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Abstract1

A generic framework is proposed to evaluate the relative discharge error2

made when ignoring stage-discharge hysteresis due to transient flow over large3

gauging station networks. The diagnosis is conducted using the Jones equa-4

tion, based on a simple hydraulic concept relating discharge to stage and its5

time-gradient. The main input data used for the method are the flow re-6

sistance coefficients, the temporal stage gradients, and the bed slopes. The7

hysteresis effect is quantified for each gauging station and mapped using the8

relative discharge error. The method was applied to 2618 gauging stations9

of France’s national hydrometry network using observational data extracted10

from the national hydrological archive and from Digital Terrain Models. The11

diagnostic results highly depend on slope estimates used as inputs. Substan-12

tial hysteresis effects were found at stations with low bed slope combined with13

a fast flood regime. The France application shows the difficulty to provide a14

firm conclusion about stations prone to hysteresis due to the slope data uncer-15

tainty. This issue is not specific to France; slope estimates at a country-level16

is difficult to obtain in many countries. The use of local bed slope estimates17

is recommended to approach the slopes of the reaches controlling the station18

flow dynamics.19
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1 Introduction21

Hysteresis in the stage-discharge relations (i.e. rating curves) of gauging stations22

can be observed during flood events (Rantz, 1982; Muste et al., 2020). Figure 123

is an illustration of the effect of unsteady flows on different flow variables in time24

and on the stage-discharge relationship compared to the case of uniform steady25

flows. During the propagation of transient flows, the celerity of the pressure wave26

(stage) is smaller than the celerity of the velocity wave, hence smaller than the27

celerity of the discharge wave (Graf and Qu, 2004). In such case, for the same given28

stage, the discharge during the rising limb is higher than during the falling limb29

of the event, leading to a non-unique stage-discharge relation. Hysteresis creates a30

loop in the rating curve, which is more or less wide depending on the geometrical31

characteristics of the channel and on the type (intensity, gradient) of floods (Lee,32

2013). Other phenomena can create looped rating curves, such as variable backwater33

(i.e. changes in the downstream conditions), or variable roughness (Boyer, 1964;34

Fenton and Keller, 2001; Mansanarez, 2016). In this study, the focus is on hysteresis35

induced by unsteady flow only.36

In practice, this hysteresis effect is often neglected, partly because it is not cap-37

tured by the occasional measurements of discharge and stage (a.k.a. gaugings).38

Indeed, during flood events, gaugings are generally made after the flood peaks, for39

practical and safety reasons. Thus, the loop induced by the hysteresis phenomenon40

in the rating curve is often not observed. The evolution of the gauging techniques41

toward non-intrusive and less dangerous methods, e.g. radar (Welber et al., 2016)42

and image velocimetry (Dramais et al., 2011), will certainly help to overcome this43

lack of information in the coming years. Substantial biases in flood prediction can44

arise if hysteresis is ignored, such as underestimation of discharge during the ris-45

ing limb of the flood, including the peak discharge, time lag in the overall flood46

hydrograph and larger uncertainty of the discharge estimations due to the scatter47
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of gauging data around the rating curve (Holmes, 2016; Mansanarez, 2016; Muste48

et al., 2020).49

Numerous methods exist to adjust the rating curves when unsteadiness is signifi-50

cant (cf. Lee, 2013; Dottori et al., 2009, for method reviews). They are usually based51

on a correction of the standard discharge, estimated with a unique rating curve valid52

for steady flow conditions, to account for hysteresis and compute the real discharge.53

Jones (1915) method is the most used by the hydrometric community. It assumes54

that the flood wave propagates without any attenuation. Based on this kinetic wave55

approximation, the discharge in unsteady flows can be deduced from the stage and56

its time-gradient. More general expressions accounting for inertial forces have been57

proposed and used by Fread (1975); Fenton and Keller (2001); Perumal et al. (2004);58

Petersen-Overleir (2006); Wolfs and Willems (2014); Mansanarez (2016); Lee and59

Muste (2017); Muste et al. (2020) for example.60

It is important to know where and when hysteresis can occur and how large it is to61

better evaluate the flood hazard (Lee, 2013; Muste et al., 2020). The main objective62

of this paper is to propose a diagnostic approach to quantify the risk of hysteresis63

over a large set of hydrometric stations, typically over an entire national network.64

The gauging stations prone to hysteresis are identified from the relative discharge65

error ε potentially made when ignoring the hysteresis effect. The parameter ε is66

defined as the relative bias between discharge estimates accounting (Q) or not (Q0)67

for flow unsteadiness (Figure 1). It informs about the exposure of gauging stations68

to hysteresis effect during specific events. The parameter ε is similar to the PDIFF69

parameter introduced by Holmes (2016), which refers to the percent difference of the70

measured discharge from the discharge estimated using the unique standard rating71

curve. However, ε seems more suitable for massive diagnosis since it is based solely72

on discharge models and does not depend on available discharge measurements.73

The diagnosis is intended to massive and large-scale deployment and to overview74

the areas influenced by hysteresis, before proceeding to a more accurate station-by-75

station analysis using available gaugings.76
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Figure 1: Discharge error due to flow unsteadiness hysteresis: temporal time series
(U : average velocity, Q : discharge, h : stage), rating curves (dashed line for
steady uniform flow regime and solid line for unsteady flow regime) and the relative
discharge error ε comparing the two discharges of the two different regimes (Q:
unsteady discharge, Q0: steady discharge).

The rest of the paper is organized as follows. First, the rating curve model for77

unsteady flows used in the diagnosis procedure is detailed in Section 2. Simple rating78

curve models such as the well-accepted Jones (1915) equation are preferred for the79

diagnosis because it requires limited information that is available on large datasets80

and easily measurable on the field. The presented method is intended to be used81

for hydrometric purposes. Other more complex equations mentioned above require82

too much additional information and as shown by Mansanarez (2016), they do not83

significantly improved nor reduced the uncertainty related to the estimation of the84

discharge during unsteady flows compared to Jones (1915) equation. Then, the85

generic framework is described in Section 3 along with the required input data and86

the criteria retained for quantifying the hysteresis effect. The diagnosis is eventually87

applied to the gauging stations of the French national hydrometry network (Section88

4). The limit of the method is pointed out using a sensitivity analysis of input data89

of the hysteresis model.90

2 Theory91

2.1 Rating curve model for steady uniform flow92

Hysteresis due to transient flows is known to be observed during intense floods.93

In those conditions, it is usually relevant to approximate the hydraulic controls at94
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gauging stations by a single channel control. The diagnosis is therefore performed95

with this assumption.96

The Manning-Strickler equation is generally used for stage-discharge models of97

gauging stations with channel controls, for which the flow is mainly controlled by98

friction (Rantz, 1982; World Meteorological Organization, 2010; Le Coz et al., 2014)99

:100

Q0 ≈ KAR
2/3
h

√
S0 (1)

with Q0 [m3/s] the discharge in uniform steady flow, K [m1/3.s−1] the Strickler flow101

resistance coefficient, A [m2] the wetted area, Rh [m] the hydraulic radius and S0 [-]102

the channel slope. A unique relation between stage and discharge is thus obtained.103

Equation 1 is valid only for uniform steady flow; although it is often used for non-104

uniform unsteady flows in the hydraulic community.105

2.2 Rating curve model for unsteady flow - Jones equation106

Equation 1 is based on the assumption that the energy slope Sf can be approxi-107

mated by the channel slope S0. It is not applicable in case of unsteady flow. Indeed,108

the water free-surface varies continuously during the flood wave propagation and the109

longitudinal water profile is not parallel to the river bed profile. Therefore, a correc-110

tion of the steady-flow rating curve is required to capture the hysteresis effect. The111

energy slope Sf can be expressed through the one-dimensional momentum equation112

of Saint-Venant, which describes the full dynamics of a flood wave propagation :113

Sf = S0 −
∂h

∂x
− 1

g

(
∂U

∂t
+ U

∂U

∂x

)
(2)

with g [m.s−2] the gravitational acceleration, U [m.s−1] the cross-sectional average114

water velocity, t [s] the time, x [m] the streamwise distance and h [m] the water115

surface elevation (a.k.a. the stage). The relative importance of the terms detailing116

the full dynamics of the flood wave propagation (Equation 2) determines the type117
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of wave occurring at specific sites and particular events (Muste et al., 2020). For118

example, neglecting the inertia terms compared to the pressure term and gravity119

force leads to the so-called diffusion wave (Equation 3):120

Sf ≈ S0 −
∂h

∂x
(diffusion wave assumption) (3)

The diffusion wave assumption is generally accepted for low-gradient channels.121

Combining Equation 1 and Equation 3, the stage-discharge model for unsteady122

flow becomes:123

Q = Q0

√
1 − 1

S0

∂h

∂x
(4)

The discharge is therefore expressed as a steady-flow reference discharge Q0 multi-124

plied by a corrective term accounting for flow unsteadiness.125

The Jones (1915) approximation avoids estimating the longitudinal gradient term126

∂h/∂x, which is rarely measured at gauging stations, except in the case of twin gauge127

stations (Petersen-Øverleir and Reitan, 2009; Mansanarez, 2016). As a substitute,128

the temporal variation of stage ∂h/∂t is used, which is always available from stage129

records. The Jones approximation is based on the kinematic wave assumption, which130

assumes that the wave propagates with no attenuation along the channel. The flood131

wave celerity c can therefore be expressed as :132

c =
∂x

∂t
=
∂Q

∂A
(5)

Assuming a prismatic channel and vertical river banks over the range of stage vari-133

ation, the flood wave celerity becomes:134

c ≈ 1

B

∂Q0

∂h
(6)

where B [m] is the channel width.135

The continuity equation of Saint Venant for quasi-steady flows can be rear-136
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ranged to show the relationship between the longitudinal and temporal gradients137

(see Mansanarez (2016) for details):138

∂h

∂x
= −1

c

∂h

∂t
(7)

With such approximation, the rating curve model can be expressed as follows,139

where Sf is expressed from the bed slope, the flood wave celerity and the stage140

time-gradient:141

Q = Q0

√
1 +

1

cS0

∂h

∂t
(8)

Equation 8 is referred to as the Jones equation in the following.142

In the rest of the paper, the channels at gauging stations are approximated by143

wide and rectangular channels with equivalent conveyance in order to perform the144

hysteresis diagnosis at large-scale with a minimum of information on the channel145

geometry. This assumption is acceptable in conditions of floods inducing hysteresis146

(Le Coz et al., 2014). Then, the hydraulic radius can be approximated by the flow147

depth : Rh ≈ (h − b), where b is the offset of the channel control. Equation 8148

becomes:149

Q = KB(h− b)5/3
√
S0

√
1 +

1
5
3
K(h− b)2/3S

3/2
0

∂h

∂t
(9)

2.3 Quantification of the hysteresis effect150

The hysteresis effect is quantified based on the relative discharge error ε between151

the discharge calculated considering the flow as unsteady (Q) and the discharge152

calculated assuming a steady flow regime (Q0). Combining Equations 1 and 9, ε is153

expressed as follows :154

ε =
Q−Q0

Q0

=

√
1 +

1
5
3
K(h− b)2/3S

3/2
0

∂h

∂t
− 1 (10)

Analysing Equation 10, the main requirements for detecting stations with hys-155
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teresis due to flow unsteadiness are : 1) low S0, 2) high stage temporal gradients156

∂h/∂t (i.e. stations subject to intense and rapid floods), and 3) rough beds inducing157

high flow resistances (i.e. low K).158

Assuming that ε << 1 and after a first-order Taylor expansion, Equation 10 can159

be rearranged as follows :160

ε ≈ 0.3K−1(h− b)−2/3S
−3/2
0

∂h

∂t
(11)

To investigate the relative importance of the different factors of Equation 11 in161

this hysteresis phenomena, i.e. K, S0, (h − b) and ∂h/∂t, the relative uncertainty162

of ε is assessed applying the uncertainty propagation law of JCGM (2008) (Joint163

Committee for Guides in Metrology) to Equation 11 and assuming independent164

measurement errors :165

u′2ε = u′2K +
4

9
u′2(h−b) +

9

4
u′2S0

+ u′2∂h/∂t (12)

where u′X = uX/X is the relative standard uncertainty of the variable X. The166

sensitivity coefficients in Equation 12 inform about the relative importance of each167

factor for the hysteresis effect quantification. The bed slope is the most sensitive168

parameter, with a sensitivity coefficient of 9/4. To a lesser extent, K and ∂h/∂t are169

also important; they have a sensitivy coefficient equal to 1. Equation 12 indicates170

that (h− b) is the less sensitive factor, with a sensitivity coefficient of 4/9.171

3 The diagnostic approach172

3.1 Required data173

The diagnosis consists in applying Equation 10 to each hydrometric station, which174

requires estimates of the flow resistance coefficient K, the bed slope S0, the bed175

elevation b, the stage time series and the time-gradient ∂h/∂t. Figure 2 illustrates176

the different steps to follow to collect the needed data for each gauging station. The177
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diagnosis can be easily re-applied as more input data are available.178

Yes

Estimate of 𝐾 Estimate of 𝑏Estimate of S0 Discharge time series

No

Assume 𝐾=25

Yes No

Assume 𝑏 = ℎ𝑚𝑖𝑛 ,
the minimal value of 

the stage

NoYes

Use DTM

Extract bed
slope

Stage time series

Estimate the 5 highest
maximum annual discharges

over the entire period

Save the dates of those
discharges

Extract stage records 
around those dates 
[-10 days; +20 days]

Smooth the stage record samples

Compute temporal gradient

Find maximal gradient

Map
discharge error

available? available? available?

𝐾 𝑆0

𝜕ℎ/𝜕𝑡 𝑏

Compute discharge error ϵ
(Equation 9)

Figure 2: The framework for diagnosing gauging stations influenced by hysteresis
effect due to flow unsteadiness.

The flow resistance coefficient K (or the Manning’s coefficient n = 1/K) is179

generally not documented in national databases. It might be possible to retrieve this180

information for specific stations from local hydrological services but this is rarely181

available. As indicated in Figure 2, if not available, defaults values for K need to182

be assumed. The analysis of Equation 11 showed that discharge error is inversely183

proportional to K. It is therefore more likely to observe hysteresis at stations with184

low K values, i.e. rough beds. If no estimate of K is available, we set K = 25 as a185

conservative but realistic default value. A flow resistance coefficient of 25 represents186

rough gravel-beds, or beds with bedforms or presence of vegetation (Coon, 1998).187

An accurate measure or evaluation of the bed slope S0 is crucial for a good188

performance of the method (see Equation 12). It may be available at some gauging189

stations from hydraulic studies or specific topographic surveys. But over a national190
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network, we need to use S0 estimates from external datasets, e.g. based on Digital191

Terrain Models (DTM).192

The time-gradient ∂h/∂t is estimated based on the stage time series h(t) that are193

automatically and continuously recorded at gauging stations (cf. Figure 2). Those194

records are then registered in large databases and converted into discharge time195

series Q(t) using rating curves established from discharge measurements (gaugings)196

at the stations. The higher gradients ∂h/∂t are assumed to be found during the most197

intense floods. The method scans the data to estimate the largest five time-gradients198

∂h/∂t for each specific station. First, the largest five flood peaks are detected from199

the discharge time series Q(t) for each station over the entire period of available200

data. Samples of stage time series h(t) are extracted around those extreme events.201

Data starting 10 days before the flood peak to 20 days after are kept. This duration202

was defined assuming it was sufficient to capture the flood dynamics at all stations.203

The resulting stage data are smoothed using a spline function to remove noise and204

keep only the stage variations reflecting the flood propagation. When the amount205

of missing data within the recorded stage time series is too large, it is excluded from206

the diagnosis. The gradient ∂h/∂t time series are then calculated from the smoothed207

h(t) and the five maximum values of the gradient over the five events are kept for208

computing ε.209

It is difficult to set the offset b of the channel control, mostly because it can evolve210

due to erosion/deposition, and in particular after floods inducing large sediment211

transport. As a consequence, b is seldom recorded in databases. If not available,212

we suggest setting b = hmin in the framework, where hmin corresponds to the lowest213

stage value of the stage time series of the studied event. Indeed, the cease-to-flow214

level b of the channel should not be higher than the lowest stage recorded.215

3.2 Mapping hysteresis effect216

Once the parameters K, b, h, S0 and ∂h/∂t are identified (see Section 3.1), the dis-217

charge error can be computed using Equation 10. The procedure gives five estimates218
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of ε for each stations, because the greatest five flood events are analysed (Figure 2).219

The hysteresis effect is qualitatively assessed based on the resulting ε that we220

choose to present and map in two ways. Firstly, the focus is made on the most221

critical event per stations inducing the higher relative error εmax. The maximal222

discharge errors εmax are mapped by classes to facilitate the qualitative assessment.223

Four classes are chosen according to usual criteria in hydrometry accounting for the224

uncertainties of the rating curves and gaugings : 1) negligible deviation between Q225

and Q0 (i.e. εmax ≤ 1%), 2) low deviation (i.e. 1% < εmax ≤ 5%), 3) intermediate226

deviation (i.e. 5% < εmax ≤ 10%), and 4) high deviation (i.e. εmax > 10%), i.e.227

larger than typical gauging uncertainties, which are generally evaluated to range 7-228

10% depending on the measurement technique. Secondly, the hysteresis effect can be229

assessed for each station by the number nε representing the number of floods over the230

selected five for which the discharge error is larger than an arbitrary threshold, set231

as 10% in our application. The indicator nε is divided into three classes to facilitate232

the hysteresis assessment using the map: 0 - station not prone to hysteresis, 1 -233

station with low exposure to this effect, from 2 to 5 - station prone to hysteresis234

effect.235

The first map produces a general diagnosis and enables to detect all the po-236

tentially affected stations. The second map is complementary and gives a refined237

diagnosis showing the stations that are frequently affected by hysteresis. Those maps238

can be used as a guide for hydrological services to identify the affected stations and239

to better manage their stations. The thresholds for the assessment of hysteresis240

influence can be reviewed to match the requirements of each hydrological service.241
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4 Application to France’s national hydrometry net-242

work243

4.1 Presentation of the data244

The framework is applied to France’s national hydrometry network. A number of245

2618 gauging stations are analysed, which corresponds to stations with discharge246

rating (not stage only), including closed or discontinued stations. The stage and247

discharge times series required for the method to work come from the national248

hydrological archive (HYDRO2 database). Estimates for K, b, and S0 are not249

available in HYDRO2 database. The flow resistance coefficient was assumed equal250

to 25 for all the stations as a conservative assumption. Approximates of channel bed251

slopes are deduced from three datasets using different DTMs for slope extraction252

with different resolutions and spatial coverages (Figure 3) :253

1. the Global River Slope dataset, GloRS (Figure 3a), which is a worldwide254

geospatial dataset detailed in Cohen et al. (2018), where the slope is simply cal-255

culated from the elevation depression over the length of a river reach. The slope256

extraction is made based on the 15arc-sec resolution (∼ 460×460 m) SHuttle257

Elevation Derivatives at multiple Scales (HydroSHEDS) DTM and stream-258

network (see http://hydrosheds.cr.usgs.gov/index.php). The reaches259

are defined according to the confluence points and to an additional feature-260

splitting procedure, which splits the river segments that are longer than a261

user-defined distance. A 50-km splitting interval was selected in Cohen et al.262

(2018), as it exhibits the best correlations to their validation dataset. The263

reach lengths vary from 156 m to 50 km with a mean length of ∼17 km in the264

world dataset. The smallest reach slope detected is 5.3×10−5; smaller slopes265

are set to 0. In France, a specific correspondence is made between the reach266

and the location of the gauging station on the basis of the closest distance267

between both objects. The station slope is then set equal to the slope of the268

associated reach. If the distance exceeds 200 m between station and reach, the269
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station is excluded. In France, the smallest slope is 2.5×10−4.270

2. the theoretical hydrographical network (RHT) (Pella et al., 2012) (Figure 3b),271

which is a joined and oriented digital river network (see https://ecoflows272

.inrae.fr/software/). It is derived from the BD Alti® 50 m digital eleva-273

tion model of the French Geographic National Institute (IGN) and from the274

extended hydrological network (RHE) (Pella et al., 2008) corresponding to an275

oriented simplification of the referential hydrographical network of the IGN,276

BD Carthage®. The final RHT represents a network of 283 639 km with a277

total of 114 601 reaches associated with different topographic, climatic and278

hydrologic attributes. Various environmental attributes are available and pre-279

sented in Pella et al. (2012), such as slope estimates, catchment areas, mean280

discharge, reach width and length for example. The slope is calculated as the281

difference in elevation between the upstream and downstream ends of the reach282

divided by the reach length. The lowest reach slope detected in the RHT is283

equal to 10−4; smaller slopes are set to 0. The average reach length is 2.5 km284

and varies from a few meters to more than 40 km. The reach-station associa-285

tion is made by geographical proximity. On average, the distance between the286

two objects does not exceed 36 m.287

3. the slopes from the hydrological distributed model J2000-Rhône (Branger288

et al., 2018) (Figure 3c), covering the Rhône River basin (97 800 km2), lo-289

cated Southeast of France. The tool called HRU-delin (Hydrological Response290

Unit - delineation) combined with a DTM is used to prepare the mesh and291

generate several inputs for the hydrological modeling, including the creation of292

river reaches and calculation of their slopes (see https://forge.irstea.fr/293

projects/hru-delin). The slope dataset results from the SRTM (Shuttle294

Radar Topographic Mission) digital elevation data, with a resolution of 90295

m. The reach lengths are defined by the confluences and the locations of the296

gauging stations, hence a wide range of lengths, from 90 m to more than 44297

km with a mean length of ∼6 km. The slopes are extracted for each reach by298
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computing the difference in altitude between the upstream and downstream299

pixel of the reach. The minimum slope detected in the dataset is equal to300

8.3×10−5; smaller slopes are set to 0. A specific correspondence is made be-301

tween the reach and the location of the gauging station to obtain the S0 value302

at the station. The stations are first relocated on the stream network by prox-303

imity and similarity of drainage area. The reaches are then cut at the station304

position on the stream, so that the end of the reach corresponds to the station305

location.306

a) b)

c)

<10-5

10-5 to 10-4 

10-4 to 10-3 

10-3 to 10-2 

10-2 to 10-1 

>10-1

Figure 3: River slope estimates in France from different datasets : a) GloRS, b)
RHT and c) J2000-Rhône.
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a)

b)

Figure 4: Comparison of bed slope estimates obtained after extractions from differ-
ent datasets for 99 gauging stations located in the Rhône basin: a) bed slopes from
GloRS versus from RHT, and b) bed slopes from J2000-Rhône versus from RHT.

The GloRS provides slope estimates only for the main rivers, whereas the two307

other datasets also include S0 estimates for small rivers and headwater catchments.308

The values of S0 differ according to the chosen dataset, but the same general trend309

is observed, i.e. high and low slopes are detected approximately in the same areas310

(Figure 3). The slope estimates can vary for more than one magnitude order (Figure311

4). Slopes from RHT and J2000 are in closer agreement than slopes from GloRS,312

which might be explained by differences in the DTM resolution.313
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4.2 Results over France314

The diagnostic maps for France’s national hydrometry network differ according to315

the chosen source of S0 estimates (Figure 5). Slope estimates were available for the316

2618 gauging stations using the RHT dataset whereas the GloRS and J2000-Rhône317

datasets provide slope estimates for only 1053 and 298 gauging stations, respec-318

tively. The smallest French rivers are not represented in GloRS dataset, leaving319

some gauging stations without a slope estimation during the reach-station match-320

ing. The diagnostic maps based on the RHT and J2000-Rhône slope estimates reflect321

what was initially expected : a greater risk of hysteresis near estuaries (e.g. estuary322

of the Rhône River) and on large rivers with low-gradient slopes (e.g. Saône River);323

see Figure 5d. In addition, stations located in mountains (e.g. Alps) are identified324

as not prone to hysteresis effect.325

According to the diagnosis, 186 out of 2618 stations (i.e. 7.1%) are prone to326

substantial hysteresis effect (ε >10%) based on S0 estimates from the RHT (Figure327

6a), whereas only 29 stations out of 1053 (i.e. 2.8%) are prone to hysteresis based on328

S0 estimates from the GloRS (Figure 6b). Even if the diagnostic results are different,329

we can safely say that the hysteresis effect is low in France. Note that some low-330

gradient stations prone to hysteresis might have been missed because their slopes331

were lower than the threshold value imposed by the used datasets. In addition,332

further investigation is required to conclude if the detected stations are really prone333

to hysteresis, such as a specific analysis of gaugings and rating curves at individual334

stations.335

4.3 Profiles of stations prone to hysteresis336

The framework results can be used to determine the typical profile of stations prone337

to hysteresis. Figure 7 presents the needed geometrical and hydraulic conditions338

(i.e S0 and ∂h/∂t) to observe hysteresis at a station. As expected, low bed slope339

combined with high temporal stage variation are the critical conditions. This is340

in accordance with the uncertainty analysis made for Equation 10. As shown in341

16



Relative discharge error
0%<ϵ ≤1% 1%<ϵ≤5% 5%<ϵ≤10% ϵ>10%

Massif

Central
Alps

Vosges

Jura

Pyrénées

Seine

Loire

Garonne

R
h
in

R
h
ôn

e
Sa

ôn
e

Corse

a) b)

c) d)

Figure 5: Diagnostic maps of hysteresis influence on 2618, 1053 or 298 gauging
stations in France, using a) RHT, b) GloRS or c) J2000-Rhône dataset as input
data for river bed slope, respectively. d) Overview of the main rivers and mountains
in France.
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Figure 6: Relationship between classes of relative errors due to hysteresis effect ε
and bed slopes S0 deduced from a) the RHT and b) from the GloRS datasets. The
red numbers indicate the number of stations within the class and the percentage
with respect to the total number of stations, respectively.
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Figures 6 and 7, stations with high relative discharge errors (ε > 10%) have low bed342

slopes varying mainly from 10−4 to 10−3 and high time stage gradient ranging from343

4×10−6 to 10−3m/s. Those values are in accordance with typical values reported in344

the literature and listed by Muste et al. (2020). Hysteresis is generally considered345

negligible when S0 > 10−3 and 0 < dh/dt < 3.3 × 10−4m/s and becomes clearly346

significant when S0 < 10−4 and dh/dt > 4.2 × 10−6m/s (Fread, 1975; Muste et al.,347

2020), as observed in Figure 7. Unfortunately, we have limited estimates of S0348

smaller than the lower slope threshold of 10−4.349

a) b) c)

Relative Discharge error
0%<ϵ ≤1%
1%<ϵ≤5%

5%<ϵ≤10%
ϵ>10%

Figure 7: Stage temporal variation ∂h/∂t versus bed slope estimates S0 deduced
from a) GloRS, b) RHT and c) J2000-Rhône datasets for the different gauging
stations and associated assessment for hysteresis effect ε.

4.4 Sensitivity to slope data350

Testing diverse sources of bed slope data enables to evaluate the sensitivity of the351

diagnosis to those input data. The application over the Rhône basin using the352

J2000-Rhône data stresses the importance of using such accurate estimates of bed353

river slopes. Figure 8 shows the three diagnostic maps for the 99 stations shared by354

the three datasets in the Rhône basin. If the GloRS slope dataset is used as input,355

no stations are detected as prone to hysteresis; the relative discharge error ε being356

always lower than ∼8% (see Figure 9a). Conclusions are significantly different if357

RHT or J2000-Rhône slope datasets are used. Only 6 and 7 stations are affected358
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by hysteresis according to the diagnosis made with S0 estimates from RHT and359

J2000-Rhône datasets, respectively. Two of these stations are common to the two360

datasets.361

Relative discharge error
0%<ϵ≤1% 1%<ϵ≤5% 5%<ϵ≤10% ϵ>10%

Figure 8: Diagnostic maps of hysteresis influence on the 99 gauging stations located
in the Rhône basin, France, using slopes estimated from different DTM: GloRS,
RHT and J2000-Rhône.

The resulting discharge errors highly depend on the S0 estimates used for their362

computation. The discharge errors calculated using the GloRS slope dataset are363

mostly underestimated compared to those calculated using the RHT slope dataset364

(see regression line in Figure 9a). There is no obvious bias between ε deduced from365

RHT and J2000-Rhône slope datasets. A large scatter of ε values is nevertheless ob-366

served in Figure 9b. The high values of ε are realistic, in particular those calculated367

using J2000-Rhône slope estimates; in that case ε does not exceed 48% (Figure 9b).368

Only one station out of the 99 stations in the Rhône basin has a discharge error369

that exceeds 100% (ε=445% according to the diagnosis made with the RHT slope370

dataset). For clarity, this point is not presented in Figure 9. This station is also371

identified as prone to hysteresis by the diagnosis deduced from the J2000-Rhône372

slope dataset (ε ≈15%). The out of range value is probably the consequence of a373

wrong S0 estimate. Indeed, S0 differs by more than one order of magnitude com-374
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pared to S0 from J2000-Rhône and GloRS datasets. In addition, the consistency375

of the other input data such as the time stage gradient was verified. Regarding376

the entire France network, there is only 15 out of 2618 stations (less than 0.6%)377

with a discharge error higher than 100% and all of these ε result from an estimation378

based on RHT slope dataset. This is encouraging with regard to the use of such a379

diagnostic approach.380

a) b)

Figure 9: Comparison of discharge errors ε calculated using the slope estimates from
different datasets for 99 gauging stations located in the Rhône basin: a) using GloRS
versus RHT, and b) using J2000-Rhône versus RHT. Marginal boxplots detail the
distribution of the data. Red solid and dotted lines represent the perfect agreement
and the threshold of ε = 10%, respectively. Blue line refers to a linear regression
line with its grey envelop corresponding to the confidence interval.

4.5 Limit of the diagnostic approach381

The main limit of the proposed framework is therefore related to the difficulty to es-382

timate the bed slope massively and accurately. Slope calculation is scale-dependent383

and is thus sensitive to the spatial resolution of the DTM as well as the reach length.384

The key to have a good diagnostic performance is to use local estimation of bed slope.385

In the best case scenario, the slope should be evaluated over the length where the386

channel characteristics control the stage-discharge relation, but such a length is hard387

to identify and especially is site-specific. Such diagnosis is thus challenging, because388

we need to perform a diagnosis at large-scale (e.g. over country) of individual local389

objects (stations). No dataset at the local scale for the slope estimates exists, so390
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we extract them from large-scale datasets that were not developed for local studies.391

The splitting procedure for the reaches in the datasets is most often not suitable392

for our purpose, though accurate for hydrological studies. The reach length is often393

too long to capture the accurate value of the bed slope at the station. For exam-394

ple, the average reach length associated to the 1053 stations in the GloRS dataset395

is 27 km, whereas it is equal to 4 km and 6.1 km, for the 2618 and 298 stations396

in the RHT and J2000-Rhône datasets, respectively. Using such input data in the397

framework gives nonetheless a good overview of the global dynamics around the398

station in conditions of intense floods. In our framework, we mix data from different399

scales: averaged bed slopes over variable-length reach and local information at the400

station such as, the stage time series and geometrical characteristics. If there is any401

doubt about the value of ε at a specific station, we recommend measuring directly402

and locally the river bed slope around the station. The discharge error can then be403

re-calculated with good S0 estimate. If the station is detected as prone to hysteresis404

effect, an adjusted stage-discharge relation should be used for discharge prediction405

rather than the standard rating curve, such as for example Equation 8, or variant406

models as those reported in Petersen-Overleir (2006); Mansanarez (2016).407

5 Conclusion408

A diagnostic method is proposed to detect the gauging stations prone to hystere-409

sis due to flow unsteadiness over a given hydrometry network. It uses well-known410

hydraulic concepts related to unsteady flows, such as the Jones equation, and sim-411

ple data, i.e. easily measurable or estimable parameters on the field, such as those412

generally present in national hydrological databases. The final output is a map as-413

sessing the hysteresis effect at all the stations from the studied area through the414

relative discharge error between the discharge calculated with the steady flow rating415

curve and the actual discharge. The application of the method to France’s national416

hydrometry network highlights the importance of using reliable bed slope estimates417

to produce a robust diagnosis. The major limit of the method is to have access418
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to accurate local bed slopes. The diagnostic maps obtained using three different419

inputs of bed slope estimates show that in France the hysteresis effect due to flow420

unsteadiness is low for the majority of the gauging stations; 7.1% of the 2618 gaug-421

ing stations are potentially affected by hysteresis according to the diagnosis made422

with the slope estimates from RHT dataset. However, the diagnostic results differ423

depending on the source (and accuracy) of the slope estimates. In the future, partic-424

ular attention should be paid to measuring accurately the river bed slopes near the425

gauging stations and therefore refining the rating curves in case of unsteady flows426

with specific gauging campaigns.427
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drographique théorique (RHT) français et ses attributs environnementaux.485
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BD Carthage. Ingénieries eau-agriculture-territoires, (55-56):15–28.489

Perumal, M., Shrestha, K., and Chaube, U. (2004). Reproduction of hysteresis in490

rating curves. Journal of hydraulic engineering, 130(9):870–878.491

Petersen-Overleir, A. (2006). Modelling stage-discharge relationships affected by492

25



hysteresis using the Jones formula and nonlinear regression. Hydrological Sciences493

Journal, 51(3):365–388.494

Petersen-Øverleir, A. and Reitan, T. (2009). Bayesian analysis of stage-fall-discharge495

models for gauging stations affected by variable backwater. Hydrological Processes,496

23(21):3057–3074.497

Rantz, S. E. (1982). Measurement and computation of streamflow: Volume 2.498

Computation of discharge. Technical report, USGS.499

Welber, M., Le Coz, J., Laronne, J., Zolezzi, G., and Zamler, D. (2016). Field500

assessment of noncontact stream gauging using portable surface velocity radars501

(SVR). Water Resources Research, 52(2):1108–1126.502

Wolfs, V. and Willems, P. (2014). Development of discharge-stage curves affected503

by hysteresis using time varying models, model trees and neural networks. Envi-504

ronmental modelling & Software, 55:107–119.505

World Meteorological Organization (2010). Manual on Stream Gauging. Computa-506

tion of discharge - Vol. II. Technical Report 1044, WMO.507

26


