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; COROF1, a collaborative correlation -variational approach for robust optical flow estimation (Héas et al., 

Introduction

In this chapter we describe the global objectives of the evaluation, the fluid mechanics database designed for the FLUID project, the global procedure of evaluation of WP2, WP3 and WP4, and the goal of the preliminary evaluation of the WP2 presented in this document.

Evaluation objectives

The aim of the evaluation is to present, discuss and analyze the results from the different algorithms on the image database. Detailed and quantitative comparisons will be undertaken in order to provide a feedback to improve the different methods. The comparison of the results obtained by the different approachs will be performed and presented at the next meetings and in the the deliverables D5.1 to D5.6. Statistical quantities and spectra will be looked at in order to evaluate the capability of the methods to analyse 2D and 3D turbulent flows. The database is composed of simple analytical flows, 2D and 3D turbulent flows, couple of images and time resolved image sequences, particle and scalar images.

Fluid mechanics database for the evaluation

A database of particle and scalar images was designed for analysis. All images in this database are suitable for variational approaches. Correlation analysis can also be done except maybe for scalar images. The database is organized in three packages. Details on the characteristics of flows and images are given in the documents, delivered by Johan Carlier (.FlUID-website ./WP01/package 02 readme Cemagref.pdf).

The first group is composed of simple analytical solutions. a Large Eddy Simulation (LES) of the wake of a circular cylinder at Re = 3900.

According to the recommendations of the first review of the FLUID project, a new case (case D2) will be provided. This case will include a reference flow solution obtained using the result of an optimized experiment (zoom in the flow, high image quality). Then the data set containing images for the analysis will be acquired in more realistic situations (non-optimal conditions: limited spatial resolution, constrast etc.).

Database location

The data of the different cases have been provided either on the FLUID website or on portable hard-disks (USB-HDD) sent to each group involved in the project. Tasks of workpackages 2, 3 and 4 will be evaluated with the database presented above. The first group can be used by developpers to provide simple validations of their methods. These images include divergence and rotational free flows (potential flows), which can show immediately the capability of the algorithms to estimate correctly these quantities. The case A7 provided by LaVision, including differents degrees of local flow gradients without and with varying degrees of image noise, can show immediately in a visual as quantitative way the strengths and weaknesses of the algorithms.

According to the recommendations of the first FLUID project review, mainly groups 2 and 3 will be considered for the evaluation procedure. Indeed, the validation will be focused on the cases considering turbulent flows, obtained with experiments or numerical simulations. The case G including 3D-synthetic data will also be considered since it contributes to innovative aspects in the project (evaluation of 3D3C methods).

Depending on the different cases the ground truth will be provided by analytical expressions, DNS/LES solutions, controlled PIV measurements or hot-wire anemometry measurements.

Format of results

The results of the analysis have to be provided by contributors in ASCII format compatible with gnuplot and tecplot : (x, y, u, v, w, flag) with a tab character to separate each column and a blank line (carriage return) to separate each block of y fixed coordinates. The results have to be given in pixel units with the origin on the bottom left border of the image. x, y and flag (optional) have to be in integer format. u, v and w have to be in float format (simple precision).

If your method provides vectors with subpixel location, x and y can be given in float format (simple precision). The optional flag can be provided if you want to give information on each individual vector. The flag definition should be provided in a separate file. An example of file structure is presented below.

# If you want to add a comment. x1 y1 u v w f x2 y1 u v w f . . . xn y1 u v w f x1 y2 u v w f x2 y2 u v w f . . . xn y2 u v w f ... x1 ym u v w f x2 ym u v w f . . . xn ym u v w f
An acronym and a number must appear in the name of all the files you will provide. For instance a00001 cvgpr 01.txt contains the vector map of the computation 01 obtained by CVGPRgroup from the set of images a00001a.tif and a00001b.tif. If you have different methods or if you use different parameters, use the number after the acronym to distinguish them. Define this number in a separate file.

Evaluation of 2D2C methods

Compute cases A7, B, C1, C2, C3, D1, E2 and F.

Evaluation of time resolved methods

Compute cases C1, C2, C3, E2 and F.

Evaluation of 3D3C methods

Compute cases E1, G1, G2, G3, G4, G5. Case D1: In order to reduce the computational time and the size of the results you can crop the images before computation. With the origin of the image coordinate system on the bottom left, crop the image from (275, 0) (bottom-left) to (787, 1024) (top-right).

Evaluation of workpackage 2

This section describes briefly the approaches to evaluate and the database considered for this preliminary evluation. Depending on the database considered the obtained results were compared with the information provided by correlation techniques1 , hot-wire anemometry and direct numerical simulations.

Approaches evaluated

Database considered

OF1 approach was evaluated in three steps. First we used a set of data available from the very beginning of the FLUID project (experiments in a plane turbulent mixing layer and in the near wake of a circular cylinder, synthetic image of the visualization society of japan (VSJ)). Then, we participated to the PIVChallenge 2005. And finally, the database of the FLUID project was used (cases C1a, C1b and D1).

OF2 approach was evaluated with the database of the FLUID project (cases C1a, C1b and D1).

COROF1 approach was evaluated with the database of the FLUID project (cases C2, D1 and F). In a preliminary evaluation, the database of the PIVChallenge 2005 (case B from C. Kaehler) was used [START_REF] Heitz | evaluation of the tasks of the workpackage 2, Fluid project deliverable 5.1. European Project 'Fluid image analisys and description[END_REF].

Chapter 2

Database description

This chapter describes the database used to perform the evaluation of the workpackage 2. §2.1, §2.2 and §2.3 present a set of data available from the very beginning of the FLUID project and used to evaluate OF1 approach. §2.4 present three cases of the PIV Challenge 2005 used to evaluate OF1 and COROF1 approaches. Finally, §2.5 and §2.6 describe cases C1a, C1b, C2 and D1, designed for the FLUID project, and used to evaluate OF1, OF2 and COROF1 approaches.

Experiments in a turbulent plane mixing layer

The mixing layer studied here was generated in a closed circuit, subsonic wind tunnel R300 of the CEAT (Centre d' Études Aérodynamiques et Thermiques, University of Poitiers, France). This wind tunnel has a square test section of cross-sectional dimensions 300 mm × 300 mm and length 2 m, with a contraction ratio of 10. The one stream blow generated by a fan is divided by a splitter plate in two separated streams flowing through two different head loss devices, followed by fine mesh screens, and are jointly released at the end of the splitter plate to give a two-stream flow with low initial turbulence level. Tripping wire were used on both sides of the splitter plate to ensure a rapid and uniform transition of the boundary layer well upstream of the trailing edge. Hence, the mixing layer was initially turbulent. Wind-tunnel ceiling was tilted to achieve a negligible streamwise pressure gradient. For more details about the facility, the reader can refer to [START_REF] Heitz | Etude expérimentale du sillage d'un barreau cylindrique se développant dans une couche de mélange plane turbulente[END_REF]. The velocity ratio of the two streams r = U a /U b (U a = 9 m s -1 and U b = 6 m s -1 ) was 0.67 with an average advective velocity U m = (U a + U b )/2 of 7.5 m s -1 . The turbulence intensity corresponding to free stream velocity is less than 0.3%. The location of the origin of the x axis corresponds to the position where the vorticity thickness of the mixing layer δ ω equaled 15 mm and was found 240 mm downstream of the trailing edge of the splitter plate. In all the figures presented in chapter 4 this value was employed to reduce x and y coordinates.

Experiments in the wake of a circular cylinder at Re=3000

The experiments in the near wake of a circular cylinder were carried out in a small opened wind tunnel of the Cemagref (Center of Rennes -France), having a test section 142 mm wide 142 mm high, and 1100 mm long. The wind tunnel consists of a blower supplying air to a conditioning system composed of a honeycomb and a porous media (foam) followed by a 2:1 contraction, which provided a free-stream uniformity and a turbulence intensity less than 0.1%. The flow velocity was 4.5 m s -1 . The circular cylinder had a cross-sectional diameter D = 10 mm and a length L = 142 mm, giving an aspect ratio of L/D = 14.2. The value of the Reynolds number based on the diameter D was Re = 3000. The cylinder was mounted vertically and no end plates were used to limitate end effects.

VSJ standard image-pairs

The Visualization Society of Japan (VSJ) developed in 1999 PIV standard images and PIV guide tools in order to popularize the PIV techniques. Within this project, many synthetic PIV image sequences, called "Standard Images", were generated along with the corresponding ground truth velocity vector fields in a wide variety of controlled conditions [START_REF] Okamoto | Standard images for PIV[END_REF]. They are available on the internet. The parameters of the eight standard situations tested in this paper are listed in table 2.1 and represent : the number N of particles that are present in the images, the particle diameter D m associated to its standard deviation D s , the average image velocity v m and the out-of-plane velocity w m . Compared to image pair #1, the pairs #2 and #3 differ only with respect to the magnitude of the flow field; the image pairs #4 and #5 have only different number of particle; the pairs #6 and #7 have particles with a different diameter while the pair #8 has a high out of plane velocity. Some results on these images are available in the literature [START_REF] Quénot | Performance evaluation of an optical flow technique applied to PIV using the VSJ standard images[END_REF][START_REF] Ruhnau | Variational optical flow estimation for particle image velocimetry[END_REF]. We used the relative L 1 norm error (L 1 norm of the difference between the correct and computed velocities in pixels/frame divided by the average in-plane velocity) to compare the different motion fields.

N T v m w m D m D s #1 4000
33 7.39 0.017 5.0 1.4 #2 4000 100 22.4 0.058 5.0 1.4 #3 4000 10 2.24 0.006 5.0 1.4 #4 10000 33 7.39 0.017 5.0 1.4 #5 1000 33 7.39 0.017 5.0 1.4 #6 4000 33 7.39 0.017 5.0 0.0 #7 4000 33 7.39 0.017 10.0 4.0 #8 4000 33 7.39 0.170 5.0 1.4 

PIV Challenge 2005

The Cemagref, in collaboration with INRIA, have submitted a dense optical flow method dedicated to fluid flows to the PIV challenge 2005. This challenge which aims at comparing different motion estimator for images of fluid flows seeded with particle held in Pasadena, California in September 2005 (http://www.pivchallenge.org/). Three cases were used for this preliminary evaluation: case A2 from M. Stanislas based on a synthetic turbulence with a spectrum slope equal to -3; case A3 from M. Stanislas based on the direct numerical simulation of a stratified flow; case B from C. Kaehler based on a DNS and simulating a time resolved PIV in a channel.

DNS of 2D turbulence

The main interest of a synthetic image sequence database of numerically generated 2D turbulent flow fields is the knowledge of the exact solution along the time for flow with a large scale range in the energy spectrum. For this purpose, DNS was perfomed to solve particle and scalar transport in 2D sustained turbulent flow by the Cemagref. The general description of the code can be found a document available on the FLUID project web-site (./WP01/package 02 readme Cemagref.pdf). The vorticity and scalar equations are solved in Fourier space using dealiased Fourier expansions in two directions with periodic boundary conditions. The time integration is thirdorder/three steps with a Runge-Kutta scheme. The code is called pseudo-spectral.

The coordinates of the particules are solved in the physical space inside the vorticity equation computation using the same Runge-Kutta scheme in order to use the intermediate velocity components u and v. However, an interpolation (bicubic) of the velocity field has to be applied as the particles are not supposed to be located on the nodes of the grid.

For the FLUID project, sustaining turbulence along the time is of great interest to allow time averaging of statistical quantities in the post-processing, for evaluation purposes. Then, the vorticity equation was slighty modified with a forcing term proportional to the vorticity and random on the Fourier coefficients, and a friction term added only for the first modes. That resulted in enstrophy injection dissipated by small scale and the energy injection dissipated by large scales (see figure 2.1). 

log E(k) E ( k ) ∼ β 2 / 3 k - 3 Direct enstrophy cascade Enstrophy dissipation log k E ( k ) ∼ 2 / 3 k -5 /

Experiments in the wake of circular cylinder at Re=3900

This section describes a 2D-2C PIV experiment carried out in one of the wind tunnels of the Cemagref (Rennes Regional Centre). 

Wind tunnel

The sketch (in front view) of the wind tunnel used in this experiment is presented in Fig. 2.3. The aeraulic circuit is mainly made of a centrifugal fan, a diffuser, a plenum chamber with honey comb and grids, a convergent with a contraction coefficient of 4 and a testing zone with transparent walls. The testing zone is squared in cross section with 280 mm of with dimensions and 100 cm in length. The upper wall is slightly tilted to suppress the longitudinal pressure gradient. The flow velocity can be chosen continuously between 1 and 8 m. s -1 with a good stability. The uniformity of the velocity profile at the entrance of test section was checked by hot-wire anemometry. The free stream turbulence intensity was less than 0.5%. The temperature was kept within ±0.2 • C by using an air-water heat-exchanger. with 2 thin rectangular end plates. The distance between the end-plates was 240 mm providing an aspect ratio L/D = 20. The clearence between the walls and the end-plates was about 20 mm which was much larger than the thickness of the boundary layer on the wall. The blockage ratio was 4.3%. The circular cylinder was mounted horizontaly at 3.5D from the entrance of the testing zone.

The reference frame is direct and the origin is located at the center of the cylinder. The longitudinal x-axis is the testing zone axis of the wind tunnel, y-axis is normal to the wake central plane (symmetry plane) and z-axis is the cylinder axis. u, v and w are the velocity components related to x, y and z axis respectively.

Measurements

2D-2C PIV experiments (2 in-plane velocity components in a plane field) were carried out with NewWave Solo 3 Nd-YAG laser (Energy by pulse of 50 mJ) and a SensiCam PCO cameras (CCD size of 1280 × 1024 px 2 and dynamics of 12 bits). The laser sheet was produced by means of a Rodenstock telescope and a cylindrical lens. The diameter of the particle seeding (diluted polyglycol in water) was less than 10 µ m. The measurement area was located in the near wake and at 30D behind the circular cylinder, in the plane z = 0. The camera was located perpendicularly to the laser sheet at a distance of 100 cm. For the mounted lens, the focal length was 105 mm with an aperture of 5.6. The resulting field of view was about 8D × 6.4D. The freestream velocity was adjusted at 4.8 m. s -1 so that the Reynolds number Re D be 3 900 (Reynolds number based on the free stream velocity U e, the cinematic viscosity ν and the diameter of the circular cylinder D). 5 000 image pairs were obtained with a time interval of 200 µ s. To give an idea of the flow structure, Fig. 2.4 shows a modified velocity field where a constant velocity component was substracted (calculated with a classical PIV algorithm).

Set of images delivered

5 000 image pairs were delivered in TIF-format with 16 bits in depth1 (see Tab. 2.4). The exact image size is 96.38 mm in length (1 280 px) and 77.03 mm in height (1 024 px).

Case n o Description Directory D1

Exp. far wake USB-HDD ./package 02/exp wake/ D2

Exp. near wake Table 2.4: Case considered in the present evaluation

Slightly turbulent air flow

The images show a slightly turbulent air flow with small water droplets with a diameter of about 5 µ m. The sequence has been recorded with a Photron APX camera with 1024 × 1024 px running at 1 khz. The field of view is about 7 × 7cm 2 . The sequence has been selected to show typical problems in PIV recordings. The seeding density is quite inhomogeneous even with regions without any seeding particles. 

Description of the methods

This chapter describes the differente approaches evaluated. §3.1 presents a dense estimator with fluid dedicated optical flow, named OF1 in the present document. §3.2 presents a variational motion estimation for incompressible flows, named OF2 in the present document. §3.3 presents a collaborative scheme for robust optical flow estimation, named COROF1 in the present document.

Dense estimation with fluid dedicated optical flow

The optical flow scheme presented below and evaluated in 4.1 was proposed by INRIA. This section is a part of [START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF].

Obtaining the optical-flow consists in estimating a dense motion field from two consecutive images. As previously mentioned, many methods have been proposed the last two decades to estimate such an optical-flow. Most of them are based on the seminal work of Horn & Schunck (1981a). In this section, optical-flow methods will then refer to this latter definition. 

Generic optical-flow estimator

The most accurate techniques to address the generic problem of estimating the apparent motion from image sequences are based on the seminal work by Horn & Schunck (1981a). These techniques are based on the minimization of a global cost function H composed of two terms. The first one, named "observation term", is derived from a brightness constancy assumption and assumes that a given point keeps the same intensity along its trajectory. It is expressed through the well known optical flow constraint equation (ofce):

H obs (E, v) = Ω Ψ 1 ∇E(x, t) • v(x, t) + ∂E(x, t) ∂t dx, (3.1) 
where v(x, t) = (u, v) T is the unknown velocity field at time t and location x = (x, y) in the image plane Ω, E(x, t) is the image brightness, viewed for a while as a continuous function. This first term relies on the assumption that the visible points conserve roughly their intensity in the course of a small displacement.

dE dt = ∇E • v + ∂E ∂t ≈ 0. (3.2)
The associated penalty function Ψ 1 is often the L 2 norm. However, better estimates are usually obtained by choosing a "softer" penalty function [START_REF] Black | Recursive non-linear estimation of discontinuous flow fields[END_REF]Mémin & Pérez, 1998a). Such functions, arising from robust statistics [START_REF] Huber | Robust Statistics[END_REF], limit the impact of the many locations where the brightness constancy assumption does not hold, such as on occlusion boundaries. Appendix A.2 briefly presents the robust estimators used. This single (scalar) observation term does not allow to estimate the two components u and v of the velocity. In order to solve this ill-posed problem, it is common to employ an additional smoothness constraint H reg . Usually, this second term enforces a spatial smoothness coherence of the flow field. It relies on a contextual assumption which enforces a spatial smoothness of the solution. This term usually reads:

H reg (v) = Ω Ψ 2 |∇u(x, t)| + |∇v(x, t)| , (3.3) 
As with the penalty function in the data term, the penalty function Ψ 2 was taken as a quadratic in early studies, but a softer penalty is now preferred in order not to smooth out the natural discontinuities (boundaries, ...) of the velocity field [START_REF] Black | Recursive non-linear estimation of discontinuous flow fields[END_REF][START_REF] Cohen | Non uniform multiresolution method for optical flow and phase portrait models: Environmental applications[END_REF][START_REF] Kornprobst | Image sequence analysis via partial differential equations[END_REF]Mémin & Pérez, 1998a). Based on (3.1) and (3.3), the estimation of motion can be done by minimizing:

H(E, v) = H obs (E, v) + αH reg (v) = Ω Ψ 1 ∇E(x, t) • v(x, t) + ∂E(x, t) ∂t dx+ α Ω Ψ 2 |∇u(x, t)| + |∇v(x, t)| , (3.4) 
where α > 0 is a parameter controlling the balance between the smoothness constraint and the global adequacy to the observation assumption.

Due to its differential nature, the relation in (3.1) is only defined for infinitesimal displacements. To handle large displacements it is common to use the expression (3.1) of the brightness conservation in an integrated way:

E(x + d(x), t + ∆t) -E(x, t) ≈ 0, (3.5)
where ∆t is the temporal sampling rate and d(x) is the displacement from time t to t + ∆t of the point located at position x at time t. This new form, valid whatever the magnitude of d(x) be, is however highly nonlinear in the unknown vector. As a consequence, almost all studies resort to a succession of linearizations around a previous estimate d(d

) (d(x) = d(d) + h(x))
embedded within a multiresolution scheme (using a bilinar interpolation for the projection). The new cost-function to be minimized with respect to the displacement increment h reads then:

H(E, h) = Ω Ψ 1 ∇E(x + d(x), t + ∆t) • h(x) + E(x + d(x), t + ∆t) -E(x, t) + αΨ 2 |∇( d + h)(x)| .
(3.6)

The associated successive minizations are usually performed using efficient iterative methods (Mémin & Pérez, 1998a;Mémin & Pérez., 2002).

It is important to outline that such an estimator defined as the minimizer of H is generic. It is only based on the assumption of luminance conservation and of first-order spatial smoothness of the motion. Even if this kind of estimator has been successfully used for fluid motion [START_REF] Bannehr | A functionnal analytic method to derive displacement vector fields from satellite image sequences[END_REF][START_REF] Cohen | Non uniform multiresolution method for optical flow and phase portrait models: Environmental applications[END_REF][START_REF] Larsen | Estimation of dense image flow fields in fluids[END_REF][START_REF] Mémin | Fluid motion recovery by coupling dense and parametric motion fields[END_REF][START_REF] Ruhnau | Variational optical flow estimation for particle image velocimetry[END_REF][START_REF] Wallace | The measurement of vorticity in turbulent flows[END_REF], the underlying assumptions are far from being sound hypothesis for such an applicative domain. As a matter of fact, image sequences representing fluid phenomena exhibit areas where the luminance function undergoes high temporal variations along the motion. These areas are often the centre of tridimensional motions that cause the appearance or the disappearance of fluid matter within the bidimensional visualization plane. These regions are in addition associated to divergent motions which influence greatly the shape of the velocity field in large surrounding areas. An accurate estimation of the 2D apparent motion in such regions is therefore of the highest importance and is hardly possible with the optical-flow constraint. 

Fluid dedicated optical-flow estimator

Continuity equation and data model

Instead of sticking to the intensity conservation assumption, the data-model that has been considered relies on the continuity equation:

∂χ ∂t + div(χv) = 0, (3.7) 
where χ denotes the density of the fluid, v its 3D velocity and divv = ∂u ∂x + ∂v ∂y + ∂w ∂z stands for the divergence of the vector field v = (u, v, w). Simple manipulations yield the alternative writing: [START_REF] Amini | A scalar function formulation for optical flow[END_REF]. In all these cases, this model has been proved to represent an alternative to standard luminance constancy assumption. The use of continuity equation for image sequences analysis relies on two hypotheses. First, the luminance function is assumed to be directly related to a passive quantity transported by the fluid. Secondly, the continuity equation which holds in 3D, is assumed to hold as well for the bidimensional motion field captured by the image sequence. This latter assumption has been theoretically established in the case of transmittance imaging by [START_REF] Fitzpatrick | The existence of geometrical density-image transformations corresponding to object motion[END_REF] and extended by [START_REF] Wildes | Physically based fluid flow recovery from image sequences[END_REF]. The first assumption is difficult to validate, especially in meteorological images due to the complexity and the heterogeneity of the underlying physical processes. Nevertheless, as shown by several works, the use of the continuity equation in the case of meteorological data is appealing [START_REF] Béréziat | A generalized optical flow constraint and its physical interpretation[END_REF][START_REF] Zhou | Fluid structure and motion analysis from multispectrum 2D cloud images sequences[END_REF]. As the brightness consistency is obviously not verified in that type of images, the continuity equation provides an interesting alternative data-model. Instead of expressing a point-wise conservation of the luminance along the motion, this alternative model assumes the conservation of the total luminance of any moving element of the image. This constraint reads:

dχ dt + χdivv = 0. ( 3 
dE dt + Edivv = 0. (3.9)
However, as ofc-based data models, a data-model based on the continuity equation is highly sensitive to the presence of noise and is very likely not to hold everywhere. Also, due to its differential nature, the continuity equation is not valid in case of large displacements. In fact, this equation concerns the velocity v and not displacement [START_REF] Nomura | Field theory approach for determining optical flow[END_REF]. Unlike the brightness constancy expressed as E(s + d(s), t + ∆t) -E(s, t) = 0, which is explicitly based on displacement, the continuity equation (3.9), as it stands, cannot serve as the basis of an incremental data-model embedded in hierarchical estimation schemes. To cope with this problem, let us assume that the velocities are constant between the instants t and t + ∆t. In that case, equation (3.9) constitutes a simple first-order differential equation which can be integrated from time t to time t + ∆t along trajectories. Setting ∆t = 1 for notational convenience, and incorporating the integral constraint thus obtained in a robust penalty function yields a new data-term: 

H obs (d) = Ω Ψ 1 (E (s + d(s), t + 1) exp (divd(s)) -E(s,
H obs (h) = Ω Ψ 1 exp(div d(s)) ( Ẽ(s)∇div d(s) + ∇ Ẽ(s)) • h(s) + Ẽ(s) -E(s) ds, (3.11) 
where h = dd, and we introduce the compact notation Ẽ(s) = E(s + d(s), t + ∆t). We now turn to the definition of the smoothness prior to be used in conjunction with this new data energy term.

Second order Div-Curl regularization

By using Euler-Lagrange conditions of optimality, it is readily demonstrated (see appendix A.1) that the standard first-order regularization functional :

H reg (v) = Ω |∇u(s)| 2 + |∇v(s)| 2 ds
is equivalent from the minimization point of view, to the so-called div-curl regularization functional (Suter, 1994a):

H reg (v) = Ω div 2 v(s) + curl 2 v(s) ds, (3.12) 
where divv = ∂u ∂x + ∂v ∂y and curlv = ∂v ∂x -∂u ∂y are respectively the divergence and the vorticity of the motion field v = (u, v).

A first-order regularization therefore penalizes the amplitude of both the divergence and the vorticity of the vector field. For fluid motion estimation, this does not seem appropriate since the apparent velocity field normally exhibits compact areas with high values of vorticity and/or divergence. In addition, an under-estimation of the divergence would be all the more problematic in our case, because the data model includes an explicit use of this quantity. For these reasons, it seems more appropriate to rely on a second-order div-curl regularization [START_REF] Gupta | Stochastic models for div-curl optical flow methods[END_REF]Suter, 1994a):

H reg (d) = Ω |∇divd(x)| 2 + |∇curld(x)| 2 ds. (3.13)
This regularization tends to preserve the divergence and the vorticity of the displaced motion field d to estimate. Nevertheless, this new term is more difficult to implement. As a matter of fact, the associated Euler-Lagrange equation is composed with two fourth-order coupled pde's, which are tricky to solve numerically. In order to simplify the problem we have considered a modified smoothness term based on the same principles. This new smoothness term has been built by introducing auxiliary functions in the original 2 nd order div-curl regularization:

H reg (d, ξ, ζ) = α Ω |divd -ξ| 2 + λ ∇ξ 2 + α Ω |curld -ζ| 2 + λ ∇ζ 2 . (3.14)
The new auxiliary scalar functions ξ and ζ can respectively be seen as estimates of the divergence and the vorticity of the unknown motion field, and λ is a positive parameter. The first part of each integral encourages the displacement to comply with the current divergence and vorticity estimates ξ and ζ, through a quadratic goodness-of-fit enforcement. The second part equips the divergence and the vorticity estimates with a first-order regularization favoring piece-wise smooth configurations. Getting rid of the auxiliary scalar fields ξ and ζ in (3.14) (by setting ξ = divd and ζ = curld) would amount to the original second-order div-curl regularization (3.13).

From a computational point of view, regularizing functional (3.14) only implies the numerical resolution of first-order pde's at the expense of course of new variables. This reformulation authorizes to use nearly the same optimization strategy involved in generic optical flow estimator. Interested readers may refer to Corpetti et al. (2002b) to get precise descriptions on the optimization strategy and on associated numerical implementation issues.

Minimization issue

We now turn to the minimization issue of the whole energy function H = H obs + αH reg . Two main sets of variables have to be estimated. The first one is the motion field d, and the second one consists in the two scalar fields ξ and ζ. The estimation is conducted alternatively by minimizing H obs + αH reg with respect to d, ξ and ζ:

min h,ξ,ζ H obs (h) + αH reg (h, ξ, ζ), (3.15)
For the motion field d, the use of a robust penalty function in the observation term yields to an iteratively re-weighted least squares minimization with the estimation of outliers data z (see Appendix A.2). Concerning ξ and ζ, we have a linear least-square problem. A Gauss-Seidel solver was used for all linear least-square minimizations. The process is considered to be finished when the relative change in the L 2 -norm of h is below 1%.

The minimization process is summarized below:

• d ≡ 0 • From coarsest to finest resolution do • h ≡ 0, ξ ≡ 0, ζ ≡ 0, z ≡ 0 • Until convergence do a b c
• Estimation of h with robust functions :

h ← GS Ω z(x)g 2 (h) +α|div d(x) + divh(x) -ξ(x)| 2 +α|curl d(x) + curlh(x) -ζ(x)| 2 dx • Update z(x) (see appendix A.2 for details): z(x) ← τ 1 exp -τ 1 g 2 (h)
• Estimation of ξ :

ξ ← GS Ω |div d(x) + divh(x) -ξ -(x)| 2 +λ Ω ∇(ξ(x) 2 dx • Estimation of ζ : ζ ← GS Ω |curl d(x) + curlh(x) -ζ(x)| 2 +λ Ω ∇ζ(x) 2 dx (3.16)
• If not finest resolution, pass d ← d + h to next resolution.

• If finest resolution, d ← d + h.
a Convergence is reached when the relative change in the L2-norm of h is below 1%.

b g(h) denotes exp(div d(x)) `( Ẽ(x)∇div d(x) + ∇ Ẽ(x)) • h(x) + Ẽ(x)
´-E(x). c "GS()" denotes one Gauss-Seidel iteration on the quadratic form under consideration.

Let us now have a particular attention to the minimization w.r.t the motion field h (first equation of (3.16)). For better and faster convergence, the minimization with respect to the incremental displacement field h at a given resolution is performed using the coarse-to-fine multi-parametric multigrid framework technique introduced in Mémin & Pérez (1998b).

More precisely, the motion is constrained to be piecewise-parametric relatively to an image partition which becomes finer and finer. At a "grid" level (named ), the pixel grid is partitioned in blocks B n of size 2 × 2 , and the increment field is constrained to satisfy a chosen parametric model. In practice, until the penultimate grid level, the affine parametrization is chosen (i.e: (u, v) T = 1 x y 0 0 0 0 0 0 1 x y Θ). The last level = 0 corresponds to the pixel grid itself: when it is finally reached, no parametric constraint applies anymore. At each given level, the cost terms to be minimized must be rewritten in function of the parameter vectors (Θ). This symbolic rewriting is explained in Mémin & Pérez (1998b). The estimation at the coarsest grid-level is fast because the space of solutions is of reduced dimension. It serves as a reliable initialization for the next level, yielding to this new computation more efficiency , and so on until the pixel grid itself. The combination of the multiresolution and the multigrid techniques partly makes possible to prevent from stopping the process of minimization in a local minimum. More details of the minimization issues can be seen in Corpetti et al. (2002b).

Variational Motion Estimation for Incompressible Flows

The optical flow presented in this section was proposed by the CVGPR group ( where in this work the high-order regularization term Reg(u; λ) is given:

Reg(u; λ) = λ 1 ∇ div u 2 + λ 2 ∇ curl u 2 + λ 3 ∂ n u n 2 . (3.18)
Here the first term penalizes the smoothness of divergence field and the second penalizes the variance of curl field. The last term regularizes the smoothing boundary flows which is important for the numerical stabilities. For the 2D divergence-free flows, the motion field u can be simply expressed by u = ∇ ⊥ ψ.

and the penalties for variance of divergence, i.e. ∇ div u 2 , in the regularization terms is simply droped out. Hence the optimization problem (3.17) is reduced into

min ψ g 1 (x + ∇ ⊥ ψ) -g 2 2 + λ 1 ∇ ψ 2 + λ 2 ∂ n (∇ ⊥ ψ) n 2 (3.19)
where velocity estimation is based on one scalar potential field ψ. In order to keep the incompressible condition, the mimetic finite difference method is used to formulate the estimation problem in finite dimensional space (see Fig. 3.1). In the correspondent discrete expression, the velocity field can be represented:

u = G ⊥ ψ, u ∈ H S , ψ ∈ H P
where H P,V,S,E are related discrete function spaces which are well defined in the mimetic finite difference method. And the minimization problem is written as:

min ψ I 1 (x + G ⊥ ψ) -I 2 (x) 2 H V + λ 2 G C ψ 2 H E + λ 3 P G ⊥ ψ 2 bc (3.20)
where the respective matrix P presents the operator ∂ n in last regularization term and • bc is the norm evaluating elements along the boundary. The advantages of such discrete incompressible expression is that we can reduce nearly half the number of unknown values and at the same time the divergence-free condition is well kept implicitly.

In practice, a multi-level computation framework is implemented in order to capture the large displacements. Two image pyramids {I l i } l=1,...,m , i = 1, 2, are constructed. l = 0 denotes the original image, and l = m denotes the coarsest level. At level l, given potential fields ψl , and the velocity field ũl = G ⊥ ψl , image I l 2 is warped to Ĩl 2 = I l 2 (x -ũl ). The image flow between the two images Ĩl 1 and I l 2 is assumed to be small enough to allow for accurate linearization: The residual motion field u l , in terms of G ⊥ ψ l , is estimated by solving the problem min

∂ t I l = I l 1 -Ĩl 2 (3.21) ∆ l u = G * I l 1 • (u l -ũl ) (3.22) ∆ l ψ = G * I l 1 • (G ⊥ (ψ l -ψl )). ( 3 
ψ l = ∆ l ψ + ∂ t I l 2 H V + λ 2 G C ψ l 2 H E + λ 3 P G ⊥ ψ l 2 bc (3.24)
The minimizer ψ l and u l are postprocessed to yield the initialization ψl-1 and ũl-1 of the next finer level l -1. The whole process is started at the coarsest level m with ψm = 0 and ũm = 0, and looped until the finest level l = 0.

Collaborative scheme for robust optical flow estimation

In this section, we propose to design a novel approach that combine the robustness of correlation techniques with the high density of the global variational methods presented in §3.1. This results in a technique that is robust under noise and outliers, while providing a dense motion field. This 

Classical method

A clasical approach used with PIV imagery is correlation-based matching, which corresponds to the DFD constraint (see §3.3.2) associated to a locally constant field within a neighborhoods W (s). Thus, using a discrete space of vectors {w}, the velocity u at point s is obtained as

u(s) = arg min w r∈W (s) C(I(r + w, t + 1), I(s, t)), (3.25) 
where C(.) denotes a dissimilarity function. On one hand, these approaches suffer from several deficiencies : traceable features must be sufficiently contrasted and must persist over time on consecutive images. Furthermore, the estimation prone to erroneous spatial variability, which can be reduced with the use of filters. On the other hand, these techniques constitute very fast methods and are generally locally very robust to noise. These techniques are based on disjoint local estimation, and thus produce sparse vector fields estimated locally and independently.

Fluid dedicated optical flow method

The apparent motion, perceived through variations of image intensity I is called optical flow in the computer vision community. All optical flow estimation methods rely on the temporal conservation of some invariants. The most common are photometric invariant which can easily be extracted and may lead to dense measurements. In the case of PIV imagery for bi-dimensional flows visualization, the gray level constancy assumption can be assumed, leading to an integrated non-linear formulation called the Displaced Frame Difference (DFD) equation I(s+u(s), t+1) = I(s, t), or at time t, to a linear differential formulation called the Optical Flow Constraint (OFC) equation u(s).∇I(s) + I t (s) = 0, where s denotes the spatial coordinates (x, y) and u(s) the apparent motion field at this point and at a given time t. These two formulations can not be used alone, as they provide only one equation for two unknowns at each spatio-temporal location (s, t). This is the well known aperture problem where the so called normal flow to the brightness gradient is estimated while the tangential velocity component remains undetermined. In order to remove this ambiguity and robustify the estimation, one must rely on other assumptions. The main used assumption is local spatial or spatio-temporal constancy of the velocity fields [START_REF] Lucas | An iterative image registration technique with application to stereo vision[END_REF][START_REF] Bigün | Optical flow based on the inertia matrix in the frequency domain[END_REF].

Alternate approaches, derived in the framework proposed by Horn & Schunck (1981b), have the great advantage of producing dense vector fields with spatial global coherence. They are based on the minimization of an energy function J = J d + J r composed of two terms. The first term J d is called the data term and implements the OFC equation

J d (u, I) = Ω φ[∇I(s).u(s) + ∂I(s) ∂t ]ds. (3.26)
The penalty function φ is usually the L 2 norm but it may be changed to a robust function attenuating the effect of data that deviate significantly from the OFC [START_REF] Black | The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields[END_REF].

The second term J r is called the regularization term. It is usually a standard first-order spatial smoothness term

J r (u) = α Ω φ( ∇u )ds, (3.27) 
where α > 0 is a parameter controlling the balance between the smoothness and the global adequacy to the brightness constancy assumption. Function φ may be the quadratic penalty if the searched solution is smooth everywhere or a robust norm function if one wants to handle implicitly the spatial discontinuities of the field [START_REF] Black | The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields[END_REF]. However in the case of fluid flows, it can be demonstrated that a first order regularization is not adapted as it favors the estimation of velocity fields with low vorticity. A second order regularization can advantageously be consider as proposed in (Suter, 1994b) :

J r (u) = α Ω φ( ∇ξ(s) 2 + ∇ζ(s) 2 )ds, (3.28) 
where ξ = curlu = ∂u ∂y -∂v ∂x and ζ = divu = ∂u ∂x + ∂v ∂y stand for the vorticity and divergence of the apparent velocity u = (u, v) T . Note that in the case of bi-dimensional incompressible flows, divergence of the apparent motion is equal to zero. To circumvent the difficulty of implementing second order smoothness constraint, this regularization term can be simplified in a computational point of view in two interleaved first-order div-curl regularizations based on an auxiliary variable ξ 1 and ζ 1 approximating the vorticity and the divergence of the flow (Corpetti et al., 2002a[START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF]). Thus we have :

J r (u) = α Ω φ[(ξ(s) -ξ 1 ) 2 + λ ∇ξ 1 2 ]ds (3.29) +α Ω φ[(ζ(s) -ζ 1 ) 2 + λ ∇ζ 1 2 ]ds, (3.30)
where λ is a positive regularization parameter.

Multiresolution approach

However, one major problem with optical flow estimators is large displacement estimation. The intensity function must be locally sufficiently close to a linear function. Since the larger the displacement the more narrow the linearity domain is, large displacements can not be recovered directly. A common way to overcome this limitation is to create a image pyramid, constructed by successive low-pass filtering and down sampling of the original images. In this framework, principal components of displacements are first estimated at coarse resolution where motion amplitude should be sufficiently reduced in order to satisfy the linearity requirement. Incremental displacement are then estimated while going down the pyramid, and the solution is refined [START_REF] Bergen | Hierarchical model-based motion estimation[END_REF]. However, since the multiresolution schemes estimates principal component displacements only at coarse resolutions where small structures are rubbed out, this approach enables the characterization of large displacements of small structures only in the case when their motion are close enough to the principal component's one. Another disadvantage characterizing the method is the additional noise incorporation due to the calculation of motion-compensated images at each resolution by the use of interpolation methods.

Collaborative correlation-optical flow scheme

To overcome the multiresolution limitations, we propose an alternative approach relying on a unique representation of the full resolution image. Thus, the proposed method tackles the non-linear estimation problem without making successive approximations in the calculation of interpolated images nor restricting itself to the characterization of large displacements of sufficiently large structures. The proposed method takes advantage of the non-linear formulation of the motion estimation problem within a differential framework appropriated for globalized local smoothings. More explicitly, large displacements of both, fine or large structures, can be recovered by correlation-based methods for sufficiently contrasted and persisting image regions. Thus, the idea of the method is to replace the coarse estimates of the multiresolution scheme by a dense large scale displacement estimate derived from a collection of correlation-based vectors u c obtained by Eq.3.25.

A new functional was defined to estimate de vector fields

J(u) = J d (I, u) + J r (u) + J c (u, u c ), (3.31) 
where J c (.) is the energy function constraining estimated displacements u to be close to a sparse correlation-based vector field u c . Thus, functional J c (.) is defined as a quadratic distance between the solution and a collection of correlation-based vectors u i c = (u i , v i ) located at the point s i = (x i , y i ) and influencing their neighborhood according to a bi-dimensional Gaussian N i (s) of mean s i and of variance σ

J c (u, u c ) = γ Ω L i=1 g i N i (s) u i c -u(s) 2 ds, (3.32) 
where g i and γ denote respectively the confidence and the functional weighting factors.

Chapter 4

Results

This chapter describes the results obtained for the evaluation of OF1 approach §4.1, OF2 approach §4.2 and COROF1 approach §4.3.

Dense estimation with fluid dedicated optical flow

This section presents the results obtained for OF1 approach with data images already available at the beginning of the project FLUID (the VSJ standard images §4.1.1, the mixing layer §4.1.2 and the near wake of a circular cylinder §4.1.3), with the images of the PIV Challenge 2005 (see §4.1.4) and with the first set of images of the FLUID project database (see §2.5 and §2.6). Compared to other methods the proposed approach gives better results for cases #1, #2, #5, #6, #7, #8. Results on case #4 are good for all techniques, with slightly better results for estimators A1 and A2. Nevertheless, as expected, the div-curl and ICE options (A4) are better than others combinations (A3, A5 and A6) with the same implementation method. Concerning case #3 (where the motion range is low), all estimators give important errors on the motion field. The bad results obtained with the proposed technique can be explained by i) the multiresolution process (which introduces errors due to bilinear interpolation and was not necessary in this case); ii) by the div-curl regularization (which seems to introduce more artifacts than the others methods) and iii) by the ICE constraint (the out of plane velocity is very small here and this option is likely to introduce a divergent motion at each change of illumination). Nevertheless, in practice, it is often possible to have an idea of the magnitude of the motion and to adapt the parameters. Case #2 is very interesting: referring to table 2.1, one can see that the velocity is very important (and as a consequence, the underlying vorticity too). Even if most of the presented approaches have a multiresolution implementation, all estimators equipped with a first order regularization seem to smooth the higher value of the curl and the div, yielding to high errors. Conversely, estimators with a div-curl smoothing (A4 and A6) give reliable results. The results on the important out-of-plane velocity in case #8 confirm that the proposed ICE is a correct choice. On this eight synthetic examples, the proposed method gives better results. We now turn to comparisons on two different types of real image sequences and compare our method with a classical PIV system. 

Results for the VSJ standard images

Results for the mixing layer

Instantaneous velocity field

Images of the same instantaneous vector field are shown in figure 4.2-(a) and in figure 4.3-(a), for Optical-flow and piv approach, respectively. Only one vector out of two hundred and twenty five were represented for Optical-flow. Results exhibit the footprint of the primary structures of the mixing layer. Based on vector fields both approaches gave comparable information but with higher density for Optical-flow. When compared with piv results, Optical-flow approach exhibited more localized information. Nevertheless, vorticity yielded more noisy contours and higher levels of vorticity. As mentioned in section 4.1.2, it might be possible that this noisy vorticity was due to the measurement noise in the input images.

Mean quantities

In a mixing layer, the mean streamwise velocity component can be expressed with the theoretical solution as:

U -U b U a -U b = 1 2 (1 -erf(ση)), (4.1)
where η = (y -y o )/(x -x o ) with (x o , y o ) the coordinate of the virtual origin of the mixing layer and where the spreading parameter σ is constant.

For each streamwise location x and for both approaches the experimental values fitted the theoretical solution. Results gathered in table 4.1 show that the spreading parameter σ adjusted from Optical-flow and piv treatment was of the order of 49.8 and 43.6, respectively. Optical-flow value compared well with the value of 52.7 obtain by [START_REF] Heitz | Etude expérimentale du sillage d'un barreau cylindrique se développant dans une couche de mélange plane turbulente[END_REF] with pitot tube measurements, while piv gave poor agreement. For both approaches, the evolution of the vorticity thickness δ ω , defined as δ ω = -∆U/(∂U/∂y) max where ∆U = U a -U b , supported the observation of a linear growth of the mixing layer. As for the spreading parameter, piv results exhibited a higher growth of the mixing layer. This behaviour can be explained by the interrogation interval in which the velocity estimated was an average value, in a region where there were high displacements gradients. To have a finer analysis, it is of primary interest to observe the superior order moments. To that end, the distribution of the Reynolds stress are represented in figure 4.4. Data were compared with Heitz (1999) fourth hot-wire measurements. Results show that piv approach gave a slight overestimation of u 2 and u v and a slight underestimation of v 2 . Optical-flow approach better fitted hot-wire measurements.

It should be noted that for piv and Optical-flow approaches the second order moments were computed with 520 samples, hence the Reynolds stress were not statistically converged values, whereas for hot-wire measurements more than 100000 samples were collected. As a consequence, we can say that both piv and Optical-flow approaches gave similar results in good agreement with the litterature.

Discussions of results

This first experience proved the ability of the OF1 method to recover dense motion fields from piv images. Main characteristics of the flow (mixing layer mean characteristics and second order moments) were recovered in a similar way with both approaches (piv and the proposed Optical-flow). A major difference between the two approaches was the number of vectors that the Optical-flow technique was able to extract. Furthermore, it should be noted that Opticalflow approach was able to extract more information (e.g. noisy) contained in the image than PIV approach did. Let us nevertheless remark that, from a time computation point of view, the presented method took nearly 120 s for the estimation of an instantaneous dense motion field on a PC-linux (2.8GHz, 1.5Go-RAM) whereas the estimation with the piv approach based on cross-correlation took only 15 s. Some interrogations came also about the level of the noise obtained in the vorticity fields from the Optical-flow method.

Results in the near wake of a circular cylinder at Re=3000

Instantaneous velocity field

Instantaneous velocity field and vorticity contours are shown in figures 4.5 and 4.6 for the proposed Optical-flow approach and for the piv approach, respectively.

The motion fields obtained from the two methods were very similar and correctly represented the physical phenomenon. Indeed, the main vortex launched in the middle of the image appears clearly in the velocity field as well as in iso-vorticity contours. In figures 4.5 and 4.6, these contours are very interesting to analyze. Indeed, it can be observed that both shared the main phenomena but that the major difference appeared in the spatial resolution, that of the optical flow approach being highly superior. This led to a better topological description of the near wake flow. Nevertheless, a more precise study on this over-information must be carried out to reach its relevance. A work on that subject is currently in progress. Let us notice, as we previously mentioned, that the higher quality of the input images used for this experiment (a 12 bit CCD Pelletier cooled camera vs a 8 bit one for the mixing layer) was probably responsible of the better results, in term of noise, of the vorticity map issued form the optical-flow velocity field.

- 

Mean quantities

In this section, all motion fields from the 540 pairs of images of the whole sequence were computed. For both methods, mean velocity fields and their corresponding streamlines are represented in figures 4.7 a and 4.7 b, respectively. At values of x/D greater than 1.5, the patterns of isocontours of the mean streamwise velocity remained roughly the same. At smaller values of x/D, the velocity pattern exhibits, however, slight differences in the description of the shear layers. Indeed, the same isovalue of the mean streamwise velocity, indicated a larger thickness of the shear layers with the Opticalflow approach than with piv. From the patterns of isocontours of the transverse mean velocity, represented in figures 4.7 and 4.7, it appeared that results obtained with Optical-flow approach were smoother than with piv. This indicated that with the same number of samples, or data images, the statistical quantities exhibited more converged values with Optical-flow than with piv. In figure 4.8, this behaviour was readily observed with second order moments, which converge later than first order moments. Furthermore, these smoother results were associated with a better symmetry across the wake centreline. These differences can be explained by the global regularization methods which is involved in the proposed algorithm and leads to homogeneous results, compared to piv which is a local approach giving a mean value to each considered area.

The better representation of the patterns of the mean quantities gives a better location of the different maxima of u 2 and v 2 which are characteristics of the vortex formation region. Two main approaches can be distinguished to extract the streamwise length of the recirculation region: the distance between the base of the cylinder and the point with null longitudinal mean velocity (U = 0) on the centreline of the flow (y = 0), called the bubble length (L R ), and the distance to the point where the (u 2 + v 2 ) quantity is maximum on the centreline, called the formation length (L f ). The latter criterion defined by [START_REF] Bloor | Measurements on turbulent vortices in a cylinder wake[END_REF] enables to compare results with single hot-wire cooling velocity measurements. Single hot-wire measurements were carried out with the wire parallel to the axis of the cylinder y-axis, so that measurements were more sensitive to the cross-flow induced by the formation of the Kármán vortices. Critical values along the wake centreline are presented in table 4.2. Results show that the bubble length was nearly the same for Optical-flow and piv methods, whereas the formation length was better determined with the former approach, close to hot-wire measurements, than with the latter one.

Presumably, this may be related to the better extraction, with Optical-flow schemes, of the vortices formed and launched in the very near wake, as it is shown in figure 4.6. It should be noticed that, due to the low aspect ratio (L/D = 14.2 without end plates), the critical values along the wake centreline yielded larger mean longitudinal velocity minimum and formation length than those observed when the aspect ratio was sufficiently large to be independent of this parameter.

To have a quantitative idea of the relevance of different results, we represent in figure 4.9 and 4.10 mean velocity and Reynolds stress profiles at two locations downstream of the cylinder (x/D = 1.56 and x/D = 3.6). For both algorithms, mean velocity distributions were in good agreement. Concerning Reynolds stress, the shape of all curves were quite similar. However, their local extrema were different. For x/D = 1.56, optical-flow underestimated the fluctuating velocity levels compared to piv. Let us recall that this region corresponds to the free shear layers spreading, which for the subcritical regime concerned, exhibits small vorticity thicknesses with large gradients. The proposed algorithm, which is based on a global regularization, uses a quadratic smoothness constraint H reg which enforces a spatial smoothness of the divergence and the vorticity of the motion field. This may explain the lower value of each extremum provided by the optical-flow estimator. Further improvements could be obtained using a robust penalty function Ψ 2 is the second part of the regularization term of equation (3.14) :

α Ω |divd -ξ| 2 + λΨ 2 ( ∇ξ ) + α Ω |curld -ζ| 2 + λΨ 2 ( ∇ζ )
Such a penalty term should be able to obtain better estimates of the motion fields and in particular to extract better local extrema of the Reynolds stress. Nevertheless, this form yields to the definition of an other threshold parameter. In order to quantify the effect of a robust penalty function, new research studies with dedicated experiments are currently in progress in our laboratories. For x/D = 3.6, the differences between the two approaches were consistent with the distinct estimation of the recirculation region, seen above for the formation length.

Hot-wire piv Optical-flow U min /U ∞ - -0.30 -0.29 L R /D - 2.70 2.73 L f /D 2.80 2.71 2.85
Table 4.2: Critical values along the wake centreline, y = 0.

PIV Challenge 2005

The Cemagref in collaboration with INRIA have submitted a dense optical flow method dedicated to fluid flows to the PIV challenge 2005. This challenge which aims at comparing different motion estimator for images of fluid flows seeded with particle held in Pasadena, California in September 2005. The dense motion estimator was able for two extreme tuning of the algorithm parameters to give good results for most of the different benchmarks focussing on the assessment of the spatial resolution. Figure 4.11 shows results obtained for two extreme tuning of regularization parameters in a synthetic turbulence with spectrum slope egal to -3 (PIVChallenge case A2) and in a stratified flow simulation (PIVChallenge case A3). Results highlighted the influence of the regularization parameters -introduced to control the balance beetwen the two competing terms, namely the data term and the regularizer -on the description of the small scales. In addition, these observations emphasized the need to objectify the choice of these parameters values. A peculiar attention will be paid on the relation beetwen this parameters and the main physical scales involved in the particule images.

FLUID project database

OF1 approach was evaluated on synthetic sequences of particle and scalar images based on a DNS of 2D turbulent flow (see §2.5 cases C1a and C1b). Since the flow was 2D the optical flow constraint equation (OFCE) was considered for the data term (see eq. 3.1). In order to preserve the divergence and the vorticity of the displaced motion field a second order Div-Curl regularization was used (see §3.1.4). Figure 4.12a presents the RMS of the error for the whole sequence of case C1a (particle images). Results show that OF1 approach provided values for the RMS of the error lying between 0.12 and 0.13 pixels. This level of error was low but higher than the levels observed for OF2 approach and for LaVision correlation approach1 lying between 0.07 -0.08 pixels and 0.075 -0.085 pixels, respectively. The map of vorticity and the vector fields presented in figure 4.14 yield the noisy results provided by OF1 approach. Figure 4.13 also shows the high level of noise generated by OF1 approach compare to OF2 approach and LaVision correlation approach. This behaviour of OF1 approach was due to:

• the scheme involving auxiliary function to simplify the numerical solving of the 2nd order div-curl regularization (see §3.1.4);

• the bilinear interpolation scheme used to warp the image;

• the Gaussian derivative filter used to compute the gradients of the luminance. Figure 4.12b presents the RMS of the error for the whole sequence of case C1b (scalar images). Results exhibit that the RMS of the error was larger for that case compared to the case C1a with particle image. As time evolved, the scalar was dispersed by turbulent and molecular diffusion and the RMS of the error increased sligthly for optical flow approaches. On the contrary the results provided by LaVision with correlation technique (computed by Bernd Wieneke with interrogation windows of 16 × 16 pixels and 75% overlap) showed decreasing errors as time evolved. The correlation algorithm had problems with gradient images at the rim of the image. Hence, a rim of 20 pixels were taken away because it was too noisy anyway. It is worth noting and not surprinsing that for scalar image optical flow approaches provided better results than correlation technique. It should also be mentioned that during the time sequence the parameter of the regularization term was adjusted in order to minimize the error. The adjustement was link with the drecreasing number of grey levels in the images. In figure 4.15 renormalized scalar images at three differents time steps (beginning, middle and end of the time sequence) indicate the range of grey level involved. As a function of the time, the narrowing of the range of grey level, leading to higher noise, could explain the slight increasing of errors provided by optical flow approaches. However, the present results also show that despite OF1 approach was able to provide smaller errors than the correlation technique, it is observed in figures ??, 4.16 and 4.17 -presenting respectively the vector field, the vorticity map and the energy spectrumthat the large and the small scales were poorly described. In this case the noise provided by An attempt wase also made to evaluate OF1 approach on real particle images generated for the FLUID project. For that purpose we used the case D1 corresponding to the experiment in the far wake of a circular cylinder at Re = 3900 (see §2.6 for details). Unfortunately, OF1 was not able to extract any acceptable displacement fields. This problem was due to the multiresolution technique, designed to estimate multiscale motion, which smoothed out the small particles with large velocities. Indeed, this set of images contained mainly small particles around 2 pixels which had large displacements around 15 pixels. Unsurprisingly, OF2 approach was also not able to extract any acceptable displacement fields. In §3.3 and 4.3, a new approach combining correlation and optical flow was proposed to overcome this obstacle.

Conclusion

In this preliminary evaluation OF1 approach was analysed. This method is an extension of the standard optical-flow based approaches used in Computer Vision where a robust objective function is minimized. The two parts (i.e, the data term and the regularizer) of the novel cost function have been specifically designed to suit image sequences of fluid flows (Corpetti et al., 2002a[START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF].

The data term is based on a continuity equation, as a more physically-grounded alternative to the usual brightness constancy assumption in the general case of images of 3D flows. To be compatible with large displacements, it is used in an integrated form. As for the regularization, it is stated that only a second-order regularizer is able to preserve completely the divergence and vorticity structures of the flows. Using the div-curl formalism, a second-order regularizer is introduced to capture the divergence and vorticity of the unknown flow.

The developped approach was tested on synthetic images from the VSJ, on two experimental flows representing a mixing layer and the near wake of a circular cylinder, on the cases of the PIV Challenge 2005 and on some cases of the database dedicated to the FLUID project. In each case, the results were compared with the motions estimated with correlation techniques and hot-wire anemometry.

It is pointed out that the displacements fields extracted with OF1 and correlation methods have the same order of magnitude. The relevance of the obtained motion fields is then similar. A major difference comes from the number of vectors that optical-flow technique is able to estimate, one vector per pixel being obtained, what opens an ability to describe a larger range of velocity scales than correlation approach. Preliminary results, showed that the dynamic range was enlarged towards smaller scales. However, it was also shown that these methods involved parameters that need to be better known and "calibrated" to improve the results, and also that OF1 provided noise at small scales that could be reduced with improved numerical schemes. The present evaluation also exhibited better velocity estimations for OF1 approach compared to correlation schemes. Despite a poor agreement with the DNS velocity reference, OF1 approach yielded better velocity estimations than correlation schemes, for scalar images. The discrepancies were partly explained by the diffusion of the scalar that was not modelized in the data term. For the following evaluation, this suggested on one hand to develop a data term including this physical phenomena, and on the other hand to provide a new set of data images of a scalar that would not diffuse by molecular process.

Variational motion estimation for incompressible flows

OF2 approach was evaluated on synthetic sequences of particle and scalar images based on a DNS of 2D turbulent flow (see §2.5 cases C1a and C1b). The method is dedicated to 2D divergence free flows and includes a high-order regularization term that preserves the vorticity (see §3.2).

Quantitative evaluation displayed in figures 4.12a, 4.13 and 4.14 show that OF2 method yielded better results than other competitive methods like OF1 and the correlation technique provided by LaVision. This good agreement with DNS vector fields may be explained by the additional constraint that encouraged solenoidal solutions. However, the use of mimetic finite difference scheme to formulate the estimation problem, the use of spline to warp the images and compute the gradients had also a contribution these nice results. It should be noticed that unfortunately the results obtained with OF2 method for the whole image sequence and displayed in figures 4.12, 4.13 and 4.14 were computed with non optimized regularization parameter equaled to 0.002. Indeed, figure 4.18, show spectrum obtained with different values of the regularization parameter λ, showing that the optimum was around λ = 0.005.

Quantitative evaluations on scalar image presented in figures 4.12b, 4.17, ?? and 4.16 demonstrate that OF2 method outperformed OF1 approach and the correlation technique proposed by LaVision. Like for OF1, better results could have been provided by OF2 if the molecular diffusion of the scalar had been modelized in the data term, or if no diffusion of the scalar had been included in the DNS.

In the following evaluations we will observe if these convincing results obtained with OF2 approach will still be possible with synthetic and real image sequence of 3D turbulent flows.

An attempt wase also made to evaluate OF2 approach on real particle images generated for the FLUID project. For that purpose we used the case D1 corresponding to the experiment in the far wake of a circular cylinder at Re = 3900 (see §2.6 for details). Unfortunately, for the same reasons than for OF1 (see §4.1.5), OF2 was not able to extract any acceptable displacement fields.

Collaborative correlation-optical flow scheme

In this section we present the results obtained for COROF1 approach (see §3.3.4) with data images of the FLUID project database (see §2.5, §2.6 and §2.7). 

Numerical evaluation

This section compares results on DNS-based synthetic image sequence obtained with the following approaches:

• Correlation: To estimate correlation-based velocity fields, the commercial software DaVis 7.2 from LaVision was used. A multipass algorithm with a final interrogation window size of 16 × 16 px 2 and 50% overlapping was applied. Image deformation and round gaussian weigthing function were used. Spurious velocities were identified with median filter and replaced by the median. The vector fields obtained with this correlation technique were used in the collaborative approach.

• Multiresolution OF2: This fluid dedicated optical flow approach uses second-order regularization and multiresolution to handle large displacements (see §3.3.2 for details)

• Dynamic consistent multiresolution (see Deliverable 5.5): This approach is an extension of the fluid dedicated approach of [START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF] with a spatio-temporal constraint satisfying the Naviers-Stokes equations.

• Correlation variational COROF1: This collaborative approach is an adaptation of Corpetti et al. (2006) approach to handle large displacements with correlation instead of multiresolution.

• Dynamic consistent correlation-variational COROF2 (see Deliverable 5.5): As described above, this approach uses second-order regularization, correlation to handle large displacements, dynamic consistency satisfying Navier-Stokes equations.

For all approaches the same set of parameters was used, providing an optimal performance: α = 1000, β/α = 1 with σ = 8 px and γ/α = 0.05

Synthetic image sequence

To evaluate the performanec of the collaborative approach compare to state of the art opticalflow and correlation approaches, a synthetic particle image sequence was generated based on the direct numerical simulation (DNS) of 2D turbulent flow [START_REF] Carlier | Report 1 on production and diffusion of fluid mechanics images and data, Fluid project deliverable 1.2. European Project 'Fluid image analisys and description[END_REF]. The present flow contains typical difficulties for image based measurements techniques, like high velocity gradients and large dynamic range. The Reynolds number based on the length scale of domain of computation 2π and on the rms of the forcing velocity was equal to 30 000. The image sequence was generated with a home-made particle image generator involving comparable methods than those developed for the EUROPIV Synthetic Image Generator [START_REF] Lecordier | The EUROPIV Synthetic Image Generator (SIG)[END_REF]. A velocity-vorticity formulation of the Navier-Stokes equations was adopted for the DNS. The vorticity equation was solved in Fourier space using desaliased Fourier expansions in two directions with periodic boundary conditions. The time integration was third-order/three steps with a Runge-Kutta scheme. The code is called pseudo-spectral. The coordinates of each particules were calculated in the physical space inside the vorticity equation computation using the Runge-Kutta scheme of the DNS in order to use the intermediate velocity components. However, a bicubic interpolation of the velocity field was applied since the particles were not supposed to be located at the nodes of the grid.

In the present evaluation the image pair considered led to a maximum particle image displacement up to 6 pixels. This particle image displacement was globally optimum to minimize the RMS error provided by the variational technique. This relatively small maximum displacement necessitates a multiresolution pyramid with only two levels. However, the addition of noise in the image pairs enables to put variational techniques, involving multiresolution scheme, on the wrong track.

In order to provide more realistic conditions the signal to noise ratio was increased, simulating a reduction of the power of the virtual laser [START_REF] Hain | Fundamentals of multiframe particle image velocimetry (PIV)[END_REF]. The noise wase quantified with peak signal-to-noise ratio (PSNR) which is the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel scale. The PSNR is most commonly used as a measure of quality of reconstruction in image compression. The PSNR is defined as:

P SN R = 10log 10 d 2 M SE
where d is the dynamic of the grey level of the signal, here the particles. For an image where the particle are respresented over 8 bits d = 2 8 -1 = 255. MSE is the mean squared error, which for two m × n images I o and I r where one of the images is considered a noisy approximation of the other, is defined as:

M SE = 1 mn Σ m-1 i=0 Σ n-1 j=0 ||I o (i, j) -I r (i, j)|| 2
Typical PSNR values for images of good quality lie between 30 and 40 dB. In figure 4.20 the RMS error of the approaches is given as a fucntion of the time for five image sequences caracterised by different signal to noise ratio. The same velocity field was used to generate the five image sequences. For all methods the RMS error was increasing whith decreasing values of PSNR (increasing noise). Whatever the value of PSNR, the highest error appeared for the variational approach using the multiresolution scheme [START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF]. For images of good quality (i.e. PSNR ≥ 30 dB), this slight larger error compared to the most competitive correlation approaches, is mainly due to the numerical scheme used to mimic second order regularization [START_REF] Heitz | evaluation of the tasks of the workpackage 2, Fluid project deliverable 5.1. European Project 'Fluid image analisys and description[END_REF]. For PSNR < 30 dB, image noise influence in the estimated velocities was observed. For images of poor quality (i.e. PSNR = 12 dB) quality, the large error was mainly explained by the inacurrate estimation of the large displacements. Figure 4.21 clearly illustrates this behaviour. It shows the vector field of the exact solution for region of large displacements (for ||u||/||u|| max > 30%, i.e. for displacements larger than 2 pixels) and the map of color of the deviation of optical-flow from the exact velocity modulus. For regions of large velocities the deviation from the exact solution ranged beetwen 40 % and 100 %. Small particles with large displacements in the images were smoothed out by the down sampling of the multiresolution scheme. In these regions the real motion information was lost. This effect is further promoted by the addition of noise in the images. The inaccurate estimation of the large displacements led to a poor extraction of the dynamic especially at large scales. This phenomenon was observed in figure 4.22 by considering the compensated energy spectra to observe the behaviour at large scales. For PSNR = 12 dB, the optical-flow approach completely failed to estimate the dynamic in the flow. For PSNR = 18 dB, the large displacements were more precisely measured. As indicated in figure 4.21, the deviation from the exact solution was smaller. However, figure 4. [START_REF] Okamoto | Standard images for PIV[END_REF] shows for PSNR = 24 dB that, despite the better determination of the large velocities, some discrepancies remained in the description of the largest scales. This behaviour at large scale explained the lack of performance of the scheme proposed by [START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF] compared to the correlation technique considered in this study, see figure 4.20. As discussed above the accurate optical flow scheme proposed by [START_REF] Yuan | Discrete orthogonal decomposition and variational fluid flow estimation[END_REF], using mimetic finite difference to compute second order regularization, would provide the better results, with an enlarged dynamic range.

Collaborative approach

As shown in figure 4.20 the collaborative approach resulted in lower RMS error. The proposed technique allowed the estimation of the large displacements with a deviation from the exact velocity modulus lower than 5% (see Fig. 4.23). The benefit of the collaborative technique was especially observed for image sequences with large noise. In addition this scheme provided a denoising of velocity fields leading to an enlargement of the extracted dynamic range. The improvement that could be gained with the proposed approach is exhibited in figure ??, giving the distribution of the energy estimated as a function of the spatial scale. The results is quite successful. The collaborative approach provided a robust over noise and dense estimations. It should be noticed that, in the present case due to the use of non accurate second order regularizer, the contribution of the data term of the variational approach was poor. As indicated by the parameters we manualy set for best performance, the proposed correlation-variational global scheme, behaved mainly as a regularizer of the correlation vector fields. Better results should be obtained with more accurate global variational techniques. 

Experimental evaluation

The collaborative approach was also applied to a PIV image sequence recorded in one of the wind tunnels of the Rennes regional Center of the Cemagref. The sequence shows the near wake flow of a circular cylinder at Reynolds number Re = 3900 (see §2.6 for details).

The correlation-based velocity fields were calculated with the commercial software DaVis 6.2 from LaVision. A multipass algorithm with a final interrogation window size of 16 × 16 px 2 and 50% overlapping was applied. Image deformation and round gaussian weigthing function were used. Spurious velocities were identified with median filter and replaced by the median.

Figure 4.24 shows the estimated velocity fields using optical flow technique [START_REF] Corpetti | Fluid experimental flow estimation based on an Optical-flow scheme[END_REF] and the proposed correlation-variational approach. Optical flow method under-estimated the external high velocity which was approximately two times smaller than the ground truth. This large error was reduced significantly by using the porposed collaborative approach. In figure 4.25, the vorticity color map of correlation-based and collaborative approaches are shown. Less noisy vorticity map were provided by the collaborative scheme, associated with a finer description of the flow. This evaluation with experimental data indicated that the proposed collaborative approach yielded reliable results where classical optical flow techniques failed, with enlargement towards small scales of the spatial description compared to correlation-based technique. This behaviour was also observed in figure 4.26, where the correlation-variational approach provided a finer description of the flow structure compared to results provided by the correlation approach. 
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 22 Figure 2.2: Two samples of the scalar images and the corresponding particle images.

Figure 2 . 3 :

 23 Figure 2.3: Front view of the windtunnel.

Figure 2

 2 Figure 2.5: Time-resolved images of a slightly turbulent air flow

  It is nevertheless important to point out that some authors propose reliable optical-flow computations not based on Horn & Schunck (1981a), especially for piv images in Quenot et al. (1998) where the authors use dynamic programming and orthogonal algorithms. The reader will find in Barron et al. (1994) a survey of different methods for computing optical flow (differential techniques, region based matching, energy based methods and phase based techniques).

  In a recent paperCorpetti et al. (2002b) proposed an optical-flow technique specifically dedicated to image sequences depicting fluid flow phenomenona. This specialized optical-flow estimator relies on an adaptation of the functional data-model and smoothness term.

Figure 3

 3 Figure 3.1: Definition of finite-dimensional spaces of scalar fields and vector fields on a square grid. Filled circles depict nodes or vertices, the other circles indicate cells. The positions of diamonds are referred to as sides.

  new method was proposed by INRIA and validated in collaboration with Cemagref (Héas et al., 2007; Heitz et al., 2007).

Figure 4 .

 4 Figure 4.1 shows the average L 1 relative error of 6 algorithms: A1, the Orthogonal Dynamic Programming (ODP) issued from Quénot (1999); A2, the Variational Optical Flow (VOF) implementation of Horn & Schunck presented in Ruhnau et al. (2005); A3, the robust multiresolution/multigrid (RMM) implementation of Horn & Schunck presented in Mémin & Pérez (1998a); A4, the proposed approach; A5, the proposed Integrated Continuity Equation (ICE) associated to a first order regularization and A6, the usual OFCE constraint associated to the presented Div-Curl regularization.Compared to other methods the proposed approach gives better results for cases #1, #2, #5, #6, #7, #8. Results on case #4 are good for all techniques, with slightly better results for estimators A1 and A2. Nevertheless, as expected, the div-curl and ICE options (A4) are better than others combinations (A3, A5 and A6) with the same implementation method. Concerning case #3 (where the motion range is low), all estimators give important errors on the motion field. The bad results obtained with the proposed technique can be explained by i) the multiresolution process (which introduces errors due to bilinear interpolation and was not necessary in this case); ii) by the div-curl regularization (which seems to introduce more artifacts than the others methods) and iii) by the ICE constraint (the out of plane velocity is very small here and this option is likely to introduce a divergent motion at each change of illumination). Nevertheless, in practice, it is often possible to have an idea of the magnitude of the motion and to adapt the parameters. Case #2 is very interesting: referring to table 2.1, one can see that the velocity is very important (and as a consequence, the underlying vorticity too). Even if most of the presented approaches have a multiresolution implementation, all estimators equipped with a first order regularization seem to smooth the higher value of the curl and the div, yielding to high errors. Conversely, estimators with a div-curl smoothing (A4 and A6) give reliable results. The results on the important out-of-plane velocity in case #8 confirm that the proposed ICE is a correct choice. On this eight synthetic examples, the proposed method gives better results. We now turn to comparisons on two different types of real image sequences and

Figure 4

 4 Figure 4.1: Average relative L 1 error of 6 algorithms. From left to right (and top to bottom in the legend): A1: ODP from Quénot (1999); A2: VOF from Ruhnau et al. (2005); A3: RMM from Mémin & Pérez (1998a); A4: The proposed approach OF1; A5: The proposed ICE associated to a first order regularization and A6: The usual OFCE associated to the presented Div-Curl regularization.

  Figure 4.2-(b) and 4.3-(b) show contours of constant spanwise vorticity ω z .
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 443 Figure 4.2: Views of instantaneous turbulent plane mixing layer structure at Re δω = 7000. Optical-flow: Top, Instantaneous vector field (one vector out of 225); Bottom, Instantaneous spanwise isocontour of vorticity ω z = (ω z ∆U )/δ ω (ω z min = -9, ω zmax = -2, ∆ω z = 1).
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 44 Figure 4.4: Reynolds stress distributions of the mixing layer at x/δ ω = 4. Each symbol representing a velocity measurement technique: -, Optical-flow; , piv; •, Hot-wire (Heitz, 1999).
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 45 Figure 4.5: View of instantaneous near wake vector field at Re=3000: Top, Optical-flow treatment (1 vector out of 256); Bottom, piv treatment (1 vector out of 4).
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 4644844 Figure 4.6: View of instantaneous near wake iso-contour of vorticity at Re=3000 -ω z = (ω z U )/D (|ω z min | = 0.5, |ω zmax | = 10, ∆ω z = 1): Top, Optical-flow treatment; Bottom, piv treatment.
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 4412 Figure 4.11: PIV Challenge 2005: (left), case A2 from M. Stanislas (synthetic turbulence with spectrum slope equal to -3); (right), case A3 from Stanislas (stratified flow simulation). Results obtained with a fluid dedicated dense motion estimator (OF1) for two extreme tuning of regularization parameters: (a), spectrum of the velocity; (b), velocity fields corresponding to the spectrum with the green dashed line; (c), velocity fields corresponding to the spectrum with the green line. The spectrum in black is the reference.
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 4 Figure 4.13: Spectra of the velocity extracted from images of particles (case C1a FLUID project database) with: (-), DNS; (+), OF1 approach; ( ), OF2 approach; (•) correlation technique.

Figure 4

 4 Figure 4.14: Intantaneous vector fields and vorticity maps extracted from images of particles in 2D turbulent flow (case C1a FLUID project database) with: (a), DNS; (a), OF1 approach; (c), OF2 approach; (d), correlation technique.
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 44 Figure 4.16: Map of vorticity extracted from images of scalar (case C1b FLUID project database) with : (a), DNS; (b), OF1 approach; (c), OF2 approach; (d), correlation technique; at three time steps.
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 4 Figure 4.18: Influence of the regularization parameter λ on the spectrum of the vertical velocity component estimated with OF2 method -2D turbulent flow (case C1a).

  Figure 4.19 presents the whole flow domain and the region considered for a thorough comparison.

Figure 4 . 19 :

 419 Figure 4.19: 2D turbulence test case -Color map of the normalized vorticity with superposed velocity field.
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 420 Figure 4.20: RMS of the error of the horizontal velocity component.
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 421422 Figure 4.21: Map of color of the deviation of Corpetti et al. (2006) from the exact velocity modulus -Vector field of the exact solution for ||u||/||u|| max > 30%. Top: PSNR = 12 dB; Bottom, PSNR = 24 dB.

Figure 4 . 23 :

 423 Figure 4.23: Deviation of different approaches from the exact velocity modulus and corresponding vector field -From left to right and top to bottom: multiresolution, correlation, correlationvariational, dynamic consistent correlation-variational. PSNR = 12 dB.

Figure 4 . 24 :

 424 Figure 4.24: Instantaneous vector field with horizontal velocity color map, in near the wake of a circular cylinder at Re = 3900. Left, optical-flow approach(Corpetti et al., 2006); Right, COROF1 collaborative approach.

Figure 4 .

 4 Figure 4.25: Instantaneous vector field with vorticity color map, in near the wake of a circular cylinder at Re = 3900. Left, correlation approach; Right, COROF1 collaborative approach.

Figure 4 .

 4 Figure 4.26: Instantaneous vector field with vorticity color map in a slightly turbulent air flow (see §2.7 for details). Left, correlation approach; Right, COROF1 collaborative approach.
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  The second group is composed of two dimensional turbulent flows obtained by experimental and numerical approaches. Two subcases have been provided for the numerical approach: ∆T is the time step beetwen two images and δt is the time step for the Direct Numerical SimulationThe third group is composed of three dimensional turbulent flows obtained by experimental and numerical approaches. Ten subcases have been provided:

	Case n o Description	Provider Image type	Seeding	Number of sets
	B	Exp. of 2D turbulent flow	LPS-ENS	real	fluorescein	B(96)
	C	DNS of 2D turbulent flow a Cemagref	synthetic		
	C1a	Time resolved ∆T = 10δt b	Cemagref	synthetic	particle	C1a(1000)
	C1b	Time resolved ∆T = 10δt	Cemagref	synthetic	temperature	C1b(1000)
	C2	Time resolved ∆T = δt	Cemagref	synthetic	particle	C2(200)
	Case n o Description	Provider Image type Seeding Number of sets
	D	Exp. of turbulent wake	Cemagref	real	particle	
	D1	Far wake (x/D = 30)	Cemagref	real	particle	D1(5000)
	D2	Near wake (x/D = 0)	Cemagref	real	particle	D2(5000)
	D3	Near wake -Time resolved	Cemagref	real	particle	D3(xxx)
	E	LES of turbulent wake a	Cemagref	synthetic		
	E1	Volume	Cemagref	synthetic	particle	E1(10)
	E2	Time resolved	Cemagref	synthetic	particle	E2(200)
	F	Time-Resolved 2D2C PIV LaVision	real	particle	F(xx)
	G	3D synthetic data	LaVision	synthetic	particle	
	G1	constant velocity	LaVision	synthetic	particle	G1(xx)
	G2	compression wave	LaVision	synthetic	particle	G2(xx)
	G3	compression wave + gradient	LaVision	synthetic	particle	G3(xx)
	G4	shear flow	LaVision	synthetic	particle	G4(xx)
	G5	shear flow + gradient	LaVision	synthetic	particle	G5(xx)
				Seven subcases have been pro-
	vided:					
	Case n o Description	Provider Image type Seeding Number of sets
	A	Viscous and potential flows Cemagref	synthetic	particle	
	A1	Poiseuille	Cemagref	synthetic	particle	A1(41)
	A2	Lamb-Oseen vortex	Cemagref	synthetic	particle	A2(41)
	A3	Uniform flow	Cemagref	synthetic	particle	A3(41)
	A4	Sink flow	Cemagref	synthetic	particle	A4(41)
	A5	Vortex flow	Cemagref	synthetic	particle	A5(41)
	A6	Cylinder with circulation	Cemagref	synthetic	particle	A6(41)
	A7	PIV-Challenge 2005	LaVision	synthetic	particle	A7(2)

a Direct Numerical Simulation (DNS). b

  Table1.1: Approaches developped in WP2 and evaluated in the present document. Compute image 0 and image 9, image 0 and image 19, ... up to image 0 and image 199, with the same set of parameters for the 19 couples of images. Compute the same set of images as many time you change the set of parameters (see §1.3.2 for the name of the files).

	Acronym Approach	Group	Reference	Description
	OF1	optical-flow	INRIA	Corpetti et al. (2002a, 2006)	§3.1
	OF2	optical-flow	CVGPR Yuan et al. (2005, 2007)	§3.2
	COROF1 correlation/optical-flow INRIA	Héas et al. (2007); Heitz et al. (2007) §3.3
	1.3.6 Computation of cases C3 and D1		
	Case C3:				

Table 2

 2 

	.1: Main characteristics of the 8 standard VSJ image-pairs.

  .23) 

	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11
	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11
	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11	00 00 00 00 11 11 11 11

The results obtained with correlation approach were provided either by Bernd Wieneke with LaVision software (Davis), or by the Cemagref with LaVision software.

With classical viewer, the images may appear relatively black and seem to be poorly enlighted. In fact, the original images are 12 bits in depth and are converted for more convenience in TIF-format with 16 bits in depth, giving artificially low values as compared to the global 16 bits range.

Results processed by B. Wieneke with 8 × 8 interrogation window with gaussian weighting function.

Appendix A

A.1 Div-Curl vs first-order regularization By using the Euler-Lagrange condition of minimality, the equivalence between a standard firstorder smoothness regularization, and a div-curl regularization with same weights for div and curl penalties can be readily demonstrated. Recall that Euler-Lagrange equation constitutes a necessary conditions for the minimization with respect to function g(x, y) of a functional Ω F(g, g x , g y , x, y)ds.

Assuming a first-order regularization term

this condition amounts to the following coupled PDEs:

Now, considering a div-curl regularization

the Euler-Lagrange equations reads:

When α = β, these equations are the same as (A.1)

A.2 Robust penalization

The main objective of robust estimators is to impose a different penalization for coherent and incoherent data: when the error to minimize is small (e.g. data are in accordance with underlying assumptions), the robust function tends to the L 2 quadratic norm; when this error is high (e.g. presence of outliers), it tends to attenuate the contribution of the error term (and then to be softer than the quadratic function). The choice of robust penalty functions needs to define the parameter τ 1 and generally makes the problem non-quadratic. The specific minimization problem we face is classically turned into an augmented half-quadratic minimization problem [START_REF] Holland | Robust regression using iteratively reweighted least-squares[END_REF]. Indeed, with all robust penalty functions f such that f ( √ .) is concave (as the Leclerc one), we have the property that:

where

2x , and ψ, for which an expression can be found in [START_REF] Black | On the unification of line processes, outlier rejection, and robust statistics with applications in early vision[END_REF]; [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF], is such that the minimizer on the right-hand-side is given by z = f (x) 2x . Using (A.4), each minimization problem of the generic form min x k f (g k (x)) can be replaced by the auxiliary problem min x,{z k } k z k g 2 k (x) + ψ(z k ), which can be solved by iteratively re-weighted least squares (IRLS) [START_REF] Holland | Robust regression using iteratively reweighted least-squares[END_REF]: for fixed auxiliary (weight) variables z k ∈ (m, M ], one faces a least-squares problem; for fixed x, the optimal value for each weight is known in closed form as f (g k (x)) 2g k (x) . This process is done until convergence.