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Abstract
We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation 
(ENSO) using both satellite precipitation estimates and the global sub-daily rainfall gauge dataset. Despite limited moisture 
availability over continental surfaces, we find that the highest mean and extreme hourly precipitation intensity (HPI) values 
are mainly located over continents rather than over oceans, a feature that is not evident in daily or coarser resolution data. 
After decomposing the total precipitation into the product of the number of wet hours (NWH) and HPI, we find that ENSO 
modulates total precipitation mainly through the NWH, while its effects on HPI are more limited. The contrasting responses 
to ENSO in NWH and HPI is particularly apparent at the rising branches of the Pacific and Atlantic Walker Circulations, 
and is also notable over land-based gauges in Australia, Malaysia, the USA, Japan and Europe across the whole distribution 
of hourly precipitation (i.e. extreme, moderate and light precipitation). These results provide new insights into the global 
precipitation distribution and its response to ENSO forcing.

Keywords  ENSO · Precipitation total · Number of wet hours · Hourly precipitation intensity · Hourly precipitation 
frequency · Walker circulation · Hourly precipitation extreme

1  Introduction

As the dominant source of natural climate variability in trop-
ical regions on inter-annual timescales, the El Niño–South-
ern Oscillation (ENSO) influences precipitation variability 
on a global scale (e.g., Ropelewski and Halpert 1987; Dai 
et al. 1997; Dai and Wigley 2000; Alexander et al. 2002; 
Lyon and Barnston 2005; Trenberth and Shea 2005; Allan 
and Soden 2008; Pui et al. 2012; Huang and Xie 2015; Gu 
and Adler 2018). ENSO has thus been described as “the 
single most important determinant of variability in global 
precipitation fields” (Dai et al. 1997; Dai and Wigley 2000), 
which modulates global precipitation variability through 
both thermal and dynamical forces (e.g., Seager et al. 2010, 
2011; Huang et al. 2013; Power et al. 2013; Chung and 
Power 2014; Chung et al. 2014; Huang 2014; Huang and 
Xie 2015).

In recent decades, increased attention has focused on 
responses of daily precipitation extremes to ENSO variabil-
ity (e.g., Gershunov and Barnett 1998; Huffman et al. 2001; 
Alexander et al. 2006; Curtis et al. 2007; Allan and Soden 
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2008; Grimm and Tedeschi 2009; Zhang et al. 2010; Xuereb 
and Jakob 2014; Lestari et al. 2016; Whan and Zwiers 2016). 
Allan and Soden (2008) demonstrated that tropical daily pre-
cipitation extremes are also influenced by alternating warm 
and cold episodes of ENSO. During the warm (cold) phase 
of ENSO, i.e. El Niño (La Niña), most of the tropical ocean 
surface are warmer (cooler) than normal, and the atmos-
phere is charged with more (less) moisture, resulting in more 
(less) extreme daily precipitation events over the (combined 
land and ocean) tropical region. These results are evident in 
both satellite observations and climate simulations (Allan 
and Soden 2008), indicating that ENSO is a major driver 
modulating daily precipitation extremes in the tropics on 
interannual timescales.

However, the impacts of ENSO on tropical daily precipita-
tion extremes are different when considering only land areas 
(Allan and Soden 2008). Curtis et al. (2007) suggested that 
this might be due to the juxtaposition of tropical land areas 
with the ascending branches of the Walker Circulation, the 
zonal and vertical atmospheric circulation component of 
the ENSO. The contrasting impacts of ENSO over land and 
ocean areas on daily precipitation extremes have been veri-
fied in regional analyses. For example, Xuereb and Jakob 
(2014) reported decreased (increased) frequency of daily pre-
cipitation extremes during El Niño (La Niña) years over most 
of Australia. Lestari et al. (2016) also documented that the 
frequency of daily precipitation extremes was significantly 
higher during La Niña than El Niño years in transitional sea-
sons over the eastern Indonesian Maritime Continent.

A number of efforts have also been made to identify 
ENSO’s impacts on extra-tropical daily precipitation 
extremes. ENSO was found to influence significantly the 
frequency of daily precipitation extremes across parts of 
North America (Gershunov and Barnett 1998; Zhang et al. 
2010; Whan and Zwiers 2016) and South America (Grimm 
and Tedeschi 2009) through tropical–extratropical atmos-
pheric teleconnections.

However, most of these studies have been focused on 
daily precipitation extremes, and little is known about the 
impacts of ENSO on shorter-duration precipitation, espe-
cially on hourly precipitation. This is of particular impor-
tance as unlike other meteorological variables, precipita-
tion is generally localized in space and highly intermittent 
(e.g., Trenberth et al. 2017). This intermittency is better 
manifested in hourly precipitation measurements relative to 
daily, monthly or other coarser resolutions. Global hourly 
precipitation data could thus provide new insights on both 
the frequency and intensity of global short-duration precipi-
tation (mean and extremes) and their responses to ENSO 
variability.

Global analyses of hourly precipitation are still limited 
(e.g., Trenberth et al. 2017; Barbero et al. 2019b) although 
a number of studies have now focused on regional or 

continental hourly precipitation (e.g., Lenderink and Van 
Meijgaard 2008; Yu and Li 2012; Kendon et al. 2014; Blen-
kinsop et al. 2015; Chan et al. 2016; Luo et al. 2016; Ali and 
Mishra 2017; Barbero et al. 2017, 2019a; Prein et al. 2017; 
Lenderink et al. 2017; Guerreiro et al. 2018; Moron et al. 
2019). However, to date, the basic features of global hourly 
precipitation (including frequency and intensity) have not 
been documented systematically on a global scale.

Since the 1990s, global gridded high-resolution sub-
hourly satellite precipitation estimates have been developed, 
e.g., the 30-min, 8 km resolution CMORPH global satel-
lite precipitation dataset (Joyce et al. 2004). This dataset 
offers global coverage and extends back to 1998, which pro-
vides valuable information for the analysis of global hourly 
precipitation climatology, including extremes (e.g., Curtis 
et al. 2007; Sun et al. 2018; Zorzetto and Marani 2019). 
Additionally, an increasing number of weather stations 
have recorded precipitation on sub-daily time steps, ena-
bling new, global-scale analyses. The “INTElligent use of 
climate models for adaptation to Non-Stationary hydrologi-
cal Extremes” (INTENSE1) project (Blenkinsop et al. 2018) 
has recently collected and quality-controlled records from 
more than 23,687 rain gauges recording sub-daily precipita-
tion, named the Global Sub-Daily Rainfall dataset (GSDR) 
(Lewis et al. 2019). These two new datasets provide fresh 
opportunities for this study to examine the global patterns of 
hourly precipitation means and extremes and their modula-
tion by ENSO.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the data and methods. Section 3 illustrates 
the basic features of global hourly precipitation. Section 4 
shows the global contrasting patterns of mean frequency and 
intensity of hourly precipitation from CMORPH and gauge 
data induced by ENSO variability. In Sect. 5, we further 
examine the responses at multiple hourly precipitation inten-
sities, ranging from light to extreme precipitation. Finally, 
the discussion and summary are presented in Sect. 6.

2 � Data and methods

2.1 � Hourly precipitation data: CMORPH and GSDR

This study uses both global hourly satellite data and gauge 
data. Here, we use CMORPH v1.0 (Joyce et al. 2004; Joyce 

1  INTENSE: “INTElligent use of climate models for adaptation to 
Non-Stationary hydrological Extremes” (ERC Consolidators Grant) 
provides the funded core of a community effort into the collection 
and analysis of sub-daily precipitation data and model outputs since 
2015, which is led by Professor Hayley J. Fowler. For more details 
see https​://resea​rch.ncl.ac.uk/inten​se/about​inten​se/ and Blenkinsop 
et al. (2018).

https://research.ncl.ac.uk/intense/aboutintense/
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and Xie, 2011), a satellite data product developed by using 
CPC Morphing technique (Joyce et al. 2004) that blends 
microwave and infrared information, available at ~ 8 km spa-
tial (0.07277° × 0.07277°) and 30-min temporal resolution, 
from 60° N to 60° S for January 1998 to February 2017. 
Although potential biases and artifacts due to satellite data 
or algorithm retrievals have been documented (e.g., Liu and 
Allan 2012; Roca 2019), including CMORPH (e.g., Masu-
naga et al. 2019), CMORPHv1.0 has been shown to per-
form better at representing daily and 3-h precipitation than 
TRMM 3B42 over many regions of the globe (Shen et al. 
2010). CMORPH has also been used as the reference data 
source in developing regional merged hourly precipitation 
data products over land areas, including the first generation 
of a 0.1° × 0.1° satellite-gauge blended hourly precipitation 
product over China (e.g., Shen et al. 2014). For our analysis, 
we first degraded the CMORPH data to an hourly 0.25° reso-
lution version by an averaging of native grid cells falling into 
the 0.25° grid cell (Joyce et al. 2004; Yu et al. 2013; Shen 
et al. 2014; Yu et al. 2015). The CMORPH 3-hourly and 
daily precipitation data with 0.25° resolution were also used 
for comparison with the hourly precipitation climatology.

We complemented our analysis with the GSDR dataset 
(Lewis et al. 2019; Barbero et al. 2019a, b), which provides 
a direct measure of precipitation. Although the data is rela-
tively sparse and limited to specific regions of the world, it 
provides the opportunity to validate results based on satel-
lite data and enhances the reliability of our conclusions, at 
least across continental regions. Here, we select 4663 hourly 
gauges covering the 10-year period from January 1998–Feb-
ruary 2008 with less than 30% of missing values in the 
whole period (Figure S1 in the Supplementary Information).

2.2 � ENSO definition

We use the Niño3.4 index to represent the phase and inten-
sity of ENSO. The Niño3.4 index is calculated as the aver-
age sea surface temperature (SST) anomalies over the area 
(5° N–5° S, 170° W–120° W) from HadISST V1.1 (Rayner 
et al. 2003).

2.3 � Definitions of precipitation statistics

We examine a range of precipitation statistics including:

1.	 Wet hour: Hour where the precipitation amount exceeds 
0.01 mm (Shen et al. 2014). Be note that, 0.01 mm is 
mainly specified to filter out the hours without precipi-
tation in CMPORH data, the GSDR has a coarser reso-
lution and its minimum precipitation amount is much 
larger than 0.01 mm.

2.	 Number of wet hours (NWH): The total number of wet 
hours over a stated time span.

3.	 Hourly precipitation frequency of exceedance (HPF): 
The HPF is the number of hours during a given period 
with precipitation amount exceeding a certain percentile 
of the wet hour distribution. The units of the HPF is 
hours month−1. The sum of the HPF across the whole 
distribution equals to the NWH.

4.	 Hourly precipitation intensity (HPI): The HPI refers to 
the average hourly precipitation amount for all wet hours 
during a time period. The units of the HPI is mm h−1.

5.	 Accumulated precipitation total (APT): The APT refers 
to the total precipitation amount from all hours (exceed-
ing 0.01 mm) over a stated time span. The units of APT 
is mm month−1, so the production of HPI (mm h−1) 
and NWH (h month−1) is exactly equal to the APT 
(mm month−1) in all seasons including the annual mean.

It should be noted that the product of the NWH and the 
HPI gives the APT.

2.4 � HPF and HPI at different percentile levels

The HPI in any calendar month m (m = 1, 2,… , 12) of a 
given year y (y = 1998, 1999,…) at ith (i = 1, 2,… , 99) 
percentile, HPIith,m,y , is simply defined as the value corre-
sponding to a given percentile of all precipitation amounts 
of wet hours in that given month (month m of year y ). 
Similarly, the HPF of any calendar month ( m) in a given 
year (y) above i th percentile (of precipitation amounts of 
wet hours),HPFith,m,y , is defined as the number of hours 
exceeding the climatological percentile ( CPith,m).

The i  th climatological percentile value of a given 
month m(m = 1, 2,… , 12) , CPith,m , is calculated based 
on precipitation amounts of all wet hours in the month 
( m ) during the 19-year-period of 1998–2016 (10-year-
period of 1998–2007) for CMORPH (GSDR) data. In 
other words, HPFith,m,y was computed in different years 
with respect to the same reference percentile ( CPith,m ) for 
a given month that yields reliable year-to-year variability.

The indices of HPFith,m,y and HPIith,m,n for CMORPH 
(GSDR) data are calculated on a monthly timescale from 
January 1998 to February 2017 (2008) for each grid cell 
(gauge).

2.5 � Percentile bins

To investigate the whole distribution of hourly precipita-
tion, we also use the NWH allocated to a percentile bin 
( HPFb,m,y) , following Allan and Soden (2008). Consider-
ing precipitation above 0.01 mm h−1, five percentile bins of 
precipitation rate at each grid-point were calculated, ranging 
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from the lightest 20% to the heaviest 20% (0–20%, 20–40%, 
40–60%, 60–80%, and 80–100%). In addition, the heavi-
est 20% of hourly precipitation events were further parti-
tioned into 80–90% and 90–100% bins. Specifically, the bins 
0–20%, 40–60%, 80–100% and 90–100% represent the HPF 
of ‘light’, ‘moderate’, ‘heavy’ and ‘very heavy’ precipitation, 
respectively, which correspond to the HPIs represented by 
the 10th, 50th, 90th and 95th percentiles, respectively.

2.6 � Pearson correlation

To investigate the relationship between hourly precipitation 
and ENSO, we calculated the Pearson correlations between 
the Niño3.4 index and NWH, HPI using both the CMORPH 
and GSDR data separately on a seasonal basis. The efficient 
number of degrees of freedom (Zar 1984; Li et al. 2013) 
was taken into account when testing the significance of the 
Pearson correlation coefficients.

Here, we define summer as June–July–August (JJA), win-
ter as December–January–February (DJF), and so on. The 
winter season in year n is defined as December in year n 
and January–February in year n + 1 . We analyze results for 
individual months within a season rather than using seasonal 
means, for example, in winter season, we use values for the 
three individual months of December, January, and February 
instead of their mean. This increases the sample size from 
19 (10) to 57 (30) for each season for CMORPH (GSDR) 
data. Similar results were found using Spearman rank cor-
relations (not shown) and composite analysis of El Niño and 
La Niña ‘events’ (as in Guerreiro et al. 2018) (see Sect. 5 of 
the Supplementary Information).

3 � Climatology of global distributions 
of hourly precipitation

3.1 � Intensity

A remarkable feature of the global hourly precipitation is 
the land-sea contrast, with highest climatological mean 
and extreme HPIs over land areas rather than oceanic 
areas. For example, the climatological mean HPI reaches 
over 1.5 mm h−1 in most seasons over tropical mid-west 
Africa, the eastern half of Northern America, and the south-
east of South America in the extratropical latitudes, much 
heavier than the HPI over tropical oceans reaching a maxi-
mum of ~ 1.1 mm h−1. Similar seasonal high HPI centers 
are observed over other land areas, e.g., northern Australia 
in austral summer (DJF, Fig. 1a) and southern and eastern 
Asia in austral winter (JJA, Fig. 1c). Moreover, extreme HPI 
represented by the climatological 99th percentile (Fig. 2) 
shows a similar spatial distribution to that of climatologi-
cal-averaged HPI, with an exacerbated ocean-land contrast, 

featuring precipitation intensity exceeding 15 mm h−1 over 
land areas. This land-sea contrast feature is unexpected given 
that land areas are moisture-limited and that winds generally 
weaken over continents.

It should be noted that this land-sea contrast feature is 
less evident in daily or coarser resolution precipitation data. 
As shown in Fig. 3, the land-sea contrast seen in hourly 
data (Fig. 3a, d) becomes less evident in 3-h data (Fig. 3b, 
e), and is even nearly reversed in daily data (Fig. 3c, f, also 
see Figure S2 and S3 of the Supplementary Information). 
Indeed, mean and extreme HPI are higher across the tropical 
oceans when accumulated across daily time steps (except in 
Southern America). Thus, the land-sea contrast is a feature 
pertaining to hourly precipitation that cannot be detected in 
coarser resolutions. Further study on sub-hourly timescales 
may also reveal spatial features in precipitation intensity that 
are not apparent in hourly resolutions (Table 1).

3.2 � Frequency

This land-sea contrast of climatological-averaged HPI con-
trasts with the distribution of the climatological-averaged 
NWH (Fig. 4) or the climatological-averaged accumulated 
precipitation total (APT, Figure S4 in Sect. 3 in the Sup-
plementary Information) featuring higher values over oce-
anic areas than over the land areas (Fig. 4 vs Figure S4). 
This implies that the climatological-averaged APT is mainly 
determined by the NWH rather than the HPI. To quantify 
the similarity of APT with HPI and NWH, we computed the 
spatial correlation coefficients between each pair. Table 1 
indicates that the similarities (represented by the spatial cor-
relation) of the NWH with APT are much higher than those 
for HPI with APT in all four seasons. This demonstrates 
that the accumulated seasonal and annual rainfall totals are 
driven by the frequency of hourly rainfall rather than its 
intensity.

4 � Global contrasting responses of hourly 
precipitation frequency and intensity 
to ENSO

The influence of ENSO on total precipitation is now well 
documented (see more details in Figure S5 and Sect. 3 in the 
Supplementary Information). However, its influence on the 
NWH and HPI is still unclear. Here, we get similar results by 
using both the GSDR data and the CMORPH data.

4.1 � Contrasting responses in CMORPH data

Comparing the correlations between the Niño3.4 index and 
NWH (Fig. 5, left column) and HPI (Fig. 5, right column) in 
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CMORPH data, we find that NWH is much more sensitive to 
ENSO than HPI, especially in the tropics over the two rising 
branches of the Pacific and Atlantic Walker Circulations, i.e. 
for the tropical western Pacific (TWP) and tropical South 
America (TSA), where the significant negative correlations 
between Niño3.4 and NWH degrade for HPI (Fig. 5a, c, e, 
g vs 5b, d, f, h). This difference is exacerbated in winter 
(Fig. 5a vs 5b) and autumn (Fig. 5g vs 5h), during the mature 
phases of ENSO, suggesting that El Niño (La Niña) condi-
tions inhibit (promote) the NWH over the rising branches of 
the Walker Circulations (north of Australia and over tropical 
South America) but have only limited effects on the HPI.

In contrast, over sinking branches of the PWC, i.e. over 
the tropical mid-eastern Pacific (TMEP) (Fig. 5c), ENSO has 

a similar effect on both the NWH and the HPI. Moreover, 
the correlations with HPI are slightly stronger than with the 
NWH, suggesting that the increase (decrease) in total pre-
cipitation at the sinking branch of the PWC in response to El 
Niño (La Niña) conditions may be attributed to the increase 
(decrease) of both the NWH and the HPI.

We quantify the above contrasting responses over the 
rising branches and the similar responses over the sinking 
branches of the Walker Circulation by separately calculat-
ing the average correlation across all grid cells between the 
Niño3.4 index and the NWH or HPI in the TWP (Fig. 6a), 
the TSA (Fig. 6b) and the TMEP (Fig. 6c) domains. The 
different responses of NWH and HPI to ENSO variabil-
ity are clear over both the TWP (Fig. 6a) and the TSA 

Fig. 1   Climatological-averaged hourly precipitation intensity (HPI; mm  h−1) retrieved from CMORPH hourly precipitation data for January 
1998–February 2017 for a winter (DJF), b spring (MAM), c summer (JJA), d autumn (SON), and e the annual mean
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(Fig. 6b), evidenced by the fact that TWP-averaged correla-
tions between NWH and Niño3.4 (black bars in Fig. 6a) are 
negative in winter, summer, and autumn, significant at 0.05 
level, while TWP-averaged correlations between the HPI 
and Niño3.4 (hollow bars in Fig. 6a) are non-significant in 
all seasons. Similarly, the different response over the TSA 
is evidenced by the fact that TSA-averaged correlations 
between the NWH and Niño3.4 (black bars in Fig. 6b) are 
negative in winter, significant at the 0.05 level, while TSA-
averaged correlations between the HPI and Niño3.4 (hol-
low bars in Fig. 6b) are non-significant for all seasons. In 
contrast, TMEP-averaged correlations between Niño3.4 and 

the NWH and HPI are both positive and significant at the 
0.05 level, demonstrating the similar response to ENSO vari-
ability for NWH and HPI at the sinking branch of the PWC.

We note here that results based on composite analyses 
where El Niño and La Niña ‘events’ as defined by NOAA 
are examined separately (Table  S1 and Sect.  5 of the 
Supplementary Information), are consistent with results 
reported above (see more details in Figure S6 and Sect. 5 
of the Supplementary Information). Similar results are 
also found with daily precipitation data, as demonstrated 
in Figure S7 and S8 in the Supplementary Information. 
Therefore, we can robustly conclude that the response 

Fig. 2   Climatological extreme hourly precipitation intensity at the 99th percentile level (mm h−1) of CMORPH for January 1998–February 2017 
for a winter (DJF), b spring (MAM), c summer (JJA), d autumn (SON), and e the annual mean
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of the frequency and intensity of hourly precipitation to 
ENSO variability is not even across the world. This is 
particularly apparent at the rising branches of the Pacific 
and Atlantic Walker Circulations in the tropics. At the 
sinking branch of the Pacific Walker Circulation, however, 
the NWH and the HPI response to ENSO variability are 
comparable to each other (Table 2).

4.2 � Contrasting responses in gauge data

In this section, we demonstrate that the contrasting response 
between NWH and HPI to ENSO variability is also observed 
in gauge data over both tropical and extra-tropical land areas, 
generally consistent with results of CMORPH over sub-
regions of land areas (figures not shown).

Fig. 3   Global distributions of annual climatological mean and extreme intensity of hourly, 3-h and daily precipitation for January 1998–Febru-
ary 2017 using CMORPH. Left panels (a–c) are for mean intensity, right panels (d–f) are for extreme intensity (represented by 99th percentile)
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Table 1   Seasonally calculated spatial correlation among the spa-
tial patterns of climatological-averaged APT, HPI and NWH in 
CMORPH data for the period January 1998–February 2017

The similarity between two spatial fields is quantified by their spatial 
Pearson correlation coefficient. Here, all the spatial Pearson correla-
tions are statistically significant at 0.05 level

HPI vs APT NWH vs APT

Winter (DJF) 0.76 0.94
Spring (MAM) 0.73 0.93
Summer (JJA) 0.73 0.91
Autumn (SON) 0.71 0.93
Annual (ANN) 0.70 0.93

Fig. 4   Climatological-averaged numbers of wet hours (NWH, h month−1) for CMORPH for January 1998–February 2017 for a winter (DJF), b 
spring (MAM), c summer (JJA), d autumn (SON), and e the annual mean

Fig. 5   Pearson correlations between the Niño3.4 index and monthly 
mean number of wet hours (NWH, h  month−1, left column), and 
monthly mean hourly precipitation intensity (HPI, mm h−1, right col-
umn) for January 1998–February 2017 in CMORPH data. a, b For 
winter (DJF) months, c, d are for spring (MAM) months, e, f are for 
summer (JJA) months, g, h are for autumn (SON) months. The col-
our denotes correlations significant at the 0.05 level. The three black 
dashed boxes in each panel, respectively represent the tropical west-
ern Pacific (TWP; 10° S–15° N, 105° E–145° E), the tropical mid-
eastern Pacific (TMEP; 5° S–5° N, 150° E–280° E) and tropical 
South America (TSA; 10° S–15° N, 285° E–320° E) domains

▶
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4.2.1 � Tropical gauges

In the tropics, we examine the GSDR hourly gauges over 
both Australia and Malaysia, located within the rising branch 
of the Pacific Walker circulation. Over Australia, we focus 
on austral spring, the season during which ENSO has the 
most significant impacts on seasonal accumulated rainfall 
(Figure S5 in the Supplementary Information). El Niño 
(La Niña) causes drier (wetter) conditions over northern 
and eastern Australia in SON (Fig. 7a), in agreement with 
CMORPH satellite data (Figure S5d in the Supplementary 
Information). Similarly, Fig. 7b indicates that El Niño (La 
Niña) causes less (more) NWH over northern and eastern 
Australia, matching well with the pattern of ENSO’s impact 
on ATP (compare Fig. 7a and 7b). In contrast, the correla-
tion between Niño3.4 and HPI (Fig. 7c) are much weaker, 
confirming that HPI is less strongly linked with ENSO vari-
ability than NWH. Similar results were found in Malaysia 

(Fig. 8). Therefore, the land precipitation gauges in tropical 
areas support the finding that ENSO’s influence on APT at 
the rising branches of the PWC is mainly through its modu-
lation of hourly rainfall frequency, rather than intensity.

4.2.2 � Extra‑tropical gauges

In the extra-tropics, we examine GSDR data for the USA, 
Japan and Europe. While APT and the NWH display simi-
lar correlation patterns with ENSO (correlation > 0.7), the 
response of HPI presents substantial departures from what 
we would expect from NWH with correlation < 0.6, espe-
cially in the USA.

We note, however, that the spatial patterns of ENSO’s 
impact vary for different seasons over different sub-regions 
(Figures S9–14 in the Supplementary Information). In some 
regions of the USA, Europe and Japan, the impact of ENSO 
on both HPI and NWH are nearly equivalent in modulating 

(c)

(a) (b)

Fig. 6   Average Pearson correlations between the Niño3.4 index and 
monthly NWH (black bar) and monthly mean HPI (white bar) for a 
tropical western Pacific (TWP), b tropical South America (TSA), and 
c tropical mid-eastern Pacific (TMEP) domains for January 1998–

February 2017 in CMORPH data. The three areas are denoted in 
Fig. 5. The horizontal dashed line in each panel denotes the correla-
tion value significant at the 0.05 level
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the precipitation total, or the impacts of ENSO on HPI can 
even be independent or opposite to its impact on either APT 
or NWH. We provide more details in Sect. 7 of the Supple-
mentary Information. This result indicates the complexity 
of the associations of hourly precipitation frequency and 
intensity with ENSO over the extra-tropics, where other 
influencing factors also exist.

5 � Global contrasting responses of heavy, 
moderate and light precipitation 
frequency and intensity to ENSO

We examine here whether the contrasting response between 
frequency and intensity also exists across the whole distri-
bution of global hourly precipitation in CMORPH data. As 
results in all seasons are similar, we only show results for 
winter (Fig. 9) when the response of tropical precipitation 
to ENSO is most pronounced. Although the contrasting 
response exists for the whole distribution of global hourly 
precipitation, including both ‘very heavy’ (Fig. 9a vs 9b) 
and ‘heavy’ precipitation (Fig. 9c vs 9d), the asymmetry in 
response is more pronounced for lighter than heavier precipi-
tation (e.g., Figure 9g vs 9h), which is more due to differ-
ences across the distribution for HPF rather than HPI. Again, 
the above results can be reproduced with composite analyses 

(Table S1 and Sect. 5 of Supplementary Information), and 
the example of ‘very heavy’ hourly precipitation is shown in 
Figure S6c,d (more details in Sect. 5 of the Supplementary 
Information).

6 � Summary and discussion

To our knowledge, this is the first study to document a global 
land-sea contrast in hourly precipitation intensities and the 
first study to document this using high-quality land-based 
gauge observations. Despite limited moisture availability 
over continental surfaces, both climatological-averaged 
mean and extreme HPI are higher over land, including the 
mid-latitudes which have previously not been examined. 
This land-sea contrast in precipitation intensity is not appar-
ent in daily (Pendergrass and Deser 2017, also see Figure 
S2 and S3 in Sect. 2 of the Supplementary Information) 
or other coarser-resolution precipitation data, perhaps due 
to the intermittency of precipitation (Trenberth et al. 2017) 
that is better measured in hourly precipitation data. We also 
note that the land-sea contrast in HPI is observed in satellite 
data. Such data may contain unavoidable biases (e.g., Liu 
and Allan 2012; Roca 2019; Masunaga et al. 2019) as it can 
be affected by the very different surface and atmospheric 
characteristics (e.g., albedo, emissivity, aerosols) of land and 
ocean regions. However, we notice that the high mean and 
extreme HPI centers over land match with the active centers 
of convection (e.g., Figure 11 in Nesbitt et al. 2006), light-
ning flashes (e.g., Figure 4 in Christian 2003), and the most 
intense thunderstorms (defined by a combination of satel-
lite-derived convection intensity and lighting flash rate, and 
radar rainfall intensity) (Zipser et al. 2006). This implies that 
the land-sea contrast may be associated with physical enti-
ties such as mesoscale convective systems (e.g., Schumacher 
and Johnson 2006) and intense thunderstorms (Zipser et al. 
2006). In short, the land-sea contrast in hourly precipitation 
intensities is not likely to be an artificial feature.

Further analyses are needed to reproduce this land-sea 
contrast using another metric of precipitation intensity. 
Indeed, this study uses percentiles conditioned on wet hours 
and using all hours percentiles may yield different results 
(Schär et al. 2016). The lower precipitation intensity found 
over oceans may also be exacerbated by frequent low clouds-
related drizzle and light precipitation over oceans. Global 
analyses examining precipitation intensity on sub-daily 
timescales through the lens of different metrics such as all 
hours percentiles or annual maxima may provide additional 
insights on this land-sea contrast.

The land-sea contrast of precipitation intensity may arise 
due to multiple mechanisms. The three centers of high pre-
cipitation intensity over tropical Africa, eastern half of the 
US and South America match well with regional activity 

Table 2   Similarities between ENSO’s seasonal influences on mean 
APT and hourly precipitation fields (HPI and NWH) for the period 
January 1998–February 2017

Similar to Table 1, the similarity is quantified by the spatial correla-
tion coefficient between the two spatial fields. The left (right) column 
are similarities between the correlation patterns of Niño3.4 with the 
APT and the correlation patterns of Niño3.4 with the NWH (HPI) in 
each season for GSDR gauges in the USA, Japan and Europe, respec-
tively

Cor (Niño3, APT) vs Cor 
(Niño3, HPI)

Cor (Niño3, APT) vs 
Cor (Niño3, NWH)

USA
 DJF 0.21 0.86
 MAM 0.46 0.85
 JJA 0.39 0.69
 SON 0.37 0.85

Japan
 DJF 0.53 0.89
 MAM 0.69 0.88
 JJA 0.50 0.85
 SON 0.49 0.71

Europe
 DJF 0.61 0.85
 MAM 0.52 0.79
 JJA 0.59 0.74
 SON 0.55 0.84



4834	 X.-F. Li et al.

1 3

of mesoscale convective systems (e.g., Schumacher and 
Johnson 2006; Nesbitt et al. 2006; Prein et al. 2017; Puxi 
et al. 2020) and lightning flashes (e.g., Figure 4 in Chris-
tian (2003)). Previous studies have found that precipitation 
intensity is strongly modulated by both large-scale moisture 
advection and deep convection due to drier soils (Collow 
et al. 2014; Yang et al. 2018; Koukoula et al. 2019). The 
land-sea contrast in HPI may thus relate to continental con-
vection and the stronger diurnal cycle generally observed 
over lands (e.g., Moron et al. 2010, 2017, 2019; Nesbitt and 
Zipser 2003; Nesbitt et al. 2006; Puxi et al. 2020). Indeed, 
that convection differs in intensity between land and ocean 
over some tropical regions has been previously documented 
(Biasutti and Yuter 2013) by using instantaneous satel-
lite data, which is consistent with the land-sea contrast in 
mean and extreme HPI documented here. Alternatively, this 
contrast may be due to continental aerosols (e.g., Stevens 
and Feingold 2009; Lin et al. 2018), although the effect of 
aerosols on rainfall intensity is still highly debated and no 
consensus has emerged so far (e.g., Stevens and Feingold 
2009). Finally, other factors may contribute (e.g., Catto and 
Pfahl 2013; Tu and Chou 2013; Luo et al. 2016), including 

orographic effects (e.g., Spreen 1947; Basist et al. 1994; 
Anders et al. 2006). Further research is therefore needed 
to fully examine the causes of the land-sea contrast in HPI.

We have also observed a contrasting response of the fre-
quency and intensity of hourly precipitation to ENSO vari-
ability, with ENSO conditions generally impacting on the 
frequency rather than the intensity of hourly precipitation, 
although there are some local exceptions such as the tropical 
mid-eastern Pacific, the location of the sinking branch of the 
PWC. Previously, Pui et al. (2012) noted that most of the 
changes to daily rainfall totals over east Australia associated 
with variability in the Southern Oscillation Index appear to 
stem from changes in the number of wet spells, which sup-
ports our conclusions here.

In summary we find:

1.	 The CMORPH satellite data indicates that there is higher 
climatological-averaged and extreme Hourly Precipita-
tion Intensity over land areas rather than over oceans. 
Our study is the first to document this feature over the 
extra-tropics and with gauge data. In contrast, the clima-
tological-averaged Number of Wet Hours is higher over 

Fig. 7   Pearson correlations 
between the Niño3.4 index and 
a accumulated precipitation 
total (APT, mm month−1), b 
mean numbers of wet hours 
(NWH, h month−1), and c mean 
hourly precipitation intensity 
(HPI, mm h−1) over Australia in 
austral spring (SON) for Janu-
ary 1998–February 2008 using 
the GSDR gauge dataset. The 
black “+” symbol denotes cor-
relations significant at the 0.05 
level. The sample size for each 
season is 57 months

(b)(a)

(c)
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ocean areas, similar to the distribution of the climato-
logical-averaged Accumulated Precipitation Total. This 
suggests that land precipitation is generally heavier but 
less frequent than oceanic precipitation, and vice versa.

2.	 The global distribution of climatological-averaged 
Number of Wet Hours is the main factor determining 
the global distribution of the climatological-averaged 
Accumulated Precipitation Total.

3.	 ENSO modulates the global Accumulated Precipita-
tion Total mainly through its influence on Number of 
Wet Hours rather than Hourly Precipitation Intensity. 
In other words, the frequency and intensity of global 
hourly precipitation respond differently to ENSO. Con-
trasting responses of Number of Wet Hours and Hourly 
Precipitation Intensity to ENSO variability are observed 
at the rising branches of the Pacific Walker circulation 

Fig. 8   Correlations between 
the Niño3.4 index and a 
accumulated precipitation total 
(APT, mm month−1), b mean 
numbers of wet hours (NWH, 
h month−1), and c mean hourly 
precipitation intensity (HPI, 
mm h−1) over Malaysia in 
boreal spring (MAM) for 1998–
February 2017 using the GSDR 
gauge dataset. The black “+” 
symbol denotes correlations 
significant at the 0.05 level. The 
sample size for each season is 
57 months

(a) (b)

(c)
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and the Atlantic Walker circulation. El Niño conditions 
significantly decrease the Number of Wet Hours at the 
rising branches of the Pacific Walker circulation and 

Atlantic Walker circulation, and vice versa, while the 
Hourly Precipitation Intensity shows a weaker response. 
We speculate that El Niño phases may inhibit rainfall 
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frequency in the tropical western Pacific through a large-
scale weakening of the trade-winds and atmospheric 
convergence due to the weakening of the Walker circu-
lation, while small-scale convective processes, mostly 
responsible for intense rainfall, may still develop locally 
independently of ENSO (see Fig. 5). Besides, the biggest 
magnitude of SST changes associated with ENSO vari-
ability are located in the Tropical Mid-Eastern Pacific, 
suggesting the impacts of the thermal condition changes 
over this region associated with ENSO variability adds 
complexity to the contrasting response, which needs fur-
ther examination but is beyond the scope of this study.

4.	 The contrasting response in hourly rainfall frequency 
and intensity to ENSO variability is also seen in the 
global sub-daily rainfall gauge data in both the trop-
ics and extra-tropics, including Australia, Malaysia, the 
USA, Japan and Europe.

5.	 The contrasting responses of the frequency and intensity 
of hourly precipitation to ENSO are evident across the 
whole precipitation distribution, but are best manifested 
in moderate and lighter precipitation amounts.

Our study shows that ENSO’s impacts are generally 
stronger on the frequency than the intensity of precipitation 
although the response is more symmetric over the sinking 
branch of the PWC. How we physically explain this contrast-
ing response between intensity and frequency is currently 
under investigation. Since ENSO dynamically rearranges 
the wet, ascending portions of the atmospheric circulation 
with generally less rainfall on average over land during El 
Niño, it seems expected that rainfall frequency is strongly 
affected regardless of whether hourly or daily data is used. 
However, whether the HPI changes are more dependent on 
the dynamical conditions (such as meteorological regime 
changes) or thermal conditions (such as SST changes) need 
further investigation. This might be the key to explaining 
the contrasting response between intensity and frequency to 
ENSO variability. Finally, the Walker circulation has been 
shown to weaken under global warming (Vecchi and Soden 
2007). Based on results of our study, the long-term weaken-
ing of the Walker circulation could induce higher frequency 
and greater hourly precipitation intensity over the tropical 

mid-eastern Pacific. Additional analyses based on climate 
models would provide estimates of how hourly precipitation 
frequency and intensity features reported here might change 
in the future.
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