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Alternative stable states in the intestinal

ecosystem: proof of concept in a rat model
and a perspective of therapeutic
implications

Maarten Van de Guchte1*† , Sebastian D. Burz1,2†, Julie Cadiou1, Jiangbo Wu1, Stanislas Mondot1,
Hervé M. Blottière1,2 and Joël Doré1,2
Abstract

Background: Chronic immune-mediated diseases are rapidly expanding and notoriously difficult to cure. Altered
relatively stable intestinal microbiota configurations are associated with several of these diseases, and with a possible pre-
disease condition (more susceptible to disease development) of the host-microbiota ecosystem. These observations are
reminiscent of the behavior of an ecosystem with alternative stable states (different stable configurations that can exist
under identical external conditions), and we recently postulated that health, pre-disease and disease represent such
alternative states. Here, our aim was to examine if alternative stable states indeed exist in the intestinal ecosystem.

Results: Rats were exposed to varying concentrations of DSS in order to create a wide range of mildly inflammatory
conditions, in a context of diet-induced low microbiota diversity. The consequences for the intestinal microbiota were
traced by 16S rRNA gene profiling over time, and inflammation of the distal colon was evaluated at sacrifice, 45 days after
the last DSS treatment. The results provide the first formal experimental proof for the existence of alternative stable states
in the rat intestinal ecosystem, taking both microbiota and host inflammatory status into consideration. The alternative
states are host-microbiota ecosystem states rather than independent and dissociated microbiota and host states, and
inflammation can prompt stable state-transition. Based on these results, we propose a conceptual model providing new
insights in the interplay between host inflammatory status and microbiota status. These new insights call for innovative
therapeutic strategies to cure (pre-)disease.

Conclusions: We provide proof of concept showing the existence of alternative stable states in the rat intestinal
ecosystem. We further propose a model which, if validated in humans, will support innovative diagnosis, therapeutic
strategy, and monitoring in the treatment of chronic inflammatory conditions. This model provides a strong rationale for
the application of combinatorial therapeutic strategies, targeting host and microbiota rather than only one of the two in
chronic immune-mediated diseases.

Keywords: Alternative stable states, Intestinal ecosystem, GI tract, Microbiota, Host, Symbiosis, Interaction, Inflammation,
Therapy, Cure
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Background
The past decade has seen remarkable progress in our
knowledge of the human intestinal ecosystem, revealing
an intimate relationship between humans and their gut
microbiota. Non-pathogenic commensal and transiting
bacteria prove to influence fundamental host processes,
including metabolism, adiposity, maturation and modu-
lation of the immune system, and even brain function
and decision-making [1–5]. The host employs a network
of dedicated receptors and signaling pathways to capture
information from the microbiota and the gut environ-
ment and respond in an appropriate way.
Intestinal microbiota assemblies are not entirely ran-

dom or equally distributed. Configurations of relative
microbial taxa abundances can be recognized that occur
more frequently than others [6–9]. When human gut
microbiota samples are classified by microbial “gene
richness”, a measure of microbiota diversity, a bimodal
distribution is observed with microbiota having either a
low (LGC) or a high gene count (HGC) [10], where LGC
individuals appear to be more prone to disease develop-
ment or aggravation. More specific atypical microbiota
compositions are associated with an ever-growing num-
ber of chronic inflammatory diseases. These may be
characterized by (among other changes) bacterial species
with particularly modified abundance (e.g., [11–13]), or
by the alteration of a set of bacterial species that can to-
gether serve as a biomarker with high predictive value
(e.g., [10]).
Thus, a picture emerges of an intestinal ecosystem that

can exist in several states, each characterized by specific
microbiota and host parameters and representing health,
pre-disease (more susceptible to develop disease), or dif-
ferent diseases. The relative constancy of these states is
reminiscent of alternative stable states, different states
that can exist under (a range of) identical external condi-
tions (as opposed to different states that correspond to
different external conditions, separated by a steep gradi-
ent (Fig. 1a)). As a consequence, while a shift to an alter-
native stable (pre-)disease state may be provoked when
conditions change beyond the limits of system resilience,
simply setting the conditions back to what they were be-
fore the transition does not revert system state to its ini-
tial configuration (if the initial conditions are within the
bi-stable range, Fig. 1a) [14].
Western lifestyle (including diet and other factors)

may have caused such a critical transition of the intes-
tinal ecosystem to an alternative stable pre-disease state
[15], thus creating permissive conditions for the marked,
sometimes exponential, rise in the incidence of chronic
immune-mediated diseases observed over the last 60
years [16]. If true, this hypothesis will have important
implications, while at the same time opening conceptu-
ally new avenues, for prevention and therapy [15].
In the present study, we provide proof of concept for
the existence of alternative stable states in a model intes-
tinal ecosystem and show that intestinal barrier disrupt-
ing substances can induce critical transition in the
context of a low-diversity microbiota. We propose a new
theoretical framework to describe the interplay between
host inflammatory status and microbiota status, both of
which show bimodal distributions across our data and
which together describe host-microbiota ecosystem sta-
tus. According to our model, the latter can take the form
of alternative stable states as described above, or of more
fragile states of intermediate stability (lower resilience)
which can be regarded as risk situations for health
deterioration or, inversely, as therapeutic opportunities
for health improvement.

Results
Diet shift leads to a marked change in gut microbiota
diversity
We hypothesize that low microbiota diversity and in-
flammation due to intestinal barrier failure, both of
which can be brought about by Western dietary habits
or other risk factors, can push the ecosystem beyond a
tipping point (Fig. 1a, subpanel II) and induce a self-
enhancing process of alteration of the intestinal ecosys-
tem, resulting in a transition to an alternative stable state
(Additional Fig. 1) [15]. The present study examines if
proof of concept can be obtained for the existence of al-
ternative stable states and state-transition in the intes-
tinal ecosystem.
For this purpose, we sought to create the abovemen-

tioned conditions of low microbiota diversity and in-
flammation in a rat model, while controlling external
conditions. The latter aspect is essential to distinguish
alternative stable states from different states resulting
from different external conditions and separated by a
steep gradient (Fig. 1a), but often hard to ascertain in
descriptive studies of human populations, like those
cited above which showed that intestinal microbiota as-
semblies are not random.
First, rats raised in individual cages and initially kept

on a standard chow diet (Additional Table 1, diet 1)
were adapted to a diet without crude fiber, with a
slightly changed macronutrient composition (more sugar
and fat, less protein; Additional Table 1, diet 2; Fig. 1b),
in order to reduce the richness of the microbiota. An
analysis of microbiota composition showed that this
diet shift indeed produced the expected reduction of
alpha diversity (Fig. 1c). The observed number of OTUs
was reduced by about 25% (not shown). Further explor-
ation indicated that the main effects of diet shift
involved an increase in the relative abundance of the
genera Allobaculum, Desulfovibrio, Christensenella and,
to a lesser extent, Bacteroides, Parabacteroides, and



Fig. 1. Experimental design. a Alternative stable states. Subpanel I, alternative stable states of an ecosystem as beads in a stability landscape.
Dashed line, frontier between two basins of attraction. Subpanel II, alternative states (solid lines) can both exist under a range of identical
conditions (bi-stable range). Dashed line, see subpanel I. Width and shape of the basins of attraction, and thereby the stability of the alternative
states, change with changing conditions, as illustrated by the changing distances between solid lines and the dashed line [14]. When changing
conditions push the ecosystem beyond a tipping point (sharp bend in the Z-shape curve), the limit of resilience where the basin of attraction of
its present state disappears, it rapidly transits to an alternative state. Subpanel III, steep gradient where for any given condition only one stable
state exists. Assuming that the original ecosystem state is represented by the red dot, models II and III both predict a change of ecosystem state
when the external conditions change from c1 to c2. When the conditions change back to c1, model II predicts that the system remains in the
alternative state (red triangle), while in model III the system returns to its original state. b Timeline of the experiment. Black and blue solid lines,
different diets as indicated in the text (diet shift at T-31). Small arrows, fecal sampling time-points. DSS, DSS treatment periods (3 days each). T,
time in days relative to start of first DSS treatment (T0). Reception of animals at T-58, sacrifice and distal colon histology at T75. c Reduction of
microbiota diversity after diet shift (T-31). Time-points are indicated at the bottom of the figure. Each dot represents one rat. d Induction of low-
grade inflammation through DSS treatments. Distal colon histology, 45 days after last DSS treatment. Size bar, 250 μm
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Butyricimonas, and a decrease of the genera Prevotella,
Lactobacillus, and Saccharimonas (Additional Fig. 2a;
Additional Table 2). Within the genus Lactobacillus,
abundance reductions were observed for L. reuteri, L.
murinus, and L. intestinalis (Additional Fig. 2b).

Transient ecosystem perturbation reveals two alternative
microbiota states
In this context of diet-induced low microbiota diversity,
the rats were exposed to three interspersed dextran so-
dium sulfate treatments (DSS, an intestinal barrier-
disrupting compound commonly used to induce colitis
in rodent models, in order to mimic ulcerative colitis in
preclinical studies [17]) of 3 days each, over a period of
1 month (Fig. 1b: T0–T2, T14–T16, T28–T30). DSS
was administered in drinking water, in concentrations
ranging from 0 to 3% for different groups in order to
create a wide range of mildly inflammatory conditions.
This resulted for the highest concentration (3%) of DSS in
a significant stagnation of bodyweight development during
the first two treatment periods, which was recovered be-
tween treatments (Additional Fig. 3a). Examination of the
colon at sacrifice, 45 days after the last DSS treatment, re-
vealed a slightly (but non-significantly) reduced length in
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the 2% and 3% DSS groups (Additional Fig. 3b), and sig-
nificant histological signs of persisting moderate inflam-
mation of the distal colon for the same groups (Fig. 1d,
Additional Fig. 3c).
The consequences for the intestinal microbiota were

traced by 16S rRNA gene profiling over time (Fig. 1b).
The first DSS pulse resulted in a transient reduction of
microbiota alpha diversity in the 1% and 2% DSS groups
(Additional Fig. 4). Intra-group variability temporarily
increased in all groups, including the control group
without DSS. Ten days after the last DSS pulse (T40),
both intra-group variation and alpha diversity levels in
individual rats had come back to pre-treatment levels.
Together, the observations on host and microbiota con-
stitute a first indication that DSS treatments lead to a
perturbation of the ecosystem, after which the system
appears to re-equilibrate.
Principal coordinates analysis (PCoA) of the compos-

ition of microbiota samples illustrates the differentiating
effects of successive DSS treatments on microbiota com-
munity structure beyond alpha diversity. In a first ana-
lysis of the combined data from all treatment groups for
T-7 to T68, aggregated at the genus level, we find two
microbiota types separated along the first PCoA axis
(PCoA1; Fig. 2a, Additional Fig. 6). A closer examination
of the data from the 0%, 2% and 3% DSS groups reveals
that the microbiota from nearly all the rats in these
groups belong to the same type at T-1 (i.e., before DSS
treatment) (Fig. 2b). At T68 (38 days after the last DSS
treatment), however, most of the microbiota in the 3%
DSS group are of the alternative type, while nearly all
microbiota from the 0% DSS control group are of the
same type as at T-1. Microbiota from the 2% DSS group
are equally distributed over the two types at T68.
These first observations are corroborated by a more

detailed analysis where the PCoA1 coordinate of individ-
ual microbiota samples, which explains 44.9% of vari-
ation, is used as an indicator of microbiota status.
Binning of microbiota samples with similar PCoA1 coor-
dinates reveals a bimodal (mixed normal) frequency dis-
tribution of microbiota status when all data from time-
points T-7, T-1, T63, and T68 are combined (Fig. 2c,
top left), implying the existence of two distinct micro-
biota types. These microbiota types, or states, can be
considered “alternative states”, as the external conditions
(i.e., external to the rat) at these time-points are identical
for all groups (no DSS present before T0 or after T31).
A similar image is obtained when combining all data
from T-7 up to T68, i.e., including samples obtained
during the DSS treatments period (see inset in Fig. 2a;
microbiota state attributions for individual rats at differ-
ent time points are listed in Table 1). While the com-
bined data (Fig. 2c, top left) provide the statistical power
to ascertain bimodality of the distribution (Additional
Table 3), the resulting framework is used to classify
microbiota samples from subcategories (one treatment
group, one time-point) through mapping on the full data
distribution (Fig. 2c). Thus, most of the microbiota in
the 3% DSS group appear to shift from one state (“basal
state”, indicated in blue) at T-1 (i.e., before DSS treat-
ment) to the alternative state (indicated in red) at T68
(Fig. 2c, bottom). In contrast, the microbiota in the 0%
DSS control group essentially remain in the same basal
state over time. In the 2% DSS group, half of the rats
switched from one microbiota state to the other, result-
ing in a clear bimodal distribution at T68, within a
group for which not only the external conditions at the
time of analysis (T68) are identical, but also the history
of external conditions. This observation further corrobo-
rates the conclusion of existence of alternative micro-
biota states.
The same conclusion is reached after analysis of the

data by an “enterotyping” approach [6], as an alternative
to the PCoA approach described above. This approach
resulted in the detection of three clusters (Additional
Fig. 6a, b, d). Of these, cluster A roughly corresponds to
the PCoA1-based alternative microbiota state 2, while
clusters B and C together represent basal microbiota
state 1 (Additional Fig. 6c). This observation is further il-
lustrated by the juxtaposition of Table 1 (microbiota-
state time series per rat) and the corresponding table
showing cluster time series, where the alternative micro-
biota state 2 and cluster A show highly resembling dis-
tribution patterns (Additional Fig. 7).
As a consequence, alternative microbiota state 2 and

cluster A representation show a near identical develop-
ment with time, as illustrated in Fig. 3 for the groups
that had been treated with 2% or 3% DSS, where the
highest numbers of stable state transitions are observed.
Both microbiota state 2 and cluster A show a sharp in-
crease between T17 and T27, i.e., in the period following
the second DSS treatment. While the expansion of
microbiota state 2 is directly mirrored by a contraction
of microbiota state 1, the evolution of clusters B and C
accompanying the increase of cluster A appears more
complex. The apparent uneven equilibrium between the
former two clusters at T0 is inversed by the first DSS
treatment, and partially restored thereafter. After
renewed perturbation by the second DSS treatment,
cluster B declines and disappears by T68 while cluster C
stabilizes at about two thirds of its initial level of repre-
sentation. Reductions of both cluster B and cluster C
representation hence mirror the raise of cluster A.
The results of the PCoA and enterotyping approaches

thus lead to the same conclusion: DSS treatments induce
a stable state transition, to PCoA1-based state 2 or the
corresponding cluster A. Importantly, the results show
that microbiota-state separations traverse treatment



Fig. 2. Two microbiota states. a Principal Coordinates analysis (PCoA) of ecological divergence between microbiota samples (Jensen-Shannon
Divergence), based on OTU data aggregated at genus level. Each dot represents one intestinal microbiota sample. The analysis includes the data
from all experimental groups, for T-7 up to T68 (n = 562 samples; cf Table 1). The dashed red line corresponds to the separation between the
two normal distributions in the inset (frequency distribution of PCoA1 using the same samples) and in c. b Subsets of the data in a, for three
experimental groups at T-1 and T68, respectively. Colors represent treatment groups as indicated. c Bimodal distribution of microbiota status.
PCoA1 coordinates from the ordination plot in a as a measure of microbiota status are divided in categories with a range of 0.01, and the
frequency of occurrence of each category is plotted. Top left: combined data from all groups (0% up to 3% DSS) for T-7, T-1, T63, and T68 (n =
232 samples). Bimodal graph overlay (density) and coloration according to the results of finite Gaussian mixture modeling using Mclust 5.4 [18].
Blue and red represent basal state and alternative state microbiota, respectively. Other plots: data for groups (% DSS) and time-points as indicated
at the left and at the top of the figure, respectively. Coloration according to the bimodal distribution in the top left plot. Scale of the vertical axis
is adjusted for each plot individually. *, bimodal (mixed normal) distributions according to Mclust 5.4 [18] when analyzing per-plot data (maximal
value of the Bayesian Information Criterion (BIC), corroborated by bootstrap sequential Likelihood Ratio Testing (LRT): a p = 0.001 (cf Additional
Table 3); b p = 0.004; c p = 0.032; d p = 0.027; e p = 0.01; f p = 0.04; g p = 0.03)
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Table 1. Microbiota-state time series

DSS rat T-7 T-1 T3 T13 T17 T27 T31 T40 T63 T68/75

1 48 1 1 1 1 1 1 nd 2 1 1A

0.25 26 1 1 1 1 1 2 2 2 1 1A

0 17 1 1 1 1 1 2 2 2 1 1A

0.25 21 1 1 1 1 1 1 1 2 1 1A

0 13 1 1 1 1 1 1 1 2 1 1A

0 19 1 1 1 1 1 nd nd 1 1 1A

0.25 30 1 1 1 2 1 1 nd 1 1 1A

2 56 1 1 1 1 1 1 nd 1 1 1A

1 50 1 1 1 1 1 1 nd 1 1 1A

1 49 1 1 1 1 1 1 nd 1 1 1A

1 45 1 1 1 1 1 1 nd 1 1 1A

0.5 40 2 1 1 1 1 1 nd 1 1 1A

0.5 39 1 1 1 1 1 1 nd 1 1 1A

0 14 1 1 1 1 1 1 nd 1 1 1A

3 11 1 1 1 1 2 1 1 1 1 1A

0.25 28 1 2 2 1 1 1 1 1 1 1A

0 12 2 2 2 1 1 1 1 1 1 1A

0.5 34 1 2 1 1 1 1 1 1 1 1A

2 53 1 1 1 1 1 1 1 1 1 1A

1 46 1 1 1 1 1 1 1 1 1 1A

1 44 1 1 1 1 1 1 1 1 1 1A

0.5 38 1 1 1 1 1 1 1 1 1 1A

0.5 37 1 1 1 1 1 1 1 1 1 1A

0.5 36 1 1 1 1 1 1 1 1 1 1A

0.5 31 1 1 1 1 1 1 1 1 1 1A

0.25 29 1 1 1 1 1 1 1 1 1 1A

0.25 23 1 1 1 1 1 1 1 1 1 1A

0.25 22 1 1 1 1 1 1 1 1 1 1A

0 16 1 1 1 1 1 1 1 1 1 1A

0 15 1 1 1 1 1 1 1 1 1 1A

0 20 1 1 1 1 1 2 nd 2 2 1B

2 58 1 1 1 1 1 2 2 2 1 1B

2 60 1 1 1 1 1 1 nd 1 1 1B

2 54 1 1 1 1 1 2 2 1 1 1B

0.5 33 1 1 1 1 1 1 2 1 1 1B

3 65 1 1 1 1 1 1 1 1 1 1B

3 43 1 1 1 1 1 1 1 1 1 1B

1 42 1 1 1 1 1 1 1 1 1 1B

1 41 1 1 1 1 1 1 1 1 1 1B

3 70 1 1 1 1 1 2 nd 2 2 2A

0 18 2 1 1 1 2 2 2 2 2 2A

0.5 35 1 1 1 1 1 2 2 1 2 2A

2 57 1 1 1 1 1 2 2 2 1 2A

2 59 2 1 1 1 1 1 nd 1 1 2A

Van de Guchte et al. Microbiome           (2020) 8:153 Page 6 of 16



Table 1. Microbiota-state time series (Continued)

DSS rat T-7 T-1 T3 T13 T17 T27 T31 T40 T63 T68/75

0.5 32 1 1 1 1 nd 2 2 1 1 2A

0.25 27 2 2 2 1 1 1 1 1 1 2A

0.25 25 1 2 1 1 1 1 2 1 1 2A

0.25 24 1 1 1 1 1 1 1 1 1 2A

3 64 1 1 1 1 1 nd 2 2 2 2B

3 68 1 1 1 1 1 2 2 2 2 2B

2 52 1 1 1 1 1 2 2 2 2 2B

2 51 1 1 1 1 1 1 2 2 2 2B

3 62 1 1 1 2 2 2 2 1 2 2B

3 69 1 1 1 1 1 1 nd 2 1 2B

3 67 1 1 1 1 1 2 2 2 1 2B

2 55 1 1 1 2 1 1 2 2 1 2B

1 47 2 1 1 1 1 2 2 1 1 2B

3 66 1 1 1 1 1 1 1 1 1 2B

Evolution of microbiota state with time is indicated for individual rats. DSS percentage of DSS used during treatment periods, rat rat number; T-7 to T63, time-
points of fecal sampling; T68/75, T68 for fecal sampling and T75 for distal colon inflammatory status evaluation, respectively; 1 basal-state microbiota, 2 (bold
script), alternative-state microbiota, nd not determined, A basal host inflammatory state, B alternative host inflammatory state (low-level inflammation). Rats (lines
of the table) are grouped according to the host-ecosystem state at T68/75 (last column, cf Fig. 5), then by resemblance of microbiota-by-time profile from
T27 onward
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groups. Further analyses therefore focus on distinguish-
ing microbiota states rather than treatment groups.

Alternative microbiota-state occurrence is related to host
inflammatory status
The results presented in Fig. 2c show that the alternative
microbiota state (indicated in red) is more frequently ob-
served after treatment with higher concentrations of
DSS, which cause a phenotype of persistent moderate in-
flammation (Fig. 1d, Additional Fig. 3c). Hence, inflam-
matory status of the distal colon may be suspected as a
driver of bimodality in microbiota composition. We
therefore examined the relationship between distal colon
inflammatory status (at T75) and microbiota state (at
T68). The results of this analysis show that lower hist-
ology scores (less inflammation-related symptoms) are
mostly associated with basal-state microbiota, but some
are associated with alternative-state microbiota (Fig. 4a).
The inverse is true for higher histology scores, which
are predominantly associated with alternative-state
microbiota while some are associated with basal-state
microbiota. In fact, among animals with identical hist-
ology score, part present a basal state microbiota and
part present an alternative state microbiota in nearly all
cases, except at the extremes of the range of measured
histology scores (Fig. 4b). This confirms that the two
microbiota states can be considered alternative states
(as opposed to condition-dependent states in a steep
gradient (Fig. 1a)), represented by horizontal lines on
the microbiota versus host status plot in Fig. 5 (hori-
zontal lines of the tentative blue Z-shape overlay). The
relative frequency of occurrence of each of the two
alternative microbiota states is highly correlated with
distal colon histology (Fig. 4b). This observation sug-
gests that the frontier between the basins of attraction
of the two states changes position as a function of host
status, illustrated by the dashed diagonal part of the
blue Z-shape overlay in Fig. 5 (cf Fig. 1a). The inter-
rupted Z-shape is characteristic of a system with alter-
native stable states (Fig. 1a). State-transition can take
place across the transition fold (the dashed diagonal),
as a result of stochastic movements, or when the condi-
tions on the horizontal axis change beyond the sharp
bends in the curve (tipping points).

Two alternative host states
Interestingly, distal colon histology score itself also
shows a bimodal distribution, across all animals (Fig. 4a
top panel, Additional Table 6) as well as within the 2%
and 1% DSS treatment groups (Additional Fig. 8), imply-
ing two underlying host states. Six weeks after cessation
of DSS treatments, microbiota composition can be sus-
pected as a driver of sustained inflammation, and we
therefore examined distal colon histology score as a
function of microbiota status. Among animals with simi-
lar microbiota status, both host states can be observed in
nearly all cases (Fig. 4c). The alternative host states are
represented by vertical lines on the microbiota versus
host status plot in Fig. 5 (vertical lines of the tentative
red S-shape overlay). The relative frequencies of the two
host states are highly correlated with microbiota status
(Fig. 4c), suggesting a moving frontier between the



Fig. 3. Evolution of microbiota states and enterotyping-based
clusters with time. a Percentage of rats with PCoA1-based basal
state or alternative state microbiota (cf Fig. 2). b Percentage of rats
with enterotyping-based cluster A, B, or C microbiota. For both
panels, percentage in groups treated with 2% or 3% DSS as
indicated in Fig. 1. Sampling points as indicated in Fig. 1. Total
number of rats sampled is 20 for each time point, except for T27 (19
rats). T31 was omitted because of missing data (only 15
rats sampled)
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basins of attraction of the two host states, illustrated by
the dashed diagonal part of the red S-shape overlay. The
interrupted S-shape, mirror image of the interrupted Z-
shape described above regarding microbiota states, is in
the same way characteristic of a system with alternative
stable states.

Alternative states of the host-microbiota ecosystem: a
new model
Microbiota state thus appears to depend on host inflam-
matory status, and host state on microbiota status, con-
sistent with the growing body of evidence for reciprocal
impact and the increasing mechanistic understanding of
the processes involved. Both microbiota status and host
status show distributions coherent with the existence of
alternative stable states. The combination of these distri-
butions of host and microbiota alternative stable states
yields new insights in the alternative states of the host-
microbiota ecosystem as a whole and provides a theoret-
ical framework to predict its behavior, as illustrated in
the conceptual model presented in Fig. 5.
This model predicts four attraction points for the

host-microbiota ecosystem, at the intersections of stable
microbiota states and stable host states. Two of these
(indicated in violet in Fig. 5) can be described as stable
“healthy” (top left) and “(pre-)disease” (bottom right)
states, combining basal microbiota and host states or al-
ternative microbiota and host states, respectively. The
two others (indicated in green in Fig. 5) are expected to
show less resilience as they are situated closer to tipping
points and transition folds, both with respect to micro-
biota state and with respect to host state, and therefore
be less stable. These attraction points can be regarded as
risk situations because small (stochastic or environment-
driven) changes in host or microbiota status can provoke
a switch to the more stable “(pre-)disease” state. At the
same time, these attraction points can also be regarded
as therapeutic opportunities because small adjustments
in host or microbiota status could also trigger a return
to the more stable “healthy” state.
Regarding microbiota state, the prediction of differen-

tial stability of the four attraction points appears to be
supported by time course data from individual rats, al-
though many more animals would be needed to con-
clude. The data presented in Table 1 show that the
microbiota of rats that end up in the upper left part of
Fig. 5 at T68 (quadrant 1A; basal microbiota state 1,
basal host state A) are much more frequently found in
this same microbiota state 1 at four consecutive sam-
pling time-points (T31, T40, T63, T68; i.e., from just
after the last DSS treatment onward until the end of the
experiment) than the microbiota of rats in the lower left
part of the figure (quadrant 2A; alternative microbiota
state 2, basal host state A) are found in microbiota state
2 (their state at T68) (76% vs 13%, respectively (Fig. 6a)).
This significant difference (Fisher exact test, p =0.003) is
in agreement with the prediction that host-microbiota
state 1A would be more resistant to microbiota state
changes than state 2A. Two other tendencies support
the model without reaching statistical significance. The
microbiota from rats in quadrant 1A appear to be more
stable than the microbiota from rats in quadrant 1B
(basal microbiota state 1, alternative host state B) (76%
of rats showing the same microbiota state at T31, T40,
T63 and T68 vs 50%, respectively), and the microbiota
from rats in quadrant 2B (alternative microbiota state 2,
alternative host state B) appear to be more stable than
the microbiota from rats in quadrant 2A (40% vs 13%,
respectively). Only the comparison between quadrants
1B and 2B (50% vs 40% stability, respectively) does not
support the model, although in view of the small



Fig. 4. Microbiota status versus host inflammatory status. a Microbiota status at T68 (PCoA1 coordinate from Fig. 2a), plotted against host
inflammatory status at T75 (histological score of the distal colon (Additional Tables 4 and 5); higher scores indicate higher levels of inflammation).
Histological scores are integers; jitter has been added to improve visibility of individual data-points. Each dot represents one rat (n = 58). Colors
represent treatment groups as indicated. The side-panel shows the frequency distribution and density curve of alternative microbiota states from
Fig. 2c (top left: all groups). The top-panel shows the frequency distribution of alternative host states from Additional Fig. 8a, to which a density
curve was added according to the results of finite Gaussian mixture modeling using Mclust 5.4 [18]. b Relative frequencies of alternative
microbiota states as a function of host inflammatory status (distal colon histology score). Relative frequencies are calculated from the data in
panel a. When separately analyzing the limited numbers of observations in subgroups (same histology score H), bimodal (mixed normal)
distributions could be confirmed for subsets H = 2 (p =0.04) and H = 6 (p = 0.05) (finite Gaussian mixture modeling using Mclust 5.4 [18] with
bootstrap sequential Likelihood Ratio Testing (LRT)). *, one observation only; each of the other categories represents from 3 to 13 observations.
For host status 0 to 8, microbiota state distribution strongly correlates with host status (linear regression, r2 = 0.63, p = 0.01 (F-test)). c Relative
frequencies of alternative host states as a function of microbiota status. Relative frequencies are calculated from the data in a. Microbiota status is
expressed as PCoA1 coordinate (Fig. 2a) with binning in intervals of 0.02; the central value of each bin is indicated. *, one observation only; each
of the other categories represents from 3 to 13 observations. For microbiota status categories − 0.09 to 0.03, host state distribution strongly
correlates with microbiota status (linear regression, r2 = 0.91, p = 0.0009 (F-test))
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number of observations this smallest difference among
all comparisons made does not contradict the model
either.
The data in Table 1 also confirm that bimodal micro-

biota distributions at T68 are not due to the prior exist-
ence of two static subpopulations of rats with different
microbiota compositions. Longitudinal analysis of the
microbiota component shows that the microbiota of a
given rat can sometimes switch from one state to an-
other and back again, including before DSS treatment or
in the control group without DSS treatment, without
questioning the long-term stability of the alternative
states. Hence, DSS treatment does not create a new
microbiota state, but rather affects the transition
between, or the stability of, existing microbiota
configurations.

Characterization of alternative ecosystem states
A comparison of relative bacterial genus abundances be-
tween the two microbiota states 1 and 2 reveals that the
alternative state (state 2) is characterized by a strongly
reduced abundance of Akkermansia (Fig. 6b, c) and
slightly increased abundances of Bacteroides and Butyri-
cimonas (Fig. 6c). Variations in the relative abundance of
the latter two genera are anti-correlated with variations
in Akkermansia abundance (Fig. 6d). As expected, a



Fig. 5. Model of the host-microbiota ecosystem. Microbiota status at T68 plotted against host inflammatory status at T75 (n = 58). The blue
tentative Z-shape overlay characterizes alternative microbiota states (cf Fig. 1a). Continuous parts of the curve represent the cores of the
alternative states, and are drawn in correspondence with the means of the frequency distributions in the side panel of Fig. 4a. The dashed
diagonal represents the changing frontier between the two basins of attraction (a transition fold, see inset and Fig. 1a). A larger distance between
a solid line and the dashed diagonal indicates a wider basin of attraction, resulting in a higher state stability as revealed by a higher relative
frequency of observation (Fig. 4b). Approximate positions of the inflexion points (tipping points) are based on the frequency distributions of
alternative microbiota states (Fig. 4b: change from two alternative states to one state). The red tentative S-shape overlay characterizes alternative
host states. Continuous parts of the curve represent the cores of the alternative states, and are drawn in correspondence with the means of the
frequency distributions in the top panel of Fig. 4a. Changing distances between solid lines and the dashed diagonal represent the observed
changes in the relative frequencies of the two host states with microbiota status (Fig. 4c). Approximate positions of the inflexion points (tipping
points) are based on the frequency distributions of alternative host states (Fig. 4c). Violet circles represent alternative stable states of the host-
microbiota ecosystem (attraction points combining stable host and microbiota states); green circles represent fragile attraction points (less stable
host and microbiota states, close to tipping points and frontiers between basins of attraction). Violet and green arrows illustrate predicted
evolution of the ecosystem from different positions in the plot to the different attraction points (away from the dashed diagonals, towards the
solid lines)
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strongly reduced abundance of Akkermansia also consti-
tutes the distinguishing feature separating enterotyping-
based cluster A (which corresponds to PCoA-based
microbiota state 2) from the other clusters (Additional
Fig. 6d). An even stronger difference in relative abun-
dance of Akkermansia between ecosystem states 1A
(basal microbiota and host states) and 2B (alternative
microbiota and host states, with moderate inflammation)
(Fig. 6b) is consistent with earlier reports of an inverse
association of Akkermansia muciniphila with (low-
grade) inflammation in humans [19].
The alternative, (pre-)disease, host state (state B

(Fig. 5)) is characterized by moderate levels of (in order
of contribution to the histology scores) mononuclear cell
infiltration, epithelial atrophy, edema and ulceration
(Additional Table 5).

Discussion
Alternative stable states have been described for various
ecosystems, ranging from seemingly very simple model
systems [20] to very complex systems responding to glo-
bal climate change [21]. Depending on the level of com-
plexity and manageability of the system, analytical
approaches have involved the experimental manipulation
of key parameters (“external conditions”) or are, inevit-
ably when working at the scale of climate change, oceans
or rain forests, purely descriptive in nature. The latter
approach depends on the study of many parallel ecosys-
tems and involves the justification of the choice of a
variable from the available metadata as the condition
parameter, the establishment of a correlation between
this parameter and system state, and the demonstration
of multi-modal distributions of system state at various
values of this parameter [21, 22].
The present study borrows from both approaches,

with two levels of analysis. At the first level, the ecosys-
tem under study is the rat intestinal ecosystem, in fact
58 parallel ecosystems (58 rats), with its two compo-
nents, microbiota and host. We control the external
conditions and apply a transient alteration of one



Fig 6. Characterization of attraction points in the host-microbiota ecosystem model. a Stability of attraction points. For each of the quadrants 1A,
1B, 2A, and 2B from Fig. 5 the percentage of animals presenting a stable microbiota is indicated. Stable microbiota is defined as showing the
same state (either basal state 1 or alternative state 2) at four consecutive sampling time-points (T31, T40, T63, T68; i.e., from just after the last DSS
treatment onward). >, >>, and < signs are read from left to right and from top to bottom. *p = 0.003 (Fisher exact test). b Relative abundance of
Akkermansia in different microbiota, host, and ecosystem states. Abundance is expressed as percentage of total number of sequence reads;
median values for the rats in each state at T68 are represented. Statistically significant differences are indicated in red. Differences between
ecosystem states (1A, 1B, 2A, 2B) were analyzed using a Kruskal-Wallis test with post hoc Dunn’s test and Holm correction for multiple
comparisons; differences between microbiota states (1, 2) or host states (A, B) were analyzed using a Wilcoxon test with FDR adjustment. c
Akkermansia, Bacteroides and Butyricimonas distributions in microbiota states 1 (m1) and 2 (m2). Combined data from T-7 to T68 (n = 463 samples
for microbiota state 1, n = 99 samples for microbiota state 2 (cf Table 1)); each dot represents one intestinal microbiota sample. Abundance is
expressed as number of sequence reads on a total of 38,000. Only genera for which the median abundances in the two microbiota states differ
at least 1.2-fold with q < 0.05 (Wilcoxon test with FDR adjustment) are presented. d Spearman correlation (r) between Akkermansia, Bacteroides,
and Butyricimonas abundances. q values, after Holm correction for multiple comparisons
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external parameter, the amount of DSS in the drinking
water, to different levels in different experimental
groups. Thirty-eight or 45 days later, when the external
conditions are identical for all ecosystems, distributions
of both microbiota and host inflammatory status are bi-
modal, implying two underlying states for each compo-
nent, and potentially four for the host-microbiota
ecosystem as a whole. Inflammation, here induced by
DSS treatment, appears to either stabilize an alternative
microbiota state resulting from spontaneous state-
transition, to facilitate additional transitions by moving
the system to a fragile state more prone to spontaneous
transition, or a combination of the two (Additional
Fig.9). Low-level inflammation (alternative host state)
and alternative microbiota state remain stable up to at
least 6 weeks after cessation of DSS treatments (i.e., up
to the end of our experiment).
Our observations converge to the conclusion that al-

ternative stable states exist in the rat intestinal ecosys-
tem. They complement and extend the only earlier study
that investigated the existence of alternative stable states
in the (human) intestinal microbiota. Compared with
this study [23], the use of a rat model allowed us to in-
duce a state transition and control external conditions,
an essential prerequisite to distinguish alternative eco-
system states from different states that can be attributed
to different conditions in our first level of analysis
(Fig. 1a). In addition, our study directly associates micro-
biota state and host inflammatory status, thus extending
the description of alternative stable states to include the
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microbiota as well as the host component of the ecosys-
tem [15]. Our results show the existence of host-
microbiota ecosystem states rather than independent
and dissociated microbiota and host states. The interplay
between microbiota and host could account for the
maintenance of stable equilibria (alternative states), as
well as for a rapid switch to an alternative state (as ob-
served in Fig. 3), a “catastrophic transition” [14], upon
perturbation beyond a tipping point, a key feature of
critical transition. This rapid transition could be brought
about by the triggering of a vicious circle of mutually re-
inforcing events, where microbiota alteration promotes
inflammation and in return, inflammation promotes sus-
tained alteration of the microbiota (Additional Fig. 1)
[15]. Future developments may allow to document early
warning signals of transitions to come [24].
In order to fully appreciate the significance of the ex-

istence of alternative stable states in the intestinal eco-
system, we decided to take our analyses one step further.
Therefore, at a second level of analysis, we take an inside
view in the host-microbiota ecosystem and study each
component, microbiota and host, separately, assuming
that the state of each component depends on the status
of the other component, which in this case can be
regarded as an external condition. The assumption is a
knowledge-based assumption, warranted by the over-
whelming evidence of reciprocal impact of the intestinal
microbiota and the host reported in the literature. This
interdependency is clearly corroborated by our results:
we identify two alternative stable microbiota states, and
the frequency of occurrence of each is associated with
the inflammatory status of the host. We also identify
two alternative stable host states, and the frequency of
occurrence of each is associated with the status of the
microbiota.
Consequently, the host-microbiota ecosystem state can

be described as a function of two bimodal parameters,
microbiota state and host state, providing new insights
in its stability, be it in a healthy, a pre-disease, or a dis-
ease state, and a new theoretical framework to predict
its behavior and guide therapeutic or prevention strat-
egies. The model presented in Fig. 5 is to our knowledge
unique in its kind and could, if applicable to humans,
explain why chronic inflammatory diseases (or pre-
disease states) are extremely difficult if not impossible to
cure using conventional treatments that only target in-
flammation symptoms. For example, to return from the
“(pre-)disease” state to the “healthy” state using anti-
inflammatory drugs, one would have to reduce the host
inflammatory tone to close to zero in order to bypass
the tipping point of the microbiota state curve (Fig. 7,
bottom left, yellow line). This objective may be difficult
to reach because of the attraction point (indicated in
green) encountered on the way. Moreover, if the system
is pulled back to this attraction point, it has a high risk
of falling back to the (pre-)disease state, as described in
the results section. Clinically speaking it is also delicate
to totally abrogate immune responsiveness, as it would
make the ecosystem sensitive to infections. If one would
act solely on the microbiota, using bacterial comple-
ments, one would have to push the system all the way
up to the top of the figure in order to bypass the tipping
point of the host state curve (Fig. 7, upper right, yellow
line), at the risk of being caught by the green attraction
point present on this path and ultimately falling back to
(pre-)disease. In fact, these predicted outcomes very
much resemble clinical experience in the treatment of
inflammatory bowel diseases (IBD) using anti-
inflammatory treatments or probiotics, or even surgical
removal of intestinal segments, where success rates are
low, chances of relapse are high, and inter-individual
variability is important.
In contrast, the model predicts that restoration of

health would be much easier accomplished through a
combination of anti-inflammatory treatments and
microbiota management (Fig. 7, green arrow). If the sys-
tem can be pushed beyond the crossing of the transition
folds of host states and microbiota states (the red and
blue dashed lines, respectively), it is predicted to evolve
to the healthy state without further action needed. Sim-
ultaneous action on host and microbiota would thus re-
quire less effort on each of these parameters to initiate a
return to a healthy state, and this may make the differ-
ence between possible and not possible, curable and not
curable.
While we expect this principle to hold in different sit-

uations, the shape of the model presented in Fig. 5
likely depends on factors like the richness and compos-
ition of the microbiota and/or external conditions such
as diet and other life-style related parameters. In order
to situate an individual in the model, and predict the
risk of transition to a less favorable state or develop a
personalized strategy of prevention or cure, one would
thus need the right “reference map”, based on observa-
tions made in individuals with similar metadata. In the
present study, a switch to a fiber-free diet was fully in-
tegrated in the design of the model, aiming to induce a
low richness, less robust microbiota [25]. The resulting
25% reduction in the number of OTUs is comparable
to that observed, for example, in healthy inhabitants of
US metropolitan areas compared to healthy Amerin-
dians from a rural area in Venezuela [26], which has
tentatively been attributed to Western lifestyle, and
notably diet. The diet switch was also expected, and in-
deed observed, to induce a loss of Prevotella [27], and a
rise in mucolytic Bacteroides and sulfate reducing
Desulfovibrio, both favoring a more pro-inflammatory
context (Additional Fig. 2).



Fig. 7 (Pre-)disease remediation strategies. Host-microbiota ecosystem model from Fig. 5. Yellow and green arrows show predicted requirements
(solid lines) and outcomes (dashed lines) for disease remediation strategies based on host inflammatory status management (yellow line, bottom
left), microbiota management (yellow line, top right), or combined host and microbiota management (green line). See main text for details
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Taken together, our results confirm the hypothesis of
existence of alternative stable states in the rat intestinal
ecosystem. It is tempting to believe that our model ap-
plies to the human intestinal ecosystem and microbiota
enterotypes, which have been linked to differing (low-
grade) inflammation levels in both mice [28] and
humans. In a context where microbiota composition,
and more generally intestinal ecosystem state, are in-
creasingly linked to health or disease, the notion of alter-
native stable states may be very important as it could
condition the design of innovative strategies to be used
to maintain or restore symbiosis in order to prevent or
cure disease. Models like the one presented in this study
could, if validated in humans, be used to elaborate ad-
equate preventive or therapeutic strategies.
Conclusions
In this study, we provide the first formal experimental
proof for the existence of alternative stable states in the
rat intestinal ecosystem, taking both the microbiota and
the host inflammatory status into consideration. Our re-
sults show the existence of host-microbiota ecosystem
states rather than independent and dissociated micro-
biota and host states. The results lead us to propose a
conceptual model providing new insights in the interplay
between host inflammatory status and microbiota status.
These new insights call for innovative therapeutic strat-
egies to cure (pre-)disease. If validated in humans, our
model will support diagnosis, choice of therapeutic strat-
egy, and monitoring of progress during therapy.
The results presented in this study provide a strong
rationale for the application of combinatorial preventive
and therapeutic strategies, targeting host and microbiota,
in chronic immune-mediated diseases.

Methods
Study design
The aim of this study was to examine the existence of
alternative stable states in the rat intestinal ecosystem.
For this purpose, sixty conventional SPF Fischer 344
male rats, 5 weeks old, were obtained from Charles River
Laboratories, Italy, and housed in individual cages in a
conventional facility at INRAE (Unité Expérimentale
d’Infectiologie des Rongeurs et Poissons) where they re-
ceived a standard chow diet (Additional Table 1, diet 1).
(In the end, data from 58 rats were analyzed; see bio-
informatics paragraph below.) After 10 days (T-49), feces
were harvested, total DNA extracted, and microbiota
composition evaluated by qPCR targeting the Bacter-
oides/Prevotella group or “all bacteria” as described in
reference [29]. At T-31, animals were assigned to 6 ex-
perimental groups (10 rats per group), randomizing
microbiota composition (% Bacteroides/Prevotella group
at T-49), cage occupancy at the provider, affiliation (lit-
ter), and body weight at T-31 (Additional Fig. 10). From
T-31 onward the chow diet was replaced by a diet with-
out crude fiber, with a slightly changed macronutrient
composition (Additional Table 1, diet 2). Groups re-
ceived different doses (0%, 0.25%, 0.5%, 1%, 2%, or 3%
w/v) of Dextran Sodium Sulfate (DSS; MP Biomedicals,
MW 36,000–50,000) in autoclaved drinking water over
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three periods of three days between T0 and T30 (Fig. 1b).
At the end of the experiment, rats were euthanized by
cervical dislocation.
Fecal microbiota 16S rRNA gene profiling
Fresh fecal samples were collected at regular intervals.
Total DNA was extracted according to Costea et al. [30]
(protocol #1). DNA integrity was assessed using a Frag-
ment Analyzer (Agilent Technologies); DNA concentra-
tion was determined by Qubit (Invitrogen) and
Nanodrop (Thermo Scientific). For each sample, micro-
biota composition was assessed by Miseq sequencing
targeting the V3–V4 region of the bacterial 16S rRNA
gene. Samples were prepared according to the Illumina
protocol, using forward primer TCGTCGGCAG
CGTCAGATGTGTATAAGAGACAGCCTAC
GGGNGGCWGCAG and reverse primer GTCTCG
TGGGCTCGGAGATGTGTATAAGAGACAGGACT
ACHVGGGTATCTAATCC [31] for amplicon PCR (25
cycles).
Host inflammatory status
At sacrifice, Swiss rolls were prepared from the distal
part of the colon for histological evaluation of host in-
flammatory status. Hematoxylin eosin saffron (HES) and
Periodic acid Schiff (PAS) stained slides were prepared
at the histology facility @BRIDGe (GABI, INRAE, Agro-
ParisTech, Paris-Saclay University). Inflammatory status
was evaluated by a veterinary histopathologist in a
blinded procedure using the criteria provided in Add-
itional Table 4. Scores for individual criteria (Additional
Table 5) were totaled to provide one final score per rat.
Bioinformatics and statistical analysis
16S rRNA gene sequence analyses were performed
using QIIME [32] (v. 19) and PhyloSeq [33]. After
quality filtering, sequences of all samples were ran-
domly sampled to keep 38,000 sequences per sample.
Sequences were clustered into operational taxonomic
units (OTUs; 97% identity threshold) using VSEARCH
[34], and representative sequences for each OTU were
taxonomically assigned using the SILVA database [35]
(v. 119). Two rats were removed from the analysis, as
they showed a significantly lower weight from the be-
ginning and did not catch up with other rats before
DSS treatments. Bimodality of microbiota and host
status distributions was evaluated using Mclust 5.4
[18]. Non-parametric two-sided tests were used for
taxonomic comparisons between microbiota states as
specified in main text and figure legends. Enterotyp-
ing [6] was performed as described in https://entero-
type.embl.de/enterotypes.html.
Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00933-7.

Additional file 1 : Fig. 1. Alternative stable states and critical transition
in the gut microbiota - host symbiosis. Alternative stable states
representing health (symbiosis, left) or (pre-) disease (altered symbiosis,
right). The circle in the middle represents a vicious circle of self-
enhancing deterioration of symbiosis, leading to critical transition to an
alternative stable state of altered symbiosis. Adapted from reference [15].

Additional file 2 : Fig. 2. Effect of diet shift on microbiota composition.
Panel a, Time course of relative abundance (number of sequence reads
on a total of 38,000) of selected bacterial genera, before and after diet
shift at T-31 (cf Additional Table 2). Colored lines each represent one rat.
Dashed lines connect median values. Panel b, Abundance distributions of
selected Lactobacillus species before (T-34) and after (T-20) diet shift (n=
10). Abundance is expressed as number of sequence reads on a total of
38,000. Each dot represents one rat. P-values, Wilcoxon test.

Additional file 3 : Fig. 3. Effect of DSS treatments on the host. Panel a,
Development of rat bodyweight from the start of the first DSS treatment
(T0) onward, relative to weight at T0. Curves represent means of
treatment groups. Colors represent treatment groups as indicated. Red
horizontal lines at the bottom of the figure indicate DSS treatment
periods. Statistically significant differences are observed between 0% and
3% DSS groups at T2, T3, T16, T17, T18 and T19 (p < 0.05; Kuskal-Wallis
test with Dunn’s post test, adjusted for multiple testing). Differences at
other time-points or between other treatment groups and the 0% DSS
group were not significant. Panel b, Colon length at T75 (45 days after
last DSS treatment), in different treatment groups. Each mark represents
one rat. Horizontal lines indicate median values. Differences between
treatment groups are not statistically significant (Mann Whitney test).
Panel c, Distal colon histology scores (total inflammation scores from
Additional Table 5) at T75 in different treatment groups. Each mark repre-
sents one rat. Horizontal lines indicate median values. Statistically signifi-
cant differences are observed between 0% and 2% DSS groups (p=
0.0068) and between 0% and 3% DSS groups (p=0.0001) (Mann Whitney
test).

Additional file 4 : Fig. 4. Effect of DSS treatments on microbiota
diversity. Microbiota alpha diversity (Shannon index) at time-points indi-
cated at the bottom of the figure. Each dot represents one rat. Colors
represent treatment groups as indicated. Red arrows indicate DSS treat-
ments (T0 to T2, T14 to T16, and T28 to T30, respectively). At T3, alpha di-
versity was significantly lower in the 0.5%, 1% and 2% DSS groups than
in the 0% DSS control group (p < 0.01; Kuskal-Wallis test with Dunn’s post
test, adjusted for multiple testing). No differences between treatment
groups were observed at T-1, nor at T68. In the 1% and 2% DSS groups,
alpha diversity was lower at T3 than at T-1, while the opposite was true
in the 0% DSS control group (p < 0.05; Wilcoxon test). None of the treat-
ment groups showed significant differences in alpha diversity between T-
1 and T68 (Wilcoxon test).

Additional file 5 : Fig.5. Principal coordinates analysis. 3rd and 4th axes
of the principal coordinates analysis of microbiota data shown in Fig. 2a.

Additional file 6 : Fig. 6. Enterotyping. Microbiota data from T-7 to T68
were aggregated at genus-level, filtered for “unknown” and “uncultured”
attributions, and analyzed using the clustering approach described in [6]
(“enterotyping”). Panel a, clustering score (Calinski-Harabasz index [36]) as
a function of the number of clusters shows a maximum at 3 clusters.
Panel b, clustering with 3 clusters. Panel c, correspondence between clus-
ters in panel b and PCoA1-based microbiota states from Fig. 2 (1, basal
state; 2, alternative state). Numbers indicate number of samples (Table 1)
in each category. Microbiota state 2 roughly corresponds to cluster A.
Panel d, Akkermansia, Phascolarctobacterium and Bacteroides distributions
in clusters A, B and C. Combined data from T-7 to T68; each dot repre-
sents one intestinal microbiota sample. Abundance is expressed as num-
ber of sequence reads on a total of 38,000. Only genera for which the
median abundances in the two microbiota states differ at least 1.2-fold
with q < 0.05 (Wilcoxon test with FDR adjustment) are presented. The
table presents q-values for pairwise comparisons of relative abundances

https://enterotype.embl.de/enterotypes.html
https://enterotype.embl.de/enterotypes.html
https://doi.org/10.1186/s40168-020-00933-7
https://doi.org/10.1186/s40168-020-00933-7
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between clusters, for each of the three species (Kruskal-Wallis test with
posthoc Dunn’s test and Holm correction for multiple comparisons).

Additional file 7 : Fig. 7. Correspondence between enterotyping-based
clusters and PCoA1-based microbiota states. Juxtaposition of Table 1
(from main text, left) showing PCoA1-based microbiota states as a func-
tion of time for each rat, and the corresponding table showing
enterotyping-based clusters from Additional Fig. 6b (right). Alternative
microbiota state 2 and cluster A are highlighted. Rats (lines of the table)
are grouped according to the host-ecosystem state at T68/75 (last col-
umn of Table 1, cf Fig. 5), then by resemblance of microbiota-by-time
profile from T27 onward (cf Table 1).

Additional file 8 : Fig. 8. Two host states. Panel a, Host inflammatory
status (distal colon histology score) distribution over all experimental
groups (0% up to 3% DSS). Panel b, Distal colon histology score
distributions for groups treated with 1, 2, or 3% DSS, and untreated
control group. Colors represent treatment groups as indicated. Bimodal
distributions are observed when data from all groups are combined
(panel a, Additional Table 6), and within the 2% and 1% DSS groups
(panel b).

Additional file 9 : Fig. 9. State transitions in the host-microbiota eco-
system. Host-microbiota ecosystem model from Fig. 5. Possible trajector-
ies of the host-microbiota ecosystem from a “healthy” state to a “(pre-)
disease” state, comprising a microbiota state-transition and a host inflam-
matory state-transition, are indicated by the three filled arrows. These
transitions may be sequential (upper and lower arrows) or simultaneous
(diagonal arrow).

Additional file 10 : Fig. 10. Constitution of experimental groups. Panel
a, Composition of experimental groups regarding microbiota
composition at T-49 (Bacteroides+Prevotella group as percentage of total
bacteria, determined by qPCR), cage occupancy at the provider, and affili-
ation (litter). % DSS indicates experimental groups (DSS treatments be-
tween T0 and T30). Panel b, Correlation between Bacteroides+Prevotella
content determined by qPCR and determined by MiSeq on the same
DNA samples (Spearman's rank correlation: Rho = 0.77, p < 0.05). Panel c,
Composition of experimental groups regarding body weight at T-31. No
significant differences were observed between groups (ANOVA, p = 0.7).

Additional file 11 : Table 1. Diet composition. Description of diets
used.

Additional file 12 : Table 2. Effect of diet shift on microbiota
composition. Differential median relative abundances before
(T-34) and after (T-20) diet shift for selected bacterial genera.

Additional file 13 : Table 3. Bimodal distribution of microbiota status.
Statistical support for bimodal distribution of microbiota status (implying
two microbiota states).

Additional file 14 : Table 4. Distal colon histology scoring criteria.
Scoring criteria for evaluation of inflammatory status.

Additional file 15 : Table 5. Distal colon histology scores.

Additional file 16 : Table 6. Bimodal distribution of host inflammatory
status. Statistical support for bimodal distribution of host inflammatory
status (implying two host states).
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