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Introduction

Summary

e Current crop yield of the best ideotypes is stagnating and threatened by climate change. In
this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportu-
nity to learn about new mechanisms for resilience. Previous studies have shown species speci-
ficity for metabolites involved in plant adaptation to harsh environments.

¢ Here, we combined multispecies ecological metabolomics and machine learning-based gen-
eralized linear model predictions to link the metabolome to the plant environment in a set of
24 species belonging to 14 families growing along an altitudinal gradient in the Atacama
Desert.

e Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus
establishing the plant metabolome as an excellent integrative predictor of environmental fluc-
tuations. These metabolites were independent of the species and validated both statistically
and biologically using an independent dataset from a different sampling year. Thereafter,
using multiblock predictive regressions, metabolites were linked to climatic and edaphic stres-
sors such as freezing temperature, water deficit and high solar irradiance.

¢ These findings indicate that plants from different evolutionary trajectories use a generic
metabolic toolkit to face extreme environments. These core metabolites, also present in agro-
nomic species, provide a unique metabolic goldmine for improving crop performances under
abiotic pressure.

environments on Earth offers an opportunity to find new
strategies for crop improvement (Castaneda-Alvarez eral.,

Humans domesticated plants 10 000 yr ago in the hostile envi-
ronments of the Fertile Crescent (Dai ezal, 2012; Riehl etal.,
2012). Over the years, selected crops have been improved by a
variety of methods. However, current yields of domesticated
therophytes are stagnating and threatened by climate change
despite significant efforts to develop abiotic stress tolerance for
the best ideotypes (Long eral, 2015). Wild plants naturally
evolved mechanisms to meet abiotic constraints in natural
habitats from which they cannot escape (Fatima eral, 2020;
Signori-Miiller eral., 2021). In this scenario, returning to wild
plant species that live and thrive in some of the harshest
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2016). Recent studies have pinpointed relevant metabolic clus-
ters in adaptation to extreme environments in plants harvested
in high mountains, deserts and salt lands (Dussarrat etal,
2021). These adaptive mechanisms involved the accumulation
of amino acids (Lugan eral., 2010) as precursors of secondary
metabolites, and carotenoids (Cui ezal., 2019) and polyphenols
(Hashim ezal, 2020) as processors of reactive oxygen species
(ROS). In addition, most of these studies were carried out on
a unique or limited number of species (Dussarrat ezal., 2021),
which, combined with high biochemical diversity, led to highly

specific metabolic markers involved in adaptive mechanisms
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exclusive to the species or environment (Peters eral, 2018;
Dussarrat efal., 2021).

The metabolome is an excellent integrative system to predict
plant environment because it carries imprints of omic inferences
and environmental influences (Kosmacz etal, 2020; Lewis &
Kemp, 2021). Ecological metabolomics aims to study the envi-
ronmental impact on metabolic responses, acclimation and adap-
tation processes in natural ecosystems. Applying untargeted
ecological metabolomics on multiple species could unravel uni-
versal plant adaptive strategies to abiotic factors in their natural
environment (Poorter etal, 2012; Umair etal, 2019; Sardans
eral., 2020; Wong eral., 2020). However, this approach has
focused primarily on analysis of phytochemical diversity. Plant
metabolomes were recently used to predict phenotypic traits such
as yield and stress resistance (Zhu ez al., 2018; Luna ez al., 2020;
Szymanski ez al., 2020) within specific species. By exploiting mul-
tiple species, previous studies reported strong relationships
between growth rate and biomass composition (Roch ezal,
2020) and between phytochemical diversity and environmental
conditions of plants growing in alpine regions (Defossez ez al.,
2021). Interestingly, several phenotypic traits predicted from
plant metabolism were further used to predict complex output
such as plant fitness but remain tedious to collect (Laughlin ez al.,
2012; Laughlin & Messier, 2015). Thus,

metabolomics could be used to uncover readily measurable soft

ecological

traits that can predict complex outputs such as plant fitness.
Adaptation to extreme environments is thought to rely on spe-
cialized secondary metabolic pathways often considered to be
species-specific (Moghe & Last, 2015; Scossa & Fernie, 2020).
However, generic mechanisms may also exist. To test this
hypothesis, large-scale metabolomics in multiple wild species are
needed to unveil general metabolic interactions with environ-
mental factors and propose adaptive roles for specific metabolites
(Wong et al., 2020).

The Atacama Desert is the driest nonpolar desert on Earth. In
addition to extreme aridity, the Atacama is characterized by high
solar radiation, extreme daily temperature oscillations, high soil
salinity and low nitrogen content (Eshel ezal, 2021). Although
multiple abiotic factors are intense enough to severely limit plant
life, this desert hosts tens of plant species (Jordan & Kirk-Lawlor,
2014; Diaz eral., 2016, 2019), thus bestowing a unique opportu-
nity to analyse adaptive metabolic plant responses to abiotic stress
in an entire ecosystem. The present study aimed to characterize
the metabolic profiles of 24 dominant plant species in 19 differ-
ent sites along an altitudinal transect in the Atacama Desert. Bio-
logical and environmental diversity was used to question the
extent to which adaptation to extreme environments relies on
generic metabolic mechanisms.
these objectives,
metabolomics covering primary compounds including carbohy-

To meet ambitious multiplatform
drates, amino and organic acids, fatty acids and secondary
metabolites revealed metabolic features that participate in envi-
ronmental adaptation. Subsequent machine learning modelling
of this comprehensive dataset via a generalized multilinear-
based statistical approach established that the metabolome of

these 24 extremophile plants was an excellent integrative

© 2022 The Authors
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predictor of plant environments. Moreover, our analysis uncov-
ered a common set of metabolites associated with extreme cli-
mate resilience.

Materials and Methods

Plant materials and sampling

The aerial parts of 24 plant species belonging to 14 plant families
(Supporting Information Table S1) were collected in their natu-
ral conditions from the Chilean Atacama Desert (Talabre-Leja
transect (Diaz eral., 2016), 22-24°S). For each species, a mini-
mum of three biological replicates composed of multiple plants
was collected. Each species was collected at one to six distinct ele-
vation levels (Fig. 1) depending on biological availability, directly
snap frozen in liquid nitrogen, brought back to the laboratory on
dry ice and stored at —80°C until freeze-drying. Sampling was
performed during two consecutive days (6-7 April 2019)
between 09:30 and 17:30 h. The time variation between sam-
plings in different environments did not impact starch content,
suggesting stable central metabolism during the sampling period
(Fig. S1). Additionally, crops and ornamental plant species
including Capsicum annuum, Phaseolus vulgaris, Spinacia oleracea,
Vicia faba, Pisum sativum, Beta wvulgaris, Portulaca oleracea,
Helianthus annuus, Zea mays, Nicotiana tabacum and Solanum
lycopersicum were grown in multiple natural conditions in France.
The aerial parts of those plants were harvested, snap-frozen in lig-
uid nitrogen and stored at —80°C until freeze-drying. All freeze-
dried material from extremophiles and common plants was kept
at —80°C until further analysis.

Environmental data

Climatic conditions were characterized using two meteorological
stations (at 3060 and 4090 m above sea level (m asl)), which mea-
sured temperature, humidity and solar irradiance as well as pre-
cipitation or soil moisture levels every hour throughout 2018—
2019 (Eshel eral, 2021). In addition, soil chemical properties
including pH and contents of nitrate, ammonium, Olsen phos-
phorous, zinc, potassium, manganese, copper, iron, boron,
molybdenum, sulphur, calcium, manganese, sodium, chlorine,
bicarbonate salt and silt were measured and described for over

3 yr (Eshel ezal., 2021).

Metabolite extraction

Using 20 mg of lyophilized plant material (from crops, orna-
mental and Atacama plants), robotized extractions of metabo-
lites were performed according to an ethanol fractionation
protocol (Luna etzal, 2020), which targets a wide range of
semipolar plant biochemicals including primary compounds
(soluble sugars and starch, organic and amino acids, total pro-
teins) and specialized metabolites (terpenes, phenolics, alka-
loids). In parallel, 10 mg of lyophilized plant samples were
used to extract fatty acyls from total lipids as described previ-
ously (Domergue et al., 2010).
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Fig. 1 Depiction of Atacama plant diversity despite extreme conditions. (a) Picture of the three vegetation belts. (b) Description of the environmental
conditions observed along the elevation gradient (Pearson correlation, P <0.05). CE, electrical conductivity; Ntot, total nitrogen; SWC, soil water content;
Temp, temperature; p_ represents a partially predicted parameter. (c) Description of the sampling site ranges and main characteristics (carbon fixation
systems or lifespan) of the collected plant species. (d) Analysis of the taxonomic relationships between Atacama species and between Atacama and
agronomic or ornamental plant species. Triangles represent the Atacama plants while circles represent the agronomic and ornamental species. (e) Pictures

of the Atacama plant species collected.
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Metabolomics

Ethanol extracts were screened for multiple compounds (Chl,
glucose, fructose, sucrose, malate, free amino acids, nitrate, total
proteins and starch) based on coupled enzyme assays (Luna ez 4/,
2020). The same extracts were also subjected to untargeted
metabolic profiling by UHPLC-LTQ-Orbitrap MS (liquid
chromatography-mass spectrometry (LCMS)) using an Ultimate
3000 ultra-high-pressure liquid chromatography (UHPLC) sys-
tem coupled to an LTQ-Orbitrap Elite mass spectrometer inter-
faced with an electrospray ionization (ESI) source
(ThermoScientific, Bremen, Germany) operating in both nega-
tive and positive ion modes as described previously (Luna ez al.,
2020). Separation was performed using a C18 column (C18-
Gemini, 2.0 X 150 mm, 3 pm, 110 A; Phenomenex, Torrance,
CA, USA). Full scan high-resolution MS spectra were acquired at
240k resolution power at 7/z=200 Da. In addition, LCMS/MS
acquisitions were acquired in higher-energy collisional dissocia-
tion (HCD) mode at a normalized collision energy of 60% and
35% (ESI— and + respectively). Fatty acyls were analysed using
gas chromatography coupled to a flame ionization detector
(GCFID) or a mass spectrometric detector (GCMS) as detailed
previously (Domergue etal., 2010). Biochemical phenotyping
and LCMS experiments were performed for all plants (i.e. Ata-
cama plants from 2014 and 2019, crops and ornamental plants),
while GCFID and GCMS experiments were performed for 2019
Atacama plants and crops and ornamental plants exclusively.

Processing of metabolomic data

Raw LCMS data were processed via XcMms (v.4.2) in R (v.3.6.1)
(Smith eral, 2006) using in-house optimized parameters(Luna
et al., 2020) yielding 8750 detected RT—m/z pairs for 5130 ESI—
and for 3620 ESI+ modes. Subsequent data cleaning (blank
check, Arr<60s, A,,,,<0.025 Da, coefficient of variation in
quality controls <30%) generated 4540 metabolic variables
(2564 ESI— and 1976 ESI+) that were retained for chemometric
analyses. Both untargeted and targeted metabolomics data were
first normalized by median normalization, cube-root transforma-
tion and Pareto scaling using METABOANALYST v.3 (Xia ezal,
2015) before applying multivariate and univariate statistical anal-
yses. The nonnormalized dataset obtained after preprocessing is
available in Table S2 and deposited online (see ‘Data availability’
section).

Generalized multilinear models

Generalised linear modelling (GLM) was performed to deter-
mine the quantitative correlation between metabolism and eleva-
tion levels used as a proxy of the plant environment. All
metabolic variables that could not be measured based on detec-
tion limitations were inputted as 0 in the data matrix. The linear
models were generated using the GLMNET package (Friedman
etal., 2010) in the R software (R Core Team, 2020) (v.3.6.1).
Three model types were constructed (lasso, elastic net and ridge)
by varying the penalty value of the elastic net as a proxy to

© 2022 The Authors
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modulate the number of variables used by the models. Thousand
values ranging from 0 to 1 were tested. Internal cross-validation
was performed for construction of the models to mitigate the
overfitting. The best model was chosen based on the mean square
error (MSE), and the most parsimonious model within one SE of
the minimal MSE was selected to perform predictions. The
datasets were divided into three parts: 70% of the plants in a
‘training’ set, 20% in a ‘test’ set and 10% in a ‘validation’ set to
perform real predictions using the best model developed with
both training and testing sets. Stratified sampling was used to
perform a uniform sampling of the individuals based on the mea-
sured elevation levels. Due to this random partitioning, 500 dif-
ferent simulations were performed to sample the solution space
of possible predictions. In addition, 500 sets of randomly
assigned elevation levels were created to test the likelihood of spu-
rious predictions. Student tests were performed to compare the
500 results from models performed with permutated and real ele-
vation levels. The occurrences of the metabolic variables among
the 500 simulations were analysed to extract the best predictors
(Table 1).

Finally, statistical validation was complemented with biologi-
cal confirmation to validate the predictive capacity of the
metabolic markers using an independent sample set harvested in
2014 (Eshel eral, 2021) as for 2019. Using the equation calcu-
lated based on the entire 2019 dataset, a validation model pre-
dicted the elevation for each plant from the 2014 dataset. The
quality of the prediction was evaluated by both the coefficient of
determination and the P-value observed when comparing real
and predicted altitudes (Fig. 2). The same permutation protocol
was used to test the likelihood of spurious prediction of 2014 val-
idation models.

Multivariate statistical analyses

The normalized dataset was processed through multivariate anal-
ysis such as principal components analysis (PCA) via the Fac-
TOMINER package (L& eral, 2008) in R (v.3.6.1) and two-way
orthogonal partial least square (O2PLS) via Simca 16.0.1 (Umet-
rics, Umea, Sweden). Tukey’s tests were performed to compare
the expression of the metabolic markers between species or
between environments using the AGRICOLAE package (Mendiburu,
2020) with a threshold of significance established at P<0.01.
Finally, box plots, scatter plots, correlation plots and heatmaps
were realized using the GGPLOT2, GGPUBR, HMISC and PHEATMAP
packages (Wickham, 2016; Kolde, 2019; Harrell Jr, 2020; Kas-
sambara, 2020) (Pearson correlation, Ward algorithm) in R,
respectively.

Annotation

The best metabolic predictors were annotated using two different
methods. First, MS spectra were used to analyse the isotopic pat-
terns (*>C, 180, N and %%S) and speculate on the ion composi-
tion. In addition, all putative chemical formulas were calculated
by the FreeStyle function within the XCALIBUR 4.2 software with
the following minimal and maximal constraints on chemical
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etal., 2014). In addition, low total nitrogen (average 9 mg kg_l)
throughout the transect, low phosphorus levels (6-20 mgkg™")
and high salinity in Prepuna sites add to the harsh conditions
plants must endure. Nonetheless, plant life in this ecosystem of
the Atacama can be traced back to 45 000 yr ago (Latorre ezal.,
2002; Diaz etal, 2019) and has thrived in such extreme condi-
tions since probably 12 million years ago (Jordan & Kirk-Lawlor,
2014). Hence, this ecosystem represents a unique resource of
adaptive mechanisms potentially relevant to engineer crop
resilience. Interestingly, deep-sequencing of 32 dominant species
representing the major clades highlighted common and specific
strategies relevant for plant survival (Eshel ezal, 2021). In this
context, we collected 21 of these 32 plant species based on their
coverage in their natural ecosystem. We complemented this set
with one Cactaceae, one Solanaceae and one Boraginaceae to
finally represent relevant biodiversity covering annual and peren-
nial plants, different carbon fixation systems (i.e. C;, C4 and
CAM) and different lifespans such as shrubs and herbs (Fig. 1¢;
Table S1). Clear distinctions regarding the distribution of life-
form and carbon fixation types have been highlighted where all
annuals and C4 plants were observed at an elevation of <3870 m
asl. Additionally, while some species were relatively specific to a
single environment (e.g. Moschopsis monocephala), others had a
wide distribution along the transect area that we divided into 19
sites (each 100 m asl) (Fig. 1b). We also selected 11 agronomic
and ornamental species based on their plant family to analyse and
compare using the same experimental procedures (as explained in
the ‘Materials and Methods’ section). A taxonomic analysis per-
formed on the Atacama and agronomic plant species via the
NCBI taxonomy browser revealed the relationships between the
14 Atacama plant families (Fig. 1d). Interestingly, this sample set
of 23 angiosperms and one gymnosperm included well-known
resilient plant families such as Cactaceae and Boraginaceae (Ma
etal., 2010) together with species of economic interest such as
those in Poaceae, Asteraceae, Fabaceae and Solanaceae. In addi-
tion, the 11 agronomic and ornamental plant species covered five
of the 14 Atacama plant families (including the most widespread
ones in Poaceae, Fabaceae, Asteraceae and Solanaceae).

Predictive metabolomics reveals a core metabolic set in
multiple resilient species

To gain insight into the mechanisms by which these
extremophile plants adapt to the extreme conditions of the Ata-
cama Desert and respond to environmental variations, we per-
formed multiplatform metabolomics to screen both primary and
secondary metabolisms from the aerial tissues of Atacama plants
and agronomic species (Fig. 2a). Quantitative evaluation of 10
major compounds by biochemical phenotyping (used as key
physiological indicators) and 26 fatty acids by GCFID high-
lighted a significant reduction in Chl, nitrate and protein content
in Atacama species when compared to 11 known crops and orna-
mental plants (Fig. S2). In addition, the unknown biochemical
diversity of these extreme Atacama plants was analysed through
untargeted metabolomics using GCMS and LCMS, which
resulted in 335 acyl chains and 4540 semipolar features after
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preprocessing (Fig. S2). Given that the phytochemical diversity
fluctuated with environmental conditions along the elevation gra-
dient (400—2000 m asl) (Defossez et al., 2021), GLM was used to
test whether the metabolome (4911 variables) could predict envi-
ronmental conditions (Fig. 2a). Elevation represents the integra-
tion of abiotic factors (Carpenter, 2005), among which climatic
and edaphic factors have been previously described (Eshel ez al,
2021) (Fig. 1b). Thus, the elevation level of the 19 sampling
spots was used as a proxy of the 19 environmental conditions
analysed. First, the possibility of calculating the elevation levels
from five different plant species selected based on both their
biomass and coverage along the elevation gradient was evaluated.
For each species, 80% of the sample set (i.e. training sets) was
used for the regression analysis. The equation was then used to
calculate elevation for the 20% of the sample set remaining (i.e.
testing set). Interestingly, the resulting average R from 500 mod-
els (i.e. fits between calculated and measured elevation) ranged
between 0.88 and 0.96 depending on the species (Fig. 2b). These
results indicate the plant metabolome integrates environmental
conditions elicited
metabolic patterns in which compounds correlate with elevation,

variations. Environmental characteristic
allowing us to infer the altitude from which the sample was col-
lected.

Moreover, estimating the altitude (i.e. resulting as an environ-
ment proxy) from metabolic data alone for species from several
plant families raised the question of whether generic mechanisms
serve as a basis for adaptation to extreme environments such as
the Atacama Desert. To address this question, we used GLM on
the entire dataset divided into a training set (70%), a testing set
(20%) and a validation set (10%) since the total size of the
dataset was sufficient (7= 224). We thus predicted the plant envi-
ronment (i.e. elevation level) and highlighted the shared
metabolic predictors (Fig. 2a). A first modelling step determined
the predictive capacity of the 4911 metabolic variables, repre-
sented by their percentage of use in the models. Consequently, a
threshold of 40% (i.e. variables used in more than 40% of the
500 models) included 263 features while 80% involved the best
13 metabolic predictors (Fig. 2c). Subsequently, each threshold
was processed to exclude the nonpredictive features and tightly
select the best ratio between the predictive capacity and the num-
ber of metabolic variables. The plant environment was consider-
ably predictable at 66% and 79% using 13 or 66 markers,
respectively (Fig. 2d). Lower thresholds (e.g. 40%) allowed better
predictions but yielded less robust predictors (i.e. higher SD).
Importantly, 500 permutation sets involving randomly assigned
elevation levels were developed to test the likelihood of spurious
predictions, which led to a mean R* of 0% and thus statistically
validated the GLM-based modelling approach. Hence, we
demonstrated that common features could greatly predict plant
environments (79%), independently of the species and family.

To further test the robustness of such predictions, we biologi-
cally confirmed the predictive capacity of the metabolic features
using an independent dataset composed of nine Atacama plant
species harvested in 2014 and covering 12 environments (2770—
4270 m asl) (Fig. 2¢). The linear equation developed using the
2019 samples was then applied to the 2014 dataset to estimate
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Fig. 2 Predictive metabolomics of Atacama plants. (a) A simplified scheme of the predictive metabolomics approach used in this study. (b) Species-specific
level: R? scores of the fit between calculated and real elevation levels with letters indicating statistical significance (Tukey's test, P < 0.01). Theoretical
elevations were calculated from the plant metabolome. (c) Global level: threshold of the variable occurrence defined by 500 models performed on all
variables for all species. The 13 variables used in 80% represent the most relevant compounds for predicting elevation. (d) R? scores depending on the
variable occurrence threshold (Tukey's test, P<0.01). (e) Biological validation using an independent sample set from 2014. (f) R? scores obtained by
predicting the elevation level from plants from 2014 using the multilinear equation calculated based on plants from 2019 depending on the variable
occurrence threshold (Tukey's test, P <0.01). (g) Predicted elevations from 2019 and 2014 plants using the best 66 markers (Pearson correlation).
Compounds in (c, d, f) refer to metabolic variables stricto sensu before annotation.
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elevation levels, thereby resulting in similar predictive patterns
between 2019 and 2014 (Fig. 2f). Altogether, both mean B pre-
diction and SD results pointed towards an ideal threshold of
60% (66 variables), which allowed a prediction at 79% for both
years (P< 2.2¢719) (Fig. 2g). These results hence confirm that
plants harbour a core set of metabolites to adapt to the environ-
mental constraints.

A not-so-specialized set of secondary metabolites also
detected in agronomic and ornamental plant species

Next, we annotated the best 66 predictors using both accurate 7/
zvalues and MS/MS analysis. This annotation process allowed us
to exclude the fragments observed among the 66 features
(Table S4), finally retaining 39 metabolic predictors without
remarkable impact on the average B (Fig. S2a). The MSI anno-
tation level for each predictor is presented in Table 1. Notably,
the best predictor was starch, while 37 metabolites were referred
to semipolar compounds (Table 1). Only six markers were posi-
tively correlated to elevation, while the intensity of the remaining
compounds decreased with elevation (Fig. S3b). Remarkably,
predictors in Atacama plant species were also found in several
agronomic and ornamental plants (Tables S5, S6), demonstrating
the ubiquitous nature of these metabolites. These 39 compounds
were queried in biochemical databases (e.g. Kegg, PlantReac-
tome) to perform a pathway analysis (Table S3) and placed into a
preexisting A. thaliana metabolic network available on
METExpLORE (Kanchisa ez al., 2014) (Fig. S4). More than half of
the markers were involved in secondary metabolism (56%), while
primary metabolism and regulators (e.g. jasmonates) covered
31% in total (Fig.3). The remaining 13% included three
unknown compounds and two salt artefacts that combined
sodium and magnesium to formic acid, suggesting salt hyperac-
cumulation processes (Figs 3, S3a). Notably, starch, trehalose and

Best 39 predictors

O Metabolisms

New
Phytologist

amino acid-related pathways were involved in crosstalk with the
biosynthesis of secondary metabolites, while the central place of
raffinose was highlighted in galactose metabolism involving other
oligosaccharides known for their role in abiotic stress tolerance
(Vinson ezal, 2020) (Fig. S4a). In addition, phenolics repre-
sented the major enrichment observed in Atacama plant species
with 14 of the 39 markers. While alkaloids and N-containing
compounds (e.g. proline betaine, or polyamines combined with
flavonoids) were included in the best markers, flavonoid, phenyl-
propanoid and terpenoid pathways were clearly overrepresented
(Figs 3, S4). Last but not least, despite their classification into pri-
mary or secondary metabolisms, a relevant proportion of these
39 markers also referred to redox homeostasis based on their
chemical nature or interactions with ascorbate or glutathione
pathways (Fig. S4), suggesting the importance of redox home-
ostasis in the adaptation to hostile environments. Overall, predic-
tive metabolomics reveals that plant metabolism greatly reflects
environmental fluctuations in extreme ecosystems, as also pin-
pointed by a core set of metabolites (involved in secondary, pri-
mary and redox pathways) capable of predicting at 79% the plant
environment independently of the plant species. These findings
thus confirm a central place for generic metabolic pathways
underpinning plant adaptation to environmental constraints.

The plant metabolome is tailored to environmental
constraints

Elevation integrates a wide range of abiotic factors, among which
edaphic variables were measured in each of the 19 sampling
spots. Climatic variables such as temperature, soil water content
(SWC, representing the interaction between precipitation and
soil properties), precipitation and solar irradiance were measured
via two stations (at 3060 and 4090 m asl). Theoretical values of
these factors along the elevation gradient for the 19 environments
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Fig. 3 Pathway analysis of the 39 markers. Metabolism, biochemical pathways and subpathways were elucidated by screening the KEGG identifiers
through the MeTaBoANALYsT, PlantReactome and MeTExpLore databases.
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were predicted considering a linear distribution that was con-
firmed by field measurements (Fig.S5). Elevation correlated
closely with most environmental parameters in the Atacama
Desert (Fig. S6). Thus, an analysis combining PCA and O2PLS
was performed to unravel the elevation factor and highlight the
relationship between the 39 best predictors and environmental
factors.

First, PCA was used to reveal the influence of elevation on the
climatic and edaphic conditions. The first two components of the
PCA model explained 82.4% of the total variance of the dataset
(Fig. 4a) and showed clear discrimination of the plant communi-
ties (i.e. Prepuna, Puna and Steppe) along a multivariate vector
that represented the elevation gradient. Also, a second plane
defined by several minerals divided the different environments

belonging to the Prepuna ecosystem, which did not occur with
Steppe spots. Hence, the previously predicted elevation factor
was here depicted by a multivariate vector represented mostly by
edaphic variables (e.g. pH, P, K), temperature and solar irradi-
ance.

Second, we predicted the covariation between environmental
factors and the best 39 markers using an O2PLS analysis
(Fig. 4b). Remarkably, 95% of the variation observed in the envi-
ronmental dataset was covered by the metabolic features
(Table S7). Congruently with the correlation matrix and PCA
(Fig. 4), the best predictors were distributed primarily along the
first component representing elevation and, to a lesser extent,
linked to several edaphic factors such as sulphur. The O2PLS
biplot further highlighted a remarkable separation between

(a) (C) P<0.01
- |
5.0 Plant communities H < < s 2 ry = Y Y
0- 1 ) )
@ Prepuna | O Environmental variable 1.0 =
Puna ' Elevation multivariate vector
h
M Steppe |
H —_
H 42 0.8
! %)
25- 1 2
' 2770 g I
= H $ o9 °
N ! . so; °© €5 ° s o °
& Elevatign 43;;) 74 ! o a = % 0.6 S °
i Fe P 1 CEet © 0 (e X
A NH
- 4480~ 2 Mt OB 0B o370 ©vE
00 ' Nog N&eca w— °
B 0.0 4072 M °Q 3 °
c ISttty 1 Ja ol i)y~ T it e e el 17
] 4270 A o™ e O 22 04 $ $
‘® p_lradidnces > ¢ 2970 8 o °
! kel
qc, ' HCO; op=Temp oy 0 8
=]
£ ! T o
i
i 2879 £ 02
25 ! a7 20
i
i
]
i
! 0.0
i
1 R 0> <@ + \V\O @ N
! 8 IS TS
-5.0 ! 2
1 | &
5.0 0.0 5.0 10.0 Predicted environmental variable
Dimension 1 (70.5%)
(b) Variable lists
) m 5]
10 Variable class Qutlf_;eta etin methyl ether > Pro betaine
I A > . >
(Correlation with elevation) | |2 quercetagetin 7-meyl sther > lane~4 ydrory-L-proline betaine
) . ¥ ) > D-Alanyl-D-alanine
EMetabolic (negative) , $ephesperidoside 5 Mathyith e
BWetabolic (posiive) §S b amenrarcace. 2 it ghcosice
o Environmental variable .+ 3.6.Dihyaroxy 27 < Sagerinic aad »
Plant sample -dimethyloctanedioic acid > 3-(3,4-dihydroxyphenyl)lactic acid
0.5 Ceext > (3S,5R,6S,7E,9x)-7-Megastigmene- > Ly\:ph&nge' X
’ b -3,6,9-triol 9-glucoside > N-Acetyl-D-fucosamine
% o f // > N-Benzoy\asganic acid > 2-{5-(Pyrimidin-4-yl)thiophen-
— K Cesuss > Trehalose -2-yllquinoline v
[ ° Cu < Araloside A >N1,N5,N10-Tricoumaroyl spermidine
= ca [ > Mg(C2H204)n + HCOO- > N1,N10-Dicoumaroylspermidine
’g > Unknown: C19H2804S52
© HCO3
= 00 p-Solr iradance Zn, _ Blevation >9,13-Dihydroxy-4-megastigmen- > Na(HCO2)n + HCOO-
[ p_Temperature = =) p_Soil -3-one 9-glucoside > Cucurbitoside F
S D[D po  watercontent > Starch =]
S N?M Feo z )Fz;?':llﬂgxin
s =
S > 7-Epi-12-hydroxyjasmonic > Rafinose 007
g acid glucoside . < 4-Hydroxy p-ionone
] = > lehydrogjasmonicacid > Wedelolactone
=) > Quercetin 3-(6' > 1
~05 > Luteolin-4'-O-glucoside > Not defined: n_0657
=
-1.0
-1.0 -0.5 0.0 1.0

pq(corr)[1], t(corr)[1]

Fig. 4 Decomposition of the elevation factor and environment-metabolome covariation. (a) Principal component analysis biplot. Discrimination of the
sampling spots by the environmental data. SWC represents the soil water content while p_ represents a partially predicted parameter. (b) Two-way
orthogonal partial least squares analysis describing the covariation between environmental and metabolic data. Hierarchical clustering analysis was realized
with Pearson correlation and Ward algorithm. (c) Boxplot showing the average R? scores (500 models) performed on the best discriminant environmental
variables using the 66 best metabolic markers. Letters indicate statistical significance (Tukey's test, P<0.01). SWC, soil water content; Temp, temperature.
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metabolic compounds positively or negatively correlated with ele-
vation along the first plane. In particular, five phytochemicals
determined by Pearson clustering and including raffinose were
plotted with regard to temperature. These results indicate that
the discriminant capacity of elevation resulted primarily from
temperature, solar irradiance, SWC and several edaphic factors.
These PLS predictions were also confirmed by GLM, where the
best predictions using the 39 best markers on independent envi-
ronmental parameters were obtained for SWC, solar irradiance,
pH and temperature (Fig. 4¢).

Overall, we provide a valuable approach combining
metabolomics, GLM and multivariate statistical analyses.
Exploiting multiple species in a natural environment can succes-
sively reveal generic mechanisms of interest and disentangle com-
plex systems into specific environmental parameters (i.e. climatic

and edaphic).

Discussion

Predictive metabolomics demonstrates a generic metabolic
toolbox for plant adaptation to extreme habitats

Ecological metabolomics, which allowed study of the interaction
between plant metabolism and environment, has attracted scien-
tific curiosity for over 50 yr (Sardans ez al., 2020). While studies
on single plant species led to limited results when transferred to
crops, a metaanalysis of individual studies highlighted metabolic
convergences in plant species inhabiting extreme environments
(Dussarrat etal., 2021), encouraging plant researchers to move
towards a more holistic approach. Strikingly, our approach com-
bining ecological metabolomics with GLM-based modelling was
able to predict the plant environment with an R as high as 0.96
within given species (Fig. 2b) and 0.79 between species (Fig. 2).
Such values are far above correlation coefficients usually obtained
with phenotypic traits (Laughlin eral, 2012; Poorter ezal.,
2019), which are also more difficult to score (Laughlin &
Messier, 2015), making metabolic markers ideal soft traits.

All Atacama plant species harboured low Chl levels as com-
pared to agronomic species, which could result from an adaptive
response to high solar irradiance or the meagre availability of
other resources such as water or nitrogen (Hikosaka ez al., 2003),
as further illustrated by the very low nitrate and protein contents
(Fig. S2). Our results suggest that these 24 species, belonging to
14 families, also use a common metabolic toolbox, underpinned
by the 39 metabolic markers revealed by our modelling approach,
to cope with their environment (Fig. 2g). This toolbox is cer-
tainly generic as the same metabolic traits were found in several
agronomic and ornamental families, validating the ubiquitous
nature of this core set. Main differences were observed for
flavonoid- and terpenoid-related predictors, which accumulated
to high levels in Atacama plants (Fig. S7). In addition, levels of
raffinose and 4-hydroxy P-ionone (a compound related to
carotenoid degradation) were higher in Steppe species than most
temperate species, while Prepuna species accumulated proline
derivative compounds. Several markers such as quercetin glu-
coside and coumaroyl-spermidine relatives were only detectable
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using a lower threshold in agronomic families (Table S6). By
contrast, several hormone and primary metabolism-related pre-
dictors (e.g. jasmonates, trehalose) did not present major changes
between extreme and nonadapted species, except for Chls and
proteins, which were lower in Atacama plants. Overall, these
observations question the potential adaptive capacity of these
agronomic and ornamental species, which naturally develop in
mainly temperate regions. The possibility that the genome of
agronomic plants would already permit the synthesis of metabo-
lites relevant for plant survival in harsh lands is supported by the
presence of Solanum chilense (closely related to the cultivated
S. lycopersicum) in the 24 Atacama species studied. From an evo-
lutionary point of view, this further suggests that it is easier to
modify the regulation of existing metabolic pathways than to cre-
ate new ones. Also, the high R score prompts the question of
how species-specific metabolic adaptations could provide a selec-
tive advantage. Hence, the relationship between these metabolic
markers and the genetic adaptations discovered in Atacama plants
(Eshel eral., 2021) deserves further investigation. In particular,
several species colonized a wide elevation gradient, which suggests
high plasticity (Fig. 1). Consequently, metabolic adjustments
enabling the acclimation or adaptation to extreme conditions are
not necessarily the result of a long evolutionary process.

Involvement of the best metabolic predictors in extreme
environment adaptation

The influence of the elevation gradient on metabolic patterns is
mainly reflected in a multivariate vector involving temperature,
SWC, irradiance and pH (Fig. 4a). However, extremophiles also
face other environmental pressures such as the mineral imbalance
observed in the Atacama Desert that deserves closer examination
(Fig. 1b). Thus, the success of thriving in the Atacama Desert ele-
vation gradient would result from the ability to cope with daily
subzero temperatures at the top of the transect and hyperaridity
and high salinity at the bottom, or to manage the balance
between carbon input and access to other critical resources such
as water.

Starch was the best predictor (Table 1), while trehalose and
raffinose were among the top predictors, confirming a suitable
place for carbohydrates in the resilience mechanism (Fig. S4). In
the Atacama Desert, solar irradiance is not a limiting factor for
carbon entry, and even threatens plant survival (Eshel eral,
2021). The shallow protein level observed in all Atacama plant
species (Fig. S2) suggests that plant growth is very low (Elser
etal., 2008). Therefore, carbon that does not fuel plant growth
and protein turnover could be transiently stored as starch or allo-
cated to protective systems against oxidative stress induced by
other environmental factors such as water availability, tempera-
ture and salinity. Starch, metabolism of which is known to play a
major role against abiotic stress (Thalmann & Santelia, 2017),
can be used as a carbon source for the synthesis of protective
compounds when environmental conditions become harsher,
while its accumulation could be linked to sodium scavenging in
halophytes (Thalmann & Santelia, 2017), for instance. The

strong negative correlation of starch with elevation would result
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from a trade-off with the production of osmolytes and other pro-
tective compounds required at the highest elevations, where daily
subzero temperatures occur. Alternatively, the lower efficiency of
transitory starch remobilization under low temperature could
explain low starch contents at high levels. Conversely, raffinose
negatively correlated with temperature, validating the central
place of raffinose family oligosaccharides in cold tolerance (Vin-
son etal., 2020). However, several predictors were fatty acyls
within the primary metabolism and jasmonates, which supported
a role of lipid remodelling in extreme environments (Cao ezal.,
2016; Dussarrat et al., 2021).

More than half of the 39 best markers were involved in sec-
ondary metabolism (Fig. 3). Remarkably, phenolics (14/39
compounds) were increased at lower elevations, which would
help plants cope with both the very low water availability and
high salinity of these lands. This protective process has already
been described in multiple extremophile plant species (Dussar-
rat etal, 2021). Phenolic antioxidant properties, mainly for
cinnamic acid and quercetin derivatives (extensively represented
in the best predictors), enhance photoprotection and resilience
to abiotic stresses (Agati & Tattini, 2010). Regarding ter-
penoids, the presence of xanthoxin and 4-hydroxy P-ionone (a
carotenoid degradation product) within the 39 best markers
supported the role of carotenoids per se as well as their degra-
dation in extreme climate resilience (Table 1). Despite their
well-described antioxidant role, Havaux (2014) discussed the
link between the catabolism of carotenoids and plant defence,
as their cleavage leads to hormonal compounds (e.g. abscisic
acid) or redox signalling. Also, the accumulation of N-related
compounds could be attributed to their role in osmoregulation
(e.g. proline betaine). The contribution of phenolics that con-
jugate polyamines and other molecules (e.g. tricoumaroyl sper-
midine) is more complex, despite a growing body of evidence
for their implication in stress mitigation (Pdl eral, 2018).
Most importantly, our study linked plant survival under harsh
conditions to redox metabolism since the majority of metabolic
markers directly or indirectly involve redox homeostasis. This
was exemplified by primary compounds of the glutathione and
ascorbate pathways, metabolites for ROS processing including
carotenoids, as well as potential links between the biosynthesis
of several compounds and NAD metabolism (Fig. S4), all par-
ticipating in oxidative stress signalling (Decros eral, 2019;
Dussarrat ezal., 2021). Among the best predictors is proline,
accumulation of which in response to osmotic stress has been
widely documented and recently attributed to redox homeosta-
sis (Szabados & Savouré, 2010). Alternatively, accumulated
levels of amino acids could serve as metabolic intermediates for
the synthesis of more complex secondary metabolites with
stress-responsive functions.

Opverall, uncovering the metabolic characteristics of Atacama
species highlighted the linear encapsulation of environmental
fluctuations by the plant metabolome (involving primary, sec-
ondary and redox pathways), and the use of generic metabolic
mechanisms to adapt to extreme growth conditions. Such an
approach (multispecies harvested in extreme environments) offers
promising perspectives in both ecological chemistry and stress
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physiology worldwide. A fascinating perspective will be to
research the genetic and molecular mechanisms that control the
levels of these metabolic markers.
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and following the Findable, Accessible, Interoperable, Reusable
(FAIR) principles (Jacob ez al., 2020).
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Fig. S1 Correlation between starch content and sampling time.
Absence of correlation between the time of sampling and starch
content in plant samples.

Fig. §2 Changes in major compounds in Atacama plants. (a)
Depiction of the biochemical diversity observed in Atacama
plants and 11 agronomic or ornamental species.

Fig. §3 Best metabolomics predictors in Atacama plants. (a) Pre-
dictive capacity and clustering of the best metabolic markers.

Fig. S4 Metabolic networks. Best markers were mapped into a
preexisting A. thaliana metabolic network using METEXPLORE.

Fig. S5 Validation of the environmental prediction. Linearity of
environmental parameters with elevation.

Fig. S6 Decomposition of the elevation parameter. Correlation
plot of the environmental data.

Fig. §7 Best metabolic predictors in agronomic and ornamental
plant species. Clustering analysis of the best metabolic predictors

between Atacama and agronomic and ornamental plant species.

Table S1 (a) Sample data from Atacama plants. (b) Sample data

from agronomic and ornamental plants.
Table S2 Metabolic dataset.
Table §3 Pathway analysis.
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Table S4 Annotation table of markers.

Table S5 Markers in control plant. Intensity of the best
metabolic markers in agronomic and ornamental plants. The
detection limits were fixed to 25 000 or 10 000.

Table S6 Markers threshold 100. Intensity of the metabolic
markers that could not be observed with a 10k noise thresh-
old. Those markers were manually checked on one sample
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of each nonextreme species and one Atacama species with a

threshold of 100.
Table S7 O2PLS model.
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