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Abstract: This study used hyperspectral reflectance data to evaluate the crop physiological parameters
of sweet maize. Principal component analysis (PCA) was applied to identify the wavelengths that
primarily contributed to each selected PC. Correlation analysis and multiple linear regression, with a
stepwise algorithm, were used to select the best-performing vegetation indices (VIs) for monitoring
the yield and physiological response of sweet maize grown under different water and nitrogen
availability. The spectral reflectance measurements of crops were taken during the mid-season stage,
for two consecutive growing seasons. The multivariate regression results showed that red-edge
group indices, such as CARI (Chlorophyll Absorption Reflectance Index), DD (Double Difference
Index), REIP (Red-Edge Inflection Point), and Clred-edge (Chlorophyll Red-Edge) indices were
good predictors of yield and physiological parameters, confirming the crucial role of the red-edge
spectral region that also emerged through PCA. Moreover, DD, REIP, and Clred-edge VIs were able
to discriminate transient temporary stress at the mid-season stage, as well as to separate water and
N stress levels. Therefore, hyperspectral reflectance VIs can provide valid information to growers,
helping them identify and discriminate between different stress conditions.

Keywords: hyperspectral proximal sensing; principal component analysis (PCA); multiple linear
regression (MLR); variable selection; water and nitrogen deficiency

1. Introduction

Water and nitrogen (N) represent two major limiting factors for maize production [1].
Water stress acts directly on growth and development, photosynthesis, dry mass produc-
tion; in addition yield [2] might be severely diminished, especially if water deficiency is
prolonged [3]. Nitrogen is considered the most crucial nutrient for proper growth and de-
velopment, as it is the principal regulator of many physiological and biochemical processes,
and is strongly linked to chlorophyll content [4–6] and quantity of yield [1]. Matching
N supply to water availability, both spatially and temporally, is essential to accomplish
optimal crop response, offering opportunities for precision agriculture [7]. In recent years,
proximal and remote sensing methods have been widely used as effective tools for precision
agriculture, as they allow rapid, non-destructive monitoring of growth, along with both
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water and nutrient stress [8]. These methods can be efficiently utilized to measure vege-
tation’s spectral reflectance, which is related to biophysical and biochemical components
(such as chlorophyll, nitrogen content, dry mass production, and water status) [9–13].

There are numerous biophysical, physiological, and biochemical crop parameters that
can be monitored using spectral reflectance data generated by remote/proximal sensing
techniques. Timely observation of plant biophysical properties and eco-physiological status,
such as leaf area, chlorophyll, and nitrogen contents, have become critical to diagnose plant
responses to environmental stress [14,15].

All environmental stresses, such as water deficit, salinity, and nutrient deficiency,
evoke a similar plant response, as they tend to decrease leaf area, and numerous stresses
cause stomatal closure. As a result, diagnosing or monitoring the impact of a specific stress
based on a single observed response is frequently challenging [16].

The use of spectral signatures can reveal not only the pigment composition of the
leaves, but also the leaf area, and even the canopy’s water content. In this case, stress
responses can be detected and quantified using any or all of these spectral signature
properties. However, many of the proposed spectral indices are rather limited in their
applicability, because they were developed using empirical regression techniques for one
specific experiment and cannot be easily extrapolated to other situations [16]. Hence, any
spectral index should be thoroughly validated for the specific site conditions [16].

Crops under optimal growing conditions have a very high reflectance in the near-
infrared region (NIR, 760–900 nm), high in the green (520–600 nm), and low in blue
(450–520 nm) and red (630–690 nm) spectra [17], where they absorb almost all of the
incident light. Under stress conditions, plants change their absorption of incident light in
the visible and NIR ranges [18,19]. Therefore, the variation of reflectance in the green and
far-red (690–720 nm) spectra provides a particularly standard pigment-related response,
and provides reliable indications of stress conditions [20].

Field spectroradiometers can generate a continuous spectrum for any object [1] because
of their ability to collect spectral signatures in narrow (<10 nm) and contiguous wavelengths
in the visible and near-infrared region; thus, they represent effective tools to estimate crop
status [21], as well as morpho-physiological [22] and biochemical plant traits at different
phenological stages [23].

However, weak spectral information, caused by crop structure characteristics and soil
background conditions [19], as well as information redundancy due to the high degree
of correlation of hundreds of neighboring wavebands [24], poses a challenge in terms
of data analysis and interpretation [25]. For this reason, data pre-processing and analy-
sis are essential to extract crucial information from raw spectral data and estimate crop
status efficiently.

The main approaches used to analyze hyperspectral data of vegetation are focused
on the computation of vegetation indices (VIs), and on exploring the whole reflectance
spectrum through multivariate statistical analysis methods. The analysis of the whole
spectrum is usually aimed at identifying the narrow bands (optimal bands) able to capture
most of the information on crops properties [17,23,26]. However, it can also be focused on
extracting derived variables or factors capable of summarizing spectral information and
predicting crop behavior. Principal component analysis (PCA) is the most-applied method
among multivariate approaches. PCA is an unsupervised dimensionality-reduction method
that is often used to reduce the dimensionality of the multivariate data set, while holding
most of the variation within the data [25,27]. Several studies on the investigation of hyper-
spectral plant response showed the effectiveness of PCA in coping with multicollinearity
problems occurring along many wavelengths [24], and selecting important wavelengths
crucial for discriminating the effects of N availability [17,23,28], water regimes [29], and
plant diseases [30].

Computation of VIs is among the most studied and widespread methods for crop
status estimation from spectral reflectance data [31]. The most traditional VIs are those
using broadband wavelengths. Among them, the most used are the Normalized Difference
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Vegetation Index (NDVI, [32]), which is strictly associated with variation of both leaf area
index (LAI) and fractional vegetation cover, and all its alternatives, including the Soil
Adjusted Vegetation Index (SAVI, [33]), the Optimized Soil Adjusted Vegetation Index
(OSAVI, [34]), and the Enhanced Vegetation Index (EVI, [35]). The last ones (SAVI, OSAVI
and EVI) have been used to overcome the main constraints given by the disturbance
of soil or background reflectance. The Green Normalized Difference Vegetation Index
(GNDVI, [36]) is related to the fraction of active photosynthetic radiation intercepted by
crops [37].

All these indices have an intrinsic aggregated nature; this results in an evident loss of
spectral information, which is available when analyzing narrow spectral bands [38].

When moving from broad band toward hyperspectral sensors, more indices can be
calculated; in the last four decades, many VIs, acquired by both ground and remote sensing,
have been published [39]. Recently, Morcillo-Pallarés et al. [31] classified VIs on the basis of
their sensitivity towards (i) LAI, (ii) leaf chlorophyll content, and (iii) leaf water content. The
broadband VIs belong mainly to the first group, strongly correlated to LAI modifications
and senescence. In the second category are VIs such as the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI, [40]), the Clgreen and Clred-edge chlorophyll
indices [41,42], chlorophyll red-edge [43], the double difference index (DD), and the double-
peak index (DPI, [44]). The red-edge position has been found to have an excellent correlation
to chlorophyll content, and it is obtained by the point of maximum slope between the red
chlorophyll absorption region and the region of high NIR reflectance [45]. The shape
and position of the red edge are affected by chlorophyll content modifications, which
are always strictly linked to change in leaves structure, and thus strongly influenced by
variation in the water and nitrogen status of vegetation [44]. In the third group are VIs
classified as water indices, such as the Water Band Index (WBI) and the Normalized Water
Index [46]. These indices use the reflectance-based NIR region at 950± 20 nm, where there
is a water absorption band and a reference wavelength reflectance at 900 nm. The ratio
of these reflectance values can offer a powerful opportunity to assess the water status of
vegetation [47].

Many VIs are designed for a diverse array of applications and research purposes, and
often the similarity of acquired information requires the use of rigorous approaches to
select the most informative and sensitive indicators for assessing plant status and the onset
of stress conditions. Correlation analysis and multiple linear regression (MLR), through a
stepwise algorithm, are commonly employed for this purpose.

MLR is a statistical technique that uses several explanatory variables to predict the
outcome of a response variable. The goal of MLR is to model the linear relationship between
the spectral reflectance bands and crop characteristics [48]. MLR can be used not only to
establish relationships between spectral VIs and investigated crop characteristics, but also
to select the most informative variables for the estimation of crop properties [23]. Previously
published studies have reported MLR as a widely used method for rapidly estimating crop
leaf N concentration [49,50] and grain yield [51,52]. In detail, Gracia-Romero et al. [53] used
correlation analysis and MLR with a forward stepwise method to compare the capability
of ground-based and aerially assessed VIs in predicting grain yield and leaf phosphorous
content in maize. Kefauver et al. [52] applied a stepwise selection algorithm to compare
the capacity of the field and UAV-based RGB and multispectral indices to differentiate the
nitrogen-related performance in barley.

In this study, the sensitivity of spectral information, derived by both analysis of the
whole spectrum and the computation of VIs, was investigated to describe the physiological
and yield response of sweet maize under different water and nitrogen management. To this
aim, the factors extracted through PCA and selected VIs were analyzed using correlation
analysis and MLR with a stepwise algorithm. In the following sections their performance
is assessed and discussed.
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2. Materials and Methods
2.1. Study Area

Two-year research was conducted at the experimental field of the Mediterranean
Agronomic Institute of Bari (IAMB) in Valenzano (41◦03′ N, 16◦53′ E, 77 m above sea level).
The experimental site is characterized by typical Mediterranean climate conditions, with
mild winters and hot, dry summers. The average annual precipitation is about 550 mm
(30 years average), distributed mostly during autumn and winter. The average monthly air
temperature ranges from 8 ◦C in January to 24 ◦C in July and August. The soil of the study
area is silty-clay-loam [54]. Meteorological data were obtained from the weather station
next to the experimental field.

Sweet maize (Zea mays var. saccharata L., hybrid Centurion F1) was cultivated in the
2019 and 2020 growing seasons in rows 0.5 m apart, with a distance between plants in the
row of 0.2 m and a plant density of 10 plants per square meter.

The crop was grown under three water regimes (WR) in combination with two N
levels. Water regimes were: (i) full irrigation (I100), (ii) deficit irrigation (I50), and (iii) rainfed
treatment (I0). Deficit irrigation was obtained by applying 50% of the irrigation require-
ments, while rainfed treatment was watered only once, immediately after sowing. N levels
were: (i) 50 kg ha−1 (low level -LN) and (ii) 300 kg ha−1 (high level-HN).

Treatments were arranged in a split-plot experimental design, with three replicates,
with water regime as main-plot factor and N as sub-plot, sized 10 × 10 m.

Irrigation was performed by surface drip method, using a drip line for each row and
drippers (2.2 L h−1) spaced 0.20 m apart. Crop water balance and irrigation scheduling
were managed using an Excel-based model [55] that estimates day by day crop evapotran-
spiration and irrigation water requirements through the standard procedure proposed by
the FAO 56 document [56]. As reported by Piscitelli et al. [57], 8 and 12 irrigations were
applied in the first and second year, respectively, with the corresponding seasonal irrigation
amounts equal to 281 and 291 mm in I100 treatment. Half of these amounts were applied in
I50 treatments.

In both years and before sowing, fertilizers were applied to the total cropping surface
as follows: N, 50 kg ha−1 as urea (46% of N); phosphorus (P2O5), 100 kg ha−1 as pyrophos-
phate (20% P2O5); and potassium (K2O), 200 kg ha−1 as potassium sulfate (51% K2O). At
sixth-leaf stage, N 250 kg ha−1, as urea, was supplied to the HN treatment.

2.2. Measurements

Leaf gas exchanges, leaf chlorophyll content, and vegetation reflectance measurements
were taken at about one week intervals, 5 times in 2019 (from end of June to end of July)
and 4 times in 2020 (from mid-July to mid-August), all of them within the mid-season stage.
All measurements were acquired on clear sunny days around 11:00–13:00 h (solar time).

2.2.1. Leaf Gas Exchange

Net photosynthetic CO2 assimilation rate (A, µmol m−2 s−1), stomatal conductance (gs,
mol m−2 s−1), and leaf transpiration (Tr, mmol m−2 s−1) were measured using a portable
open-system gas-exchange analyzer (Li-6400XT (Li-Cor Biosciences, Lincoln, NE, USA))
provided by an external bottled CO2 source supplying 400 µmol mol−1 CO2 concentration
inside the leaf chamber. The instrument software calculated the various gas-exchange
parameters on the basis of the von Caemmerer and Farquhar [58] model. Intrinsic water
use efficiency (WUEi, µmol mol−1) was calculated as the ratio of net photosynthetic rate
to stomatal conductance. Measurements were taken on intact, healthy, green, and well
exposed leaves, over a clipped leaf surface of 6.0 cm2. Each measurement was replicated
three times per plot.

2.2.2. Leaf Chlorophyll Content

The Chlorophyll Content Index (CCI) of leaves was indirectly measured by means of
an optical meter (SPAD-502, Konica Minolta, Osaka, Japan) on 25 replicates per plot.
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2.2.3. Plant Reflectance

Plant reflectance was measured by using a high spectral resolution ASD FieldSpec
Hand-Held 2 spectro-radiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA). This
instrument measures reflectance with a wavelength range of 325–1075 nm, an accuracy of
±1 nm, and a resolution of <3 nm at 700 nm. The field of view (FOV) of the bare fiber-optic
probe was 25◦. The spectrum of a white (BaSO4) reference panel with known reflectance
properties was acquired to derive the reflectance of the target.

Measurements were acquired on three plants for each plot. The vegetation spectrum
was measured from a distance of 10 cm above the crop, with a spot size of approximately
14 cm2. Gradually, as maize grew and expanded, the distance from the vegetation increased
to 60 cm. Thereafter, data were processed by means of View Spec software.

The reflectance data were restricted to the 395–1004 nm interval, which was consid-
ered noise-free. Then, statistical analyses were performed. The reflectance measurements
were averaged over 10 nm to reduce collinearity and overfitting [59]. In this way, 61 de-
rived reflectance variables were obtained; the name of the variables indicated the central
wavelength. The spectral indices used in this study were computed from narrow bands
reflectance measurements and are reported in Table 1.

2.2.4. Fresh Grain Yield

Harvesting was completed on 9 August and on 3 September in the first and in the
second years, respectively, when grain reached about 30% in dry matter, by sampling 2 m2

in the middle of each plot. Total weight of the ears was determined after the removal of the
bracts. Fresh grain yield is reported in the text as GY.

2.2.5. Agronomic Water Productivity

Agronomic Water Productivity (WP) was calculated as the ratio of fresh grain yield to
the total amount of water supplied (irrigation and rainfall) and expressed as kg m−3.

2.2.6. Plant Nitrogen Uptake

At maturity, 10 plants per plot were harvested and the fresh weight was measured for
the determination of total biomass. The dry plant was ground, and aliquots were weighted
in tubes for digestion prior to total N determination trough the Kjeldhal method. Plant
nitrogen uptake (NUptake) was calculated as the product of N percentage by dry weight.

2.3. Statistical Analysis

Dependent variables—fresh grain yield (GY), agronomic water productivity (WP),
and nitrogen uptake (NUptake)—were preliminarily evaluated for normal distribution
and homogeneity of variance according to the Kolmogorov–Smirnov test and Bartlett’s
test, respectively. Since the normality assumption was violated, factorial nonparametric
analysis of variance for mixed designs was used by applying the Aligned Rank Transform
analysis. Analysis of variance from the 3 × 2 factorial experiment in a split plot design was
then conducted, and significance of differences was tested using Fisher’s Least Significant
Difference (LSD) at a 5% probability level. This analysis was carried out using the software
package agricolae [60] and ARTool [61] in R studio software [62]. This package is available
via the Comprehensive R Archive Network (CRAN, https://cran.r-project.org (accessed
on 12 April 2020)).

A multivariate analysis approach was applied to select the optimal spectral bands
using XLSTAT 2020 (Addinsoft, New York, NY, USA, [63]). Principal component analysis
(PCA) was performed on 61 derived variables from the mid-season stage of each growing
season. PCA was carried out on the correlation matrix of 61 variables to obtain a few new
components, explaining most of the variation of the initial spectral data. PCA outputs
included treatment component scores and variable loadings for each selected component.

The Principal Components (PCs) with eigenvalues greater than one, and cumulatively
explaining more than 90% of the total variance, were selected for the ordination analysis [64];

https://cran.r-project.org
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variable loadings were examined to identify the wavelengths that most contributed to each
selected component [65]. Within each extracted component, the five bands with the highest
loadings (in absolute value) were selected [66].

The Pearson correlation was used to determine the relationship between GY, WP,
NUptake, physiological parameters (A, gs, Tr, WUEi, and LCC), vegetation indices, and the
components extracted using PCA. This analysis was carried out using the software package
Corrplot [67] in R studio software [62].

Table 1. Indices derived from the hyperspectral visible and near infrared wavelengths.

Acronym Indices Equation Reference

Broadband Greenness for Structure

NDVI Normalized Difference Vegetation Index (R860 − R650)/(R860 + R650) [68]
mNDVI Modified Normalized Difference Vegetation Index (R775 − R670)/(R775 + R670) [69]

RDVI Renormalized Difference Vegetation Index (R800 − R670)/((R800 + R670)0.5) [70]

SAVI Soil Adjusted Vegetation Index
(R860 − R650)/(R860 + R650 + L) ×

(1 + L) [33]
Low vegetation, L = 1, intermediate, 0.5,

and high 0.25
GNDVI Green Normalized Difference Vegetation Index (R860 − R550)/(R860 + R550) [36]

EVI Enhanced Vegetation Index 2.5 × (R860 − R650)/(R860 + (6 × R650)
− (7.5 × R470) + 1) [35]

OSAVI Optimized Soil Adjusted Vegetation Index (R860 − R650)/(R860 + R650 + 0.16) [34]

Narrowband Greenness for Chlorophyll, Carotenoids, and Light Use Efficiency

CARI Chlorophyll Absorption Reflectance Index [(R700 − R670) − 0.2 × (R700 − R550)] [71]

MCARI Modified Chlorophyll Absorption Reflectance Index [(R700 − R670) − 0.2 × (R700 − R550)]
× (R700/R670) [72]

TCARI Transformed Chlorophyll Absorption Reflectance Index 3 × [(R700 − R670) − 0.2 × (R700 −
R550) × (R700/R670)] [73]

TCARI/OSAVI Integrated TCARI and OSAVI [73]
Clgreen Chlorophyll Indices (R730/R530) − 1 [41]

Clred-edge (R850/R730) − 1 [42]
CIrededge710 Chlorophyll Red-Edge (R750/R710) − 1 [43]

DD Double Difference Index (R749 − R720) − (R701 − R672) [44]
DPI Double Peak Index R688 + R710/(R697)2 [44]
PSRI Plant Senescence Reflectance Index (R680 − R500)/R750 [74]
PRI Photochemical Reflectance Index (R531 − R570)/(R531 + R570) [75]
SIPI Structure Insensitive Pigment Index (R800 − R445)/(R800 − R680) [76]

REIP Red-Edge Inflection Point 700 + 40 × [(((R670 + R780)/2) −
R700)/(R740 − R700)] [77]

NDRE Normalized Difference Red-Edge (R790 − R720)/(R790 + R720) [78]
RVSI Red-Edge Vegetation Stress Index (R714 + R752)/2 − R733 [79]

Canopy Water Content

WBI Water Band Index R970/R900 [80]
NWI1

Normalized Water Index
(R970 − R900)/(R970 + R900)

[81]NWI2 (R970 − R850)/(R970 + R850)
WBI:NDVI WBI/NDVI [47]

R represents the reflectance value at specified wavelengths in nm.

The multiple linear regression using stepwise technique was applied to explain GY, WP,
NUptake, and physiological variables variation from VIs across different water supplies
and nitrogen treatment on both growing seasons, satisfying the criteria of probability-of-
F-to-enter ≤0.05 and probability-to-remove ≥0.05. The overall model’s performance was
evaluated by its coefficient of determination (R2), a measure of the proportion of variance in
variables estimated that can be predicted by the explanatory variables (VIs). This analysis
was carried out using a regression analysis procedure of SAS software (University Edition,
SAS Institute, Inc., Cary, NC, USA).
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3. Results
3.1. Agronomic Water Productivity, Nitrogen Uptake and Yield Response

Table 2 reports the results of the analysis of variance for fresh grain yield (GY), agro-
nomic water productivity (WP), and plant nitrogen uptake (NUptake) for two consecutive
growing seasons. The rainfed treatment did not reach reproductive stage because of strong
and prolonged drought. The GY of both growing seasons varied significantly in relation
to the amount of available water. In 2020, GY increased as a consequence of N fertiliza-
tion, but in 2019 this increment only showed a trend towards significance (p = 0.08). In
both seasons, GY was almost the same in the full irrigation treatment, with production of
about 15 t ha−1. GY was 72.2% and 44.9% less in the I50 treatment for the 2019 and 2020
growing seasons, respectively, compared to the full irrigation treatment. In both years, the
interaction between water regime and nitrogen level was not significant for GY.

WP was strongly affected by N level in both growing seasons. By increasing water
supply from I50 to I100, WP increased more than double in 2019 and no significant change
was observed in 2020. Under high amount of N, as average of I50 and I100 treatments,
WP was 28 and 32.5% higher than under low amount of N, for 2019 and 2020 growing
seasons, respectively.

NUptake was significantly and positively affected by the increase in water and N
supply and considerably higher in 2019 than in 2020. A significant interaction was also
observed between WR and N levels in both growing seasons.

3.2. Optimal Spectral Bands

Table 3 shows the results of the principal components analysis carried out on 61 (10 nm)
bands. The first two principal components (PCs) were associated with eigenvalues higher
than one and explained 97.12 and 97.16% of the total variance in the 2019 and 2020 growing
seasons, respectively. The first component was dominated by red-edge and green in 2019,
and by red-edge and blue in 2020. The second component was dominated by NIR for both
growing seasons.

3.3. Optimal Vegetation Indices

Correlations amongst variables were firstly checked using a Person correlation matrix
(Figure 1). From this matrix, VIs were checked for correlation with yield, WP, NUptake, and
physiological variables (A, gs, WUEi, Tr and LCC). For both growing seasons, the second
principal component (F2, summarizing the contribution of NIR wavelengths) showed a
strong positive relationship (r > 0.4) with all variables, except yield and WP in 2020. The
first principal component (F1, summarizing the contribution of red-edge and green in 2019,
and blue in 2020) showed a weak negative relationship with LCC in 2019 and a moderate
negative relationship with WUEi in 2020.

The water indices (WBI, NWI1, NWI2, and WBI:NDVI) were strongly negatively
correlated with NUptake and physiological variables for both growing seasons, except for
NWI2 and WBI:NDVI, which were not correlated with LCC in 2020. In addition, in 2019,
WBI, NWI1, and WBI:NDVI were strongly negatively correlated with yield and WP, while
no significant correlations were observed in 2020.

The chlorophyll indices (Clgreen, Clred-edge, and Clred-edge710), DD, and DPI
showed a strong positive relationship with yield, WP, NUptake, and physiological variables
for both growing seasons except for: (i) Clgreen, which was not correlated with GY and
WP in 2020; (ii) Clred-edge, which was not correlated with WUEi in 2020; and (iii) DPI,
which was not correlated to either GY or WP in 2019, nor to GY, gs, Tr, or LCC in 2020.

For broad-band greenness indices (NDVI, RDVI, SAVI, OSAVI, GNDVI, and EVI) there
were strong positive relationships with yield, WP, NUptake, and physiological variables
for both growing seasons, except for GY and WP, which had no correlations in 2020, except
for GNDVI. Also, EVI was not correlated with GY or WP in 2019, or with WUEi in 2020.
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Table 2. Effects of irrigation regime and nitrogen levels on fresh grain yield (GY), agronomic water productivity (WP), and nitrogen uptake (NUptake) of sweet
maize plants grown in 2019 and 2020.

Treatment

GY WP NUptake

(t ha−1) (kg m−3) (kg ha−1)

2019 2020 2019 2020 2019 2020

Water Regime (WR) Nitrogen(N)
I0 Low - - - - 62.81 ± 4.04 d 39.57 ± 2.81 d

High - - - - 69.38 ± 8.86 d 52.67 ± 6.4 cd
Average - - - - 66.09 ± 7.14 b 46.12 ± 8.43 b

I50 Low 2.66 ± 0.95 7.56 ± 0.51 1.03 ± 0.37 c 3.74 ± 0.25 155.38 ± 26.81 c 94.49 ± 15.38 bc
High 6.20 ± 0.09 9.74 ± 1.64 2.39 ± 0.03 b 4.82 ± 0.81 215.18 ± 16.29 b 195.9 ± 14.23 a

Average 4.43 ± 2.03 b 8.65 ± 1.61 b 1.71 ± 0.78 b 4.28 ± 0.80 185.28 ± 38.29 a 145.2 ± 57.1 a
I100 Low 15.88 ± 0.28 13.33 ± 2.08 3.97 ± 0.07 a 3.84 ± 0.60 159.8 ± 27.76 c 107.76 ± 14.27 b

High 16.02 ± 1.81 18.09 ± 1.31 4.00 ± 0.45 a 5.21 ± 0.38 280.58 ± 29.52 a 223.04 ± 41.34 a
Average 15.95 ± 1.16 a 15.71 ± 3.04 a 3.98 ± 0.29 a 4.53 ± 0.87 220.19 ± 70.95 a 165.4 ± 68.94 a

Significance

Water Regime (WR) * ** * ns ** **
Nitrogen (N) ns * * ** **** ****

WR × N ns ns * ns **** **
ns, *, **, and **** denote not significant or significant at p ≤ 0.05, 0.01, and 0.0001, respectively. Means followed by different letters in each column are significantly different according to the LSD test (p = 0.05). Reported
values are averages of three replicates.
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Table 3. Results of PCA carried out on the 61 (10 nm) bands. For mid-season phenological stage, the
spectral bands with the largest loadings on the selected principal components (PCs) are reported.

Growing Season
Percentage of Variance Explained Bands Centers (nm) with Largest PC Loadings

PC1 PC2 PC1 PC2

2019 71.49 25.63 530 540 550 720 730 780 790 800 860 870
2020 78.63 18.53 420 430 440 720 730 760 770 780 790 800

Figure 1. Correlations coefficients among fresh grain yield (GY), agronomic water productivity (WP),
nitrogen uptake (NUptake), physiological variables, and vegetation indices for the 2019 and 2020
growing seasons.

The Chlorophyll Absorption Reflectance Index (CARI) and its derivatives (MCARI,
TCARI, and TCARI/OSAVI) were negatively correlated with GY, WP, NUptake, and physi-
ological variables in 2020, except for WUEi, which was negatively correlated only to CARI.
In 2019, CARI and its derivatives were negatively correlated with GY, WP, and LCC. In
addition, TCARI/OSAVI was moderately negatively correlated with all the investigated
variables. Finally, A was weakly negatively correlated with CARI.

Table 4 shows stepwise regression models explaining GY, WP, NUptake, and physio-
logical variables variation from VIs across different water supplies and nitrogen levels in
2019 and 2020 growing seasons.

The best VIs explanatory variables to predict GY were the DD and CARI indices in
2019 and 2020, respectively. However, the determination coefficients (R2) of the regression
model was low, with values of 0.18 in 2019 and 0.14 in 2020. Similar results were obtained
for WP; in addition, in 2020, PSRI was also selected, although it explained only a low
portion of the total variance. In 2019, 57% of the NUptake was explained by the DD and
water indices (WBI and NWI2), whereas in 2020, 40% of the NUptake was explained by the
DD index alone.
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Table 4. Multivariate regression models explaining fresh grain yield (GY), agronomic water productivity (WP), nitrogen uptake (NUptake), and physiological
variables from vegetation indices (VIs) across different water supplies and nitrogen treatment in the 2019 and 2020 growing seasons.

Year
2019

Response
Variables VIs Coefficients p-Value Portion of

Variation
Year
2020

Response
Variables VIs Coefficients p-Value Portion of

Variation

GY Intercept −0.500 0.873 GY Intercept 20.104 0.0001
(R2 = 0.18

Radj
2 = 0.16)

DD 16.773 0.0008 1 (R2 = 0.14
Radj

2 = 0.13)
CARI −94.762 0.0078 1

WP Intercept 0.559 0.396 WP Intercept 6.849 0.0001
(R2 = 0.18

Radj
2 = 0.17)

DD 3.589 0.0007 1 (R2 = 0.38
Radj

2 = 0.35)
CARI −28.119 0.0001 0.32

PSRI −25.064 0.047 0.06

NUptake Intercept 2852.72 0.0001 NUptake Intercept 51.555 0.0001
(R2 = 0.57

Radj
2 = 0.56)

DD 113,25 0.038 0.02 (R2 = 0.40
Radj

2 = 0.39)
DD 638.45 0.0001 1

WBI −3266.25 0.0001 0.52
NWI2 1456.42 0.005 0.03

A Intercept −148.048 0.0001 A Intercept −1493.387 0.0018
(R2 = 0.77

Radj
2 = 0.76)

PSRI 217.972 0.0082 0.02 (R2 = 0.54
Radj

2 = 0.53)
REIP 2.457 0.0001 0.48

OSAVI −951.677 0.0001 0.04 WBI −251.036 0.003 0.06
MNDVI 928.678 0.0001 0.04

RVSI −132.312 0.0001 0.04
DD 100.540 0.0001 0.64

gs Intercept −0.435 0.0196 gs Intercept −12.726 0.0026
(R2 = 0.56

Radj
2 = 0.55)

DD 0.353 0.0001 0.54 (R2 = 0.51
Radj

2 = 0.49)
REIP 0.018 0.0027 0.42

NWI2 −1.393 0.0496 0.02 NWI1 −15.460 0.0027 0.05
NWI2 8.018 0.0173 0.04

WUEi Intercept 650.856 0.0001 WUEi Intercept −33427 0.0001
(R2 = 0.40

Radj
2 = 0.39)

WBI:NDVI −393.984 0.0001 0.37 (R2 = 0.55
Radj

2 = 0.53)
REIP 48.306 0.0001 0.12

Clred-
edge710 −63.419 0.0444 0.03 NDRE −2702.998 0.0001 0.08

WBI:NDVI −338.300 0.0001 0.31



Agronomy 2022, 12, 489 11 of 21

Table 4. Cont.

Year
2019

Response
Variables VIs Coefficients p-Value Portion of

Variation
Year
2020

Response
Variables VIs Coefficients p-Value Portion of

Variation

Tr Intercept −9.712 0.0001 Tr Intercept 185.980 0.0002
(R2 = 0.60

Radj
2 = 0.59)

RDVI 12.230 0.0001 0.56 (R2 = 0.59
Radj

2 = 0.58)
DD 14.365 0.0004 0.48

NDRE 12.219 0.0040 0.04 WBI −186.011 0.0002 0.06
NWI2 188.534 0.0034 0.05

LCC Intercept −22399 0.0001 LCC Intercept −1297.836 0.1258
(R2 = 0.48

Radj
2 = 0.47)

REIP 32.007 0.0001 1 (R2 = 0.69
Radj

2 = 0.67)
PRI 4227.144 0.0005 0.03

GNDVI −1423.275 0.0004 0.03
Clred-edge 2020.674 0.0001 0.56

WBI 2036.023 0.0118 0.05



Agronomy 2022, 12, 489 12 of 21

Among five vegetation indices (DD, PSRI, OSAVI, MNDVI, and RVSI) selected to
predict photosynthesis assimilation (A) in 2019, DD provided the most accurate estimation
(R2 = 0.64). In 2020, 54% of A was explained by the REIP and WBI indices. In particular,
REIP outperformed the WBI index in providing an accurate estimation of A (R2 = 0.48).

In 2019, the DD index provided a greater ability to explain conductance (gs) as com-
pared to NWI2, while in 2020, REIP provided more accurate estimation of gs than NWI1
and NWI2 (R2 = 0.42).

The best model, with two (Clred-edge710 and WBI: NDVI) and three (REIP, NDRE, and
WBI:NDVI) indices, was selected to predict WUEi in the 2019 and 2020 growing seasons,
respectively. The WBI:NDVI ratio provided the most accurate estimation of WUEi, with a
R2 of 0.37 and 0.31 in 2019 and 2020, respectively.

In 2019, 60% of Tr was explained by the RDVI and NDRE indices, with the RDVI index
providing the most accurate estimation of Tr (R2 = 0.56). On the other hand, DD, WBI, and
NWI2 were selected to predict Tr in 2020, with the DD index explaining 48% of the data
variation of Tr.

In 2020, 69% of the total variation in LCC under different N supply and water regimes
was explained by the PRI, GNDVI, Clred-edge, and WBI indices, with the chlorophyll index
(Clred-edge) providing the most accurate estimation of the response variable (R2 = 0.56). In
2019, 48% of the LCC was explained by the REIP index alone.

From the results of the stepwise regression analysis, the linear regressions showing
the highest ability to explain some physiological variables (net assimilation, stomatal
conductance, and leaf chlorophyll content), with the VIs, are presented in Figure 2.
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Figure 2. Linear regression parameters between net assimilation (a,b), stomatal conductance (c,d),
and Double Difference Index (DD) and Red-edge Inflection Point (REIP), respectively. Linear regres-
sion parameters between leaf chlorophyll content (e,f) and Red-edge Inflection Point (REIP) and
Chlorophyll Index (Clred-edge), respectively. Each value is the mean of three replicates.

4. Discussion
4.1. Fresh Grain Yield, Agronomic Water Productivity and Nitrogen Uptake

Water and nitrogen (N) have been recognized as two primary limiting resources for
maize production [82,83]. The maximum fresh grain yield values for well-irrigated and
fertilized treatments were 16.0 and 18.1 t ha−1 in the 2019 and 2020 growing seasons,
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respectively. As a consequence of severe drought experienced by the crop in both years
(seasonal precipitation was 119 and 56 mm in 2019 and 2020, respectively), the rainfed
treatment did not reach the reproductive stage, because of either abortion of the floral
ovary at the time of pollination, or, even worse, the failure of many silks to emerge from the
husks, preventing fertilization. Several other studies (e.g., [84–86]) reported that intense
and prolonged water shortage in maize seriously compromises yield due to the lack
of pollination.

As an average of the two years, WP ranged from 3.0 kg m−3 in I50 to 4.26 kg m−3 in
I100, which means that, under deficit irrigation conditions, less grain was produced per
volume of water, compared with well irrigated conditions. The WP values found in our
study are similar to those reported by Kresovic et al. [87] for maize cultivated in Serbia
under different irrigation regimes. Similar to our findings, Farré and Faci [88] reported that
the WP of maize decreases with decreasing irrigation volumes in a Mediterranean area.

The highest values of NUptake were obtained in fully irrigated and fertilized regimes,
with values of 280.6 kg ha−1 and 223.4 kg ha−1 in 2019 and 2020, respectively. NUptake
in fully irrigated and low fertilized treatment decreased by 43% in 2019 and 51% in 2020.
However, values in the I50 HN treatment averaged 215.2 kg ha−1 in 2019 and 195.9 kg ha−1

in 2020, reduced by 28% and 52% in the I50 LN treatment, respectively. Hence, our results
highlight the importance of N fertilization and optimum water supply, which can facilitate
crop N uptake, as irrigation increased N uptake and the ability of maize to efficiently
use N from the soil. The results of our study confirm previously reported findings by
several authors [89,90]. Plant N uptake is facilitated through optimum irrigation; thus, both
nitrogen and water use efficiencies may be simultaneously improved.

4.2. Spectral Reflectance

The principal component analysis (PCA) was conducted to identify optimal spectral
bands for separating different combinations of water and N availability at the mid-season
stage of both growing seasons. Reflectance in the green region is controlled by leaf color,
whereas the wavebands in coastal blue are related to chlorophyll absorption, which peaks at
430–450 [59]. Wavebands from the red-edge region are the most sensitive to stress-induced
changes. The shape of the red-edge region has been shown to be strongly influenced by
chlorophyll content, such that an increase in leaf chlorophyll content causes a shift in
the red-edge position towards longer wavelengths [91]. The red-edge wavelength ranges
between 690 and 750 nm; the occurrence of a sharp change in reflectance indicates a
transition from chlorophyll absorption to leaf scattering [92]. Moreover, the differences in
red edge position (up to 10 nm) in many studies were explained as the result of various
factors, such as water stress [2,93], nutrient deficiency [94], plant disease [95], etc. On
the other hand, internal leaf structure controls the NIR. The separation between coastal
blue or green and red-edge, on one side, and NIR on the other side, were reported by
several authors in many species [23,96,97]. The difference in spectral behavior in the
visible region could be due to differences in the concentrations of biochemical substances,
such as chlorophyll, carotenoid, nitrogen, and water, in the intra- and extracellular leaf
structure. Therefore, healthy vegetation can be identified by high NIR reflectance and
low visible reflectance, and even more precisely by analyzing reflectance in narrow bands.
The selection of optimal wavelengths through principal component analysis in our study
underlined the separation between visible and NIR reflectance, and the role of red-edge
region wavelengths in characterizing the sweet maize response to water and nitrogen stress
in both growing seasons.

4.3. Spectral Indices

Multiple linear regression, with a stepwise algorithm, was used to select the VIs most
able to estimate fresh grain yield, physiological variables, water productivity, and N uptake.
The poor performance of the stepwise algorithm in selecting VIs for some response variables
(GY and WP), also confirmed by the low R2 and Radj

2 values, might be attributed to the
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high influence of collinearity of the predictors [98]. As Strachan et al. [99] reported, several
VIs are needed to detect the stress status and health of maize. Many studies found that red-
edge derived indices outperformed broadband indices [100–102]. However, in our study,
broadband indices (NDVI, RDVI, SAVI, OSAVI, GNDVI, and EVI) show strong positive
correlations with all investigated variables. This finding is in agreement with previous
studies [103–106]. In the multivariate regression results, the red-edge group indices, such
as CARI, DD, REIP, and the Clred-edge chlorophyll index, were observed to be better
predictors, particularly of yield and physiological parameters (A, gs, and LCC) at the mid-
season stage, when differences among water supplies and nitrogen treatment are mainly
related to chlorophyll content. This result confirms the role of the red-edge spectral region
that emerged from the principal component analysis. The DD, REIP, and Clred-edge VIs can
be used to discriminate temporary stress at the mid-season stage, or separate levels of water
and N stress. Generally, these indices are sensitive to small variations of chlorophyll content
and are reliable for most species, due to the presence of the red-edge region [107–109]. As
previously reported, the high sensitivity to chlorophyll content highlights the importance
of using red-edge-based VIs to characterize plant N deficiency and N requirement in
the mid-season stage of sweet maize. According to Vogelmann et al. [77], the red-edge
position is related to environmental, developmental, and genetic factors that result in
altered chlorophyll levels, and the red-edge position does not necessarily diagnose one
particular type of stress. Here, the shift in red-edge position may be related to changes in
the width of the maximum chlorophyll absorption in the red spectral region [110], caused
by the reduced activity of chlorophyll, and lower photosynthetic capacity as a consequence
of low nitrogen supply. In addition, Ramachandiran and Pazhanivelan [111] reported
similar results. A relatively strong negative correlation was found between CARI index
and its derivatives (MCARI, TCARI and TCARI/OSAVI) and both yield and physiological
parameters (A, gs, and LCC), especially in the 2020 growing season. Zhang et al. [2] showed
a similar negative correlation between the MCARI index and leaf chlorophyll content. In
addition, at later development stages close to harvest, when structural indices are not
responsive to yield variability, the hyperspectral indices related to chlorophyll status (CARI
and its derivatives) better reflect within-field yield variability [112]. Besides that, our
results demonstrated a strong positive correlation between chlorophyll indices (Clgreen,
Clred-edge and Clred-edge710), DD and DPI, and physiological parameters, in agreement
with some previous studies [113–115]. This result confirms the critical role and sensitivity
of the red-edge region (680–780 nm) to chlorophyll and nitrogen [43,116,117].

A negative correlation was found between canopy water VIs and both NUptake and
physiological parameters (Figure 1). Water VIs are described in the literature as effective in-
dicators of water stress and show a strong correlation with physiological variables [118,119],
as was observed in our study. Under short-time water stress, crops adopt photo-protection
strategies to prevent damages; however, under prolonged water stress, chlorophyll pig-
ments are affected and changes in leaf optical properties occur [2]. Generally, wavelengths
between 900 and 1300 nm have strong correlations with leaf water content [120] and are
effective predictors, as they can penetrate into canopies better than the rapidly-absorbed
higher wavelengths [121].

The canopy water content vegetation indices (WBI and WBI:NDVI) use the reflectance
at 970 nm to indicate water absorption, and a reference wavelength reflectance at 900 nm.
This wavelength is used because there is no absorption by water at 900 nm, but it is
subjected to the same changes in sample structure as the reading at 970 nm [122]. Several
authors show [123–125] that the WBI is higher in the initial or later stages of a nitrogen-
stressed crop. According to Ramachandiran and Pazhanivelan [107], the plants with high
nitrogen status have lower values of WBI, and vice versa.

A decrease in NIR reflectance for stressed plants is mainly due to a decrease in LAI
and green biomass [125], and reduced turgidity of the spongy-mesophyll layer in rainfed
crops, compared to the turgidity levels of fully irrigated crops [111]. However, as the degree
of absorption at 970 nm rises compared to 900 nm, the water content of plant canopies
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increases [76]. On the contrary, under water-stress conditions, the 970 nm trough of the
reflectance spectrum tends to shift towards lower wavelengths.

5. Conclusions

The results of this study demonstrated that hyperspectral reflectance can be used as
a tool to detect the water and nitrogen status of sweet maize, even if no single index can
describe the complexity of the eco-physiological behavior of vegetation. The most effective
indices to assess the combined effect of nitrogen and water stress in maize were red-edge
based VIs, such as CARI, DD, REIP, and Clred-edge chlorophyll indices. Therefore, the
use of spectral data at mid-season stage could enhance precision agriculture by identi-
fying stress patterns, and aid growers in making good decisions; for instance, allowing
supplemental water and nutrient application to mitigate adverse stress effects.

The relationship between the spectral signature and the target variable might be
affected by structural properties of the canopy (i.e., plant size, age, and leaf angle) and
physiological status, in response to biotic and abiotic stressors. Thus, in future perspectives,
the integrated use of information derived by different sensors could help in discriminating
the effects of multiple stresses on crop response.
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