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A B S T R A C T   

The strategic allocation of pasture grazing area to dairy cows is essential for optimal management and increased 
outputs. Rising plate meters are frequently used to estimate pasture herbage mass, i.e. dry matter yield per 
hectare, by employing simple regression equations that relate compressed sward height to herbage mass. 
However, to improve the accuracy and precision of these equations, so that inherent variation of grasslands is 
captured, there is a need to incorporate differences in grass types and seasonal growth. Using a total of 308 grass 
plots, the variation of growth for both perennial ryegrass and hybrid ryegrass was recorded over the seven-month 
growing season, i.e. March–September. From these data three dynamic equations were derived. The models 
showed reduced levels of error in comparison to most other conventional equations. As such, the derived models 
represent a considerable advance for predictive assessment of herbage mass and will support more efficient 
grassland utilisation by farmers. Although all equations were found to be highly accurate and precise, only a 
single equation was considered the most effective (R2 = 0.7; RMSE = 248.05), allowing herbage mass to be 
predicted reliably from compressed sward height data in relation to ryegrass type and calendar month. Although 
further research will be required, the results presented allow farm operators to calculate herbage mass, as well as 
support the development of decision support tools to improve on-farm grassland management, particularly at the 
local paddock rather than national level.   

1. Introduction 

There exists a substantial and growing demand for dairy products 
worldwide (Godfray et al. 2010), with global demand for milk expected 
to increase by 48% between 2005 and 2050 (Alexandratos & Bruinsma, 
2012). In temperate climates, pasture-based ruminant production offers 
a competitive and sustainable alternative to intensive, high-input sys
tems (Dillon et al. 2008; Lawrence et al. 2016; Delaby et al. 2020). In 
particular, the utilisation of grazed grass provides for a highly efficient, 
nutritious and inexpensive source of energy for ruminant production 
(Dillon et al. 2005; Finneran et al. 2012). Importantly, the quantity and 
quality of herbage offered to grazing animals has a substantial impact on 
their performance e.g. milk production (Patton et al. 2016). Accord
ingly, to meet the daily nutritional demands of animals, the strategic 

allocation of grazing area is an essential management practice (e.g., 
O’Donovan, 2000; Kennedy et al., 2009; Curran et al., 2010). However, 
determination of the appropriate allocation of grazing area can only be 
achieved when using reliably accurate and precise estimates of herbage 
mass (HM; kg DM ha− 1), i.e. dry matter yield per hectare. 

Accurate measurement of HM can also be used to budget available 
forage in grazing systems, particularly as grass is an unstable resource 
(Sanderson et al. 2001; López-Díaz et al. 2011). For example, regular 
estimation can help ensure an adequate supply of herbage to meet de
mand throughout the grazing season and inform decisions on the 
removal of surplus herbage to balance its supply and demand, whist 
maintaining herbage quality. In addition, regular measurement of 
herbage can be used to identify poor performing grass swards, allowing 
the farmer to take corrective action such as reseeding, addressing soil 
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fertility issues, and drainage (O’Donovan 2000; Hakl et al. 2012; Shalloo 
et al. 2011). Considerable potential exists to increase the accuracy and 
precision of pasture allocation, and subsequent farm productivity 
(Creighton et al. 2011; Dillon 2011). In essence, greater use of reliably 
collected on-farm data can improve management practices, through the 
provision of knowledge-based real-time decision support tools. 

While accurate estimation of HM can be achieved through assess
ment of sward heights obtained from clipped quadrants, this is laborious 
and time intensive endeavour (Sanderson et al. 2001; López-Díaz et al. 
2011). Although HM is most often estimated by visual observation, this 
method is highly subjective and prone to considerable inter-observer 
variability (Tucker, 1980; O’Donovan et al. 2002; López-Díaz et al. 
2011). For optimal and informed management, grass needs to be 
measured quickly and reliably in relation to both accuracy and preci
sion. The rising plate meter (RPM) can be used to estimate the HM of 
grasslands based on the compressed sward height (CSH) (Sanderson 
et al. 2001; Hakl et al. 2012). Overall, this device is considered to be an 
accurate, precise and labour efficient method for sampling HM (Sand
erson et al. 2001; Soder et al. 2006). However, device reliability can be 
affected by the naturally large variation of dry matter (DM) within CSH, 
which is governed by numerous factors, such as plant growth state 
(Mosquera-Losada and Gonzalez-Rodriguez, 1998), season (Bransby 
et al., 1977; Rayburn 2020), species composition (Castle 1976; Rayburn 
2020), and grassland management regime (Powell, 1974). 

In recent years, technological advances such as accurate sensors, 
Global Navigation Satellite Systems (GNSS), Bluetooth connectivity, and 
low-power portable user interfaces (i.e. smart-devices), have been used 
to improve farm management practices (Dillon 2011). Accordingly, 
these technologies can be used to improve in-field measurement and 
facilitate real-time decision support in relation to grassland manage
ment. In particular, an RPM utilising a micro-sonic sensor and digital 
data capture via a Bluetooth communications link to a smart-device 
application has been developed (i.e. Grasshopper, see McSweeney 
et al. 2019). This RPM device and its associated micro-sonic sensor were 
found to accurately measure sward height (McSweeney et al. 2019). 
Although the device can be programmed to calculate HM within its 
associated smart-device application using various formulas, a good 
reference population to act as baseline data that has realistically 
captured inherent variations of grassland is required for the develop
ment of effective, reliable and dynamic algorithms. 

To optimize reliability, equations need to be developed across the 
growing season and for different grass species, ploidies and varieties. 
Previously, for example, a dynamic formula was developed for North 
West France on perennial ryegrass (Lolium perenne L.) monoculture 
swards and mixed swards of perennial ryegrass and white clover 
(Defrance et al. 2004). However, a significant effect of season was 
observed within this formula, i.e. calculated HM based upon CSH varied 
by month. Accordingly, optimal grassland management requires the use 
of a formula altered on a monthly basis. Here, therefore, we develop a 
dynamic formula to accurately determine HM for Irish temperate 
grasslands throughout the grass growing season, for both perennial and 
hybrid ryegrass. 

2. Methods 

2.1. Study site 

The study was conducted upon perennial ryegrass and hybrid 
ryegrass plots (n = 308) sown on a free-draining acid brown earth soil of 
sandy loam texture at Teagasc, Animal & Grassland Research and 
Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland (52◦09′50′′N, 
08◦15′50′′W). Plots were managed under simulated (n = 120; 5 × 1.5 m) 
or actual grazing (n = 188: 10 × 1.5 m) regimes. Plots managed under 
simulated grazing conditions were mechanically harvested on eight to 
nine occasions annually. While animal grazed plots were managed 
equally on a 21–30 day grazing rotation resulting in eight to nine 

sampling occasions annually. 
Before sowing, glyphosate was used to kill the previous sward, the 

entire area was then ploughed and tilled to provide a fine and firm seed 
bed which received 37 kg N ha− 1, 37 kg P ha− 1 and 74 kg K ha− 1. All 
plots were sown using a plot seeder (WINTERSTEIGER Plotseed S; 
WINTERSTEIGER AG., Austria) in August. Once the newly sown plots 
had reached the two leaf growth stage they were sprayed with a post- 
emergence herbicide to control the establishment of broad-leaved 
weeds. With an equal number of diploids and tetraploids, simulated 
grazing plots were comprised of perennial ryegrass or hybrid ryegrass. 
Both ryegrass types were established as monocultures at a sowing rate of 
37 kg ha− 1, and as polycultures totalling 37 kg ha− 1, for all possible 
combinations for sowing rates of: 9.25; 18.5; and 27.75 kg ha− 1. For 
example, sowing rates were combined for perennial ryegrass (9.25 kg 
ha− 1) and hybrid ryegrass (27.5 kg ha− 1), and again for the corre
sponding mix of perennial ryegrass (27.5 kg ha− 1) and hybrid ryegrass 
(9.25 kg ha− 1). Plots designated for actual grazing were likewise con
structed using an equal number of diploid and tetraploid perennial 
ryegrass types, with sowing rates of 34 and 37 kg ha− 1, respectively. All 
actual grazing plots were sown as ryegrass monocultures. 

All plots were constructed using a randomised complete block 
design, consisting of four replicates. For a simulated grazing protocol, 
plots were harvested using a rotary blade mower to a cutting height of 4 
cm (Etesia Hydro 124D; Etesia Ltd., UK), when HM was visually esti
mated as ~ 1500 kg DM ha− 1. Animal grazed plots were likewise 
allowed to reach a visually estimated pre-grazing HM of ~ 1500 kg DM 
ha− 1. The grazed area was offered on a replicate basis to dairy cows for 
24–36 h, dependant on animal intake, to reach a target residual grass 
height of ~ 4 cm. Before grazing, a 1 m2 sub-sample was cut from actual 
grazing plots following the procedure outlined for simulated plots. 

2.2. Dry matter yield 

Dry matter (DM) yield was determined by weighing all herbage cut 
from simulated and actual grazing plots. Material from grazed plots was 
then returned to the source plot to allow consumption by grazing cows. 
In all cases, a 0.1 kg subsample was retained and dried at 60 ◦C for 48 h 
to determine percentage DM content (% DM) in relation to original wet 
weight. The HM was then derived with respect to the area cut, the wet 
weight and the percentage DM content. 

2.3. Grass height measurement 

Ten CSH measurements were collected from each plot both imme
diately before and post herbage removal. These measurements were 
captured with a micro-sonic sensor unit (Grasshopper II; True North 
Technologies, Ireland), mounted perpendicular to the shaft of a hand
held, commercially available RPM (Jenquip; Filip’s Manual Folding 
Plate Meter, New Zealand). The Grasshopper micro-sonic sensor is 
designed to measure the distance between the sensor and the top of the 
rising plate, to determine height displacement of an object underneath 
the plate. Instantaneous capture of height data, together with a geo-tag 
describing the location, was facilitated via a Bluetooth communications 
link between the sensor unit and an accompanying smart-device appli
cation (Android operating system). All captured data was saved to the 
smart-device in a comma separated (.CSV) format. Before data capture, 
the micro-sonic sensor was normalised to ensure a baseline of height 
zero is established while the plate was at its resting position. 

2.4. Algorithm establishment 

To establish an algorithm for the conversion of CSH to predicted HM, 
a variety of variables were examined, including: type of ryegrass (TRG; 2 
levels: perennial ryegrass and hybrid ryegrass); Month (7 levels: March – 
September, inclusive); the percentage DM content (% DM); actual HM 
(kg DM ha− 1); pre-cut CSH of grass (cm); height cut (cm), i.e. pre-cut 
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CSH minus the post-cut CSH; and DM per centimetre of grass cut, i.e. HM 
divided by height cut (kg DM cm− 1). Pre-cut CSH of < 5 cm were dis
carded, as were unrealistic values of > 550 kg DM cm− 1. Correlation 
coefficients were calculated for the examined variables to determine 
effect statistics (see Table 1). These coefficients were used to derive and 
validate values for the prediction of HM, in relation to actual values 
recorded for each plot. To assess model performance, Root Mean Square 
Error (RMSE) values were calculated for each equation, as well as the 
coefficient of determination (Pearson’s R2) and relative prediction error 
(RPE). Model bias was calculated in relation to mean percentage error 
(MPE). These assessment criteria have been employed by similar pre
diction modelling studies (see Murphy et al. 2021, and citations 
therein), and will facilitate a comparative assessment of the results with 
those of other studies. 

3. Results 

In total, the constructed dataset was comprised of 1640 usable plot 
assessments, with each of these including values for all the required 
variables. First, a value for predicted HM was derived in relation to 
actual pre-cut CSH (h) values, and the pre-cut CSH square expression 
(h2). Within the equation, the corresponding coefficients were each 
multiplied by these selected parameters (Eq. (1): R2 = 0.59; P < 0.001). 
All coefficients were highly significant at P < 0.001 (Table 1). RMSE of 
291.21, RPE of 19.8% and MPE of − 3.5% were calculated for Eq. (1): 

Predicted herbage mass =
(
− 227.6 + (233.3 × h) +

(
− 5.35 × h2) )

(1) 

Second, building on this approach, a predicted value for HM was 
derived using coefficients for TRG (t) and month (m), with inclusion of 
the actual pre-cut CSH (h) and the pre-cut CSH square expression (h2). 
Once again, the coefficients for both pre-cut CSH and the pre-cut CSH 
square expression were each multiplied by these model parameters (Eq. 
(2); R2 = 0.7; P < 0.001). All coefficients were highly significant at P <
0.001 (Table 1). RMSE of 248.05, RPE of 17.9% and MPE of − 3.3% were 
calculated for Eq. (2): 

Predicted herbage mass =
(
− 446.5 + t + m + (263.9 × h) +

(
− 6.6

× h2) )

(2) 

A third model for predicted HM was then developed using co
efficients for TRG (t) and month (m), with inclusion of the percentage 
DM content (d) and the corresponding value for pre-cutting CSH (h). As 
before, the coefficients for the effects were each multiplied by their 
dependent model parameter (Eq. (3); R2 = 0.68; P < 0.001). All co
efficients were significant at P < 0.001, other than calculated percentage 
DM at P < 0.05 (Table 1). RMSE of 256.56, RPE of 19.2% and MPE of 
− 4.3% were calculated for Eq. (3): 

Predicted herbage mass = (111.8 + t + m + (8.9 × d) + (118.7 × h) )
(3)  

4. Discussion 

This current study confirms the relationship between CSH and HM. 
Basically, the height of grass can be used as a reliable indicator of HM. 
Although Eq. (1) provides a simple straightforward estimate based on 
pre-cut CSH values alone, this equation cannot facilitate a dynamic 
assessment for type of ryegrass measured and time of year. Eq. (1) is also 
the least reliable given the associated Pearson’s R2, RMSE and RPE 
values. Both Eqs. (2) and (3) are especially beneficial as both can ac
count for perennial ryegrass type and variation in relation to time of 
year. These equations will allow for the construction of dynamic formula 
within the smart-device application and associated novel micro-sonic 
RPM linked technology. The most applicable formula can be selected 
by an on-farm operator, based on the readily available information 
concerning the type of ryegrass and sampling month, to reliably predict 
HM. However, Eq. (2) is marginally more accurate and precise than Eq. 
(3), with respect to Pearson’s R2, RMSE, RPE and MPE values. Impor
tantly, Eq. (2) is also a more advantageous formula, as it is derived from 
pre-cut CSH values rather than actual percentage DM content, which is 
not necessarily readily measurable on-farm because of impracticalities. 

As demonstrated by many previous studies, it has been difficult to 
achieve RMSE values of below 250 kg DM ha− 1, with most studies 
achieving values closer to 300 kg DM ha− 1 (López-Díaz et al. 2011; 
Murphy et al. 2021). Although imprecise, RMSE values ranging from 
250 to 300 kg DM ha− 1 represent the best available predictive equations 
for HM assessment based on measurements obtained from RPMs. 
Accordingly, the RMSE values obtained for all equations in this study are 
within an acceptable range, while both Eqs. (2) and (3) have especially 
favourable RMSE statistics. Interestingly, the inclusion of meteorolog
ical data in model calculations derived from machine learning tech
niques can provide for an improved RMSE value (243 kg DM ha− 1: 
Murphy et al. 2021). However, this is not considered to be a practical 
approach given the expense of on-farm meteorological sensors (see 
Murphy et al. 2021). 

To date, most regression formulas used to calculate HM from CSH 
have been linear in nature, as this allows for easier calculations. How
ever, smart polynomial regression formula, such as the equations 
derived by this study, are a far more accurate estimation of HM. For 
example, Michell and Large (1983) achieved strong correlations be
tween CSH and HM (R2 = 0.98) for specific time points across the grass 
growing season. However, when Sanderson et al. (2001) applied one of 
these time specific formulas consistently over a full grazing season, the 
correlation was significantly reduced (R2 = 0.31). The additional model 
parameters required by Eq. (2), i.e. type of ryegrass and month, will be 
known to farm operators in the field and can, therefore, be selected as 
required. In general, all three derived equations displayed reduced error 
parameters (<20 % RPE, <5 % MPE) in comparison to most other 
models (≥24 % RPE, ≥9% MPE; see Murphy et al. 2021, and citations 
therein). In particular, Eq. (2) considerably improves upon conventional 
models through reduced RPE and lower MPE values, and will advance 
the prediction of HM for pasture-based grazing systems in temperate 
zones. 

Despite statistical indications of high accuracy and precision, further 
research will be required to better understand elements of formula 

Table 1 
Derived coefficients and associated F values (n = 1640). All P < 0.001, excepting 
the effect of percentage dry matter content (% DM) at P < 0.05.   

Eq. (1) F Eq. (2) F Eq. (3) F 

Intercept − 227.6  − 446.5  111.8  
TRG  –  83.58  86.89 
PRG –  72.3  78.2  
HRG –  − 72.3  − 78.2  
Month  –  76.2  64.11 
March   90  − 0.3  
April –  22.5  5.4  
May –  75.1  75.1  
June –  64.3  33.6  
July –  − 275.9  − 209.7  
August –  − 160  − 154.2  
September –  184  250.1  
Pre-cut CSH 233.3 279.34 263.9 388.9 118.7 2133.01 
Sq. Pre-cut 

CSH 
− 5.35 70.49 − 6.6 120.67 – – 

% DM – – – – 8.9 6.48 
R2 0.59 1170.54 0.7 428.09 0.68 388.35  

Root Mean 
Square Error 

291  248  256  

RPE (%) 19.8  17.9  19.2  
MPE (%) − 3.5  − 3.3  − 4.3   
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inaccuracy and imprecision. Therefore, an improved knowledge of on- 
farm variability is needed. To achieve this, additional model parame
ters could be included and validated, with a view to produce regional if 
not paddock specific formula, rather than national level equations. 
These equations could then be used to produce dynamic algorithms 
capable of calculating reliable HM estimates, based on operator selected 
criteria. With the advent of automated grass height data capture tools, 
such as micro-sonic RPMs and associated smart-device web-applica
tions, dynamic and reliable calculation of HM can be achieved in a 
practical user-friendly manner. In addition, these tools can potentially 
be linked to other grassland technologies, to provide ‘smart-farm’ so
lutions through highly automated systems, including the deployment of 
virtual fences (see McSweeney et al. 2020). For example, upon collection 
of CSH data with a smart-device linked to an RPM with an on-board link 
to satellite navigation, a web based geolocation application can be used 
to define the optimal grazing area for the herd within a pasture. Here, we 
have produced a series of formulae that can be used within smart-device 
linked RPMs, for reliable algorithmic conversion of CSH to HM. 
Although further research is required to develop the equations to 
encompass more site-specific effects, our results represent a promising 
starting-point for the further advancement of decisions support tools, to 
improve on-farm grassland management. 
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