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Abstract 26 

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the 27 

capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here 28 

we map the difference (offset) between temperatures inside and outside forests in the recent past and 29 

project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we 30 

combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) 31 

measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover 32 

to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air 33 

temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the 34 

difference between maximum temperatures inside and outside forests across the globe will increase (i.e. 35 

result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 36 

°C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest 37 

canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of 38 

utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested 39 

areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find 40 

shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests 41 

as a whole as microrefugia for biodiversity under future climate change. 42 

Keywords: forest microclimate, temperature offsets, canopy, climate change, future 43 

climate projections, paired sensor data 44 

  45 
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Introduction 46 

Warming temperatures and changing precipitation regimes are influencing ecosystems across the globe 47 

(IPCC, 2018). To date, ecological research assessing the impact of anthropogenic climate change has 48 

predominantly relied on macroclimatic data. These data are typically based on a global network of weather 49 

stations established at approximately 1.5 to 2.0 m above the soil surface in open habitats (e.g. above short 50 

grass) (World Meteorological Organization, 2018). Forest organisms living below and within tree canopies, 51 

however, experience microclimatic conditions distinct from those in open habitats (Chen et al., 1999; De 52 

Frenne et al., 2021; Geiger et al., 2009). Below tree canopies, lower radiation, wind and evapotranspiration 53 

rates often translate into lower temporal variation in air temperature and humidity compared to open 54 

environments (Davis et al., 2019; Geiger et al., 2009; Von Arx et al., 2013). In particular, temperature 55 

extremes are often strongly attenuated in forest interiors, with lower maxima and higher minima compared 56 

to open environments (De Frenne et al., 2019; Li et al., 2015). Studies have already shown that such 57 

microclimatic buffering can mediate the response of forest communities to climate change (De Frenne et al., 58 

2013; Dietz et al., 2020; Lenoir et al., 2017; Stevens et al., 2015; Zellweger et al., 2020). Despite the increasing 59 

evidence that ecosystem dynamics and processes are more likely to be related to forest microclimates than 60 

to macroclimate (Chen et al., 2018; De Frenne et al., 2021; De Smedt et al., 2021; Frey et al., 2016a), 61 

microclimates are still seldom incorporated in ecological research (e.g. in species distribution models) 62 

(Lembrechts et al., 2019) and ignored by dynamic global vegetation models (DGVMs; e.g. Thrippleton, 63 

Bugmann, Kramer-Priewasser, & Snell, 2016) that simulate the effects of future climate change on natural 64 

vegetation and its carbon and water cycles. In particular, we do not know how forest microclimates will 65 

change in the future as macroclimate changes (Lembrechts and Nijs, 2020). 66 

Advances in studies on the effects of climate change on different organisms living below or in forest canopies 67 

have often been limited by the availability of suitable microclimatic data (De Frenne et al., 2021). One robust 68 

way to study forest microclimates is to use microclimate measurements from paired (inside vs. outside 69 

forests) sensor networks to calculate temperature offsets, i.e. the absolute and instantaneous difference 70 

between temperature inside (i.e., microclimate) and free-air temperatures outside forests (i.e., 71 
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macroclimate) (sensu De Frenne et al., 2021). Negative offset values thus reflect cooler and positive offsets 72 

warmer forest temperatures compared to outside forests. These empirical offset values for temperature can 73 

be related to readily available environmental data using statistical modelling approaches, and these models 74 

can then be used to interpolate and extrapolate microclimate across entire mapped landscapes (Frey et al., 75 

2016b; Greiser et al., 2018). Differences between macro‐ and microclimate (i.e., temperature offsets) result 76 

from processes operating at many scales that influence incoming solar radiation, air mixing, soil properties 77 

or evapotranspiration (reviewed in De Frenne et al., 2021). Macroclimatic conditions (e.g., mean temperature 78 

and rainfall), topographic variation in the landscape (e.g., elevation and aspect) and variation in canopy cover 79 

and vegetation height have been reported to be the main drivers of the understorey temperatures in forests 80 

(De Frenne et al., 2021, 2019; Greiser et al., 2018; Macek et al., 2019; Zellweger et al., 2019). With the advent 81 

of global forest microclimate data (De Frenne et al., 2019; Zellweger et al., 2020), this type of modelling now 82 

enables the prediction of forest microclimates across forest types under future climate change. 83 

Here we map forest microclimate temperature offsets based on (i) paired sensor measurements below the 84 

canopy vs. the open-air temperature at a given site and (ii) landscape- and canopy-scale predictors 85 

throughout the year for the Earth’s dominant forested ecosystems across five continents and at a spatial 86 

resolution of ~1 km.   More specifically, our objectives were to (1) make predictions for mean, minimum and 87 

maximum temperatures using past macroclimatic data (1970-2000), and, (2) make projections for 88 

temperature offsets for the future (2060-2080) macroclimatic conditions. We hypothesised that the 89 

buffering capacity of forest canopies results in slower future warming of forest below-canopy temperatures 90 

compared to the warming observed in standard meteorological weather stations (macroclimate). 91 

  92 
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Material & Methods 93 

Paired plot data 94 

We used a unique data set with 714 temperature offset data points involving paired plots from 74 studies 95 

spread across 5 continents (Supplementary Material Fig. S1; Data available in De Frenne et al., 2019). Focus 96 

was on air temperature below tree canopies (~72% of observations) and the temperature of the topsoil 97 

(~28%), given their importance for responses of forest organisms and ecosystem functioning to macroclimate 98 

warming. A key asset of this database is the paired nature of the data, which always combines below-canopy 99 

temperature data at a given forest site with open-air temperature data from a neighbouring reference non-100 

forest site. Temperature measurement were performed by various logger types such as HOBO loggers (~15% 101 

of observations), iButton loggers (~10%), full weather stations (~5%) and various other logger types (e.g. 102 

cylindrical thermistor, Hanna thermohygrometer, thermocouples, etc.; ~70%). Reference sites were a nearby 103 

open site equipped with the same type of (shielded) temperature loggers (~82% of observations), a nearby 104 

weather station (~14%) (provided the distance did not conflict with the temperature offset of the canopy, 105 

e.g., due to significant topographic differences) or a logger placed above the upper canopy surface (~4%). We 106 

specifically refrained from using additional data on forest microclimate conditions that were not strictly 107 

paired with free-air conditions from a neighbouring site using the exact same design (same sensor, same 108 

logger, same shielding material, same height). 109 

The data points were collated from the scientific literature in a systematic and reproducible manner (see De 110 

Frenne et al., 2019 for full details). Temperature offsets were calculated as the temperature inside the forest 111 

minus the temperature outside the forest, or extracted directly from the original study; negative values 112 

reflect cooler temperatures below tree canopies while positive values reflect warmer understorey 113 

temperatures. This was done for three temperature response variables, i.e. mean, maximum, and minimum 114 

temperature (further referred to as Tmean, Tmin and Tmax, respectively) that were computed during a specific 115 

time period that could differ between sites but that was exactly the same between paired sensors installed 116 

outside and inside the forest at a given site. Multiple forest sites (at least several kilometres apart), seasons 117 

(meteorological seasons, later aggregated to growing versus non-growing season) and temperature metrics 118 
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(maximum, mean, minimum, air or soil temperatures) originating from the same study were entered into 119 

different rows of the database but tagged under the same study ID. Temperature values of long time series 120 

were always aggregated per season and/or year, which means that several temperature values for Tmean, Tmin 121 

or Tmax could be generated for the same study site. Temperature measurements were classified as having 122 

taken place during the growing season, the non-growing season or throughout the whole year. This 123 

classification was performed on the basis of reported meteorological seasons and/or climate information in 124 

the original study. The dry and winter season were classified as the non-growing season in tropical and 125 

temperate biomes, respectively. Estimates of uncertainty (standard error, standard deviation, coefficient of 126 

variation or confidence intervals) of the temperature measurements were only reported for a small minority 127 

(13.6%) of offset values in the database and were thus not included in our analyses. See De Frenne et al. 128 

(2019) for more details on the literature search, inclusion criteria and the empirical data used in this study. 129 

Predictor variables 130 

To predict the offsets for the three temperature variables (Tmean, Tmax, Tmin) across all forests at a global extent, 131 

we gathered global maps of predictor variables related to macroclimate, topography and forest cover. These 132 

three sets of predictor variables were selected based on their importance for forest microclimate, and on the 133 

spatial resolution and extent of the available data. All the predictor maps we used are raster maps with a 134 

spatial resolution of 30 arcsec (~1 km) and are available at the global extent (i.e., from 80°N to 56°S in latitude 135 

and from 180°E to 180°W in longitude). Values for all predictor variables were extracted using the 136 

geographical coordinates for each plot pair. 137 

Macroclimate. Global raster maps of mean, minimum and maximum free-air temperature (°C; Tmacro), 138 

on a monthly basis, as well as monthly precipitation (mm) raster maps, averaged for the climatology 139 

1970-2000, were collected from WorldClim version 2.1 (Fick and Hijmans, 2017). In addition, we 140 

gathered future projections (2060-2080) for the exact same set of temperature and precipitation 141 

variables described in the previous sentence but based on the contrasting “very stringent” 142 

representative concentration pathway (RCP) 2.6 and “worst case” RCP 8.5 from three different 143 

general circulation models (GCMs) with minimal interdependency, based on Sanderson et al. (2015), 144 
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i.e. HadGEM2-ES, MPI-ESM-LR and MIROC5 (downscaled CMIP5 data from WorldClim; 30 arcsec 145 

resolution). 146 

Topographic variables and distance to the coast. We gathered six variables related to topography 147 

using raster layers derived from the Global Multi-resolution Terrain Elevation Data 2010 148 

(GMTED2010) dataset at 30 arcsec resolution (Amatulli et al., 2018). Maps on northness and 149 

eastness, elevation (m a.s.l.), elevational variation (EleVar) and topographic position index (TPI) were 150 

collected. Northness and eastness are the sine of the slope, multiplied by the cosine and sine of the 151 

aspect, respectively. They provide continuous measures describing the orientation in combination 152 

with the slope (i.e., a circular variable is transformed into a continuous one, ranging from -1 to 1). In 153 

the Northern Hemisphere, a northness value close to 1 corresponds to a northern exposition on a 154 

vertical slope (i.e., a slope exposed to very low amount of solar radiation), while a value close to -1 155 

corresponds to a very steep southern slope, exposed to a high amount of solar radiation. Aspect 156 

values for the Southern Hemisphere were inverted so that a value of 1 in the Southern Hemisphere 157 

also means very low amount of solar radiation. Variables EleVar (1) and TPI (2) capture topographic 158 

heterogeneity within a 1 km² grid cell around each pair of measurements (inside and outside forest): 159 

(1) the standard deviation of elevational values aggregated per 1 km² grid cell (further referred to as 160 

elevational variation) and (2) the median of the topographic position index (TPI) values across each 161 

1 km² grid cell. The TPI is the difference between the elevation of a focal cell and the mean elevation 162 

of its eight surrounding cells. Positive and negative values correspond to ridges and valleys, 163 

respectively, while zero values correspond to flat areas (Amatulli et al., 2018). We also produced a 164 

map with the distance from each land pixel to the nearest coastline (Dist2Coast) using the coastline 165 

map data from Natural Earth (free vector data from naturalearthdata.com). 166 

Forest cover and forest height. We used the tree canopy cover (defined as canopy closure for all 167 

vegetation taller than 5 m in height) map for the year 2000 by Hansen et al. (2013). This high-168 

resolution global map layer was re-projected and aggregated from 30 m to 30 arcsec using the 169 

average of the aggregated raster cells. This canopy cover map is the only available map spanning a 170 

global extent at this high resolution. By using this data product, we make the strong assumption that 171 
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canopy cover at the time of temperature measurements is similar to the cover in the year 2000. We 172 

consider this assumption as reasonable as the median year of the temperature measurements for all 173 

data points is approximately 1996 (range between 1943 and 2014). Finally, we used estimates of 174 

canopy height at 1 km resolution derived from the ICESat satellite mission based on 2005 (Simard et 175 

al., 2011). 176 

Data analysis 177 

All statistical analyses were performed in the open-source statistical software environment of R, version 4.0.2 178 

(R Core Team, 2021). The temperature offsets for Tmean, Tmax and Tmin were modelled (274, 184 and 202 plot 179 

pairs respectively), after removing missing values for sensor height, i.e. not mentioned in the original study, 180 

and data points with canopy cover zero (based on the tree canopy cover map introduced above; Hansen et 181 

al., 2013) using linear mixed-effect models with random intercept (LMMs) (lme4 package; Bates et al., 2015). 182 

In our main models, we combined the seasonal (growing vs. non-growing and annual) time series and 183 

performed additional analyses for the different three different time periods (see further and Supplementary 184 

Material Appendix S2). We included ‘study ID’ as a random intercept term to account for non-independence 185 

between samples within studies. For each of the three studied response variables, we started our modelling 186 

protocol from the full model: 187 

Toffset ~ Tmacro + Precipitation + Elevation + Eastness + Northness + EleVar + TPI + Dist2Coast + Canopy cover + 188 

Forest height + Sensor height + random effect ‘study ID’ 189 

For Tmacro, we used the monthly average for either Tmean, Tmax and Tmin temperature during the period 1970-190 

2000 depending on the studied response variable of T offset (Tmean, Tmax or Tmin). Sensor height was also 191 

included in the models (continuous variable, in metres above or below the soil surface), as this significantly 192 

impacts the magnitude of the temperature offset (De Frenne et al., 2019; Supplementary Fig. S2; Table S1). 193 

Sensor height is positive for aboveground and negative for belowground sensors. Data points with sensor 194 

height > 2 m were excluded as our aim was to model forest microclimate near the ground. To avoid 195 

collinearity in predictor variables and improve model performance, we excluded variables that showed a 196 

correlation r ≥ |0.7| (Pearson's product-moment correlation; Supplementary Fig. S3) and variance inflation 197 
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factor ≥ 4 (Zuur et al., 2010). Forest height was therefore removed from all models due to high correlation 198 

with canopy cover; for Tmean offset, EleVar was also dropped from the model due to high correlation with TPI. 199 

All predictors were standardized by subtracting the mean and dividing by the standard deviation prior to 200 

modelling. For each response variable, the single best model was selected based on the Akaike Information 201 

Criterion (AIC) using the automated dredge-function of the package MuMIn (Barton, 2009). Goodness of fit 202 

was calculated following Nakagawa and Schielzeth (2013). 203 

To test for non-linear relationships, we also used generalized additive mixed-effect models (GAMMs) (cf. the 204 

gamm4 package) (Wood and Scheipl, 2014) on the same dataset. We applied smoothers to the same set of 205 

fixed-effect terms, included the same random intercept term ‘study ID’ and followed the same model 206 

selection procedure as for the LMMs. For each of the three studied response variables (Tmean, Tmax, Tmin) and 207 

for each of the two modelling approaches, we performed a leave-one-out cross validation (LOOcv) and 208 

compared root mean square errors (RMSE) among models (LMMs vs. GAMMs). We found no difference (t 209 

test, p-value > 0.05) in RMSE between LMMs and GAMMs, justifying our choice of LMMs (see also 210 

Supplementary Fig. S4). Furthermore, we checked spatial autocorrelation in the model residuals for the 211 

LMMs using Moran ́s I-test from the ape package (Paradis and Schliep, 2019). No spatial autocorrelation was 212 

detected (p-value > 0.05) in the model residuals. Additionally, we tested the effect of season of sampling 213 

(annual, growing and non-growing season; see above) on each response variable. We included season as a 214 

categorical variable to the full models described above and followed the same model selection procedure. 215 

However, due to the low number of observations for each category (but growing season being the dominant 216 

category), results including season were only included in the Supplementary Material Appendix S2. 217 

Using the single best LMMs for each of our three response variables, we made predictions for Tmean, Tmax, and 218 

Tmin offsets for forest across the globe using the collected map data for all predictor variables retained in the 219 

models, setting sensor height to 1.0 m and not considering variation included in the random intercept. 220 

Temperature offsets were predicted for all raster pixels (30 arcsec resolution) with canopy cover >50% as this 221 

largely concurs with the global distribution of forest areas in the terrestrial ecoregions map by Olson et al. 222 

(2001). To assess model performance, we performed spatially blocked k-fold cross-validation (k = 10; folds 223 

assigned randomly, with spatial blocks of size 50 km²; Valavi et al., 2019). Furthermore, we made predictions 224 
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of future forest temperature offsets based on the future projections of temperature and precipitation (the 225 

latter only included in the best model for Tmean and Tmin) from WorldClim (see above). We made future 226 

predictions for the period of 2060-2080 using the RCP 2.6 and RCP 8.5 projections based on the three selected 227 

GCMs to account for uncertainty related to the GCMs; final model predictions for each RCP scenario were 228 

averaged over all GCMs. For the future predictions, we assumed no change in topography and conservatively 229 

assumed no change in canopy cover as our main goal was to determine direct climate change effects on 230 

temperature offsets below forest canopies if we maintain the forest cover. Of course, we could use different 231 

scenarios of future forest cover but we decided to not do that to better assess the unique effect of future 232 

climate change without changing other parameters, such as forest cover, in the model. Besides, future 233 

scenario on forest cover are not yet available at a global extent and at the spatial resolution we used here. 234 

Uncertainty in predictions was mapped by applying a bootstrap approach. We resampled the original data 235 

used to fit the models with replacement with total size of the bootstrap samples equal to the size of the 236 

original sample. For each of the temperature responses, we fitted single best models using 30 bootstrap 237 

samples. Using these 30 models, we generated per-pixel standard deviation mapped at the global extent 238 

(Supplementary Fig. S5). To map uncertainty for the future predictions, the same procedure was followed for 239 

each of the three GCMs, i.e. 30 bootstraps per GCM. Furthermore, we provide maps indicating where the 240 

models are extrapolating beyond the values of data used to fit the models. Predictive performance and 241 

uncertainty mapping were performed considering fixed effects of the models, excluding uncertainty of the 242 

random (study) effects. Predictions were made using the raster package (Hijmans and van Etten, 2012). 243 

Graphical plots were created using ggplot2 (Wickham, 2016) and Tmap packages (Tennekes, 2018). 244 

Results 245 

Our models predicted an average global offset of -2.92 ± 1.57 °C (mean ± SD) for Tmax, -0.88 ± 1.82 °C for Tmean, 246 

and 0.96 ± 1.27 °C for Tmin (Fig. 1 and 2). These averages were calculated from all pixels having at least 50% 247 

canopy cover during the year 2000 (Hansen et al., 2013) and derived from the predictions in Fig. 1. Our 248 

predictions show a slightly positive Tmean offset (i.e. warmer temperatures within the forest) in boreal forests, 249 

becoming overall negative towards the tropics (i.e. cooler temperatures within tropical forests compared to 250 
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free-air temperatures) (left panels Fig. 2). Tmax offsets are negative across the three biomes (i.e. cooler 251 

maximum temperatures within forests) with the lowest values in the tropics (up to 5 degrees cooler within 252 

forests), whereas Tmin offsets are positive in boreal and temperate forests and negative in the tropics (Fig. 2). 253 

When including season in the modelling procedure, we found that for Tmean offsets were lower during the 254 

growing season than for the non-growing season across the three biomes. For Tmax and Tmin, season was not 255 

included in the best model (more detailed results included in Supplementary Material Appendix S2). 256 

Offsets for Tmax, Tmean and Tmin were negatively affected by free-air, macroclimate temperatures 257 

(Supplementary Fig. S2 and Table S1). For Tmean and Tmin, we found lower offset values with higher amounts 258 

of precipitation (Supplementary Fig. S2 and Table S1), for Tmean this indicates stronger buffering (more 259 

negative offsets), whereas for Tmin this means weaker buffering (offsets closer to zero). We found Tmin offsets 260 

to be more positive, i.e. more strongly buffered, in areas with higher canopy cover, on pole-facing slopes and 261 

closer to the coast. The marginal R² values (for fixed effects) were 0.29 (0.03 SD), 0.21 (0.03 SD) and 0.25 262 

(0.03 SD), while conditional R² values (for fixed and random effects) reached 0.58 (0.04 SD), 0.60 (0.06 SD) 263 

and 0.52 (0.04 SD) for Tmax, Tmean and Tmin, respectively. Root mean square errors obtained from the spatial 264 

cross-validation were 3.67 °C (1.55 SD), 1.78 °C (0.71 SD) and 1.52 °C (0.45 SD) for Tmax, Tmean and Tmin, 265 

respectively. Standard deviations obtained from the bootstrapping procedure show fair consistency between 266 

the predictions of the 30 bootstrapped models (Supplementary Table S2; Fig. S5 and S6). Upper confidence 267 

levels (95%) of standard deviations for all three responses remained lower that 1 °C (Supplementary Table 268 

S2 and Fig. S6). Higher values were mainly observed in the tropical and boreal region. We also found higher 269 

extrapolation for the predictors included in the models in tropical forests and especially in the boreal region 270 

(Supplementary Fig. S7). 271 

Our future projections showed an overall decrease in offset values for all three temperature responses (Fig. 272 

2). For Tmean, future minus past offsets were -0.22 ± 0.16 °C (mean + SD) for RCP2.6 and -0.5 ± 0.22 °C for 273 

RCP8.5 (Fig. 2). For Tmax, future minus past offsets were -0.27 ± 0.16 °C for RCP2.6 and -0.60 ± 0.14 °C for 274 

RCP8.5 (i.e. cooler maximum temperatures within forests compared to outside temperatures in the future). 275 

For Tmin, future minus past offsets were -0.12 ± 0.18 °C for RCP2.6 and -0.27 ± 0.24 °C for RCP8.5. These 276 

averages were derived from panels D, E and F in Fig. 1. For both Tmax and Tmean, this means stronger offsets or 277 
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buffering (more negative offsets), whereas for Tmin weaker buffering (offsets closer to zero). Decreases in Tmin 278 

offsets are most pronounced in the boreal and temperate region (left panels Fig. 2).  279 
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 280 

Fig. 1. First row: Global maps of past (1970-2000 climate) forest temperature offsets of (A) maximum, (B) mean and (C) minimum temperatures below tree canopies. Second row: 281 

Maps showing the difference between (D) maximum, (E) mean and (F) minimum temperature offset predictions based on future climatic conditions under RCP8.5 scenarios and past 282 

(1970-2000) offsets (future minus past, negative values thus depict lower offsets in the future than in the recent past which mean higher buffering for Tmax and Tmean but lower for 283 

Tmin). Predictions were made based on linear mixed-effects models and only for pixels where the canopy cover in the year 2000 is > 50% (Hansen et al., 2013). 284 
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  285 

Fig. 2. Left panels: Violin and box plots showing the distribution of predicted below-canopy forest temperature offsets 286 

of (A) Tmax, (C) Tmean, and (E) Tmin across boreal, temperate and tropical forests classified following Olson et al. (2001). 287 

Right panels: density plots for the predicted offsets of (B) Tmax, (D) Tmean, and (F) Tmin. Dashed vertical lines represent 288 

global mean offset values for the three temperature responses for past, and the future RCP2.6 and RCP8.5 scenarios. 289 

Note that bimodality is observed in the density plots, resulting from the difference between offsets in temperate and 290 

boreal versus tropical forests (see Fig. 1). For all plots, different colours and line types represent predictions for past 291 

climatic conditions (macroclimate temperature and precipitation, grey), for RCP2.6 (orange) and RCP8.5 scenarios 292 

(blue). Data points to draw these plots are subsamples (105 pixels) derived from the global predictions in Fig. 1. 293 

 294 

  295 
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Discussion 296 

Our predictions of temperature offsets for the 1970-2000 climatology and for forests having at least 50% tree 297 

cover during the year 2000 (Hansen et al., 2013) show that mean temperatures are on average cooler below 298 

canopies (at 1 m height) than in open habitats across all forested grid cells (De Frenne et al., 2019; Li et al., 299 

2015). Our results also support the fact that temperature extremes are mainly buffered in forests; Tmax is on 300 

average lower inside forests, whereas Tmin is warmer. Nevertheless, strong biome-specific variation was 301 

observed: while in boreal forests, Tmean offsets were slightly positive, they became overall negative towards 302 

the tropics. Tmax offsets were negative across the three biomes with the most negative values in the (warmer) 303 

tropics, whereas Tmin offsets were positive in the cooler boreal and temperate forests, and negative in the 304 

warm tropics. Furthermore, the difference between growing and non-growing season on Tmean offsets 305 

illustrates the importance of considering the temporal and seasonal variation in temperature offsets in future 306 

research (Li et al., 2015; Zellweger et al., 2019). 307 

Temperature offsets for all three responses were negatively related to macroclimate temperatures. This 308 

relationship is expected as temperature offsets are directly linked to macroclimate temperatures; if free-air 309 

temperatures rise, offsets will become more negative because the parameter estimate for Tmacro represents 310 

the proportional buffering of canopies of free-air temperatures. Offsets for Tmean and Tmin were negatively 311 

affected by precipitation. That is, the buffering for Tmax by canopies was stronger in regions with higher 312 

amounts of precipitation, whereas buffering is lower for Tmin, supporting the notion that evapotranspiration 313 

drives the offset in these conditions (Davis et al., 2019). The limited role of drivers other than macroclimate 314 

could be because the 30 arcsec (~1 km) spatial resolution is still too coarse to detect effects of e.g. topography 315 

or canopy cover, drivers acting on a very local scale (Ashcroft and Gollan, 2012; Greiser et al., 2018; Macek 316 

et al., 2019).  317 

Our aim was not to produce maps for use, but to give an overview of how temperature offsets between 318 

forest and open habitats vary across forest biomes and how these relationships can evolve under climate 319 

change. Despite the limitations of the data and the assumptions made, we found that our models explained 320 

a moderately large amount of variation in the offsets, and considered model accuracy to be fair. Uncertainty 321 
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in predictions increased towards tropical and boreal forests which is likely caused by extrapolation outside 322 

the environmental range included in our data. These biomes were underrepresented in the data, hence, 323 

future research should focus on setting out networks of paired temperature sensors in these regions 324 

(Lembrechts et al., 2021b). 325 

Our projections for both the “very stringent” RCP2.6 as well as the “worst-case” RCP8.5 scenario indicate 326 

that buffering by forest canopies for Tmean and Tmax temperature may increase, but minimum temperature 327 

offsets will decrease, especially in temperate and boreal regions as ambient temperatures become less cold. 328 

This suggests that under climate change, free-air temperatures are likely to have a larger-magnitude increase 329 

than the corresponding forest microclimate temperatures, which would reinforce the idea of divergent 330 

warming (decoupling) between macroclimate and microclimate (De Frenne et al., 2019; Lenoir et al., 2017). 331 

Offsets may even become lower (resulting in increasing or decreasing buffering for Tmean or Tmin, respectively) 332 

despite projected decreases in precipitation in some regions (Supplementary Fig. S8). It is possible that finer-333 

grained microclimatic heterogeneity could buffer the impact of a changing macroclimate even further 334 

(Maclean et al., 2017). This inference relies, however, on the strong assumption that forest cover and 335 

composition will remain stable in the future. Such stability is however unlikely, as climate change itself as 336 

well as forest management and disturbances can either increase or decrease forest canopy cover in the 337 

future. For example, climate change is however likely to cause increased tree mortality owing to, for instance, 338 

repeated and more severe disturbances such as droughts, fires, pathogens and insect outbreaks (Curtis et 339 

al., 2018; Senf et al., 2021; Senf and Seidl, 2020). The resulting reduction in tree canopy cover can lead to a 340 

sudden loss (i.e. a tipping point) of canopy buffering and increased microclimate warming (Alkama and 341 

Cescatti, 2016; Findell et al., 2017; Lembrechts and Nijs, 2020; Richard et al., 2021; Zellweger et al., 2020). 342 

On the other hand, strong efforts are being made worldwide to increase forest cover and implement climate-343 

smart forestry practices (Bastin et al., 2019; Di Sacco et al., 2021). How these forest cover changes will affect 344 

future forest temperature buffering should be a topic for future forest microclimate research. 345 

We projected temperature buffering capacities of forests across the globe under future climate change 346 

scenarios. Assuming no change in forest composition, we predicted that forest buffering of Tmean and Tmax will 347 

increase in the future (2060-2080), whereas buffering of Tmin will be reduced due to changes in macroclimate 348 
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conditions. Our results indicate that the refugial capacity of cool and dense forest might last longer than 349 

anticipated in a warming climate. This knowledge has important implications for forest biodiversity 350 

conservation. Forest managers and policymakers could, for example, aim to optimise forest functioning and 351 

biodiversity goals by identifying areas in which reducing or retaining canopy cover may have larger impacts 352 

on the prevailing microclimate than anticipated under future climate change (Wolf et al., 2021). The paired 353 

nature of the data allowed us to model absolute temperature offsets across a global extent with fair accuracy. 354 

Gridded microclimate products such as ours, especially when paired with new, well-designed networks of 355 

microclimate measurements (Lembrechts et al., 2020) serve ecological and environmental modelers with a 356 

more scale-relevant set of products for making predictions and drawing inference. At the regional and even 357 

continental scale, novel high-resolution data on forest structure and composition based on remote sensing 358 

imagery (e.g. GEDI LiDAR data) are becoming available (De Frenne et al., 2021; Lembrechts et al., 2019; 359 

Randin et al., 2020; Zellweger et al., 2018). Including these microclimate measurements and novel spatial 360 

map data (e.g. Haesen et al., 2021; Lembrechts et al., 2020) in future models and mapping efforts will increase 361 

accuracy of future predictions (Lembrechts et al., 2021a). Our study illustrates that forest microclimates 362 

themselves are subject to climate change, which will have important consequences for forest-dwelling 363 

species and must hence not be neglected. 364 

Data availability:  365 

The dataset analysed in the current study is available in the Figshare repository, with the identifier 366 

10.6084/m9.figshare.7604849 (de Frenne et al., 2019). 367 
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