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Abstract

This document is the final report on the evaluation of the tasks of the workpackage 2. It gives
results of the statistical evaluation of 2D/3D turbulent shear flows estimations with optical
flow approaches, developped within workpackage 2 of the project FLUID. Three approaches
are evaluated: OF1, a variational fluid dedicated optical flow estimator (Corpetti et al., 2006);
OF2, a variational motion estimator for incompressible flows (Yuan et al., 2007); COROF1, a
collaborative correlation - variational approach for robust optical flow estimation (Héas et al.,
2007; Heitz et al., 2007).
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Chapter 1

Introduction

In this chapter we describe the global objectives of the evaluation, the fluid mechanics database
designed for the FLUID project, the global procedure of evaluation of WP2, WP3 and WP4,
and the goal of the preliminary evaluation of the WP2 presented in this document.

1.1 Evaluation objectives

The aim of the evaluation is to present, discuss and analyze the results from the different
algorithms on the image database. Detailed and quantitative comparisons will be undertaken
in order to provide a feedback to improve the different methods. The comparison of the results
obtained by the different approachs will be performed and presented at the next meetings and
in the the deliverables D5.1 to D5.6. Statistical quantities and spectra will be looked at in order
to evaluate the capability of the methods to analyse 2D and 3D turbulent flows. The database
is composed of simple analytical flows, 2D and 3D turbulent flows, couple of images and time
resolved image sequences, particle and scalar images.

1.2 Fluid mechanics database for the evaluation

A database of particle and scalar images was designed for analysis. All images in this database
are suitable for variational approaches. Correlation analysis can also be done except maybe
for scalar images. The database is organized in three packages. Details on the characteristics
of flows and images are given in the documents, delivered by Johan Carlier (.FlUID-website
./WP01/package 02 readme Cemagref.pdf).

The first group is composed of simple analytical solutions. Seven subcases have been pro-
vided:

Case no Description Provider Image type Seeding Number of sets
A Viscous and potential flows Cemagref synthetic particle
A1 Poiseuille Cemagref synthetic particle A1(41)
A2 Lamb-Oseen vortex Cemagref synthetic particle A2(41)
A3 Uniform flow Cemagref synthetic particle A3(41)
A4 Sink flow Cemagref synthetic particle A4(41)
A5 Vortex flow Cemagref synthetic particle A5(41)
A6 Cylinder with circulation Cemagref synthetic particle A6(41)
A7 PIV-Challenge 2005 LaVision synthetic particle A7(2)
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The second group is composed of two dimensional turbulent flows obtained by experimental
and numerical approaches. Two subcases have been provided for the numerical approach:

Case no Description Provider Image type Seeding Number of sets
B Exp. of 2D turbulent flow LPS-ENS real fluorescein B(96)
C DNS of 2D turbulent flowa Cemagref synthetic

C1a Time resolved ∆T = 10δtb Cemagref synthetic particle C1a(1000)
C1b Time resolved ∆T = 10δt Cemagref synthetic temperature C1b(1000)
C2 Time resolved ∆T = δt Cemagref synthetic particle C2(200)

aDirect Numerical Simulation (DNS).
b∆T is the time step beetwen two images and δt is the time step for the Direct Numerical Simulation

The third group is composed of three dimensional turbulent flows obtained by experimental
and numerical approaches. Ten subcases have been provided:

Case no Description Provider Image type Seeding Number of sets
D Exp. of turbulent wake Cemagref real particle
D1 Far wake (x/D = 30) Cemagref real particle D1(5000)
D2 Near wake (x/D = 0) Cemagref real particle D2(5000)
D3 Near wake - Time resolved Cemagref real particle D3(xxx)
E LES of turbulent wakea Cemagref synthetic
E1 Volume Cemagref synthetic particle E1(10)
E2 Time resolved Cemagref synthetic particle E2(200)
F Time-Resolved 2D2C PIV LaVision real particle F(xx)
G 3D synthetic data LaVision synthetic particle
G1 constant velocity LaVision synthetic particle G1(xx)
G2 compression wave LaVision synthetic particle G2(xx)
G3 compression wave + gradient LaVision synthetic particle G3(xx)
G4 shear flow LaVision synthetic particle G4(xx)
G5 shear flow + gradient LaVision synthetic particle G5(xx)

aLarge Eddy Simulation (LES) of the wake of a circular cylinder at Re = 3900.

According to the recommendations of the first review of the FLUID project, a new case (case
D2) will be provided. This case will include a reference flow solution obtained using the result of
an optimized experiment (zoom in the flow, high image quality). Then the data set containing
images for the analysis will be acquired in more realistic situations (non-optimal conditions:
limited spatial resolution, constrast etc.).

1.2.1 Database location

The data of the different cases have been provided either on the FLUID website or on portable
hard-disks (USB-HDD) sent to each group involved in the project.
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Case no Description Directory
A1a Poiseuille FLUID-website ./WP01/package 01 Cemagref/
A2a Lamb-Oseen vortex FLUID-website ./WP01/package 01 Cemagref/
A3a Uniform flow FLUID-website ./WP01/package 01 Cemagref/
A4a Sink flow FLUID-website ./WP01/package 01 Cemagref/
A5a Vortex flow FLUID-website ./WP01/package 01 Cemagref/
A6a Cylinder with circulation FLUID-website ./WP01/package 01 Cemagref/
A1b Poiseuille USB-HDD ./package 02/analytic/
A2b Lamb-Oseen vortex USB-HDD ./package 02/analytic/
A3b Uniform flow USB-HDD ./package 02/analytic/
A4b Sink flow USB-HDD ./package 02/analytic/
A5b Vortex flow USB-HDD ./package 02/analytic/
A6b Cylinder with circulation USB-HDD ./package 02/analytic/
A7 single synthetic PIV image FLUID-website ./WP01/package 04 LaVision/
B Exp. of 2D turbulent flow USB-HDD ./package 02/exp turb2d/
C1a DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run02/particle/
C1b DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run02/scalar/
C2 DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run12/
D1 Exp. far wake USB-HDD ./package 02/exp wake/
D2 Exp. near wake
D3 Exp. near wake - Time resolved
E1 LES wake - Volume USB-HDD ./package 02/les wake/
E2 LES wake - Time resolved
F real high-speed PIV images FLUID-website ./WP01/package 03 LaVision/
G1 Volume - constant velocity FLUID-website ./WP01/package 06 LaVision/
G2 Volume - compression wave FLUID-website ./WP01/package 06 LaVision/
G3 Volume - comp. wave + gradient FLUID-website ./WP01/package 06 LaVision/
G4 Volume - shear flow FLUID-website ./WP01/package 06 LaVision/
G5 Volume - shear flow + gradient FLUID-website ./WP01/package 06 LaVision/

1.3 Evaluation procedure

1.3.1 Generalities

Tasks of workpackages 2, 3 and 4 will be evaluated with the database presented above. The first
group can be used by developpers to provide simple validations of their methods. These images
include divergence and rotational free flows (potential flows), which can show immediately the
capability of the algorithms to estimate correctly these quantities. The case A7 provided by
LaVision, including differents degrees of local flow gradients without and with varying degrees of
image noise, can show immediately in a visual as quantitative way the strengths and weaknesses
of the algorithms.

According to the recommendations of the first FLUID project review, mainly groups 2 and
3 will be considered for the evaluation procedure. Indeed, the validation will be focused on the
cases considering turbulent flows, obtained with experiments or numerical simulations. The case
G including 3D-synthetic data will also be considered since it contributes to innovative aspects
in the project (evaluation of 3D3C methods).

Depending on the different cases the ground truth will be provided by analytical expressions,
DNS/LES solutions, controlled PIV measurements or hot-wire anemometry measurements.
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1.3.2 Format of results

The results of the analysis have to be provided by contributors in ASCII format compatible
with gnuplot and tecplot : (x, y, u, v, w, flag) with a tab character to separate each column and
a blank line (carriage return) to separate each block of y fixed coordinates. The results have to
be given in pixel units with the origin on the bottom left border of the image. x, y and flag
(optional) have to be in integer format. u, v and w have to be in float format (simple precision).
If your method provides vectors with subpixel location, x and y can be given in float format
(simple precision). The optional flag can be provided if you want to give information on each
individual vector. The flag definition should be provided in a separate file. An example of file
structure is presented below.

# If you want to add a comment.
x1 y1 u v w f
x2 y1 u v w f
.
.
.
xn y1 u v w f

x1 y2 u v w f
x2 y2 u v w f
.
.
.
xn y2 u v w f

...

x1 ym u v w f
x2 ym u v w f
.
.
.
xn ym u v w f

An acronym and a number must appear in the name of all the files you will provide. For in-
stance a00001 cvgpr 01.txt contains the vector map of the computation 01 obtained by CVGPR-
group from the set of images a00001a.tif and a00001b.tif. If you have different methods or if
you use different parameters, use the number after the acronym to distinguish them. Define this
number in a separate file.

1.3.3 Evaluation of 2D2C methods

Compute cases A7, B, C1, C2, C3, D1, E2 and F.

1.3.4 Evaluation of time resolved methods

Compute cases C1, C2, C3, E2 and F.

1.3.5 Evaluation of 3D3C methods

Compute cases E1, G1, G2, G3, G4, G5.
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Acronym Approach Group Reference Description
OF1 optical-flow INRIA Corpetti et al. (2002a, 2006) §3.1
OF2 optical-flow CVGPR Yuan et al. (2005, 2007) §3.2
COROF1 correlation/optical-flow INRIA Héas et al. (2007); Heitz et al. (2007) §3.3

Table 1.1: Approaches developped in WP2 and evaluated in the present document.

1.3.6 Computation of cases C3 and D1

Case C3: Compute image 0 and image 9, image 0 and image 19, ... up to image 0 and image
199, with the same set of parameters for the 19 couples of images. Compute the same set of
images as many time you change the set of parameters (see §1.3.2 for the name of the files).

Case D1: In order to reduce the computational time and the size of the results you can crop
the images before computation. With the origin of the image coordinate system on the bottom
left, crop the image from (275, 0) (bottom-left) to (787, 1024) (top-right).

1.4 Evaluation of workpackage 2

This section describes briefly the approaches to evaluate and the database considered for this
preliminary evluation.

1.4.1 Approaches evaluated

Three approaches developped in WP2 were evaluated (cf. Tab 1.1): OF1, an optical-flow tech-
nique developped by INRIA group; OF2, an optical-flow technique developped by CVGPR
group; and COROF1, a collaborative correlation/optical-flow technique developped by INRIA
group in collaboration with Cemagref group.

Depending on the database considered the obtained results were compared with the informa-
tion provided by correlation techniques1, hot-wire anemometry and direct numerical simulations.

1.4.2 Database considered

OF1 approach was evaluated in three steps. First we used a set of data available from the very
beginning of the FLUID project (experiments in a plane turbulent mixing layer and in the near
wake of a circular cylinder, synthetic image of the visualization society of japan (VSJ)). Then,
we participated to the PIVChallenge 2005. And finally, the database of the FLUID project was
used (cases C1a, C1b and D1).

OF2 approach was evaluated with the database of the FLUID project (cases C1a, C1b and
D1).

COROF1 approach was evaluated with the database of the FLUID project (cases C2, D1
and F). In a preliminary evaluation, the database of the PIVChallenge 2005 (case B from C.
Kaehler) was used (Heitz et al., 2006).

1The results obtained with correlation approach were provided either by Bernd Wieneke with LaVision software
(Davis), or by the Cemagref with LaVision software.
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Chapter 2

Database description

This chapter describes the database used to perform the evaluation of the workpackage 2. §2.1,
§2.2 and §2.3 present a set of data available from the very beginning of the FLUID project and
used to evaluate OF1 approach. §2.4 present three cases of the PIV Challenge 2005 used to
evaluate OF1 and COROF1 approaches. Finally, §2.5 and §2.6 describe cases C1a, C1b, C2 and
D1, designed for the FLUID project, and used to evaluate OF1, OF2 and COROF1 approaches.

2.1 Experiments in a turbulent plane mixing layer

The mixing layer studied here was generated in a closed circuit, subsonic wind tunnel R300 of
the CEAT (Centre d’Études Aérodynamiques et Thermiques, University of Poitiers, France).
This wind tunnel has a square test section of cross-sectional dimensions 300 mm× 300 mm and
length 2 m, with a contraction ratio of 10. The one stream blow generated by a fan is divided
by a splitter plate in two separated streams flowing through two different head loss devices,
followed by fine mesh screens, and are jointly released at the end of the splitter plate to give a
two-stream flow with low initial turbulence level. Tripping wire were used on both sides of the
splitter plate to ensure a rapid and uniform transition of the boundary layer well upstream of the
trailing edge. Hence, the mixing layer was initially turbulent. Wind-tunnel ceiling was tilted to
achieve a negligible streamwise pressure gradient. For more details about the facility, the reader
can refer to Heitz (1999). The velocity ratio of the two streams r = Ua/Ub (Ua = 9 m s−1 and
Ub = 6 m s−1) was 0.67 with an average advective velocity Um = (Ua +Ub)/2 of 7.5 m s−1. The
turbulence intensity corresponding to free stream velocity is less than 0.3%. The location of the
origin of the x axis corresponds to the position where the vorticity thickness of the mixing layer
δω equaled 15 mm and was found 240 mm downstream of the trailing edge of the splitter plate.
In all the figures presented in chapter 4 this value was employed to reduce x and y coordinates.

2.2 Experiments in the wake of a circular cylinder at Re=3000

The experiments in the near wake of a circular cylinder were carried out in a small opened wind
tunnel of the Cemagref (Center of Rennes – France), having a test section 142 mm wide 142 mm
high, and 1100 mm long. The wind tunnel consists of a blower supplying air to a conditioning
system composed of a honeycomb and a porous media (foam) followed by a 2:1 contraction,
which provided a free-stream uniformity and a turbulence intensity less than 0.1%. The flow
velocity was 4.5 m s−1. The circular cylinder had a cross-sectional diameter D = 10 mm and a
length L = 142 mm, giving an aspect ratio of L/D = 14.2. The value of the Reynolds number
based on the diameter D was Re = 3000. The cylinder was mounted vertically and no end plates
were used to limitate end effects.
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2.3 VSJ standard image-pairs

The Visualization Society of Japan (VSJ) developed in 1999 PIV standard images and PIV guide
tools in order to popularize the PIV techniques. Within this project, many synthetic PIV image
sequences, called “Standard Images”, were generated along with the corresponding ground truth
velocity vector fields in a wide variety of controlled conditions (Okamoto et al., 2000). They are
available on the internet. The parameters of the eight standard situations tested in this paper
are listed in table 2.1 and represent : the number N of particles that are present in the images,
the particle diameter Dm associated to its standard deviation Ds, the average image velocity vm
and the out-of-plane velocity wm. Compared to image pair #1, the pairs #2 and #3 differ only
with respect to the magnitude of the flow field; the image pairs #4 and #5 have only different
number of particle; the pairs #6 and #7 have particles with a different diameter while the pair
#8 has a high out of plane velocity.

Some results on these images are available in the literature (Quénot, 1999; Ruhnau et al.,
2005). We used the relative L1 norm error (L1 norm of the difference between the correct and
computed velocities in pixels/frame divided by the average in-plane velocity) to compare the
different motion fields.

N T vm wm Dm Ds

#1 4000 33 7.39 0.017 5.0 1.4
#2 4000 100 22.4 0.058 5.0 1.4
#3 4000 10 2.24 0.006 5.0 1.4
#4 10000 33 7.39 0.017 5.0 1.4
#5 1000 33 7.39 0.017 5.0 1.4
#6 4000 33 7.39 0.017 5.0 0.0
#7 4000 33 7.39 0.017 10.0 4.0
#8 4000 33 7.39 0.170 5.0 1.4

Table 2.1: Main characteristics of the 8 standard VSJ image-pairs.

2.4 PIV Challenge 2005

The Cemagref, in collaboration with INRIA, have submitted a dense optical flow method dedi-
cated to fluid flows to the PIV challenge 2005. This challenge which aims at comparing different
motion estimator for images of fluid flows seeded with particle held in Pasadena, California in
September 2005 (http://www.pivchallenge.org/). Three cases were used for this preliminary
evaluation: case A2 from M. Stanislas based on a synthetic turbulence with a spectrum slope
equal to -3; case A3 from M. Stanislas based on the direct numerical simulation of a stratified
flow; case B from C. Kaehler based on a DNS and simulating a time resolved PIV in a channel.

2.5 DNS of 2D turbulence

The main interest of a synthetic image sequence database of numerically generated 2D turbulent
flow fields is the knowledge of the exact solution along the time for flow with a large scale range in
the energy spectrum. For this purpose, DNS was perfomed to solve particle and scalar transport
in 2D sustained turbulent flow by the Cemagref. The general description of the code can be found
a document available on the FLUID project web-site (./WP01/package 02 readme Cemagref.pdf).

The vorticity and scalar equations are solved in Fourier space using dealiased Fourier ex-
pansions in two directions with periodic boundary conditions. The time integration is third-
order/three steps with a Runge-Kutta scheme. The code is called pseudo-spectral.
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The coordinates of the particules are solved in the physical space inside the vorticity equation
computation using the same Runge-Kutta scheme in order to use the intermediate velocity
components u and v. However, an interpolation (bicubic) of the velocity field has to be applied
as the particles are not supposed to be located on the nodes of the grid.

For the FLUID project, sustaining turbulence along the time is of great interest to allow
time averaging of statistical quantities in the post-processing, for evaluation purposes. Then,
the vorticity equation was slighty modified with a forcing term proportional to the vorticity and
random on the Fourier coefficients, and a friction term added only for the first modes. That
resulted in enstrophy injection dissipated by small scale and the energy injection dissipated by
large scales (see figure 2.1).

logE(k)

E
(k) ∼

β 2/3
k −3

Direct enstrophy cascade

Enstrophy dissipation

log k

E(k) ∼ ε 2/3k −5/3

β

Inverse energy cascade

ε

Energy dissipation

Energy and enstrophy
injection

Figure 2.1: Energy and enstrophy cascade

2.5.1 Set of images delivered

Different sets of parameters have been tested. The strategy was to select the maximum number
of nodes for a reasonable computation time with the computer available, the maximum Re and
Pe for this grid size and a target Energy/Enstrophy injection which could be dissipated by the
system. Finally, two sets of parameters were selected as summarized below in table 2.2. In
run 12, used to generate case C2, only particles were transported. In run 02, used to generate
cases C1a and C1b, both particles and scalar were transported. Case C2 consists of a sequence
of 200 successive images (1 024 × 1 024 px2) with a time separation ∆t = 0.001. Cases C1a
and C1b consist of sequences of 1 000 successive images (256× 256 px2) with a time separation
10∆t = 0.1. Fig. 2.2 presents two samples of the scalar images and the corresponding particle
images at different times.

2.6 Experiments in the wake of circular cylinder at Re=3900

This section describes a 2D-2C PIV experiment carried out in one of the wind tunnels of the
Cemagref (Rennes Regional Centre).
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Figure 2.2: Two samples of the scalar images and the corresponding particle images.
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Corresponding case C2 C1a C1b
Run 12 02
Number of nodes 1 024× 1 024 256× 256
cfl 0.5 0.5
Re 30 000 3 000
Reν 5 5
Pe no scalar 2 100
Sc no scalar 0.7
Location of the initial maximum 40 40
Forcing band [5; 10] [5; 10]
Target enstrophy dissipation 0.1 0.1
Proportion of random/proportional forcing 0.5 0.5
Time step ∆t 0.001 0.01
Size box 2π 2π

Table 2.2: DNS used to generate case C1a, C1b and C2.

Case no Description Directory
C1a DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run02/particle/
C1b DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run02/scalar/
C2 DNS Turb 2D Time resolved USB-HDD ./package 02/dns turb2d/run12/

Table 2.3: Cases considered in the present evaluation.

2.6.1 Wind tunnel

The sketch (in front view) of the wind tunnel used in this experiment is presented in Fig. 2.3.
The aeraulic circuit is mainly made of a centrifugal fan, a diffuser, a plenum chamber with
honey comb and grids, a convergent with a contraction coefficient of 4 and a testing zone with
transparent walls. The testing zone is squared in cross section with 280 mm of with dimensions
and 100 cm in length. The upper wall is slightly tilted to suppress the longitudinal pressure
gradient. The flow velocity can be chosen continuously between 1 and 8 m. s−1 with a good
stability. The uniformity of the velocity profile at the entrance of test section was checked by
hot-wire anemometry. The free stream turbulence intensity was less than 0.5%. The temperature
was kept within ±0.2◦ C by using an air-water heat-exchanger.
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Figure 2.3: Front view of the windtunnel.

The circular cylinder had a length L = 280 mm and a diameter D = 12 mm. It was equipped
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Figure 2.4: Structure of the velocity fields (a constant velocity component u was subtracted).

with 2 thin rectangular end plates. The distance between the end-plates was 240 mm providing
an aspect ratio L/D = 20. The clearence between the walls and the end-plates was about 20 mm
which was much larger than the thickness of the boundary layer on the wall. The blockage ratio
was 4.3%. The circular cylinder was mounted horizontaly at 3.5D from the entrance of the
testing zone.

The reference frame is direct and the origin is located at the center of the cylinder. The
longitudinal x-axis is the testing zone axis of the wind tunnel, y-axis is normal to the wake
central plane (symmetry plane) and z-axis is the cylinder axis. u, v and w are the velocity
components related to x, y and z axis respectively.

2.6.2 Measurements

2D-2C PIV experiments (2 in-plane velocity components in a plane field) were carried out with
NewWave Solo 3 Nd-YAG laser (Energy by pulse of 50 mJ) and a SensiCam PCO cameras
(CCD size of 1280 × 1024 px2 and dynamics of 12 bits). The laser sheet was produced by
means of a Rodenstock telescope and a cylindrical lens. The diameter of the particle seeding
(diluted polyglycol in water) was less than 10 µm. The measurement area was located in the
near wake and at 30D behind the circular cylinder, in the plane z = 0. The camera was located
perpendicularly to the laser sheet at a distance of 100 cm. For the mounted lens, the focal length
was 105 mm with an aperture of 5.6. The resulting field of view was about 8D×6.4D. The free-
stream velocity was adjusted at 4.8 m. s−1 so that the Reynolds number ReD be 3 900 (Reynolds
number based on the free stream velocity Ue, the cinematic viscosity ν and the diameter of the
circular cylinder D). 5 000 image pairs were obtained with a time interval of 200 µ s. To give
an idea of the flow structure, Fig. 2.4 shows a modified velocity field where a constant velocity
component was substracted (calculated with a classical PIV algorithm).
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2.6.3 Set of images delivered

5 000 image pairs were delivered in TIF-format with 16 bits in depth1 (see Tab. 2.4). The exact
image size is 96.38 mm in length (1 280 px) and 77.03 mm in height (1 024 px).

Case no Description Directory
D1 Exp. far wake USB-HDD ./package 02/exp wake/
D2 Exp. near wake

Table 2.4: Case considered in the present evaluation

2.7 Slightly turbulent air flow

The images show a slightly turbulent air flow with small water droplets with a diameter of
about 5 µm. The sequence has been recorded with a Photron APX camera with 1024 × 1024
px running at 1 khz. The field of view is about 7 × 7cm2 . The sequence has been selected to
show typical problems in PIV recordings. The seeding density is quite inhomogeneous even with
regions without any seeding particles.

Figure 2.5: Time-resolved images of a slightly turbulent air flow

Case no Description Directory
F real high-speed PIV images FLUID-website ./WP01/package03LaV ision/

Table 2.5: Case considered in the present evaluation

1With classical viewer, the images may appear relatively black and seem to be poorly enlighted. In fact, the
original images are 12 bits in depth and are converted for more convenience in TIF-format with 16 bits in depth,
giving artificially low values as compared to the global 16 bits range.
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Chapter 3

Description of the methods

This chapter describes the differente approaches evaluated. §3.1 presents a dense estimator with
fluid dedicated optical flow, named OF1 in the present document. §3.2 presents a variational
motion estimation for incompressible flows, named OF2 in the present document. §3.3 presents
a collaborative scheme for robust optical flow estimation, named COROF1 in the present doc-
ument.

3.1 Dense estimation with fluid dedicated optical flow

The optical flow scheme presented below and evaluated in 4.1 was proposed by INRIA. This
section is a part of Corpetti et al. (2006).

Obtaining the optical-flow consists in estimating a dense motion field from two consecutive
images. As previously mentioned, many methods have been proposed the last two decades to
estimate such an optical-flow. Most of them are based on the seminal work of Horn & Schunck
(1981a). In this section, optical-flow methods will then refer to this latter definition. It is
nevertheless important to point out that some authors propose reliable optical-flow computations
not based on Horn & Schunck (1981a), especially for piv images in Quenot et al. (1998) where
the authors use dynamic programming and orthogonal algorithms. The reader will find in Barron
et al. (1994) a survey of different methods for computing optical flow (differential techniques,
region based matching, energy based methods and phase based techniques).

3.1.1 Generic optical-flow estimator

The most accurate techniques to address the generic problem of estimating the apparent motion
from image sequences are based on the seminal work by Horn & Schunck (1981a). These
techniques are based on the minimization of a global cost function H composed of two terms.
The first one, named “observation term”, is derived from a brightness constancy assumption and
assumes that a given point keeps the same intensity along its trajectory. It is expressed through
the well known optical flow constraint equation (ofce):

Hobs(E,v) =
∫∫
Ω

Ψ1

[
∇E(x, t) · v(x, t) +

∂E(x, t)
∂t

]
dx, (3.1)

where v(x, t) = (u, v)T is the unknown velocity field at time t and location x = (x, y) in the
image plane Ω, E(x, t) is the image brightness, viewed for a while as a continuous function.
This first term relies on the assumption that the visible points conserve roughly their intensity
in the course of a small displacement.

dE

dt
= ∇E · v +

∂E

∂t
≈ 0. (3.2)
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The associated penalty function Ψ1 is often the L2 norm. However, better estimates are usually
obtained by choosing a “softer” penalty function (Black, 1994; Mémin & Pérez, 1998a). Such
functions, arising from robust statistics (Huber, 1981), limit the impact of the many locations
where the brightness constancy assumption does not hold, such as on occlusion boundaries.
Appendix A.2 briefly presents the robust estimators used.

This single (scalar) observation term does not allow to estimate the two components u and
v of the velocity. In order to solve this ill-posed problem, it is common to employ an additional
smoothness constraint Hreg. Usually, this second term enforces a spatial smoothness coherence
of the flow field. It relies on a contextual assumption which enforces a spatial smoothness of the
solution. This term usually reads:

Hreg(v) =
∫∫
Ω

Ψ2

[
|∇u(x, t)|+ |∇v(x, t)|

]
, (3.3)

As with the penalty function in the data term, the penalty function Ψ2 was taken as a quadratic
in early studies, but a softer penalty is now preferred in order not to smooth out the natural
discontinuities (boundaries, ...) of the velocity field (Black, 1994; Cohen & Herlin, 1999; Korn-
probst et al., 1999; Mémin & Pérez, 1998a). Based on (3.1) and (3.3), the estimation of motion
can be done by minimizing:

H(E,v) = Hobs(E,v) + αHreg(v)

=
∫∫
Ω

Ψ1

[
∇E(x, t) · v(x, t) +

∂E(x, t)
∂t

]
dx+

α

∫∫
Ω

Ψ2

[
|∇u(x, t)|+ |∇v(x, t)|

]
,

(3.4)

where α > 0 is a parameter controlling the balance between the smoothness constraint and the
global adequacy to the observation assumption.

Due to its differential nature, the relation in (3.1) is only defined for infinitesimal displace-
ments. To handle large displacements it is common to use the expression (3.1) of the brightness
conservation in an integrated way:

E(x + d(x), t+ ∆t)− E(x, t) ≈ 0, (3.5)

where ∆t is the temporal sampling rate and d(x) is the displacement from time t to t + ∆t of
the point located at position x at time t. This new form, valid whatever the magnitude of d(x)
be, is however highly nonlinear in the unknown vector. As a consequence, almost all studies
resort to a succession of linearizations around a previous estimate d̃(d) (d(x) = d̃(d) + h(x))
embedded within a multiresolution scheme (using a bilinar interpolation for the projection). The
new cost-function to be minimized with respect to the displacement increment h reads then:

H(E,h) =
∫∫
Ω

Ψ1

[
∇E(x + d̃(x), t+ ∆t) · h(x) + E(x + d̃(x), t+ ∆t)

− E(x, t)
]

+ αΨ2

[
|∇(d̃ + h)(x)|

]
.

(3.6)

The associated successive minizations are usually performed using efficient iterative methods
(Mémin & Pérez, 1998a; Mémin & Pérez., 2002).

It is important to outline that such an estimator defined as the minimizer of H is generic. It
is only based on the assumption of luminance conservation and of first-order spatial smoothness
of the motion. Even if this kind of estimator has been successfully used for fluid motion (Bannehr
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et al., 1996; Cohen & Herlin, 1999; Larsen et al., 1998; Mémin & Pérez, 1999; Ruhnau et al.,
2005; Wallace & Foss, 1995), the underlying assumptions are far from being sound hypothesis for
such an applicative domain. As a matter of fact, image sequences representing fluid phenomena
exhibit areas where the luminance function undergoes high temporal variations along the motion.
These areas are often the centre of tridimensional motions that cause the appearance or the
disappearance of fluid matter within the bidimensional visualization plane. These regions are in
addition associated to divergent motions which

influence greatly the shape of the velocity field in large surrounding areas. An accurate
estimation of the 2D apparent motion in such regions is therefore of the highest importance and
is hardly possible with the optical-flow constraint.

3.1.2 Fluid dedicated optical-flow estimator

In a recent paper Corpetti et al. (2002b) proposed an optical-flow technique specifically dedicated
to image sequences depicting fluid flow phenomenona. This specialized optical-flow estimator
relies on an adaptation of the functional data-model and smoothness term.

3.1.3 Continuity equation and data model

Instead of sticking to the intensity conservation assumption, the data-model that has been
considered relies on the continuity equation:

∂χ

∂t
+ div(χv) = 0, (3.7)

where χ denotes the density of the fluid, v its 3D velocity and divv = ∂u
∂x + ∂v

∂y + ∂w
∂z stands

for the divergence of the vector field v = (u, v, w). Simple manipulations yield the alternative
writing: dχ

dt
+ χdivv = 0. (3.8)

When the divergence of the 3D apparent flow vanishes, this equation is of the same form as
the 2D optical flow constraint on luminance. The continuity equation, originally introduced in
Schunk (1984) as a data model for motion estimation of intensity time varying images, has been
since incorporated in several works. It has been considered in the context of fluid imagery either
for satellite meteorological images (Béréziat et al., 2000; Corpetti et al., 2002b; Zhou et al.,
2000) or for experimental fluid mechanics (Wildes et al., 1997). It has also been introduced in
medical imaging domain to recover 3D deformation fields of the heart (Song & Leahy, 1991) or
to analyze blood flow (Amini, 1994). In all these cases, this model has been proved to represent
an alternative to standard luminance constancy assumption.

The use of continuity equation for image sequences analysis relies on two hypotheses. First,
the luminance function is assumed to be directly related to a passive quantity transported by
the fluid. Secondly, the continuity equation which holds in 3D, is assumed to hold as well for
the bidimensional motion field captured by the image sequence. This latter assumption has
been theoretically established in the case of transmittance imaging by Fitzpatrick (1988) and
extended by Wildes et al. (1997). The first assumption is difficult to validate, especially in
meteorological images due to the complexity and the heterogeneity of the underlying physical
processes. Nevertheless, as shown by several works, the use of the continuity equation in the
case of meteorological data is appealing (Béréziat et al., 2000; Zhou et al., 2000). As the
brightness consistency is obviously not verified in that type of images, the continuity equation
provides an interesting alternative data-model. Instead of expressing a point-wise conservation
of the luminance along the motion, this alternative model assumes the conservation of the total
luminance of any moving element of the image. This constraint reads:

dE

dt
+ Edivv = 0. (3.9)
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However, as ofc-based data models, a data-model based on the continuity equation is highly
sensitive to the presence of noise and is very likely not to hold everywhere. Also, due to its dif-
ferential nature, the continuity equation is not valid in case of large displacements. In fact,
this equation concerns the velocity v and not displacement (Nomura et al., 1991). Unlike the
brightness constancy expressed as E(s + d(s), t + ∆t) − E(s, t) = 0, which is explicitly based
on displacement, the continuity equation (3.9), as it stands, cannot serve as the basis of an
incremental data-model embedded in hierarchical estimation schemes. To cope with this prob-
lem, let us assume that the velocities are constant between the instants t and t + ∆t. In that
case, equation (3.9) constitutes a simple first-order differential equation which can be integrated
from time t to time t + ∆t along trajectories. Setting ∆t = 1 for notational convenience, and
incorporating the integral constraint thus obtained in a robust penalty function yields a new
data-term:

Hobs(d) =
∫∫
Ω

Ψ1 (E (s + d(s), t+ 1) exp (divd(s))− E(s, t)) ds, (3.10)

where d(s) is now the displacement from time t to t+∆t of a point located at position x at time
t. This form is non-linear with respect to the unknown velocity field d to estimate. As mentioned
in section 3.1.1, we then linearize equation (3.10) around a crude solution d̃ and embed it in a
multiresolution scheme. The new linearized observation term based on the Integrated Continuity
Equation (ICE) is:

Hobs(h) =
∫∫
Ω

Ψ1

[
exp(divd̃(s))

(
(Ẽ(s)∇divd̃(s) +∇Ẽ(s)) · h(s)

+ Ẽ(s)
)
− E(s)

]
ds,

(3.11)

where h = d − d̃, and we introduce the compact notation Ẽ(s) = E(s + d̃(s), t + ∆t). We
now turn to the definition of the smoothness prior to be used in conjunction with this new data
energy term.

3.1.4 Second order Div-Curl regularization

By using Euler-Lagrange conditions of optimality, it is readily demonstrated (see appendix A.1)
that the standard first-order regularization functional :

Hreg(v) =
∫∫
Ω

|∇u(s)|2 + |∇v(s)|2ds

is equivalent from the minimization point of view, to the so-called div-curl regularization func-
tional (Suter, 1994a):

Hreg(v) =
∫∫
Ω

(
div2v(s) + curl2v(s)

)
ds, (3.12)

where divv = ∂u
∂x + ∂v

∂y and curlv = ∂v
∂x −

∂u
∂y are respectively the divergence and the vorticity of

the motion field v = (u, v).
A first-order regularization therefore penalizes the amplitude of both the divergence and

the vorticity of the vector field. For fluid motion estimation, this does not seem appropriate
since the apparent velocity field normally exhibits compact areas with high values of vorticity
and/or divergence. In addition, an under-estimation of the divergence would be all the more
problematic in our case, because the data model includes an explicit use of this quantity. For
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these reasons, it seems more appropriate to rely on a second-order div-curl regularization (Gupta
& Prince, 1996; Suter, 1994a):

Hreg(d) =
∫∫
Ω

(
|∇divd(x)|2 + |∇curld(x)|2

)
ds. (3.13)

This regularization tends to preserve the divergence and the vorticity of the displaced motion
field d to estimate. Nevertheless, this new term is more difficult to implement. As a matter of
fact, the associated Euler-Lagrange equation is composed with two fourth-order coupled pde’s,
which are tricky to solve numerically. In order to simplify the problem we have considered a
modified smoothness term based on the same principles. This new smoothness term has been
built by introducing auxiliary functions in the original 2nd order div-curl regularization:

Hreg(d, ξ, ζ) = α

∫∫
Ω

|divd− ξ|2 + λ‖∇ξ‖2 + α

∫∫
Ω

|curld− ζ|2 + λ‖∇ζ‖2. (3.14)

The new auxiliary scalar functions ξ and ζ can respectively be seen as estimates of the divergence
and the vorticity of the unknown motion field, and λ is a positive parameter. The first part of
each integral encourages the displacement to comply with the current divergence and vorticity
estimates ξ and ζ, through a quadratic goodness-of-fit enforcement. The second part equips
the divergence and the vorticity estimates with a first-order regularization favoring piece-wise
smooth configurations. Getting rid of the auxiliary scalar fields ξ and ζ in (3.14) (by setting
ξ = divd and ζ = curld) would amount to the original second-order div-curl regularization
(3.13).

From a computational point of view, regularizing functional (3.14) only implies the numeri-
cal resolution of first-order pde’s at the expense of course of new variables. This reformulation
authorizes to use nearly the same optimization strategy involved in generic optical flow estima-
tor. Interested readers may refer to Corpetti et al. (2002b) to get precise descriptions on the
optimization strategy and on associated numerical implementation issues.

3.1.5 Minimization issue

We now turn to the minimization issue of the whole energy function H = Hobs + αHreg. Two
main sets of variables have to be estimated. The first one is the motion field d, and the second
one consists in the two scalar fields ξ and ζ. The estimation is conducted alternatively by
minimizing Hobs + αHreg with respect to d, ξ and ζ:

min
h,ξ,ζ
Hobs(h) + αHreg(h, ξ, ζ), (3.15)

For the motion field d, the use of a robust penalty function in the observation term yields
to an iteratively re-weighted least squares minimization with the estimation of outliers data z
(see Appendix A.2). Concerning ξ and ζ, we have a linear least-square problem. A Gauss-Seidel
solver was used for all linear least-square minimizations. The process is considered to be finished
when the relative change in the L2-norm of h is below 1%.

The minimization process is summarized below:
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• d̃ ≡ 0

• From coarsest to finest resolution do

◦ h ≡ 0, ξ ≡ 0, ζ ≡ 0, z ≡ 0

◦ Until convergence doa b c

• Estimation of h with robust functions :

h ← GS

(∫∫
Ω
z(x)g2(h)

+α|divd̃(x) + divh(x)− ξ(x)|2

+α|curld̃(x) + curlh(x)− ζ(x)|2dx
)

• Update z(x) (see appendix A.2 for details):
z(x) ← τ1 exp−τ1g

2(h)
• Estimation of ξ :

ξ ← GS

(∫∫
Ω
|divd̃(x) + divh(x)− ξ − (x)|2

+λ
∫∫

Ω
‖∇(ξ(x)‖2dx

)
• Estimation of ζ :

ζ ← GS

(∫∫
Ω
|curld̃(x) + curlh(x)− ζ(x)|2

+λ
∫∫

Ω
‖∇ζ(x)‖2dx

)
(3.16)

• If not finest resolution, pass d̃← d̃ + h to next resolution.

• If finest resolution, d← d̃ + h.

aConvergence is reached when the relative change in the L2-norm of h is below 1%.
bg(h) denotes exp(divd̃(x))

`
(Ẽ(x)∇divd̃(x) +∇Ẽ(x)) · h(x) + Ẽ(x)

´
− E(x).

c“GS()” denotes one Gauss-Seidel iteration on the quadratic form under consideration.

Let us now have a particular attention to the minimization w.r.t the motion field h (first
equation of (3.16)). For better and faster convergence, the minimization with respect to the
incremental displacement field h at a given resolution is performed using the coarse-to-fine
multi-parametric multigrid framework technique introduced in Mémin & Pérez (1998b).

More precisely, the motion is constrained to be piecewise-parametric relatively to an image
partition which becomes finer and finer. At a “grid” level (named `), the pixel grid is partitioned
in blocks B`

n of size 2`×2`, and the increment field is constrained to satisfy a chosen parametric
model. In practice, until the penultimate grid level, the affine parametrization is chosen (i.e:

(u, v)T =
[
1 x y 0 0 0
0 0 0 1 x y

]
Θ). The last level ` = 0 corresponds to the pixel grid itself: when

it is finally reached, no parametric constraint applies anymore. At each given level, the cost
terms to be minimized must be rewritten in function of the parameter vectors (Θ). This symbolic
rewriting is explained in Mémin & Pérez (1998b). The estimation at the coarsest grid-level is
fast because the space of solutions is of reduced dimension. It serves as a reliable initialization
for the next level, yielding to this new computation more efficiency , and so on until the pixel
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grid itself. The combination of the multiresolution and the multigrid techniques partly makes
possible to prevent from stopping the process of minimization in a local minimum. More details
of the minimization issues can be seen in Corpetti et al. (2002b).

3.2 Variational Motion Estimation for Incompressible Flows

The optical flow presented in this section was proposed by the CVGPR group (Yuan et al., 2005,
for more details).

The variational optical-flow based methods give us the following minimization problems

min
u
‖g1(x+ u)− g2‖2 + Reg(u; λ); (3.17)

where in this work the high-order regularization term Reg(u; λ) is given:

Reg(u; λ) = λ1 ‖∇ div u‖2 + λ2 ‖∇ curlu‖2 + λ3 ‖∂nun‖2 . (3.18)

Here the first term penalizes the smoothness of divergence field and the second penalizes the
variance of curl field. The last term regularizes the smoothing boundary flows which is important
for the numerical stabilities. For the 2D divergence-free flows, the motion field u can be simply
expressed by

u = ∇⊥ψ.

and the penalties for variance of divergence, i.e.‖∇div u‖2, in the regularization terms is simply
droped out. Hence the optimization problem (3.17) is reduced into

min
ψ

∥∥∥g1(x+∇⊥ψ)− g2

∥∥∥2
+ λ1 ‖∇4ψ‖2 + λ2

∥∥∥∂n(∇⊥ψ)n
∥∥∥2

(3.19)

where velocity estimation is based on one scalar potential field ψ. In order to keep the incom-
pressible condition, the mimetic finite difference method is used to formulate the estimation
problem in finite dimensional space (see Fig. 3.1). In the correspondent discrete expression, the
velocity field can be represented:

u = G⊥ψ, u ∈ HS , ψ ∈ HP

where HP,V,S,E are related discrete function spaces which are well defined in the mimetic finite
difference method. And the minimization problem is written as:

min
ψ

∥∥∥I1(x+ G⊥ψ)− I2(x)
∥∥∥2

HV

+ λ2 ‖G4Cψ‖2HE
+ λ3

∥∥∥P G⊥ψ
∥∥∥2

bc
(3.20)

where the respective matrix P presents the operator ∂n in last regularization term and ‖·‖bc is
the norm evaluating elements along the boundary. The advantages of such discrete incompress-
ible expression is that we can reduce nearly half the number of unknown values and at the same
time the divergence-free condition is well kept implicitly.

In practice, a multi-level computation framework is implemented in order to capture the large
displacements. Two image pyramids {I li}l=1,...,m , i = 1, 2, are constructed. l = 0 denotes the
original image, and l = m denotes the coarsest level. At level l, given potential fields ψ̃l, and
the velocity field ũl = G⊥ψ̃l, image I l2 is warped to Ĩ l2 = I l2(x− ũl). The image flow between the
two images Ĩ l1 and I l2 is assumed to be small enough to allow for accurate linearization:

∂tI
l = I l1 − Ĩ l2 (3.21)

∆l
u = G∗I l1 · (ul − ũl) (3.22)

∆l
ψ = G∗I l1 · (G⊥(ψl − ψ̃l)). (3.23)
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Figure 3.1: Definition of finite-dimensional spaces of scalar fields and vector fields on a square
grid. Filled circles depict nodes or vertices, the other circles indicate cells. The positions of
diamonds are referred to as sides.

The residual motion field ul, in terms of G⊥ψl, is estimated by solving the problem

min
ψl

=
∥∥∥∆l

ψ + ∂tI
l
∥∥∥2

HV

+ λ2

∥∥∥G4Cψ
l
∥∥∥2

HE

+ λ3

∥∥∥P G⊥ψl
∥∥∥2

bc
(3.24)

The minimizer ψl and ul are postprocessed to yield the initialization ψ̃l−1and ũl−1 of the next
finer level l − 1. The whole process is started at the coarsest level m with ψ̃m = 0 and ũm = 0,
and looped until the finest level l = 0.

3.3 Collaborative scheme for robust optical flow estimation

In this section, we propose to design a novel approach that combine the robustness of correlation
techniques with the high density of the global variational methods presented in §3.1. This results
in a technique that is robust under noise and outliers, while providing a dense motion field. This
new method was proposed by INRIA and validated in collaboration with Cemagref (Héas et al.,
2007; Heitz et al., 2007).

3.3.1 Classical method

A clasical approach used with PIV imagery is correlation-based matching, which corresponds
to the DFD constraint (see §3.3.2) associated to a locally constant field within a neighborhoods
W (s). Thus, using a discrete space of vectors {w}, the velocity u at point s is obtained as

u(s) = arg min
w

∑
r∈W (s)

C(I(r + w, t+ 1), I(s, t)), (3.25)

where C(.) denotes a dissimilarity function. On one hand, these approaches suffer from several
deficiencies : traceable features must be sufficiently contrasted and must persist over time on
consecutive images. Furthermore, the estimation prone to erroneous spatial variability, which
can be reduced with the use of filters. On the other hand, these techniques constitute very fast
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methods and are generally locally very robust to noise. These techniques are based on disjoint
local estimation, and thus produce sparse vector fields estimated locally and independently.

3.3.2 Fluid dedicated optical flow method

The apparent motion, perceived through variations of image intensity I is called optical flow
in the computer vision community. All optical flow estimation methods rely on the temporal
conservation of some invariants. The most common are photometric invariant which can easily
be extracted and may lead to dense measurements. In the case of PIV imagery for bi-dimensional
flows visualization, the gray level constancy assumption can be assumed, leading to an integrated
non-linear formulation called the Displaced Frame Difference (DFD) equation I(s+u(s), t+1) =
I(s, t), or at time t, to a linear differential formulation called the Optical Flow Constraint (OFC)
equation u(s).∇I(s) + It(s) = 0, where s denotes the spatial coordinates (x, y) and u(s) the
apparent motion field at this point and at a given time t.

These two formulations can not be used alone, as they provide only one equation for two
unknowns at each spatio-temporal location (s, t). This is the well known aperture problem
where the so called normal flow to the brightness gradient is estimated while the tangential
velocity component remains undetermined. In order to remove this ambiguity and robustify
the estimation, one must rely on other assumptions. The main used assumption is local spatial
or spatio-temporal constancy of the velocity fields (Lucas & Kanade, 1981; Bigün & Granlund,
1988).

Alternate approaches, derived in the framework proposed by Horn & Schunck (1981b), have
the great advantage of producing dense vector fields with spatial global coherence. They are
based on the minimization of an energy function J = Jd + Jr composed of two terms. The first
term Jd is called the data term and implements the OFC equation

Jd(u, I) =
∫

Ω
φ[∇I(s).u(s) +

∂I(s)
∂t

]ds. (3.26)

The penalty function φ is usually the L2 norm but it may be changed to a robust function
attenuating the effect of data that deviate significantly from the OFC (Black & Anandan, 1996).
The second term Jr is called the regularization term. It is usually a standard first-order spatial
smoothness term

Jr(u) = α

∫
Ω
φ(‖ ∇u ‖)ds, (3.27)

where α > 0 is a parameter controlling the balance between the smoothness and the global
adequacy to the brightness constancy assumption. Function φ may be the quadratic penalty if
the searched solution is smooth everywhere or a robust norm function if one wants to handle
implicitly the spatial discontinuities of the field (Black & Anandan, 1996). However in the
case of fluid flows, it can be demonstrated that a first order regularization is not adapted as
it favors the estimation of velocity fields with low vorticity. A second order regularization can
advantageously be consider as proposed in (Suter, 1994b) :

Jr(u) = α

∫
Ω
φ(‖ ∇ξ(s) ‖2 + ‖ ∇ζ(s) ‖2)ds, (3.28)

where ξ = curlu = ∂u
∂y −

∂v
∂x and ζ = divu = ∂u

∂x + ∂v
∂y stand for the vorticity and divergence of

the apparent velocity u = (u, v)T . Note that in the case of bi-dimensional incompressible flows,
divergence of the apparent motion is equal to zero. To circumvent the difficulty of implementing
second order smoothness constraint, this regularization term can be simplified in a computational
point of view in two interleaved first-order div-curl regularizations based on an auxiliary variable
ξ1 and ζ1approximating the vorticity and the divergence of the flow (Corpetti et al., 2002a, 2006).
Thus we have :
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Jr(u) = α

∫
Ω
φ[(ξ(s)− ξ1)2 + λ ‖ ∇ξ1 ‖2]ds (3.29)

+α
∫

Ω
φ[(ζ(s)− ζ1)2 + λ ‖ ∇ζ1 ‖2]ds, (3.30)

where λ is a positive regularization parameter.

3.3.3 Multiresolution approach

However, one major problem with optical flow estimators is large displacement estimation. The
intensity function must be locally sufficiently close to a linear function. Since the larger the
displacement the more narrow the linearity domain is, large displacements can not be recovered
directly. A common way to overcome this limitation is to create a image pyramid, constructed
by successive low-pass filtering and down sampling of the original images. In this framework,
principal components of displacements are first estimated at coarse resolution where motion
amplitude should be sufficiently reduced in order to satisfy the linearity requirement. Incremen-
tal displacement are then estimated while going down the pyramid, and the solution is refined
(Bergen et al., 1992). However, since the multiresolution schemes estimates principal component
displacements only at coarse resolutions where small structures are rubbed out, this approach
enables the characterization of large displacements of small structures only in the case when their
motion are close enough to the principal component’s one. Another disadvantage characterizing
the method is the additional noise incorporation due to the calculation of motion-compensated
images at each resolution by the use of interpolation methods.

3.3.4 Collaborative correlation-optical flow scheme

To overcome the multiresolution limitations, we propose an alternative approach relying on
a unique representation of the full resolution image. Thus, the proposed method tackles the
non-linear estimation problem without making successive approximations in the calculation of
interpolated images nor restricting itself to the characterization of large displacements of suf-
ficiently large structures. The proposed method takes advantage of the non-linear formulation
of the motion estimation problem within a differential framework appropriated for globalized
local smoothings. More explicitly, large displacements of both, fine or large structures, can be
recovered by correlation-based methods for sufficiently contrasted and persisting image regions.
Thus, the idea of the method is to replace the coarse estimates of the multiresolution scheme by
a dense large scale displacement estimate derived from a collection of correlation-based vectors
uc obtained by Eq.3.25.

A new functional was defined to estimate de vector fields

J(u) = Jd(I,u) + Jr(u) + Jc(u,uc), (3.31)

where Jc(.) is the energy function constraining estimated displacements u to be close to a
sparse correlation-based vector field uc. Thus, functional Jc(.) is defined as a quadratic distance
between the solution and a collection of correlation-based vectors uic = (ui, vi) located at the
point si = (xi, yi) and influencing their neighborhood according to a bi-dimensional Gaussian
N i(s) of mean si and of variance σ

Jc(u,uc) = γ

∫
Ω

L∑
i=1

giN i(s) ‖ uic − u(s) ‖2 ds, (3.32)

where gi and γ denote respectively the confidence and the functional weighting factors.
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Chapter 4

Results

This chapter describes the results obtained for the evaluation of OF1 approach §4.1, OF2 ap-
proach §4.2 and COROF1 approach §4.3.

4.1 Dense estimation with fluid dedicated optical flow

This section presents the results obtained for OF1 approach with data images already available
at the beginning of the project FLUID (the VSJ standard images §4.1.1, the mixing layer §4.1.2
and the near wake of a circular cylinder §4.1.3), with the images of the PIV Challenge 2005 (see
§4.1.4) and with the first set of images of the FLUID project database (see §2.5 and §2.6).

4.1.1 Results for the VSJ standard images

Figure 4.1 shows the average L1 relative error of 6 algorithms: A1, the Orthogonal Dynamic
Programming (ODP) issued from Quénot (1999); A2, the Variational Optical Flow (VOF)
implementation of Horn & Schunck presented in Ruhnau et al. (2005); A3, the robust mul-
tiresolution/multigrid (RMM) implementation of Horn & Schunck presented in Mémin & Pérez
(1998a); A4, the proposed approach; A5, the proposed Integrated Continuity Equation (ICE)
associated to a first order regularization and A6, the usual OFCE constraint associated to the
presented Div-Curl regularization.

Compared to other methods the proposed approach gives better results for cases #1, #2,
#5, #6, #7, #8. Results on case #4 are good for all techniques, with slightly better results
for estimators A1 and A2. Nevertheless, as expected, the div-curl and ICE options (A4) are
better than others combinations (A3, A5 and A6) with the same implementation method.
Concerning case #3 (where the motion range is low), all estimators give important errors on
the motion field. The bad results obtained with the proposed technique can be explained by
i) the multiresolution process (which introduces errors due to bilinear interpolation and was
not necessary in this case); ii) by the div-curl regularization (which seems to introduce more
artifacts than the others methods) and iii) by the ICE constraint (the out of plane velocity
is very small here and this option is likely to introduce a divergent motion at each change of
illumination). Nevertheless, in practice, it is often possible to have an idea of the magnitude of
the motion and to adapt the parameters. Case #2 is very interesting: referring to table 2.1, one
can see that the velocity is very important (and as a consequence, the underlying vorticity too).
Even if most of the presented approaches have a multiresolution implementation, all estimators
equipped with a first order regularization seem to smooth the higher value of the curl and the
div, yielding to high errors. Conversely, estimators with a div-curl smoothing (A4 and A6) give
reliable results. The results on the important out-of-plane velocity in case #8 confirm that the
proposed ICE is a correct choice. On this eight synthetic examples, the proposed method gives
better results. We now turn to comparisons on two different types of real image sequences and
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compare our method with a classical PIV system.
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Figure 4.1: Average relative L1 error of 6 algorithms. From left to right (and top to bottom
in the legend): A1: ODP from Quénot (1999); A2: VOF from Ruhnau et al. (2005); A3:
RMM from Mémin & Pérez (1998a); A4: The proposed approach OF1; A5: The proposed ICE
associated to a first order regularization and A6: The usual OFCE associated to the presented
Div-Curl regularization.

4.1.2 Results for the mixing layer

Instantaneous velocity field

Images of the same instantaneous vector field are shown in figure 4.2-(a) and in figure 4.3-(a),
for Optical-flow and piv approach, respectively. Only one vector out of two hundred and twenty
five were represented for Optical-flow. Results exhibit the footprint of the primary structures of
the mixing layer. Based on vector fields both approaches gave comparable information but with
higher density for Optical-flow. Figure 4.2-(b) and 4.3-(b) show contours of constant spanwise
vorticity ω?z . When compared with piv results, Optical-flow approach exhibited more localized
information. Nevertheless, vorticity yielded more noisy contours and higher levels of vorticity.
As mentioned in section 4.1.2, it might be possible that this noisy vorticity was due to the
measurement noise in the input images.

Mean quantities

In a mixing layer, the mean streamwise velocity component can be expressed with the theoretical
solution as:

U − Ub
Ua − Ub

=
1
2

(1− erf(ση)), (4.1)

where η = (y− yo)/(x−xo) with (xo, yo) the coordinate of the virtual origin of the mixing layer
and where the spreading parameter σ is constant.

For each streamwise location x and for both approaches the experimental values fitted the
theoretical solution. Results gathered in table 4.1 show that the spreading parameter σ adjusted
from Optical-flow and piv treatment was of the order of 49.8 and 43.6, respectively. Optical-flow
value compared well with the value of 52.7 obtain by Heitz (1999) with pitot tube measurements,
while piv gave poor agreement. For both approaches, the evolution of the vorticity thickness
δω, defined as δω = −∆U/(∂U/∂y)max where ∆U = Ua − Ub, supported the observation of
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Figure 4.2: Views of instantaneous turbulent plane mixing layer structure at Reδω = 7000.
Optical-flow: Top, Instantaneous vector field (one vector out of 225); Bottom, Instantaneous
spanwise isocontour of vorticity ω?z = (ωz∆U)/δω (ω?zmin

= −9, ω?zmax
= −2, ∆ω?z = 1).
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Figure 4.3: Views of instantaneous turbulent plane mixing layer structure at Reδω = 7000. piv
- multipass 32-16 treatment: Top, Instantaneous vector field (one vector out of nine); Bottom,
Instantaneous spanwise isocontour of vorticity ω?z = (ωz∆U)/δω (ω?zmin

= −9, ω?zmax
= −2,

∆ω?z = 1).
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a linear growth of the mixing layer. As for the spreading parameter, piv results exhibited
a higher growth of the mixing layer. This behaviour can be explained by the interrogation
interval in which the velocity estimated was an average value, in a region where there were high
displacements gradients.

Heitz (1999) piv optical-flow
r 0.67 0.67 0.67
λ 0.2 0.2 0.2
σ 52.7 43.55 46.37

dδw/dx 0.0336 0.0407 0.0382

Table 4.1: Comparison on main characteristics parameters of the mixing layer for Pitot-tube
measurements (Heitz (1999)), piv and Optical-flow approaches

To have a finer analysis, it is of primary interest to observe the superior order moments.
To that end, the distribution of the Reynolds stress are represented in figure 4.4. Data were
compared with Heitz (1999) fourth hot-wire measurements. Results show that piv approach
gave a slight overestimation of u′2 and u′v′ and a slight underestimation of v′2. Optical-flow
approach better fitted hot-wire measurements.

It should be noted that for piv and Optical-flow approaches the second order moments were
computed with 520 samples, hence the Reynolds stress were not statistically converged values,
whereas for hot-wire measurements more than 100000 samples were collected. As a consequence,
we can say that both piv and Optical-flow approaches gave similar results in good agreement
with the litterature.

Discussions of results

This first experience proved the ability of the OF1 method to recover dense motion fields from
piv images. Main characteristics of the flow (mixing layer mean characteristics and second
order moments) were recovered in a similar way with both approaches (piv and the proposed
Optical-flow). A major difference between the two approaches was the number of vectors that
the Optical-flow technique was able to extract. Furthermore, it should be noted that Optical-
flow approach was able to extract more information (e.g. noisy) contained in the image than
PIV approach did. Let us nevertheless remark that, from a time computation point of view,
the presented method took nearly 120 s for the estimation of an instantaneous dense motion
field on a PC-linux (2.8GHz, 1.5Go-RAM) whereas the estimation with the piv approach based
on cross-correlation took only 15 s. Some interrogations came also about the level of the noise
obtained in the vorticity fields from the Optical-flow method.

4.1.3 Results in the near wake of a circular cylinder at Re=3000

Instantaneous velocity field

Instantaneous velocity field and vorticity contours are shown in figures 4.5 and 4.6 for the
proposed Optical-flow approach and for the piv approach, respectively.

The motion fields obtained from the two methods were very similar and correctly represented
the physical phenomenon. Indeed, the main vortex launched in the middle of the image appears
clearly in the velocity field as well as in iso-vorticity contours. In figures 4.5 and 4.6, these
contours are very interesting to analyze. Indeed, it can be observed that both shared the main
phenomena but that the major difference appeared in the spatial resolution, that of the optical
flow approach being highly superior. This led to a better topological description of the near
wake flow. Nevertheless, a more precise study on this over-information must be carried out
to reach its relevance. A work on that subject is currently in progress. Let us notice, as we

32



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-1 -0.5 0 0.5 1

u
′2
/∆

U
2

y/δω

0

0.005

0.01

0.015

0.02

0.025

-1 -0.5 0 0.5 1

v
′2
/
∆
U

2

y/δω

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

-1 -0.5 0 0.5 1

−
u
′ v
′ /

∆
U

2

y/δω

Figure 4.4: Reynolds stress distributions of the mixing layer at x/δω = 4. Each symbol repre-
senting a velocity measurement technique: −, Optical-flow; �, piv; •, Hot-wire (Heitz, 1999).
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previously mentioned, that the higher quality of the input images used for this experiment (a 12
bit CCD Pelletier cooled camera vs a 8 bit one for the mixing layer) was probably responsible
of the better results, in term of noise, of the vorticity map issued form the optical-flow velocity
field.
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Figure 4.5: View of instantaneous near wake vector field at Re=3000: Top, Optical-flow treat-
ment (1 vector out of 256); Bottom, piv treatment (1 vector out of 4).

Mean quantities

In this section, all motion fields from the 540 pairs of images of the whole sequence were com-
puted. For both methods, mean velocity fields and their corresponding streamlines are repre-
sented in figures 4.7 a and 4.7 b, respectively.

At values of x/D greater than 1.5, the patterns of isocontours of the mean streamwise
velocity remained roughly the same. At smaller values of x/D, the velocity pattern exhibits,
however, slight differences in the description of the shear layers. Indeed, the same isovalue of
the mean streamwise velocity, indicated a larger thickness of the shear layers with the Optical-
flow approach than with piv. From the patterns of isocontours of the transverse mean velocity,
represented in figures 4.7 and 4.7, it appeared that results obtained with Optical-flow approach
were smoother than with piv. This indicated that with the same number of samples, or data
images, the statistical quantities exhibited more converged values with Optical-flow than with
piv. In figure 4.8, this behaviour was readily observed with second order moments, which
converge later than first order moments. Furthermore, these smoother results were associated
with a better symmetry across the wake centreline. These differences can be explained by
the global regularization methods which is involved in the proposed algorithm and leads to
homogeneous results, compared to piv which is a local approach giving a mean value to each
considered area.

The better representation of the patterns of the mean quantities gives a better location of
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Figure 4.6: View of instantaneous near wake iso-contour of vorticity at Re=3000 – ω?z = (ωzU)/D
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Figure 4.7: From top to bottom, 21 iso-contours of mean streamwise velocity U/U∞ = −0.2, ..., 1
and of mean transverse velocity V/U∞ = −0.25, ..., 0.25: (a), Optical-Flow measurements; (b),
piv measurements.
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Figure 4.8: From top to bottom, 15 iso-contours of u′2/U2
∞ = 0, ..., 0.05, v′2/U2

∞ = 0, ..., 0.1 and
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∞ = −0.025, ..., 0.025: (a), Optical-Flow measurements; (b), piv measurements.
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Figure 4.9: Comparison of profiles of mean velocity components U and V at two locations
downstream of the cylinder: –, Optical-Flow measurements; �, piv measurements.
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cylinder: –, Optical-Flow measurements; �, piv measurements.
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the different maxima of u′2 and v′2 which are characteristics of the vortex formation region.
Two main approaches can be distinguished to extract the streamwise length of the recirculation
region: the distance between the base of the cylinder and the point with null longitudinal mean
velocity (U = 0) on the centreline of the flow (y = 0), called the bubble length (LR), and the
distance to the point where the (u′2 + v′2) quantity is maximum on the centreline, called the
formation length (Lf). The latter criterion defined by Bloor & Gerrard (1966) enables to compare
results with single hot-wire cooling velocity measurements. Single hot-wire measurements were
carried out with the wire parallel to the axis of the cylinder y−axis, so that measurements were
more sensitive to the cross-flow induced by the formation of the Kármán vortices. Critical values
along the wake centreline are presented in table 4.2. Results show that the bubble length was
nearly the same for Optical-flow and piv methods, whereas the formation length was better
determined with the former approach, close to hot-wire measurements, than with the latter one.
Presumably, this may be related to the better extraction, with Optical-flow schemes, of the
vortices formed and launched in the very near wake, as it is shown in figure 4.6. It should be
noticed that, due to the low aspect ratio (L/D = 14.2 without end plates), the critical values
along the wake centreline yielded larger mean longitudinal velocity minimum and formation
length than those observed when the aspect ratio was sufficiently large to be independent of this
parameter.

To have a quantitative idea of the relevance of different results, we represent in figure 4.9
and 4.10 mean velocity and Reynolds stress profiles at two locations downstream of the cylinder
(x/D = 1.56 and x/D = 3.6). For both algorithms, mean velocity distributions were in good
agreement. Concerning Reynolds stress, the shape of all curves were quite similar. However,
their local extrema were different. For x/D = 1.56, optical-flow underestimated the fluctuating
velocity levels compared to piv. Let us recall that this region corresponds to the free shear
layers spreading, which for the subcritical regime concerned, exhibits small vorticity thicknesses
with large gradients. The proposed algorithm, which is based on a global regularization, uses a
quadratic smoothness constraint Hreg which enforces a spatial smoothness of the divergence and
the vorticity of the motion field. This may explain the lower value of each extremum provided
by the optical-flow estimator. Further improvements could be obtained using a robust penalty
function Ψ2 is the second part of the regularization term of equation (3.14) :

α

∫∫
Ω

|divd− ξ|2 + λΨ2(‖∇ξ‖) + α

∫∫
Ω

|curld− ζ|2 + λΨ2(‖∇ζ‖)

Such a penalty term should be able to obtain better estimates of the motion fields and in
particular to extract better local extrema of the Reynolds stress. Nevertheless, this form yields
to the definition of an other threshold parameter. In order to quantify the effect of a robust
penalty function, new research studies with dedicated experiments are currently in progress in
our laboratories. For x/D = 3.6, the differences between the two approaches were consistent
with the distinct estimation of the recirculation region, seen above for the formation length.

Hot-wire piv Optical-flow
Umin/U∞ - −0.30 −0.29
LR/D - 2.70 2.73
Lf/D 2.80 2.71 2.85

Table 4.2: Critical values along the wake centreline, y = 0.

4.1.4 PIV Challenge 2005

The Cemagref in collaboration with INRIA have submitted a dense optical flow method dedi-
cated to fluid flows to the PIV challenge 2005. This challenge which aims at comparing different
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(a)

(b)

(c)

Figure 4.11: PIV Challenge 2005: (left), case A2 from M. Stanislas (synthetic turbulence with
spectrum slope equal to -3); (right), case A3 from Stanislas (stratified flow simulation). Results
obtained with a fluid dedicated dense motion estimator (OF1) for two extreme tuning of reg-
ularization parameters: (a), spectrum of the velocity; (b), velocity fields corresponding to the
spectrum with the green dashed line; (c), velocity fields corresponding to the spectrum with the
green line. The spectrum in black is the reference.
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Figure 4.12: RMS of the error of the U velocity component extracted from (a), images of particles
dispersed in 2D turbulence (case C1a); (b), images of scalar dispersed in 2D turbulence (case
C1b). Red, OF1 approach; blue, correlation technique; light-blue; OF2 approach.

motion estimator for images of fluid flows seeded with particle held in Pasadena, California in
September 2005. The dense motion estimator was able for two extreme tuning of the algorithm
parameters to give good results for most of the different benchmarks focussing on the assessment
of the spatial resolution. Figure 4.11 shows results obtained for two extreme tuning of regu-
larization parameters in a synthetic turbulence with spectrum slope egal to -3 (PIVChallenge
case A2) and in a stratified flow simulation (PIVChallenge case A3). Results highlighted the
influence of the regularization parameters - introduced to control the balance beetwen the two
competing terms, namely the data term and the regularizer - on the description of the small
scales. In addition, these observations emphasized the need to objectify the choice of these
parameters values. A peculiar attention will be paid on the relation beetwen this parameters
and the main physical scales involved in the particule images.

4.1.5 FLUID project database

OF1 approach was evaluated on synthetic sequences of particle and scalar images based on a
DNS of 2D turbulent flow (see §2.5 cases C1a and C1b). Since the flow was 2D the optical
flow constraint equation (OFCE) was considered for the data term (see eq. 3.1). In order to
preserve the divergence and the vorticity of the displaced motion field a second order Div-Curl
regularization was used (see §3.1.4).

Figure 4.12a presents the RMS of the error for the whole sequence of case C1a (particle
images). Results show that OF1 approach provided values for the RMS of the error lying
between 0.12 and 0.13 pixels. This level of error was low but higher than the levels observed
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for OF2 approach and for LaVision correlation approach1 lying between 0.07 - 0.08 pixels and
0.075 - 0.085 pixels, respectively. The map of vorticity and the vector fields presented in figure
4.14 yield the noisy results provided by OF1 approach. Figure 4.13 also shows the high level of
noise generated by OF1 approach compare to OF2 approach and LaVision correlation approach.
This behaviour of OF1 approach was due to:

• the scheme involving auxiliary function to simplify the numerical solving of the 2nd order
div-curl regularization (see §3.1.4);

• the bilinear interpolation scheme used to warp the image;

• the Gaussian derivative filter used to compute the gradients of the luminance.
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Figure 4.13: Spectra of the velocity extracted from images of particles (case C1a FLUID project
database) with: (-), DNS; (+), OF1 approach; (�), OF2 approach; (◦) correlation technique.

Figure 4.12b presents the RMS of the error for the whole sequence of case C1b (scalar im-
ages). Results exhibit that the RMS of the error was larger for that case compared to the case
C1a with particle image. As time evolved, the scalar was dispersed by turbulent and molecular
diffusion and the RMS of the error increased sligthly for optical flow approaches. On the con-
trary the results provided by LaVision with correlation technique (computed by Bernd Wieneke
with interrogation windows of 16× 16 pixels and 75% overlap) showed decreasing errors as time
evolved. The correlation algorithm had problems with gradient images at the rim of the image.
Hence, a rim of 20 pixels were taken away because it was too noisy anyway. It is worth noting
and not surprinsing that for scalar image optical flow approaches provided better results than
correlation technique. It should also be mentioned that during the time sequence the parameter
of the regularization term was adjusted in order to minimize the error. The adjustement was
link with the drecreasing number of grey levels in the images. In figure 4.15 renormalized scalar
images at three differents time steps (beginning, middle and end of the time sequence) indicate
the range of grey level involved. As a function of the time, the narrowing of the range of grey
level, leading to higher noise, could explain the slight increasing of errors provided by optical
flow approaches. However, the present results also show that despite OF1 approach was able
to provide smaller errors than the correlation technique, it is observed in figures ??, 4.16 and
4.17 – presenting respectively the vector field, the vorticity map and the energy spectrum –
that the large and the small scales were poorly described. In this case the noise provided by

1Results processed by B. Wieneke with 8× 8 interrogation window with gaussian weighting function.
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(a) (b)

(c) (d)

Figure 4.14: Intantaneous vector fields and vorticity maps extracted from images of particles in
2D turbulent flow (case C1a FLUID project database) with: (a), DNS; (a), OF1 approach; (c),
OF2 approach; (d), correlation technique.
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t = 0∆t t = 640∆t t = 1000∆t

Figure 4.15: Typical image of scalar of case C1b used to process the quantities showed in figures
??, 4.16 and 4.17.

the numerical schemes (see the three items above), by the decreasing (as time evolved) range of
grey level, explained only partly the discrepancies observed beetwen the OF1 approach and the
DNS. The other part could be due to the unadequacy of the data term (OFCE model) which did
not take into account the molecular diffusion of the scalar. Let us recall that for the case C1b
the scalar was adjusted with the Schmidt number Sc = 0.7 and the Peclet number Pe = 2000
to behave like the temperature. Furthermore, due to the different sources of noise, the robust
minimization reduced the importance of the data term for the benefit of the regularization term,
thus allowing divergence.

An attempt wase also made to evaluate OF1 approach on real particle images generated for
the FLUID project. For that purpose we used the case D1 corresponding to the experiment in the
far wake of a circular cylinder at Re = 3900 (see §2.6 for details). Unfortunately, OF1 was not
able to extract any acceptable displacement fields. This problem was due to the multiresolution
technique, designed to estimate multiscale motion, which smoothed out the small particles with
large velocities. Indeed, this set of images contained mainly small particles around 2 pixels
which had large displacements around 15 pixels. Unsurprisingly, OF2 approach was also not
able to extract any acceptable displacement fields. In §3.3 and 4.3, a new approach combining
correlation and optical flow was proposed to overcome this obstacle.

4.1.6 Conclusion

In this preliminary evaluation OF1 approach was analysed. This method is an extension of
the standard optical-flow based approaches used in Computer Vision where a robust objective
function is minimized. The two parts (i.e, the data term and the regularizer) of the novel cost
function have been specifically designed to suit image sequences of fluid flows (Corpetti et al.,
2002a, 2006).

The data term is based on a continuity equation, as a more physically-grounded alternative
to the usual brightness constancy assumption in the general case of images of 3D flows. To be
compatible with large displacements, it is used in an integrated form. As for the regularization,
it is stated that only a second-order regularizer is able to preserve completely the divergence
and vorticity structures of the flows. Using the div-curl formalism, a second-order regularizer is
introduced to capture the divergence and vorticity of the unknown flow.

The developped approach was tested on synthetic images from the VSJ, on two experimental
flows representing a mixing layer and the near wake of a circular cylinder, on the cases of the
PIV Challenge 2005 and on some cases of the database dedicated to the FLUID project. In
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t = 0∆t t = 640∆t t = 1000∆t

(a)

(b)

(c)

(d)

Figure 4.16: Map of vorticity extracted from images of scalar (case C1b FLUID project database)
with : (a), DNS; (b), OF1 approach; (c), OF2 approach; (d), correlation technique; at three
time steps.
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Figure 4.17: Spectra of the velocity extracted from images of scalar (case C1b FLUID project
database) with: (-), DNS; (+), OF1 approach; (�), OF2 approach; (�), correlation technique;
at three time steps: (a), t = 0∆t; (b), t = 640∆t; (b), t = 1000∆t.

45



each case, the results were compared with the motions estimated with correlation techniques
and hot-wire anemometry.

It is pointed out that the displacements fields extracted with OF1 and correlation methods
have the same order of magnitude. The relevance of the obtained motion fields is then similar.
A major difference comes from the number of vectors that optical-flow technique is able to
estimate, one vector per pixel being obtained, what opens an ability to describe a larger range
of velocity scales than correlation approach. Preliminary results, showed that the dynamic
range was enlarged towards smaller scales. However, it was also shown that these methods
involved parameters that need to be better known and “calibrated” to improve the results, and
also that OF1 provided noise at small scales that could be reduced with improved numerical
schemes. The present evaluation also exhibited better velocity estimations for OF1 approach
compared to correlation schemes. Despite a poor agreement with the DNS velocity reference,
OF1 approach yielded better velocity estimations than correlation schemes, for scalar images.
The discrepancies were partly explained by the diffusion of the scalar that was not modelized in
the data term. For the following evaluation, this suggested on one hand to develop a data term
including this physical phenomena, and on the other hand to provide a new set of data images
of a scalar that would not diffuse by molecular process.

4.2 Variational motion estimation for incompressible flows

OF2 approach was evaluated on synthetic sequences of particle and scalar images based on
a DNS of 2D turbulent flow (see §2.5 cases C1a and C1b). The method is dedicated to 2D
divergence free flows and includes a high-order regularization term that preserves the vorticity
(see §3.2).

Quantitative evaluation displayed in figures 4.12a, 4.13 and 4.14 show that OF2 method
yielded better results than other competitive methods like OF1 and the correlation technique
provided by LaVision. This good agreement with DNS vector fields may be explained by the
additional constraint that encouraged solenoidal solutions. However, the use of mimetic finite
difference scheme to formulate the estimation problem, the use of spline to warp the images and
compute the gradients had also a contribution these nice results. It should be noticed that un-
fortunately the results obtained with OF2 method for the whole image sequence and displayed in
figures 4.12, 4.13 and 4.14 were computed with non optimized regularization parameter equaled
to 0.002. Indeed, figure 4.18, show spectrum obtained with different values of the regularization
parameter λ, showing that the optimum was around λ = 0.005.

Quantitative evaluations on scalar image presented in figures 4.12b, 4.17, ?? and 4.16 demon-
strate that OF2 method outperformed OF1 approach and the correlation technique proposed
by LaVision. Like for OF1, better results could have been provided by OF2 if the molecular
diffusion of the scalar had been modelized in the data term, or if no diffusion of the scalar had
been included in the DNS.

In the following evaluations we will observe if these convincing results obtained with OF2
approach will still be possible with synthetic and real image sequence of 3D turbulent flows.

An attempt wase also made to evaluate OF2 approach on real particle images generated for
the FLUID project. For that purpose we used the case D1 corresponding to the experiment in
the far wake of a circular cylinder at Re = 3900 (see §2.6 for details). Unfortunately, for the
same reasons than for OF1 (see §4.1.5), OF2 was not able to extract any acceptable displacement
fields.

4.3 Collaborative correlation-optical flow scheme

In this section we present the results obtained for COROF1 approach (see §3.3.4) with data
images of the FLUID project database (see §2.5, §2.6 and §2.7).
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Figure 4.18: Influence of the regularization parameter λ on the spectrum of the vertical velocity
component estimated with OF2 method – 2D turbulent flow (case C1a).

4.3.1 Numerical evaluation

This section compares results on DNS-based synthetic image sequence obtained with the follow-
ing approaches:

• Correlation: To estimate correlation-based velocity fields, the commercial software DaVis
7.2 from LaVision was used. A multipass algorithm with a final interrogation window size
of 16× 16 px2 and 50% overlapping was applied. Image deformation and round gaussian
weigthing function were used. Spurious velocities were identified with median filter and
replaced by the median. The vector fields obtained with this correlation technique were
used in the collaborative approach.

• Multiresolution OF2: This fluid dedicated optical flow approach uses second-order regu-
larization and multiresolution to handle large displacements (see §3.3.2 for details)

• Dynamic consistent multiresolution (see Deliverable 5.5): This approach is an extension
of the fluid dedicated approach of Corpetti et al. (2006) with a spatio-temporal constraint
satisfying the Naviers-Stokes equations.

• Correlation variational COROF1: This collaborative approach is an adaptation of Cor-
petti et al. (2006) approach to handle large displacements with correlation instead of
multiresolution.

• Dynamic consistent correlation-variational COROF2 (see Deliverable 5.5): As described
above, this approach uses second-order regularization, correlation to handle large displace-
ments, dynamic consistency satisfying Navier-Stokes equations.

For all approaches the same set of parameters was used, providing an optimal performance:
α = 1000, β/α = 1 with σ = 8 px and γ/α = 0.05

Synthetic image sequence

To evaluate the performanec of the collaborative approach compare to state of the art optical-
flow and correlation approaches, a synthetic particle image sequence was generated based on the
direct numerical simulation (DNS) of 2D turbulent flow (Carlier & Wieneke, 2005). The present
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flow contains typical difficulties for image based measurements techniques, like high velocity
gradients and large dynamic range. The Reynolds number based on the length scale of domain
of computation 2π and on the rms of the forcing velocity was equal to 30 000. Figure 4.19
presents the whole flow domain and the region considered for a thorough comparison.

Figure 4.19: 2D turbulence test case - Color map of the normalized vorticity with superposed
velocity field.

The image sequence was generated with a home-made particle image generator involv-
ing comparable methods than those developed for the EUROPIV Synthetic Image Generator
(Lecordier & Westerweel, 2003). A velocity-vorticity formulation of the Navier-Stokes equations
was adopted for the DNS. The vorticity equation was solved in Fourier space using desaliased
Fourier expansions in two directions with periodic boundary conditions. The time integration
was third-order/three steps with a Runge-Kutta scheme. The code is called pseudo-spectral.
The coordinates of each particules were calculated in the physical space inside the vorticity equa-
tion computation using the Runge-Kutta scheme of the DNS in order to use the intermediate
velocity components. However, a bicubic interpolation of the velocity field was applied since the
particles were not supposed to be located at the nodes of the grid.

In the present evaluation the image pair considered led to a maximum particle image dis-
placement up to 6 pixels. This particle image displacement was globally optimum to minimize
the RMS error provided by the variational technique. This relatively small maximum displace-
ment necessitates a multiresolution pyramid with only two levels. However, the addition of noise
in the image pairs enables to put variational techniques, involving multiresolution scheme, on
the wrong track.

In order to provide more realistic conditions the signal to noise ratio was increased, simulating
a reduction of the power of the virtual laser (Hain & Kähler, 2007). The noise wase quantified
with peak signal-to-noise ratio (PSNR) which is the ratio between the maximum possible power
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of a signal and the power of corrupting noise that affects the fidelity of its representation.
Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of
the logarithmic decibel scale. The PSNR is most commonly used as a measure of quality of
reconstruction in image compression. The PSNR is defined as:

PSNR = 10log10

(
d2

MSE

)
where d is the dynamic of the grey level of the signal, here the particles. For an image where the
particle are respresented over 8 bits d = 28 − 1 = 255. MSE is the mean squared error, which
for two m× n images Io and Ir where one of the images is considered a noisy approximation of
the other, is defined as:

MSE =
1
mn

Σm−1
i=0 Σn−1

j=0 ||Io(i, j)− Ir(i, j)||2

Typical PSNR values for images of good quality lie between 30 and 40 dB.
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Figure 4.20: RMS of the error of the horizontal velocity component.

In figure 4.20 the RMS error of the approaches is given as a fucntion of the time for five
image sequences caracterised by different signal to noise ratio. The same velocity field was used
to generate the five image sequences. For all methods the RMS error was increasing whith
decreasing values of PSNR (increasing noise). Whatever the value of PSNR, the highest error
appeared for the variational approach using the multiresolution scheme (Corpetti et al., 2006).
For images of good quality (i.e. PSNR ≥ 30 dB), this slight larger error compared to the
most competitive correlation approaches, is mainly due to the numerical scheme used to mimic
second order regularization (Heitz et al., 2006). For PSNR < 30 dB, image noise influence in the
estimated velocities was observed. For images of poor quality (i.e. PSNR = 12 dB) quality, the
large error was mainly explained by the inacurrate estimation of the large displacements. Figure
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4.21 clearly illustrates this behaviour. It shows the vector field of the exact solution for region
of large displacements (for ||u||/||u||max > 30%, i.e. for displacements larger than 2 pixels) and
the map of color of the deviation of optical-flow from the exact velocity modulus. For regions
of large velocities the deviation from the exact solution ranged beetwen 40 % and 100 %. Small
particles with large displacements in the images were smoothed out by the down sampling of
the multiresolution scheme. In these regions the real motion information was lost. This effect
is further promoted by the addition of noise in the images.

Figure 4.21: Map of color of the deviation of Corpetti et al. (2006) from the exact velocity
modulus – Vector field of the exact solution for ||u||/||u||max > 30%. Top: PSNR = 12 dB;
Bottom, PSNR = 24 dB.
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Figure 4.22: Compensated energy spectra: Left, multiresolution approach of Corpetti et al.
(2006) for different levels of noise in the images; Right, Comparisons between different ap-
proaches for PSNR=12dB.

The inaccurate estimation of the large displacements led to a poor extraction of the dynamic
especially at large scales. This phenomenon was observed in figure 4.22 by considering the
compensated energy spectra to observe the behaviour at large scales. For PSNR = 12 dB, the
optical-flow approach completely failed to estimate the dynamic in the flow. For PSNR = 18 dB,
the large displacements were more precisely measured. As indicated in figure 4.21, the deviation
from the exact solution was smaller. However, figure 4.22 shows for PSNR = 24 dB that, despite
the better determination of the large velocities, some discrepancies remained in the description
of the largest scales. This behaviour at large scale explained the lack of performance of the
scheme proposed by Corpetti et al. (2006) compared to the correlation technique considered in
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this study, see figure 4.20. As discussed above the accurate optical flow scheme proposed by
Yuan et al. (2007), using mimetic finite difference to compute second order regularization, would
provide the better results, with an enlarged dynamic range.

Collaborative approach

As shown in figure 4.20 the collaborative approach resulted in lower RMS error. The proposed
technique allowed the estimation of the large displacements with a deviation from the exact
velocity modulus lower than 5% (see Fig. 4.23). The benefit of the collaborative technique
was especially observed for image sequences with large noise. In addition this scheme provided
a denoising of velocity fields leading to an enlargement of the extracted dynamic range. The
improvement that could be gained with the proposed approach is exhibited in figure ??, giving
the distribution of the energy estimated as a function of the spatial scale. The results is quite
successful. The collaborative approach provided a robust over noise and dense estimations. It
should be noticed that, in the present case due to the use of non accurate second order regularizer,
the contribution of the data term of the variational approach was poor. As indicated by the
parameters we manualy set for best performance, the proposed correlation-variational global
scheme, behaved mainly as a regularizer of the correlation vector fields. Better results should
be obtained with more accurate global variational techniques.

Figure 4.23: Deviation of different approaches from the exact velocity modulus and correspond-
ing vector field – From left to right and top to bottom: multiresolution, correlation, correlation-
variational, dynamic consistent correlation-variational. PSNR = 12 dB.

4.3.2 Experimental evaluation

The collaborative approach was also applied to a PIV image sequence recorded in one of the
wind tunnels of the Rennes regional Center of the Cemagref. The sequence shows the near wake
flow of a circular cylinder at Reynolds number Re = 3900 (see §2.6 for details).

The correlation-based velocity fields were calculated with the commercial software DaVis 6.2
from LaVision. A multipass algorithm with a final interrogation window size of 16× 16 px2 and
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50% overlapping was applied. Image deformation and round gaussian weigthing function were
used. Spurious velocities were identified with median filter and replaced by the median.

Figure 4.24 shows the estimated velocity fields using optical flow technique (Corpetti et al.,
2006) and the proposed correlation-variational approach. Optical flow method under-estimated
the external high velocity which was approximately two times smaller than the ground truth.
This large error was reduced significantly by using the porposed collaborative approach. In figure
4.25, the vorticity color map of correlation-based and collaborative approaches are shown. Less
noisy vorticity map were provided by the collaborative scheme, associated with a finer description
of the flow. This evaluation with experimental data indicated that the proposed collaborative
approach yielded reliable results where classical optical flow techniques failed, with enlargement
towards small scales of the spatial description compared to correlation-based technique.

Figure 4.24: Instantaneous vector field with horizontal velocity color map, in near the wake
of a circular cylinder at Re = 3900. Left, optical-flow approach(Corpetti et al., 2006); Right,
COROF1 collaborative approach.

This behaviour was also observed in figure 4.26, where the correlation-variational approach
provided a finer description of the flow structure compared to results provided by the correlation
approach.
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Figure 4.25: Instantaneous vector field with vorticity color map, in near the wake of a circular
cylinder at Re = 3900. Left, correlation approach; Right, COROF1 collaborative approach.

Figure 4.26: Instantaneous vector field with vorticity color map in a slightly turbulent air flow
(see §2.7 for details). Left, correlation approach; Right, COROF1 collaborative approach.
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Appendix A

A.1 Div-Curl vs first-order regularization

By using the Euler-Lagrange condition of minimality, the equivalence between a standard first-
order smoothness regularization, and a div-curl regularization with same weights for div and
curl penalties can be readily demonstrated. Recall that Euler-Lagrange equation constitutes a
necessary conditions for the minimization with respect to function g(x, y) of a functional∫

Ω
F(g, gx, gy, x, y)ds.

It reads:
∂F
∂g
− ∂

∂x

∂F
∂gx
− ∂

∂y

∂F
∂gy

= 0

Assuming a first-order regularization term

Hreg(d) = α

∫
Ω

(|∇u(s)|2 + |∇v(s)|2)ds,

this condition amounts to the following coupled PDEs:{
−2αuxx − 2αuyy = 0
−2αvxx − 2αvyy = 0.

(A.1)

Now, considering a div-curl regularization

Hreg(d) =
∫

Ω

(
α div2d(s) + β curl2d(s)

)
ds, (A.2)

the Euler-Lagrange equations reads:{
−2αuxx − 2βuyy − 2(α− β)vxy = 0
−2βvxx − 2αvyy − 2(α− β)uxy = 0.

(A.3)

When α = β, these equations are the same as (A.1)

A.2 Robust penalization

The main objective of robust estimators is to impose a different penalization for coherent and
incoherent data: when the error to minimize is small (e.g. data are in accordance with underlying
assumptions), the robust function tends to the L2 quadratic norm; when this error is high (e.g.
presence of outliers), it tends to attenuate the contribution of the error term (and then to be
softer than the quadratic function). Figure A.1 presents a possible shape of such function (the
Leclerc penalty function: f1(x) = 1− exp(−τ1x

2)).
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Figure A.1: Comparison of the shape of the Leclerc robust penalisation (bottom) (with τ1 = 1)
vs the quadratic one (top)

The choice of robust penalty functions needs to define the parameter τ1 and generally makes
the problem non-quadratic. The specific minimization problem we face is classically turned into
an augmented half-quadratic minimization problem Holland & Welsch (1977). Indeed, with all
robust penalty functions f such that f(√.) is concave (as the Leclerc one), we have the property
that:

f(x) = min
z∈(m,M ]

zx2 + ψ(z), (A.4)

where M = lim0+
f ′(x)

2x , m = lim+∞
f ′(x)

2x , and ψ, for which an expression can be found in Black &
Rangarajan (1996); Geman & Reynolds (1992), is such that the minimizer on the right-hand-side
is given by z = f ′(x)

2x .
Using (A.4), each minimization problem of the generic form minx

∑
k f(gk(x)) can be re-

placed by the auxiliary problem minx,{zk}
∑

k zkg
2
k(x)+ψ(zk), which can be solved by iteratively

re-weighted least squares (IRLS) Holland & Welsch (1977): for fixed auxiliary (weight) variables
zk ∈ (m,M ], one faces a least-squares problem; for fixed x, the optimal value for each weight is
known in closed form as f ′(gk(x))

2gk(x) . This process is done until convergence.
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