials in each year from 
2003 to 2019. The blue bars represent drought and yellow non‑stress trials. c Connectivity of all the genotypes across years from 2003 to 2019. The 
genotypes including common checks and promising varieties were repeatedly tested for their performance in the successive years, thereby making 
the dataset well connected across successive years. The numbers in the boxes show the genotypes that were common between years
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at IRRI. The breeding strategies used by rice breeders 
to breed for drought tolerance ranged from single seed 
descent breeding based on single or complex crosses to 
backcross marker assisted breeding for the introgression 
of various trait related QTLs.

Comparison of Breeding Values
We compared the breeding values of the popular checks 
and the released varieties from IRRI, to assess their per-
formance under three conditions viz., stress, non-stress, 
and combined drought and non-stress. This assessment 
was undertaken with the overview to deduce the best 
performers among the released IRRI lines. The per-
formance of the released varieties was superior to the 
popular checks under all three conditions (Fig.  3a–c). 
The varieties IRRI 188, IRRI 199, and IRRI 200 had supe-
rior breeding values of 2547.19 (kg/ha), 2420.70 (kg/ha), 
and 2490.97 (kg/ha), respectively, compared to popu-
lar checks and other released varieties when estimated 
under the drought stress conditions (Fig. 3a). These vari-
eties were released in the years 2015 and 2016, depict-
ing growth of the breeding program over the preceding 
released varieties developed in the previous years. The 
latter also showed the higher performance to the most 
popular drought-tolerant released variety Sahbhagi Dhan 
with the predicted value of 1562.03 (kg/ha) under stress 
conditions. The breeding values for popular drought-
tolerant checks Vandana and Rajashree were 1391.68 (kg/
ha) and 1815.65 (kg/ha) under drought stress conditions 

respectively. This depicts the superiority of the recently 
released lines over popular checks and varieties. The gen-
otypes were also assessed for the trials evaluated under 
non-stress conditions. The breeding lines, IR09L204 
depicted the highest breeding value of 4998.44 (kg/ha) 
followed by IRRI 199 (4958.74), IRRI 218 (4900.64), IRRI 
200 (4892.13), and IRRI 188 (4866.45) in the descending 
fashion of the superior performing genotypes under the 
non-stress conditions (Fig.  3b). In the combined analy-
sis with breeding lines performing superior under both 
drought stress and non-stress conditions were as fol-
lows IRRI 119 (3698.75), IRRI 163 (3599.56), IRRI 162 
(3395.07), IRRI 218 (3374.91), and IRRI 200 (3374.93) 
(Fig.  3c). Similar to drought conditions, these lines sur-
passed popular checks Vandana (2814.09) and Rajashree 
(2628.67); variety Sahbhagi Dhan (2668.12). The breeding 
values of the five top-performing lines have been detailed 
in Fig. 3a–c for non-stress, drought, and combined con-
ditions, respectively.

Identification and Development of Elite Breeding Panel
The genotypes with higher breeding values (obtained 
from the combined analysis of non-stress and drought 
data) based on the grain yield and with prediction accu-
racy of > 0.40 were selected for the development of the 
breeding core panel. In total 200 promising lines were 
identified and used for the development of the elite 
panel. To make sure 200 selected lines are genetically 
diverse and representative of decades of IRRI’s drought 

Fig. 2 Trends in genetic gain from IRRI’s 17 years of drought breeding program under. a Non‑Stress conditions, b drought conditions, and c 
combined conditions (adjusted breeding values under drought and non‑stress conditions). The x‑axis shows the year of origin of the genotype 
ranging from 1980 to 2015 and the y‑axis shows the breeding value of the genotype. The genetic gain was estimated by regressing the breeding 
values of grain yield on the year of origin of genotype and is given by the slope of the line
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breeding and varietal development, a pedigree matrix 
was used to account for genetic similarity among the 
genotypes. The relationship matrix constructed using 
pedigree data was visualized using the biplot (Fig. 3d). 
From the biplot, it is very clear how diverse the selected 
lines are, and how they represent and capture the diver-
sity of the whole historical collection of 2490 unique 
genotypes. The breeding values of the 200 genotypes 
formulating the core panel ranged between 3200 and 
4622.59 kg/ha. The mean breeding value of the panel is 

3395.10 with a standard deviation of 373.23 (Additional 
file 2: Figure S8).

Discussion
Here we provide an overview of how 17 years of histori-
cal IRRI’s rice drought data was leveraged to estimate the 
breeding values for grain yield and estimate the genetic 
trends in the IRRI’s rice drought breeding program. We 
also demonstrated how the top-performing lines based 
on the grain yield breeding values were selected as the 

Fig. 3 Trends in genetic gain for IRRI drought released lines and popular checks under three conditions: a non‑stress, b drought and c combined 
conditions. The genetic gain was estimated by regressing the breeding values on the year of origin of genotype, d shows the biplot of the lines 
selected based on the breeding value for grain yield as an elite core panel. Core panel lines are highlighted in dark red color. The checks and 
released lines are shown in blue color, and the whole historical collection lines are represented in gray color. The biplot was constructed using the 
first two principal components obtained from the pedigree‑based relationship matrix. The selected lines represent and capture the variability of the 
whole collection of genotypes and are ideal to form the core panel as a future breeding resource
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future breeding elite resource for recurrent selection. 
Recurrent selection type breeding strategy could be com-
bined with the genomic prediction to shorten the breed-
ing cycle, increase selection accuracy and intensity, thus 
increasing the rate of genetic gain (Zhang et al. 2021).

For the selection of genotypes as a part of the core 
panel, pedigree information availability was pivotal in fit-
ting the additive matrix in the second stage of the mixed 
model analysis for reliable estimation of the breeding val-
ues and help in the selection of accurate genotypes for 
the formulation of the core panel. The essence of using 
the relationship matrix is that it contains information 
about the flow of genes and explicitly allows the dissec-
tion of genetic variation by accounting for the additive 
genetic covariances between random effects/genotypes 
for reliable estimation of the breeding values (Piepho 
et  al. 2008). Further, the relationship matrix ties up the 
data across years by borrowing information from parents 
and grandparents and creating the connectivity in the 
highly unbalanced data set for the reliable estimation of 
breeding values.

Genetic Trend and Breeding Value Estimations
Improving the crop yield or genetic gain is crucial and 
can be attained by the breeders via implementing data 
driven breeding (Xu et  al. 2017). The assessment of 
genetic gains to estimate crop yield growth has had a 
limited focus in the past. However, genetic gain estima-
tion with an outlook to reinforce the future breeding 
programs to increase genetic gain for yield has become 
a major focus. In this study, the regression of breeding 
values over the year of release/testing indicated a positive 
genetic gain under all three conditions, and the overall 
success of the drought breeding program at IRRI. How-
ever, the genetic gain of 0.13% observed under drought 
conditions is not sufficient to meet the current and future 
rice food demands. A much higher genetic gain of 1.9% 
was reported under severe drought conditions at the 
reproductive stage in rice evaluated in IRRI India (Kumar 
et  al. 2021). Therefore, it is essential to optimize and 
modernize the drought rice breeding program at IRRI for 
enhanced genetic gains.

Further we observed a minimal increase in genetic 
gain till the 2005 as the year of origin of line, post which 
there was higher and constant increase in genetic gain 
in all the three conditions (Additional file 2: Figure S7). 
The increase in genetic gain in the latter stages could be 
accredited to differential breeding strategies followed 
in the drought breeding program across the years. The 
drought breeding program at IRRI until 2008 was led 
specifically for targeting the introgression of major abi-
otic stress-tolerant QTLs/genes for the development of 
NILs possessing elite genetic backgrounds with minimal 

focus on recurrent selection breeding strategy. There-
after, in the preceding years, the focus drifted towards 
pyramiding these genes/QTLs for rendering multiple 
stress-tolerant cultivars. These genotypes were not pre-
cisely targeted for genetic gain enhancement; however, 
their genetic merit is highly valuable as these sustainable 
varieties were disseminated for commercial cultivation 
across countries and can withstand additional biotic and 
abiotic stresses along with drought. Further in the last 
few years more emphasize was given to recurrent selec-
tion-based breeding strategies in the drought breeding 
program to improve the yield and increase genetic gain. 
Rather than the QTL-based introgression or breeding 
approach as used previously, rice breeders need to focus 
on population improvement breeding approaches using 
elite lines as parents, wherein parents of each breed-
ing cycle are selected based on high additive breeding 
values for the grain yield. Recurrent selection schemes 
focused on quick recycling of the best and high breeding 
value lines may deliver higher rates of genetic gain (Cobb 
et al. 2019). Further to ensure the constant genetic gains, 
rice breeders need to select the parents for new breed-
ing cycles that have higher additive breeding value than 
the previous breeding cycle. However, for long-term 
genetic gains, utmost care must be taken by the breed-
ers to diversify the elite gene pool by bringing or directly 
crossing the exotic or diverse materials with elite pool 
lines. Exotic or diverse materials may broaden the elite 
gene pool, but they are highly unadopted and unim-
proved lines with lower breeding values. Thus, crossing 
a directly diverse line with an elite line may bring novel 
favorable alleles and increase the genetic variance of 
progeny, however, they barely counterbalance the mean 
performance of progeny due to the low breeding value 
of diverse or exotic lines (Longin and Reif 2014; Allier 
et  al. 2020). Thus, a focused recurrent selection breed-
ing approach with a systematic pre-breeding approach is 
required to deliver higher and constant genetic gains in 
IRRI’s drought rice breeding program.

The drought breeding program at IRRI has successfully 
released many drought-tolerant varieties across Asia and 
Africa (https:// strasa. irri. org/), and most of them were 
part of this study. We separately assessed the genetic gain 
estimation for released varieties, and higher genetic gain 
was observed for varieties/checks released for use under 
drought conditions. The positive and higher genetic gain 
(0.55%) for checks under drought indicates that a strong 
impact has been made by IRRI’s drought breeding pro-
gram to increase rice productivity under challenging and 
extreme environments. Among these varieties- IRRI 188, 
IRRI 199, and IRRI 200 released during 2015 and 2016 
had higher breeding values as compared to the popular 
checks Rajashree, Vandana, and UPLRi7, and previously 

https://strasa.irri.org/
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released varieties. The superiority of these lines over 
the formerly released varieties indicates growth in grain 
yield to a larger extent. Also, positive genetic trend and 
higher breeding values of the recently released varieties 
demarcates the positive growth of the breeding program 
across years as the performance improved from the pre-
ceding released varieties developed in the previous years. 
Further, among these three top-performing released 
lines, IRRI 199 originates from a backcross breeding 
program utilizing a tropical japonica drought and blast 
tolerant genotype, Moroberekan, as a donor parent and 
a high-yielding, semi-dwarf Indica rice variety, Swarna. 
The population harbors a major, severe drought-tolerant 
QTL, qDTY3.2 contributing to various drought-tolerant 
traits viz., canopy cover, canopy temperature (CT), root 
system architecture (RSA) attributes (Wasaya et al. 2018; 
Sofi et al. 2019). The genetic region co-localizes with early 
flowering time QTL HD9 and lodging resistance features, 
making the genotype suitable for various ecosystems and 
environments (Dixit et  al. 2014, 2015). Concomitantly, 
based on the combined analysis IRRI 163, IRRI 162, IRRI 
218 and IRRI 200 released in the years 2011, 2015, and 
2016 exhibited high breeding values under both drought 
and non-stress conditions.

Development of Breeding Panel as the Future Breeding 
Resource
In the last 1-decade rice breeders at IRRI have mainly 
focused on introgression and pyramiding of major abi-
otic stress-tolerant QTLs/genes in elite backgrounds 
(Venuprasad et al. 2009; Mishra et al. 2013; Yadaw et al. 
2013). Population improvement based on recurrent 
selection and early re-cycling of advanced lines has not 
been a major focus of the drought rice breeding program 
at IRRI. Different crossing strategies (Additional file  2: 
Figure S9) single, complex, double, and backcrosses have 
been used by the rice breeders to integrate these QTLs 
into the elite genetic backgrounds and develop the new 
breeding lines. Diverse materials, including landraces, 
and donors have been extensively used to diversify the 
gene pool and develop climate-resilient varieties (Sandhu 
et  al. 2021; Yadav et  al. 2021). However, this strategy of 
diversifying the elite gene pool with limited focus on 
recurrent selection and early re-cycling of high-value 
breeding lines may have limited genetic gain to a large 
extent and has not been sufficient to maintain the higher 
genetic gains over time.

Recurrent selection with early re-cycling of lines is the 
key to increase the frequency of desirable additive haplo-
types of grain yield in each cycle, and ultimately boosting 
the genetic gains. To strictly focus on recurrent selec-
tion breeding schemes, the presence of highly charac-
terized elite lines with higher breeding values for grain 

yield and possessing the key haplotypes for mendelian 
traits is required as the base population. The historical 
data set used in this study which contains 2497 unique 
genotypes has been used by rice breeders at IRRI for dec-
ades and in the past 60  years, many promising drought 
lines have been extracted from this breeding pool. This 
breeding pool exhibits ample genetic diversity and pos-
sesses the key lines that may be used as a future breeding 
resource to sustain higher grain yield under challenging 
environments. Further, this breeding collection has not 
only been improved for grain yield but also turbocharged 
with diverse alleles for important traits of biotic and 
abiotic stresses and represents the overall diversity and 
breadth of IRRI’s rice drought breeding program. Besides 
the gene bank resources, this breeding pool represents 
the important source of genetic variation that is highly 
dynamic created through recombination and reshuffling 
of alleles. Thus, identifying the high-power performing 
lines based on the breeding values for grain yield that 
represents the overall diversity of the whole breeding 
collections is the key to success in future recurrent selec-
tion breeding strategies. To this end, we took this ini-
tiative to extract the top breeding lines from the whole 
historical breeding collection and form the elite breed-
ing panel as future breeding resources. These selected 
lines besides possessing high breeding values are also 
indicative of higher recovery capabilities under drought 
stress. We believe the lines selected are the best genetic 
variation to recombine and reshuffle in recurrent selec-
tion to increase the frequency of additive haplotypes of 
grain yield in each cycle of breeding. Further, the recur-
rent selection type breeding strategy could be combined 
with the genomic prediction tool to select the lines based 
on genomic estimated breeding values. Genomic predic-
tion implemented in earlier generations will also help to 
decrease the cycle length. Further, selection on more can-
didates in earlier or advanced generation can be carried 
out using genomic predictions, thus increasing the rate of 
genetic gain (Zhang et al. 2021).

Additionally, based on the comprehensive review of 
the literature, we assessed the additional character-
istic features of these selected lines and found these 
selected lines harbor favorable QTLs for resistance to 
biotic stresses (bacterial blight, blast, brown planthop-
pers, stemborer, whiteheads, green leafhoppers, and 
rice tungro virus), drought tolerance, and quality traits 
(Additional file 1: Table S2). It is evident from the table 
that these lines are turbocharged with key QTLs and is 
a readily available elite genetic resource for future recur-
rent selection breeding schemes for targeting preferred 
environments/countries based on the desirable market 
profiles. However, we emphasize the detailed genotypic 
characterization of these lines in the future to extract 
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more information for their efficient use in drought breed-
ing program.

Additionally, the elite panel also harbored two best 
performing genotypes; IR15F1706 and IR 54447-3B-10-2 
from the 2020 drought stress trials (unpublished) show-
ing high chlorophyll fluorescence (CF) and low CT val-
ues. These genotypes when assessed had high breeding 
values, confirming further the accuracy of the analysis 
undertaken. Alongside, it also demarcates that depriva-
tion in CT has a strong influence on plant’s yield under 
drought-prone conditions. It has also been reported that 
CT has a high correlation with the RSA traits symboliz-
ing enhanced genetic capacity of the plant to retain soil 
moisture and hence improved survival and yield under 
drought stress conditions (Blair et  al. 2010; Lopes and 
Reynolds 2010). Similarly, enhanced CF demarcates a 
plant’s capabilities to withstand drought stress effectively. 
Furthermore, two multiparent conventional bred lines 
namely, IR 115844-B-B-281-1-2 and IR 115844-B-342-
1-1-1 present in the selected panel have been reported 
to yield more than 7000  kg/ha under dry direct-seeded 
conditions, with higher yields under non-stress and 
reproductive stage drought stress conditions (Sandhu 
et al. 2021). In our study, these lines showed the breed-
ing values between 3200 and 3368.14, which form a valu-
able resource for the breeding programs to be utilized 
for drought-prone areas with major cultivation under 
dry seeded conditions having limited water and labor 
availability. Few of the top 100 selected lines were also 
reported by other research studies to show higher yield 
performance under multi-environment trials (Vergara 
et al. 2016). Furthermore, we believe that the increase in 
the breeding values of the lines under drought conditions 
is mainly due to the introgression of the major drought 
QTLs.

In summary, the core breeding panel selected based on 
the breeding values and prediction accuracy is an impor-
tant genetic resource possessing multiple stress toler-
ance, varied range of quality traits with genotypes suited 
for cultivation under challenging environments. Further-
more, they form an easily available and highly enriched 
genetic resource for future recurrent selection programs 
and enhance genetic gains. However, we emphasize sys-
tematic genotypic and phenotypic characterization of 
these lines in achieving more knowledge on the value 
proposition of these lines, new allele enrichment, and 
help to create a framework for better understanding and 
managing the genetic diversity in the elite pool. How-
ever, the question may arise whether continued use of the 
elite pool lines and reshuffling of alleles in closed recur-
rent selection strategies is enough to maintain long-term 
genetic gains? Most will agree with the enrichment of the 
elite breeding pool with diverse materials as was done 

previously in the IRRI’s drought breeding program. How-
ever, we emphasize here a systematic effort to diversify 
the elite gene pool without contaminating it with diverse 
materials and limiting the genetic gains (Allier et  al. 
2020).

Conclusions
The drought breeding program at IRRI has been success-
ful in maintaining a positive genetic rate in the breeding 
program, however, the increase in genetic gain has not 
been so high to fulfill the rice food demands. To achieve 
the required genetic gains of 1.5% or above, a recur-
rent selection breeding strategy of the elite population 
with the integration of modern tools and technologies 
is needed. Genotypic and phenotypic characterization 
of the selected elite panel is required to effectively man-
age, incorporate, and track the genetic diversity for 
short-term and long-term genetic gains. Further, efficient 
pre-breeding strategies are needed to turbocharge the 
elite gene pool with major haplotypes of traits showing 
discrete Mendelian segregation without compromising 
the performance of elite lines and boost the genetic gains.
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