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Abstract14

Mathematical and numerical models are increasingly used in microbial ecology to model the15

fate of microbial communities in their ecosystem. These models allow to connect in a mechanistic16

framework species-level informations, such as the microbial genomes, with macro-scale features, such17

as species spatial distributions or metabolite gradients. Numerous models are built upon species-18

level metabolic models that predict the metabolic behaviour of a microbe by solving an optimization19

problem knowing its genome and its nutritional environment. However, screening the community20

dynamics with these metabolic models implies to solve such an optimization problem by species at21

each time step, leading to a significant computational load further increased by several orders of22

magnitude when spatial dimensions are added.23

In this paper, we propose a statistical framework based on Reproducing Kernel Hilbert Space24

(RKHS) metamodels that are used to provide fast approximations of the original metabolic model.25

The metamodel can replace the optimization step in the system dynamics, providing comparable26

outputs at a much lower computational cost. We will first build a system dynamics model of a27

simplified gut microbiota composed of a unique commensal bacterial strain in interaction with the28

host and challenged by a Salmonella infection. Then, the machine learning method will be intro-29

duced, and particularly the ANOVA-RKHS that will be exploited to achieve variable selection and30

model parsimony. A training dataset will be constructed with the original system dynamics model31

and hyper-parameters will be carefully chosen to provide fast and accurate approximations of the32

original model. Finally, the accuracy of the trained metamodels will be assessed, in particular by33

comparing the system dynamics outputs when the original model is replaced by its metamodel.34

The metamodel allows an overall relative error of 4.71% but reducing the computational load by a35

speed-up factor higher than 45, while correctly reproducing the complex behaviour occurring dur-36

ing Salmonella infection. These results provide a proof-of-concept of the potentiality of machine37

learning methods to give fast approximations of metabolic model outputs and pave the way towards38

PDE-based spatio-temporal models of microbial communities including microbial metabolism and39

host-microbiota-pathogen interactions.40

1 Introduction41

Modelling in microbial ecology. Microbial ecology focuses on the study of microbial communities,42

called microbiota, interacting with their environment and regulated by the microbiota host [32, 5]. The43

gut microbiota is such a symbiotic ecosystem composed of a community of hundreds of microbial species44

living in the large intestine lumen, referred to as the commensals, and regulated by the epithelial cells45

of the host colon. The main drivers of the microbiota dynamics are the metabolism of each microbial46
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species, the interactions between micro-organisms and their spatio-temporal interactions with the host.47

In the specific case of a pathogenic infection, a new player disturbs the system and tries to shift the48

microbial environment from an healthy homeostasis favourable to the commensals towards a dysbiotic49

situation favourable to the pathogen, enabling its colonization [27, 4]. The concept of pathobiome has50

been introduced [35] as an analysis framework to describe the specific interactions between the commensal51

microbiota, the host and the pathogen leading to pathogenic infection.52

Mathematical and numerical models of the gut microbiota have been recognized as suitable tools53

for providing mechanistic interpretations of biological observations, predicting the evolution of these54

ecosystems, for example in pathological situations, or defining controlling actions to lead them towards55

a targeted state [37, 15, 36, 21]. Mathematical models in microbial ecology are population dynamics56

models describing the microbial population growth, i.e. their metabolism, microbe-microbe interactions57

and interactions with their environment, in particular the available nutrients.58

FBA framework to model microbial metabolism. A classical modelling framework to represent59

the microbial metabolism is Flux Balance Analysis (FBA) [24, 29]. FBA relies on metabolic models60

inferred from microorganism genome: the genes are annotated to identify the biochemical reactions they61

code for and the whole set of reactions is combined into a genome-scale metabolic network connecting62

the substrate metabolites the microorganism is able to metabolize to the synthesized biomass and end-63

products produced by the microbe.64

Namely, if we note (mi)1⩽i⩽Nm
the set of the Nm metabolites that can be found in a micro-organism,65

and (rj)1⩽j⩽Nr
the set of the Nr reactions coded in the genome, then mass conservation equations can66

be written on the internal concentration of the metabolites :67

∂t[mi] =
∑

j∈R(mi)

θmi,jνj (1)

In this equation, R(mi) is the subset of reactions involving the metabolite mi, θmi,j is the stoi-68

chiometric coefficient of the metabolite mi in the reaction j (negative for consumption reaction, and69

positive for production reaction) and νj is the reaction flux, i.e. the quantity of metabolite involved in70

the reaction by time and microbial biomass units (the flux unit is mmol.h−1.g−1). In FBA models, an71

additional fictitious biochemical reaction is considered: the biomass reaction rb, with its corresponding72

fictional molecule b representing biomass. This comes from an abstraction of the mean content of the73

cell, and the energetic cost to synthesize it, see for example the works of Battley et al. [2]. This reaction74

connects the biomass precursors to the biomass b with the chemical equation75 ∑
i∈M(b)

θmi,rbmi → b

where θmi,rb is the stoichiometric coefficient of metabolite mi in the biomass reaction rb and M(b) is the76

subset of metabolites mi that constitute the biomass, i.e. the metabolites needed by the microorganism77

for growth (to duplicate the genomic material, the metabolism machinery, the cellular membrane, etc...).78

The metabolic flux flowing through this biomass equation is noted νb and is then the amount of microbial79

biomass produced by time and biomass unit, with unit (g.h−1.g−1 by convention, or h−1).80

The FBA models aim to predict this growth rate νb while observing biological constraints such as81

the mass conservation equations (1). To achieve this prediction, the FBA framework makes important82

simplifying assumptions: 1) Steady-state assumption. All internal metabolites are assumed to be at83

steady-state in the cell, so that the mass conservation equation (1) reduces to a linear system on the flux84

vector ν := (νj)1⩽j⩽Nr
gathering the fluxes of the Nr reactions of the metabolic network,85

A · ν = 0

where A is the reaction matrix, i.e. the matrix of dimension Nm×Nr with Aij := θmi,j the stoichiometric86

coefficient of metabolite i in the reaction j, gathering the whole set of conservation equations for the87

metabolites and reactions involved in the metabolic network; 2) Biomass maximization. The microbes88

are assumed to be instantaneously maximizing the biomass production in a given nutritional context;89

3) Flux constraints. Every flux are constrained by intrinsic limits, related for example to metabolite90

transporter capacities, or known enzymatic efficiency. These limits are noted cmin and cmax so that91

cmin ≤ ν ≤ cmax.92

Hence, the biomass production and all the metabolic fluxes in the microbial machinery can be pre-93

dicted with the constrained optimization FBA problem94
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find ν∗ ∈ RNr , such that ν∗ := arg max
ν ∈ RNr

A · ν = 0
cmin ≤ ν ≤ cmax

νb (2)

This problem searches for the optimal growth rate represented by the component νb, which is the95

biomass formation flux. It is obtained by the system under mass-balance and flux constraints. Math-96

ematically speaking, this optimization problem is linear and can be solved using linear programming:97

very efficient solvers exist for such a problem, even for high dimensional problems like this one, where98

Nr is classically around several thousands. A classical FBA toolbox is the Cobra toolbox (in Matlab99

environment) [11] or its python equivalent Cobrapy [9].100

Nutritional environment described as constraints on uptake fluxes. Important FBA model101

parameters are constraints on substrate flux from the extracellular compartment into the intracellular102

compartment, i.e. the first reactions of the metabolic network, enabling nutrients to enter the microbial103

cell. These constraints represent the possible uptake for the microorganism, hence representing a proxy104

of the microbe nutritional environment, i.e. the available nutrients for the microbial species to activate105

its metabolism.106

The uptake reactions are exchange reactions, i.e. reactions at the interface between the intra and107

extracellular media. Indeed, by construction, exchange reactions are reactions108

mi −→ mi

between the extracellular pool mi, i.e. the nutritional environment, and the intracellular pool mi of the109

corresponding metabolite.110

If we note c
(up)
s the upper bound on the uptake fluxes νup of the Nup metabolites in the extra-cellular111

environment, c
(up)
s ≤ νup ≤ 0, we get a mapping Fs between c

(up)
s and the FBA solution for the bacterial112

strain s113

Fs : RNup

−→ RNr (3)

c(up)s 7→ ν∗ (4)

where ν∗ is the FBA solution with the constraints c
(up)
s for the strain s. This mapping allows to tune114

the uptake constraints to adapt the FBA prediction to a specific nutritional environment context. We115

note that by convention, uptake fluxes are negative due to the exchange reaction orientation.116

Dynamic FBA Eq. 4 can be used as the second member of an ordinary differential equation (ODE)
to compute the growth or consumption rates of a population dynamics equation in a framework termed
dynamic FBA or dFBA [19]. Let us introduce a generic dFBA model describing the dynamics of a
microbial population density b growing on a substrate of density s with metabolic fluxes described by a
FBA model 2 and the resulting mapping 4. We have

∂tb = Fb,1(c
(up)(s, b))b (5)

∂ts = Fb,s(c
(up)(s, b))b (6)

In this equation, c(up)(s, b) is a function mapping the state variables b and s to the constraints c(up) on117

the substrates applied in the FBA model 2. As an example, we can set c(up)(b, s) = s
Ldtb

to model the118

fact that the remaining substrate pool s is shared between the current microbial population b at a time119

rate Ldt. We indicate by Fb,1 the biomass production flux (index 1) and Fb,s the consumption flux of120

metabolite s (index s) of the FBA model of b. In the sequel, we will simplify the notations by noting121

Fb(s, b) = Fb(c
(up)(s, b)).122

The dFBA framework is used in an increasing number of system biology models of the gut micro-123

biota[18, 7]. However, dFBA involves the resolution of many FBA optimization problems during the time124

integration inducing high computational costs that can lead to intractable computations when the dFBA125

is repeated multiple times, like in several intensive numerical applications such as sensitivity analysis,126

inference or PDEs, advocating for reduction method.127
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Outline of the paper. This paper aims to 1) adapt a metamodeling method to the context of128

metabolic models to accelerate the computation of a population dynamics model coupled to a FBA129

model such as Eq. (5), 2) benchmark this method in the specific context of an ODE-based model of the130

gut environment during the infection of an enteric pathogen: Salmonella enterica Typhimurium. We131

want to substitute the FBA optimization problem solved at each time step by an approximate model,132

built with a Reproducing Kernel Hilbert Space (RKHS) metamodeling method. The RKHS metamodel133

is a machine learning approach: an approximation of the model image is built from the model evaluation134

in a sample of the state space (i.e. a learning database). This metamodel will be used to predict the135

model response for new points outside the learning database, with a faster computation than the original136

optimization problem.137

First, we will set up the general framework of the accelerated model using eq. (5) as a toy example138

to introduce the essential mathematical results for RKHS metamodeling in Sec. 2. Then, we will use139

the acceleration method on a more evolved population dynamics model of Salmonella infection with the140

host response in Sec. 3. This population dynamic model will be used to produce a learning database to141

train the metamodel in Sec. 4. Next, the hyperparameters of the learning method will be selected in Sec.142

5 in order to provide a good trade-off between prediction accuracy and computation speed. Finally, the143

RKHS metamodel will be derived with the selected hyperparameters and its accuracy will be assessed144

in Sec. 6. See Fig. 1 for a sketch image of the overall methodology.145

2 Mathematical framework for the RKHS metamodel146

2.1 Accelerating a dFBA with a metamodel: general methodology147

To accelerate the computation of problem 5, we speed up the evaluation of Fb by using a metamodel F̂b,
resulting in an overall acceleration for the time integration of (5) (see Fig. 1, left panel). Namely, we
solve the following problem.

∂tb = F̂b,1(c
(up)(s, b))b (7)

∂ts = F̂b,s(c
(up)(s, b))b (8)

where F̂b is the best approximation of Fb in a particular functional space, here a specific RKHS called148

ANOVA-RKHS. We now precise the mathematical framework we use by introducing important results149

for the global understanding of RKHS metamodeling. We next introduce ANOVA-RKHS that will be150

used for variable selection. These results are however classical, and we do not provide their proof that can151

be found in the corresponding references. The main contribution of the paper is the specific adaptations152

needed for the application of ANOVA-RKHS metamodels to the context of microbial population dynamics153

models, and in particular the context-specific learning database construction, hyperparameter tuning and154

selection criteria that will be crucial for tailoring a trade-off between metamodel accuracy and speed-up155

(see Fig. 1, right panel).156

2.2 Metamodeling and Hoeffding decomposition157

Let us set up the context of metamodeling for metabolic models. We consider X a Nup-dimensional158

random vector of possible metabolic constraints for the FBA model inputs with known distribution159

PX = P1 × · · · × PNup on X and we construct160

Ys = Fs(X)

where Ys is a Nr-dimensional vector and s an index designating the bacterial strain related to the161

FBA model. In this paper, we will consider real-valued meta-models. For a given 1 ≤ j ≤ Nr and a162

given strain s, building the meta-model mj of the real-valued function Fs,j amounts to solve in a given163

functional space H ⊂ L2(PX), the non-parametric Gaussian regression model [13]164

Ys
j = mj(X) + σε (9)

where ε ∼ N (0, 1) is independent of (X) and the variance σ2 is unknown.165

When the input variables X are independent, and since mj ∈ L2(PX), the classical Hoeffding-Sobol166

decomposition holds (see [33, 34] section 11.4). The functions mj can be decomposed with its ANOVA167

functional expansion168
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Speeding-up dFBA

dFBA Model
∂tx = f (x,F(x))

c(up)(x) FBA ν = F(x)

xn+1 = xn +∆tf(x,F(x))

Accelerated Model
∂tx = f(x, F̂(x))

c(up)(x)
ANOVA-RKHS

metamodel
ν̂ = F̂(x)

xn+1 = xn +∆tf(x, F̂(x))

Metamodeling framework

=Y F (X)

Flux Constraint

Database: {Yi,Xi}Nobs
i=1

For F̂ ∈ HK , find
θ∗ = arg minθ∈RK ∥Y − F̂K(X|θ)∥+ µG(θ)

µ? HK?Hyperparameters

Number
of observations K

Feature
selection

Trade-off:
computation speed of F̂K(xunseen|θ)

v/s approximation accuracy.

Figure 1: Sketch of the general methodology. Left panel: speeding up dFBA. The dFBA framework
(upper panel) is defined by the coupling of a FBA metabolic model with a dynamic system. Numerically,
this remains to loop over a time integration scheme in which a FBA is solved at each time step. We
propose a new framework (lower panel) where the FBA model is replaced by a low-computational-cost
metamodel speeding up the time integration process. Right panel: metamodeling framework. We set up
the general statistical framework where the flux Y is the output of the FBA model F given the input X.
We then assemble a learning dataset by sampling the input space (Xi) and computing the corresponding
FBA output Yi with Nobs observations. The metamodel is then defined as the solution of a non-linear
non-parametric regression problem in a finite dimensional functional space HK of dimension K with
regularization function G. In practice, we will choose a group-lasso regularization to perform feature
selection together with the metamodel computation. This regression problem has two hyperparameters
to be chosen: the regularization parameter µ, that will tune the number of selected input variables, and
the dimension K of the functional space, which is related to the number of observations in the RKHS
framework (see Sec. 2 and 5). Selecting lower number of features or lower K decreases the computation
load of the metamodel evaluation in a new unseen point xunseen and thus accelerates the ODE model
integration but decreases the metamodel accuracy: a trade-off must be sought (see Sec. 5).
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mj(x) = mj,0 +
∑
p∈P

mj,p(xp)

where p is a multi-index, P the power set of {1, · · · , Nup}, xp denotes the vector with components xj for169

j ∈ p. The functions mp are L2(PX) functions centered and orthogonal in L2(PX), so that the variance170

of mj can be decomposed with171

V ar(mj(x)) =
∑
p∈P

V ar(mj,p(xp)).

The Hoeffding decomposition is used to separate principal effects (the function mj,p that involve one172

unique input variable xi) from variable interactions (the functions mj,p with |p| > 1, i.e. involving more173

than one input component). The Hoeffding decomposition is widely used for sensitivity analysis, since174

Sobol index directly derives from it, or for variable selection: the relative contribution of the functions175

mj,p in the Hoeffding decomposition allows to neglect the less contributive terms which can lead to176

discard some input variables if all the functions they are involved in are neglected.177

2.3 Generalities on RKHS metamodel178

Let X be a compact subset of RNup

. A definite symmetric kernel is a function179

k : X × X −→ R
(x, x′) 7→ k(x, x′)

such that, for all N ∈ N and x1, · · · , xN ∈ XN , the Gramm matrix (k)i,j = k(xi, xj) is symmetric180

positive definite.181

The Moore–Aronszajn’s theorem ensures a bijective mapping between the space of positive definite182

kernels and specific Hilbert spaces termed Reproducing Kernel Hilbert spaces (or RKHS).183

Theorem 1 (Moore–Aronszajn [1]). Setting k : X × X → R a symmetric positive definite kernel, there184

exists a unique Hilbert space Hk of real-valued functions on X defined as the completion of185

H̃k :=

{
f : X → R|f(·) =

∞∑
i=1

βik(·, zi), βi ∈ R, zi ∈ X , ∥f∥Hk
< ∞

}

with respect to the norm ∥ · ∥Hk
induced by the scalar product186 〈 ∞∑

i=1

βik(·, zi),
∞∑
j=1

αjk(·, yj)

〉
Hk

=

∞∑
i=1

∞∑
j=1

βiαjk(yj , zi)

that endows Hk. The kernel k is termed the Reproducing kernel of the RKHS Hk.187

Reciprocally, if H is a Hilbert space of functions f : X → R endowed with its inner product noted
⟨·, ·⟩H, and if ∀x ∈ X the functional f 7→ f(x) is continuous onH, thenH is a RKHS [6]. The reproducing
kernel of H can be exhibited according to the Riesz theorem: for all x ∈ X , there exists a unique kx ∈ H
such that for all f ∈ H, f(x) = ⟨f, kx⟩H. The reproducing kernel k is then defined as

k : X × X −→ R
(x, x′) 7→ kx′(x) = ⟨kx, kx′⟩H

and we have by construction the reproducing property188

f(x) = ⟨f, k(·, x)⟩H.

The RKHS framework is very powerful to approximate solutions of the non-linear regression problem189

9 on the basis of Nobs-samples (Ys
j,i,Xi), i = 1, · · · , Nobs in the RKHS Hk. Namely, we will address the190

problem of finding191
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m∗
j := arg min

mj∈Hk

1

Nobs

Nobs∑
i=1

(Ys
j,i −mj(Xi))

2 + g(∥mj∥Hk
) (10)

where g is a strictly increasing function allowing to regularize the regression problem. As Hk is a192

functional space of a priori infinite dimension, this problem must be discretized to be solved. In the193

RKHS framework, the Representer theorem reduces this problem to a Nobs-dimensional minimization194

Theorem 2 (Representer Theorem [30]). Any function mj ∈ Hk minimizing equation (10) admits a195

representation of the form196

mj(·) =
Nobs∑
i=1

αik(·,Xi)

so that problem (10) can be replaced by finding197

α∗ := arg min
α∈RNobs

1

Nobs

Nobs∑
i=1

Ys
j,i −

Nobs∑
j=1

αjk(Xj ,Xi)

2

+ g


Nobs∑

i=1

Nobs∑
j=1

αiαjk(Xj ,Xi)

1/2
 (11)

or, in vectorial form198

α∗ := arg min
α∈RNobs

1

Nobs
∥Ys

j −K · α∥2F + g
((

αtKα
)1/2)

(12)

where K is the Gram matrix obtained with the kernel k and (Xi)i=1,··· ,Nobs
.199

The inference of α∗ uniquely defines the metamodel m∗ which can be evaluated in a new point200

X ∈ RNup

with201

m∗(X) :=

Nobs∑
i=1

α∗
i k(X,Xi). (13)

We note that the computational load of eq. (13) linearly depends on Nobs.202

2.4 ANOVA-RKHS203

In (12), multidimensional kernels can be chosen to assemble the matrixK, resulting in a simple regression204

problem if g = Id. However, in the context of metabolic modelling, vectors X can be of high dimension205

(a.e. in our application Nup = 9) implying a large number Nobs of samples in the learning set to cover206

this high dimension space. Thinking in term of computational budget for the evaluation of eq. (13) which207

is linearly tuned by Nobs, it is appealing to reduce Nup and thus the dimension of the space of state208

variable involved in the metamodel. For a fixed number Nobs allowed by the computational budget, the209

metamodel approximation accuracy is expected to be better in a reduced state variable space (see Sec. 7.3210

for a deeper discussion on this aspect): we then adopt a more evolved method based on variable selection211

framework introduced in [13] and based on a very specific RKHS introduced in [8], the ANOVA-RKHS.212

The ANOVA-RKHS H is built as a direct sum of sub-RKHS Hp so that a given function f ∈ H will213

have for Hoeffding decomposition its decomposition on the subspaces Hp. Using the ANOVA-RKHS, we214

will build a metamodel only involving the most significant state variables (i.e. a reduced number Nup),215

reducing the input space dimension and thus increasing the metamodel accuracy and the computational216

speed-up for a given computational budget fixed by Nobs. The goal of the ANOVA-RKHS is not to217

accelerate the metamodel computation in (12), but rather to speed up the metamodel evaluation in an218

unseen point in (13).219

Let us note X = X1 × · · · × XNup . For each coordinate a ∈ {1, · · · , Nup}, a kernel ka and its220

corresponding RKHS Ha are chosen on Xa, with the additional properties: 1) ka is Pa × Pa mesurable221

on Xa ×Xa and 2) EPa

√
ka(Xa, Xa) < ∞.222

The RKHS Ha can be decomposed as Ha = H0a

⊥
⊕ H1a where223

H0a := {fa ∈ Ha,EPa(fa(Xa)) = 0}, H1a := {fa ∈ Ha, fa(Xa) = C}

the kernel associated to the RKHS H0a being defined as follows [13] p.8:224
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k0a(Xa, X
′
a) = ka(Xa, X

′
a)−

EU∼Pa
[ka(Xa, U)]EU∼Pa

[ka(X
′
a, U)]

E(U,V )∼Pa⊗Pa
[ka(U, V )]

. (14)

The ANOVA kernel is finally defined by225

k(X,X ′) =

(
Nup∏
a=1

(1 + k0a(Xa, X
′
a))

)
= 1 +

∑
p∈P

kp(Xp, X
′
p) (15)

with kp(Xp, X
′
p) =

∏
a∈p k0a(Xa, X

′
a). The corresponding RKHS is finally226

H =

(
Nup∏
a=1

1
⊥
⊕ H0a

)
= 1+

∑
p∈P

Hp (16)

where Hp is the RKHS associated to kp. Let us now take any function f in the ANOVA-RKHS H. We227

get by the reproducing property and linearity228

f(x) = ⟨f, k(x, .)⟩H = f0 +
∑
p∈P

fp(x), with fp(x) = ⟨f, kp(xp, .)⟩H (17)

As the functions fp are centered and uncorrelated by construction, this decomposition is also the Hoeffd-229

ing decomposition of f . This setting will be used for variable selection: in the following, the numerical230

problem will be set up, with a group-lasso regularization that will select the important variables and231

variables interactions.232

2.5 Discretization of the regression problem and metamodel construction233

From the representer theorem 2 and the ANOVA-RKHS reproducing property in eq. (17), we can state234

the following finite dimension parametric regression problem: for a given 1 ⩽ j ⩽ Nr and a given235

bacterial strain s, find236

θ̂s0,j , (θ̂
s
p,j)p∈P := arg min

θs0,j ∈ R
θsp,j ∈ RNobs ,∀p ∈ P

∥Ys
j − (θs0,j1+

∑
p∈P

Kpθ
s
p,j)∥22 + G(W, θsp,j) (18)

with Kp ∈ RNobs×Nobs the Gram matrix such that (Kp j1,j2)1≤j1,j2≤Nobs
= kp(c

j1 , cj2), the value of the237

kernel kp evaluated at constraint points cj1 and cj2 . In this equation, the norm ∥ · ∥2 is the classical l2238

norm: ∥x∥2 =
(∑

i=1,··· ,Nobs
x2
i

)1/2
. The term G is a regularization term that writes:239

G(W, θsp,j) = Nobsµ
∑
p∈P

∥Wθsp,j∥2

with µ an hyperparameter and W some weight matrix.240

If the weight matrix is W = K
1/2
p , then ∥Wθsp,j∥2 = ∥fp∥Hp

where fp :=
∑Nobs

i=1 θsp,j,ikp(Xi, ·) with Xi241

the i-th row of the learning database X. If the weight matrix is W = 1√
n
Kp, then ∥Wθsp,j∥2 = ∥fp∥ where242

∥ · ∥ is the empiric l2 norm. A composite criteria can be chosen such as the ridge group sparse criteria243 √
Nobsγ

∑
p∈P ∥Kpθ

s
p∥2 +Nobsµ

∑
p∈P ∥K1/2

p θsp∥2 as introduced in [13] (formula 17). In this exploratory244

study, we set W = Id, leading to a group-lasso criteria.245

To compute Kp, a numerical version of the ANOVA-RKHS is needed, and in particular the compu-246

tation of ka0 and the integrals in Eq. (14). These integrals are computed empirically for all 1 ≤ i ≤ Nobs247

once for all and stored for further use with the formulas:248

EU∼Pa [ka(Xi,a, U)] ≃
1

Nobs

Nobs∑
j=1

ka(Xi,a,Xj,a) and EU∼Pa⊗V∼Pa [ka(U, V )] ≃
1

N2
obs

∑
i=1

Nobs∑
j=1

ka(Xi,a,Xj,a) (19)

where Xi is the i-th row of the learning database X and a is the mono-dimensional index. Note that249

these integrals are respectively mono and bi-dimensional, which limits the computational load.250

This estimation problem is a Nobs × |P|+1-dimensional optimization problem, which can be numer-251

ically expensive if Nup and Nobs are large. The problem can be reduced by considering interactions up252

to a certain order. However, the minimization problem is done off-line once for all. Then, the function253
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Fs,j can be approximated in a new point c̃(up) in the input parameter space by F̂s,j(c̃
(up)) defined with254

the explicit formula255

F̂s,j(c̃
(up)) := θ̂s0,j +

∑
p∈P

Fp(c̃
(up)) · θ̂sp,j (20)

where Fp(c̃
(up)) is the Nobs dimensional vector256

Fp(c̃
(up)) :=

(
kp(Xi, c̃

(up))
)
1⩽i⩽Nobs

i.e., the evaluation of the kp kernel at c̃(up) and the Nobs learning set points Xi. This analytical formula257

is fast to compute: it has the complexity of a dot product once kp are evaluated. In practice, we will use258

Matern kernels for kernels ka, a ∈ {1, · · · , Nup} , the parameters of the Matern kernel being fixed to a259

priori values so that the kernel are computed with the formula (c1, c2) 7→ (1 + 2|c1 − c2|)e(−2|c1−c2|) .260

Note that k0a in eq. (14) is needed to compute kp: the computation of the first integral EU∼Pa
[ka(Xi,a, U)]261

in eq. (14) is done empirically through eq. (19) while the others have been computed once for all and262

stored, reducing the computation time.263

3 Population dynamics model of Salmonella infection, includ-264

ing host inflammatory response265

We now contextualize the previous methodology to a dynamic system describing Salmonella infection in266

the gut lumen. This application example is a sound benchmark to show the potentiality of our method267

because 1) it is a representative example of the intrinsic complexity of a system biology model of the gut268

by involving two different metabolic models and 10 metabolites screened in time in two compartments,269

2) the model involves stiff dynamics after infection, making it sensitive to flux approximation errors and270

thus more difficult to approximate by a metamodel.271

3.1 Biological context of Salmonella infection.272

Salmonella Thyphimurium uses a very complex mechanism to invade the gut. Let us characterized the273

healthy gut homeostasis: it will emphasize by contrast how the pathogen colonizes the intestine lumen.274

Healthy gut. The environment of a healthy gut is anaerobic: the commensal micro-organisms are275

then specialized microbes relying on anaerobic metabolism to grow without oxygen. Actually, a main276

part of the gut microbiota are strictly anaerobic, meaning that oxygen is harmful to them. With this277

anaerobic metabolism, the commensal microbiota consumes fibre-derivated sugars (e.g.. glucose and278

galactose) and produces short-chain fatty acids (SCFA) – mainly butyrate, acetate and propionate –279

that are absorbed by the host for its own metabolism. The main energetic source for the intestinal cells280

is butyrate, which is metabolized together with the oxygen carried to the intestine by the blood system.281

A virtuous cycle is then set up (see Figure 2a): the commensal microbiota produces butyrate that is282

metabolized by the host with oxygen; consequently, this oxygen does not diffuse to the lumen ensuring283

hypoxia and a favorable habitat for the butyrate-producing anaerobes. Salmonella is not very efficient in284

an anaerobic environment: the pathogen will have to hack this regulation mechanism, in order to create285

a favorable niche and permit the invasion of the gut. [4, 27]286

Colonized gut. When arrived at the gut lumen, the pathogen releases a virulence factor (sipA)287

that triggers an inflammation in the epithelial cells (see Figure 2b). The host cells produce neutrophils:288

these immune cells are sent into the gut lumen where they trap any bacteria they encounter (pathogenic289

bacteria but also SCFA-producing symbionts). Then, the production of butyrate decreases, and this290

metabolite is no longer available for the epithelial cells: the oxygen reaching the cells is no longer me-291

tabolized and starts flowing in the gut lumen. This oxygen will be harmful for the butyrate-producing292

anaerobes, which initiates a vicious circle. The oxygen will also oxydize nutrients present in the gut,293

providing very efficient energetic sources for the pathogen alone, allowing it to take over from the com-294

mensal bacteria. Namely, galactose, glucose and thiosulfate will be oxydized into galactarate, glucarate295

end tetrathionate. In the meantime, inflammation induces the production of nitric oxyde, which is oxy-296

dated in nitrate, also very favorable for the pathogen [4, 27]. Figures sketching these mechanisms can297

be found in Fig. (2a-2b).298
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(a) Healthy gut at homeostasis: the colon lumen is hypoxic, so that commensal microbiota produces butyrate
from sugars, which is consumed by the host with the blood-stream oxygen, regulating anaerobia.
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(b) Salmonella colonization process: the pathogen triggers inflammation, decreasing commensals levels. Butyrate
production drops down, reducing availability for the host. Epithelial cell metabolism switches from aerobic to
anaerobic: blood-stream oxygen is no longer consumed and starts flowing in the gut lumen creating an aerobic
niche for the pathogen.

Figure 2: Simplified illustrations recapitulating the biological regulation in an healthy gut, and S. Ty-
phimurium colonization mechanisms.
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We will first build a population dynamics model of Salmonella infection. The commensal microbiota299

will be represented by a unique strain of butyrate-producing bacteria: Faecalibacterium Prauznitzii.300

This bacteria belongs to one of the dominant genera in the gut microbiota, and is widely studied in the301

context of probiotic development [20]. The model proposed in this section is an adaptation of the works302

of Muñoz et al. [22], where they model the human colon by dividing it in compartments that are treated303

as continuous-flow stirred tank reactors (CSTR).304

Our adaptation comes from a simplification of the colon into a single CSTR (called luminal com-305

partment), and the novelty comes from the inclusion of FBA for computing the growth rate and the306

addition of the epithelial compartment representing the epithelium. We need to add the former to our307

set of equations in order to model the Salmonella infection. Our model aims to reproduce the main308

steps of the Salmonella infection: 1) the neutrophils (immune system cells that sequester bacteria) re-309

lease into the colon from the epithelial compartment after the virulence factor triggers the inflammatory310

response; 2) the resulting drop of butyrate producing bacteria which entails decreased butyrate levels;311

3) the metabolic switch, induced by the butyrate drop, of the epithelial cell from aerobic to anaerobic312

metabolism resulting in oxygen flow into the luminal compartment of the oxygen that is not consumed;313

4) the bloom of Salmonella growing in this newly aerobic luminal compartment. A mathematical model314

describing the infection and the shift from an anaerobic to aerobic environment in the colon has been in-315

troduced in [16] at a larger scale. The model we introduce here focuses on the host-microbiota-pathogen316

metabolic interactions. Many parameters contained in ODE models are normally estimated by fitting317

the model to experimental data. In view of the lack of it, we will content ourselves to qualitatively318

representing the 4 steps introduced above that are hallmark of Salmonella infection [27], however, some319

parameters can be known before hand, such as the hydraulic retention time.320

State variables. The model is a compartment model: a first compartment describes the gut lumen321

while the second stands for the epithelial cells. The luminal compartment describes the dynamics of322

the bacteria Sth and Fprau, for Salmonella enterica Typhimurium and Faecalibacterium prauznitsii pop-323

ulations, nl, the luminal neutrophils, and ml a vector containing all the metabolites concentrations of324

interest in the luminal compartment that describe the nutritional environment. Vector ml is indexed by325

i ∈ {Gal,Gluc,NO,GalO,GlucO,NO3, thio, tet, O2, but} standing for, respectively, luminal galactose,326

glucose, nitric oxyde, galactarate (i.e. oxydized galactose), glucarate (i.e. oxydized glucose), nitrate,327

thiosulfate, tetrationate (i.e. oxidized thiosulfate), oxygen and butyrate. Fprau consumes glucose and328

galactose and produces butyrate, whereas Sth consumes all of the metabolites except butyrate. The329

instant rate at which these are consumed or produced is given by the resolution of the FBA problem330

(see (2)) for each time step for each species. Nitric oxide has a special role in the host response to the331

pathogen, since it will react with oxygen to form nitrate which boosts the growth of Sth and gives an332

edge to Salmonella in the competition for resources [27].The epithelial compartment has 4 state vari-333

ables: ne, NOe, O2e and bute representing neutrophils, nitric oxide, oxygen and butyrate, respectively.334

Each of these state variables is transported to or from the luminal compartment, in order to model the335

host response effect in the colon to the pathogen invasion. The vector me indexed by {NO,O2, but} will336

gather the epithelial metabolites.337

Luminal compartment. The gut lumen is modelled as an open system, meaning that matter flows
through it. A working hypothesis is that the volume of the gut lumen is preserved at all times, meaning
that a volume entering the gut must be balanced by a volume going out, thus the gut lumen can be
modelled as a reactor [10]. The rate of change of the concentration of a component inside the gut lumen
depends then on the difference between the input and output flow [22]. More precisely , let s be the
concentration of a component of interest, then Qin and Qout be the volumetric input and output flow,
sin the concentration of the incoming flow, and V the reactor volume.

∂ts =
Qinsin −Qouts

V
+ biological and chemical reactions

+ transport to epithelial compartment.

Particularly, under the constant volume hypothesis Qin = Qout = Q. Define D := Q
V as the dilution338

rate, which is the inverse of the hydraulic retention time. Then we can write Qinsin−Qouts
V = (sin − s)D.339

Recall from equation (4) that Fs(c
(up)
s ) maps the upper bound of consumption to the uptake rates of340

metabolites for s ∈ {Sth, Fprau}. To couple Eq. (4) to the state equation, a relation between the state341

variable and the consumption upper bound cup is needed. We then define342
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c(up)m (ml) = max

{
ml,m

Ldt(Sth1Sth
(ml) + Fprau1Fprau

(ml)) + ε
, Sm

}
(21)

where ml,m is the substrate metabolite m of the luminal metabolites ml, Ldt is a characteristic consump-343

tion time, 1s(ml) is an indicator function indicating whether the bacteria s metabolizes the substrate m,344

ε is a small regularization parameter and Sm is the maximal substrate uptake when the metabolite m is345

at saturation in the media. As the upper bound c
(up)
s now depends on vector ml and bacterial densities,346

we will simply denote Fs(ml, Sth, Fprau) the uptake rates of metabolites for species s. Note that this347

vector also includes the biomass production rate, denoted by Fs,1(ml, Sth, Fprau). Analogously, vector348

Fs,ml
(ml, Sth, Fprau) is assembled from the uptake rates of metabolites in ml. Finally, we introduce the349

diag(·) operator, which maps a vector of size n to the corresponding diagonal matrix of size n.350

∂tSth = (FSth,1(ml, Sth, Fprau)− ρnl −DSth
)Sth (22)

∂tFprau =

(
FFprau,1(ml, Sth, Fprau)− ρnl − α

O2l

KO2 +O2l

−DFprau

)
Fprau (23)

∂tnl = γn(ne − nl)− dnnl −Dnnl (24)

∂tml = D(min −ml) + FSth,ml
(ml, Sth, Fprau)Sth + FFprau,ml

(ml, Sth, Fprau)Fprau

+ βmlO2l + diag(γ)Tr(me,ml) (25)

where FSth
(resp. FFprau

) is the FBA metabolic model of the pathogen (resp. the commensal). The351

parameter ρ represents the trapping by the neutrophils nl. The term α
O2l

KO2
+O2l

models the deleterious352

effect of the oxygen level O2 on the obligate anaerobe Fprau, with a Michaelis-Menten dynamics using353

tuning parameters α and KO2
. The terms DSth

and DFprau
indicate the passive dilution plus a bacteria354

specific death rate. The term γn(ne−nl) represents the transfer process from the epithelial compartment.355

The term dnnl is the death rate of neutrophils. Remark that mathematically we could have added the356

dilution rate (Dm) of neutrophils to its death rate dn and have a single term, however since neutrophils357

also die in the epithelial compartment which has no dilution rate we decided to keep this explicit form.358

No entry of bacteria takes place, the bacteria getting into the system through initial conditions.359

In equation (25), the first term describes the metabolite inflow, with min a vector containing the360

concentration in the small intestine of component ml and D the passive dilution rate common to all the361

inert metabolites. The terms Fb,ml
(ml, Sth, Fprau)b for b ∈ {Sth, Fprau} correspond to the consumption362

or production of metabolites due to the bacterial metabolism. The term βmlO2l corresponds to the363

oxidation reactions, where β is a diagonal matrix with entries only in the index corresponding to the364

reduced-oxidized pairs, each metabolite of a reduced-oxidized pair have the same coefficient, but with365

opposite sign, thus ensuring mass conservation. The term diag(γ)Tr(me,ml) shows the transport process366

to the epithelial compartment. We have for the transfer coefficient γ:367

diag(γ)Tr(me,ml)i =

{
γ(me,i −ml,i) if i ∈ NO,O2, but

0 otherwise

Epithelial compartment The 4 state variables of the epithelial compartment have the following
dynamics

∂tne = Cbut,nne

(
ne − Ln

bute
Kbut + bute

)
(Ln − ne)− dnne + γn(nm − ne) + V F (Sth) (26)

∂tNOe = Cbut,NONOe

(
NOe − LNO

bute
Kbut + bute

)
(LNO −NOe)− dNONOe

+ γNO(NOl −NOe) + V F (Sth) (27)

∂tO2e = −λbutbuteO2e − dO2O2e + LO2 + γ(O2l −O2e) (28)

∂tbute = −λbutbuteO2e + γbut(butm − bute) (29)

The term Cbut,nne

(
ne − Ln

bute
Kbut+bute

)
(Ln − ne) in equation (26) (and the analogue term in eq.368

(27)) is a bistable term with stable steady-state 0 and Ln, the threshold separating the attraction areas369

being Ln
bute

Kbut+bute
. The threshold bute

Kbut+bute
tends to 1 when butyrate is abundant and drops to zero370
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when butyrate level drops, pulling the state variable towards 0 or Ln when ne exceeds this threshold.371

The term V F (Sth) is a Heaviside function in order to simulate the virulence factor that Salmonella372

secrets triggering neutrophils and the nitric oxide production. The terms dnne, dNONOe, and dO2
O2e in373

equations (26), (27), and (28), respectively, represent death terms. Terms γn(nm − ne) in equation (26)374

(and all its analogues in other equations) model the transport process towards the luminal compartment,375

which couple these equations to Eq. (22)-(25). Finally terms λbutbuteO2e in both equations (28) and376

(29) model the epithelial cell metabolism mainly based on butyrate oxydation.377

The system is supplemented with initial conditions Y0 that can be found in Table A.2. The system378

was simulated in absence of Salmonella for 40 hours, time at which a pulse of Salmonella is added and379

models the initial invasion. The model is solved with custom python scripts (see Sec. A in the Annexe).380

The FBA models are taken from the literature: the Sth model is taken from [26] as provided by Cobrapy381

[9] while the Fprau model is taken from [31]. The parameter values can be found in Table A.1.382

In Figure 3 a simulation of the system can be found. The abundance of Sth, Fprau, and neutrophils is383

first plotted (Fig. 3.a). Notice how the infection takes place at hour 40 and produces a spike of neutrophils384

in both the luminal (Fig. 3.a, dark green curve) and epithelial compartment (Fig. 3.e, dark green). After385

the immune response led by neutrophils we can observe the decline of Fprau and the rise of Sth achieving386

colonization. Plots of Fig. 3.b, Fig. 3.c and Fig. 3.d show the metabolite concentrations in time in the387

luminal compartment. Butyrate starts decreasing after Sth infection (Fig. 3.b, orange) because of the388

drop of Fprau, and eventually the media becomes completely aerobic after hour 60 (Fig. 3.b, blue). This389

can be explained by observing Fig. 3.e which illustrates how in the epithelial compartment the decreasing390

levels of butyrate allow oxygen to accumulate and flow into the luminal compartment (blue), as shown391

in Fig. 3.f (blue) plotting the flow between compartments, i.e. γ(me −ml). The same can be observed392

for nitric oxide (Fig. 3.f, green) which starts flowing into the luminal compartment from the beginning393

of the infection. The growth of Sth exhibits two phases (Fig. 3.a, red): a first phase is mainly fueled394

by the depletion of thiosulfate (Fig. 3.c, purple), while the second is more based on the consumption of395

oxidized molecules, allowed by the flow of oxygen, and nitrate coming from the oxidation of NO. We note396

that oxygen actually recycles the end product of the metabolism of the oxydized molecules, maintaining397

the favourable niche for Salmonella. We can see that the dynamical system renders all the four steps398

of Salmonella infection as described in the literature (see Fig. 2b): 1) the inflammation-induced raise399

of neutrophils 2) the consecutive drop of butyrate-producing bacteria and butyrate, 3) the switch to400

anaerobic metabolism in the epithelium and the resulting oxygenation of the lumen, favourable niche for401

4) the bloom of Salmonella.402

In the remainder, we will use the notation403

Y ode = (Sth, Fprau, nl,ml, ne, NOe, O2e , bute)

to designate the vectorial state variable of the whole dynamical system.404

4 Learning database definition405

The assembling of the learning database is linked to the question of sampling the feature space of the406

RKHS method, which has dimension Nup = 9 in our application. Building a uniform sampling of a nine-407

dimensional hypercube necessitates a high number of points to cover all the volume of the hypercube.408

To mitigate the number of samples in the learning database, we adopt a supervised strategy: we sample409

the feature space in the neighbourhood of feature time-series observed during different solutions of the410

ODE system (22)-(29). In this way, the feature co-variance of our learning database is closer to the411

co-variance imposed by the dynamical system structure. We then compute Nsim = 60 repetitions of the412

ODE system (22)-(29) with random initial conditions sampled in uniform distributions (cf Table B.3 for413

parameter values), multiplied for the metabolites of the luminal compartment by a Bernoulli distribution414

simulating their presence/absence to also simulate cases where a metabolite is not initially present in415

the system.416

From these Nsim = 60 replicates, we performed a time sampling of the state variables ml(i∆t),417

Sth(i∆t) and Fprau(i∆t), i = 1, · · · , Nt from which we computed the corresponding FBA constraints418

using formula (21) to get X1 after duplicate removal. The matrix X1 only contains constraints that419

have been observed during the time course of the system dynamics. To enrich the database around these420

orbits, we then perturbed X1 with a multiplicative Gaussian noise (σ = 0.1), and selected samples with421

resulting all negative constraints (i.e. substrate uptake) to get X2. The concatenation Xlarge of X1 and422

X2 leads to a database of Nobs = 47942 samples. We subsampled Xlarge by uniformly picking up 1000423
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Figure 3: dFBA model of Salmonella infection. The output of the dFBA model of Salmonella
infection is plotted. The fate of the different model components is displayed in the luminal and epithelial
compartments. Butyrate and oxygen flows between epithelial and luminal compartments is also plotted.
The results can be read as follows: Plot a shows the ecological dynamics, i.e. the abundance in time of
the commensal microbiota and the pathogen. Neutrophils appear after the infection at hour 40, which
affects negatively Fprau and allows the posterior Sth settlement. Plot b show how butyrate level drops
after the infection, because of the decrease in the Fprau population and how the colon becomes aerobic
after hour 60. Plots c and d show the dynamics of the reduced and oxidized metabolites. Notably
thiosulfate accumulates until the infection moment, and then is consumed by Sth, the rising levels of
nitrate are also linked to the presence of Sth and the available oxygen to transform nitric oxide in nitrate.
Plot e shows the behaviour in the epithelial compartment and one can see how the butyrate level drops
since the appearance of neutrophils, the oxygen accumulation because of the reduced butyrate levels and
the nitric oxide increased explained by the presence of Salmonella that triggers its production. Plot f
shows the flows between compartments to show that indeed the accumulations or depletion of metabolites
described before is linked to exchanges between compartments. The different stages of the infection are
then qualitatively recovered by the ODE system.
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samples. Since it is particularly important from a biological point of view to capture the dynamics when424

a given metabolite is not limiting (i.e. when its concentration is close to Sm in eq. (21)) and when is425

nearly depleted (i.e. when its concentrations gets close to zero), we selected 1000 additional points by426

randomly taking 1000/(Nsub ∗ 2) additional samples in the first and last decile of each columns of Xlarge427

to enrich the database in the distribution limits. We then finally obtained a learning database X with428

Nobs = 2000 samples. Model outputs Y Fprau and Y Sth were assembled for each species with the FBA429

model. The resulting distributions in X and Xlarge can be seen in B.9.430

5 Hyperparameters selection431

We now are ready to learn the metamodel, i.e. to solve (18) in order to find the parameters θ providing432

the best trade-off between Y reconstruction and RKHS subspace selection.433

5.1 Selection of the group-lasso weight µ434

For each species s = Sth, FPrau and model output j, we solve the problem (18) for435

µ ∈ {0.0, .001, .01, .05, 0.075, .1, 0.15, .2, .3, .4, .5, .75, 1.0, 1.5}

and a subsample of Nobs = 400 observations of X and Ys and compute the loss Lµ,s,j , i.e. the relative436

reconstruction error on a testing set (Xtest,Y
s
test) of Nobs = 300 unseen points of X437

Lµ,s,j =
∥Ys

test,j − Ŷs
test,j|µ∥2

∥Ys
test∥2

where Ŷs
test,j|µ = F̂s,j|µ(Xtest).

We display in Figures 4 and 5 the respective resulting lasso-paths for Fprau and Sth. Namely, we438

compute for each µ, species s and output j the norm np
µ,s,j = ∥θ̂sp,j|µ∥2 for p ∈ P, where second order439

interactions only are considered in P, and derive their relative contribution np
µ,s,j/

∑
p∈P np

µ,s,j that440

is displayed in Figures 4 and 5. This relative contribution allows to display the groups p of θ̂sp,j|µ441

that vanish for increasing µ, and the groups that remain non-null indicating input variables that are442

necessary to reconstruct the output j. In other words, for increasing µ, the group-lasso penalty becomes443

preponderant, turning off the parameters corresponding to the RKHS subspace p carrying the lower444

part of signal variance, which remains to perform variable selection. In the meantime, the loss tends to445

increase when a group of θ is discarded, since the signal is approximated in lower-dimensional subspaces.446

We are then seeking, for each output j, for the parameter µ providing the best trade-off between signal447

reconstruction and reduced number of selected groups p, synonym of reduced computational load and448

speed-up.449

For Fprau (Fig. 4), we first observe that the lasso paths are very similar for the substrates (all the450

curves are similar in the glucose and galactose plots), indicating that these sugars have a comparable451

fate in the FBA model and similar influence on butyrate production (butyrate plots, the blue and orange452

plots are parallel). To predict the growth (Fprau plot), both sugars and their interaction are needed453

to achieve correct predictions (blue, orange and gray lines): the loss curve (dark blue line with stars)454

shows sharp increases when a group is dropped off. Due to the reduced number of substrates for Fprau455

(Nup = 2), all groups are kept for the four model outputs (see Table C.4 for selected µ).456

For Sth (Fig. 5), input interactions are more complex. We first observe that O2 intake (blue curve)457

is always preponderant for all model outputs plots, which is expected for this bacteria able to respire458

in aerobic environment. Again, glucose and galactose plots are very similar, such as glucarate and459

galactarate (their oxidated version). For these oxidated sugars, the loss increase (dark blue line with460

stars) is very limited when groups are dropped-off, indicating that the two groups that are kept (O2,blue461

line, and galactarate, brown line) are enough for a correct signal reconstruction. The same kind of462

observation is made for the nitric oxyde, thiosulfate and tetrathionate plots. We next can see that O2463

and nitrate are badly reconstructed (O2 and nitrate plots, dark blue line with stars), even with the whole464

set of subspaces (more than 30% loss). Finally, for Sth growth rate (Sth plot), we keep several groups465

of inputs, including O2, thiosulfate, tetrathionate, glucarate and their interactions (see Table C.4 for466

selected µ).467
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Figure 4: Lasso path for Fprau. For each metamodel, the lasso path is displayed: the relative contri-
bution of the different blocks to the penalty is plotted for several values of the group lasso penalty µ,
together with the loss function value. Namely, we plot ∥θ̂sp,j|µ∥2/

∑
p∈P ∥θ̂sp,j|µ∥2 wrt µ. For increasing

µ, the group carrying less information vanish (i.e. its relative contribution goes to zero), indicating
that the remaining groups support the main part of the signal. Dashed dark gray lines indicate order
2 interactions involving the displayed compound. Dashed light gray lines indicate order 2 interactions
that do not involve the displayed compound (i.e. involving other compounds).

5.2 Selection of the number of functional basis468

For given regularization parameters µ, different numbers of functional basis can be involved in the469

approximation, i.e. according to the Representer theorem 2 different numbers of samples included in470

the learning set. Again, a trade-off between reconstruction accuracy and computation speed is expected,471

since more functional basis enlarges the discretized functional space where the optimum is searched in472

eq. (11), allowing for better approximation, but at the cost of additional computations during each473

metamodel evaluation in (20).474

For the µ previously selected, we then performed additional metamodel learnings for varying Nobs ∈475

{50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700}. We then computed nrep = 5 repetitions of the ODE476

system (22)-(29), for random initial conditions sampled with the same procedure than for the learning set477

construction (see Sec. 4), and for the FBA model or its metamodel approximation in eq. (22) to (25). The478

L2 relative reconstruction error between the dFBA solutions Y ode
FBA and their metamodel approximations479

Y ode
mm|Nobs

is plotted in Fig. 6, together with the computation speed-up, i.e. the computation time ratio480

using the metamodel in place of the FBA model.481

We can observe that the best trade-off between speed-up and reconstruction error is obtained for 500482

functional basis. A higher number of basis increases the number of numerical operations and degrades483

the computation time while a lower number worsens the reconstruction error. More counter-intuitively,484

the speed-up is decreased for low numbers of functional basis (Nobs ≤ 100). This is due to a higher485

number of blocks p ∈ P that are conserved when the number of observation in the learning basis (i.e.486

the number of functional basis in the RKHS) is reduced: the block-lasso penalty tends to conserve a487

higher number of blocks to preserve the data reconstruction, which is mechanically decreased for lower488

numbers of samples in the learning set.489

6 Validation of the selected RKHS metamodel490

The accuracy of the selected RKHS metamodel is first assessed by testing the metamodel with the491

corresponding FBA model on ntest = 1500 unseen points (Fig. 7a and 7b). We can see that the large492

majority of points lie in the vicinity of the line y = x, providing excellent R2 scores, with minimal value493
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Figure 5: Lasso path for Sth. For each metamodel, the lasso path is displayed: the relative contribution
of the different blocks to the penalty is plotted for several values of the group lasso penalty µ, together
with the loss function value (dark blue line with stars). Namely, we plot ∥θ̂sp,j|µ∥2/

∑
p∈P ∥θ̂sp,j|µ∥2 wrt

µ. For increasing µ, the groups carrying less information vanish (i.e. its relative contribution goes to
zero), indicating that the remaining groups support the main part of the signal. Dashed dark gray lines
indicate order 2 interactions involving the displayed compound. Dashed light gray lines indicate order 2
interactions that do not involve the displayed compound (i.e. involving other compounds).
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of 0.922 for the worst reconstructed compound (nitrate for Sth).The worst approximation are mainly494

located near the boundaries of the domain, specially for Fprau. When looking at the FBA models495

responses for varying substrate constraints (Fig. C.10a and C.10b), we can see that the model is quasi-496

linear for sugar consumption for Fprau, but the behaviour is more complex for Sth, in particular for sugar497

consumption: sugar FBA uptake (y-axis) can vanish whereas glucose or galactose remain in the media498

(non-null constraints, x-axis) indicating metabolic switches. This behaviour is correctly predicted by the499

metamodel.500

We then assess the metamodel approximation by comparing the ODE simulations with the FBA501

(plain lines) and the metamodel (dashed lines, Figure 8). Some limited discrepancies can be observed.502

In Fig. 8.a, Salmonella approximation accuracy is reduced in the second phase of growth, when Sth takes503

benefit of the micro-aerobic environment. In the same plot around hour 60, the metamodel is slightly off504

for Fprau, inducing a slight lag for butyrate production around T = 60 (Fig. 8.b, orange curves) which505

is reflected in the epithelial densities (Fig. 8.e, orange) and trans-epithelial flow (plot 6, orange).506

For metabolites, the time courses are particularly well reconstructed, except for glucose after T = 70h507

which goes awry, reflecting that there was little glucose consumption predicted by the metamodel, whereas508

in the original system it was completely consumed. Thiosulfate and tetrathionate are slightly off as well509

which might be linked with the oxygen lag observed in Fig. 8.e and f (blue lines). Less oxygen goes510

into the luminal compartment during the lag and the formation of tetrathionate by the oxidation of511

thiosulfate becomes impaired. This mechanism should be observed for other reduced-oxidized pairs,512

however since they are less abundant the effect might be attenuated.513

Altogether, the behaviour of the metamodel is satisfactory in reproducing the dFBA system: it514

produces an overall reconstruction error ∥Y ode − Ŷ ode∥2/∥Y ode∥2 of 4, 71% and it accurately renders all515

different phases of Sth infection as observed in Fig. 3, such as Fprau and consecutive butyrate drop-off,516

O2 and NO flows between epithelial and luminal compartments and the resulting two-phase growth of517

Sth. The metamodel furthermore allows computation speed-up by 45, which is a considerable gain.518
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7 Discussion519

7.1 Machine learning for accelerated computations of metabolic models.520

An increasing number of studies [3, 18, 7] address the problem of modelling a community of micro-521

organisms by concatenating strain-level genome-scale metabolic models. If this strategy is well-established522

for well-mixed communities when one unique metabolic model can render the metabolic behaviour of523

the whole population of a specific strain discarding any spatial heterogeneities, it faces computational524

difficulties in contexts with important spatial structures: the metabolic model must be repeated at each525

spatial step, increasing linearly the computational load with the number of cells in the spatial mesh.526

This observation grounds the need for numerical accelerations of the metabolic model evaluations.527

In this study, we adapted a machine learning method to the context of metabolic models, approx-528

imating the metabolic model output at reduced computational costs. We provided a proof-of-concept529

showing that RKHS-based metamodels are able to capture some non-linear effects exhibited by metabolic530

models (see Fig. C.10b), so that replacing the FBA metabolic model by its metamodels only marginally531

impacts the time-course of a system dynamics involving a metabolic model ( Fig. 8). The metamodel532

drastically speeds up the overall time integration of the ODE system since integrating eq. (22)-(29) took533

in average 22 min and 27 s with the FBA model but only 28 s with the metamodel. We expect that this534

approximation remains valid in a PDE system.535

The deployment of the RKHS method necessitates a careful selection of hyperparameters that strongly536

impacts the trade-off between accuracy and computation load. The block-lasso regularization penalty537

mitigates the number of blocks needed to provide accurate model reconstruction, which reduces the538

number of numerical operations during metamodel evaluation, thus speeding-up the overall computations.539

Likewise, the number of samples in the learning database is directly linked to the number of functional540

basis approximating each ANOVA-RKHS subspaces: if a higher number of observations increases the541

accuracy, it mechanically degrades the computation time. This tuning directly depends on the learning542

database and must be reproduced when the learning set is changed.543

7.2 Learning dataset construction.544

Metamodeling is specific in the framework of machine learning in that the learning dataset is not imposed545

to the user: the user keeps the hand on the assembly of the learning dataset. Ones can then search for546

sound experimental planning by placing the points of the learning set in strategic areas of the state547

space. One ’agnostic’ approach consists in sampling uniformly hypercubes of the input space: after548

defining upper and lower bounds on the inputs, uniform sampling methods such as Latin Hypercube549

Sampling (LHS) or fast99 methods [25, 12, 28] can be deployed which provides suitable property for550

sensitivity analysis and computation of descriptive index such as Sobol Index. We opted for a more551

’supervised’ approach by sampling the feature space around time trajectories of the ODE system we552

want to approximate: several time integrations are performed based on random initial conditions which553

allows to compute FBA model inputs through eq. (21) that samples the feature space. The learning554

database was further enriched by randomly sampling around these trajectories, and by oversampling the555

borders of the hypercube (see fig. B.9).556

Other strategies could be explored, by defining a generative statistical model of the points around the557

ODE trajectories. For example, ones could simulate these point clouds with copulas, by coupling uniform558

sampling of hypercubes with simulations of the empirical marginals of the observed points during the559

ODE time course.560

7.3 Why using ANOVA-RKHS in our approach.561

In this study, we opted for a specific RKHS method, based on ANOVA-RKHS. Unlike classical RKHS562

metamodel that approximates the model in a unique functional space through the Representer theroem563

2, the ANOVA-RKHS method provides a theoretical metamodel the decomposition of which corresponds564

to its Hoeffding decomposition. The metamodel approximation with a penalized least square method565

enables the selection of the main effects and their interactions, leading to a more parsimonious metamodel.566

If this strategy is more complex from mathematical and computational points of view, it allows reducing567

the dimension of the input space by selecting the input variables that most influence the output variability.568

Besides the biological interpretations that can be done based on this input-output interactions or the569

Sobol index that are directly given by the ANOVA-RKHS method, variable selection also provides a570

better trade-off between reconstruction accuracy and computation load. Indeed, the fixed number of571
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samples in the learning dataset is more likely to cover the feature space with reduced dimensions. In our572

context, the feature space has 9 dimensions for Sth, and we could provide accurate predictions with 500573

points. Working directly with classical 9-dimensional RKHS might have necessitated a higher number of574

training samples to provide the same accuracy. On the contrary, 500 points provides a good sampling of575

1 or 2-dimensional feature spaces as observed in the fp of eq. (17). Benchmarking ANOVA-RKHS with576

other RKHS and other machine learning methods is kept as a perspective for this work.577

Additionally, ANOVA-RKHS could be compared or enriched with other functional spaces. In partic-578

ular, as the response curves of the metabolic models are quite regular except near the origin (see Figs.579

C.10a and C.10a), other approximation methods could be investigated, such as polynomial regression580

models. This kind of models could provide faster evaluations by compensating a lower number of func-581

tional basis by higher priors on the response shape. Again, variable selection approaches could speed up582

metamodel evaluation on unseen points.583

7.4 Exploring other regularization penalties.584

In eq. (11), we selected a classical group lasso penalty to regularize the optimization problem. This585

penalty could be problematic in practice since it does not involve the ANOVA-RKHS norm, which is the586

norm that theoretically ensures the existence of a solution through the Representer theorem 2. However,587

these difficulties did not occur in the context of the computations presented here. Other regularizations588

were explored in [14, 13] and could be introduced in the future in our package. However, computing589

the ANOVA-RKHS norm involves the computation of the square root of large (N2
obs) dense matrices590

(as many matrices as card(P)), which can be expensive in computational time and memory, specially591

if high-order interactions are considered in the Hoeffding decomposition. Hence, dimension reduction592

techniques or active learning could be coupled with the ANOVA-RKHS method to select at the same593

time input variables (with the ridge-group-sparse penalty introduced in [13]) and the most informative594

samples in the testing test.595

8 Conclusion596

In this study, we provided a proof-of-concept of the potentiality of machine learning methods to provide597

fast approximations of metabolic model outputs: these metamodels could replace FBA models in large598

systems biology models necessitating a massive number of FBA computations such as spatio-temporal599

models of microbial communities. We leveraged existing metamodeling methods (ANOVA-RKHS), pro-600

vided strategies for the assembling of the testing dataset, set a framework for hyperparameter selection601

and assessed the accuracy of the metamodel. Replacing the original FBA models by their metamodel in602

an ODE system dynamics model of Salmonella infection in an healthy gut accelerated the computations603

by 45 with a relative error of about 5%. This result makes reachable PDE models of microbial commu-604

nities involving genome-scale metabolic models such as FBA models, by approximating them with their605

metamodel.606
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A model parameters and code availability693

The system dynamics (22)-(29) is parametrized with the coefficients included in Table A.1 and initial694

conditions as indicated in Table A.2. The python code used for ODE system computation, and RKHS695

learning is available at https://gitlab.inria.fr/slimmest/cemracs results.git together with a tutorial on a696

toy model.697

The FBA models are taken from the literature: the Sth model is taken from [26] as provided by698

Cobrapy [9]. Metabolite names were modified to match with [23]. The Fprau model is taken from [31].699

The metabolite IDs were also changed to keep consistent with the Sth model. Import reactions were700

further modified for consistency: all sugar exchange reactions of the original model were knock-out, and701

import reactions were allowed for sugars known to be metabolized by Fprau in the gut as described in702

[17].703

B Learning database distribution704

In this section, we indicate the parameters used for uniform sampling of the initial conditions of the 60705

repetitions of the ODE system in the learning database definition in Table B.3. We then present the706

distribution of the whole database (60 repetitions that are sampled in time, and enriched with perturbed707

inputs observed during ODEs, see Sec. 4), and after sub-selection and enrichment near the boundaries708

in Fig. B.9.709

C Model and metamodel responses710

We present in this section the value of the regularization parameter µ and the metamodel response for711

selected µ compared with the FBA model response for a testing database of unseen points in Fig. C.10a712

and C.10b.713

24



Parameter Description Units Value [reference]
ρ Death rate by unit of neutrophils [1/day] 0.3
α Maximum rate of oxygen’s noxious effect

on Fprau
[1/day] 0.2

Ks Half saturation constant of oxygen’s nox-
ious effect on Fprau

[mmol/l] 0.1

γO2 Transfer coefficient of oxygen between
compartments

[1/day] 1

γNO Transfer coefficient of nitric oxide between
compartments

[1/day] 1

γbut Transfer coefficient of butyrate between
compartments

[1/day] 1 [22]

γN Transfer coefficient of neutrophils between
compartments

[1/day] 1

βs s ∈ {Gal,Gluc, thio,NO} Coefficient for the rate of oxidation [day · mmol/l] −1 10
Ds s{Gal,Gluc, thio} Influx of molecules to the luminal com-

partment
[mmol/l]/[day] 1/24

dn death rate of neutrophils [1/day] 0.01
dNO degradation rate of NOe in cells [1/day] 0.01
dO2

degradation rate of O2e in cells [1/day] 0.01
dbut degradation rate of butyrate in cells [1/day] 0.01
Kbut Half-saturation for the inhibition by bu-

tyrate
[mmol/l] 1.5

LN Source term of neutrophils in epithelium [g/l] 0.1
LNO Source term of nitric oxide in epithelium [mmol/l] 0.01
LO2

Source term of oxygen in epithelium [mmol/l] 1

Table A.1: Values from literature are scarce. Most parameters were fitted manually and measuring their
actual value is beyond the scope of this work. The work of Muñoz et al. [22] fitted some parameters such
as the exchange rate for butyrate in the colon, so it was assumed as the value of the transfer coefficient
of other products. Note particularly that parameter D represents the inverse of the hydraulic retention
rate, which for a gut should be approximately 24 hours.

Parameter Description Units Value [reference]
Fprau Faecalibacterium prauznitsii [g/l] 1.56 · 10−2

Sth Salmonella enterica Typhimurium [g/l] 0 at t = 0 and 8.64 · 10−3 at t = 40h
ml,O2

Luminal oxygen [mmol/l] 0
ml,Gal Luminal galactose [mmol/l] 7.6 · 10−3

ml,GalO Luminal galactarate [mmol/l] 4.91 · 10−2

ml,Gluc Luminal glucose [mmol/l] 2.00 · 10−2

ml,GlucO Luminal glucarate [mmol/l] 4.02 · 10−2

ml,NO Luminal nitric oxide [mmol/l] 2.45 · 10−2

ml,NO3
Luminal nitrate [mmol/l] 3.10 · 10−2

ml,thio Luminal thiosulfate [mmol/l] 0
ml,tet Luminal tetrathionate [mmol/l] 2.19 · 10−2

ml,but Luminal butyrate [mmol/l] 0
nl Luminal neutrophils [mmol/l] 0
ne Epithelial neutrophils [mmol/l] 0
me,NO Epithelial nitric oxide [mmol/l] 0
me,O2 Epithelial O2 [mmol/l] 0
me,but Epithelial butyrate [mmol/l] 0

Table A.2: Initial conditions. Initial conditions have been sampled randomly as described in Sec. 4.
The resulting sampling is given here that were used in Fig. 3 and 8.
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State variable lower bound upper bound Bernouilli parameter
Fprau 0 0.02 -
Sth 0 0.02 -
ml,O2

0.001 0.05 0.85
ml,Gal 0.001 0.05 0.85
ml,GalO 0.001 0.05 0.85
ml,Gluc 0.001 0.05 0.85
ml,GlucO 0.001 0.05 0.85
ml,NO 0.001 0.05 0.85
ml,NO3

0.001 0.05 0.85
ml,thio 0.001 0.05 0.85
ml,tet 0.001 0.05 0.85
ml,but 0.001 0.05 0.85
nl 0 0 -
ne 0 0 -
me,NO 0 0 -
me,O2

0 0 -
me,but 0 0 -

Table B.3: Parameter of the random functions describing the intial conditions of the 60
repetitions of the ODEs computed for the learning database. The lower and upper bounds of
the uniform distributions are indicated, together with the Bernouilli parameter that models the pres-
ence/absence of the metabolite at t = 0 when relevant.
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Fprau 0.05 0.05 0.05 0.05 - - - - - - - -
Sth 0.2 0.2 - - 1.0 1.0 1.0 0.75 1.0 0.5 0.3 0.075

Table C.4: Selected regularization parameter µ. Selected hyperparameter µ that tunes the group-
lasso penalty is indicated for each species (rows) and each model output (columns). This parameter
provides the best trade-off between signal reconstruction and reduced number of RKHS subspace that
are kept for reconstruction.
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Figure B.9: Marginal distributions in the learning database. We display for each column
1 ⩽ c ⩽ Nup of the database Xlarge its marginal distribution (plain lines) together with the marginal
distribution of X (dashed lines) obtained after subsampling and enrichment near the boundaries of
Xlarge. As expected, the main modes of Xlarge are conserved in X, while points in the first and last
deciles (near the boundaries) are over-represented by construction in X.
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Figure C.10: Model response. The FBA model value F(c) (blue dots) is plotted with its metamodel
approximation F̂(c) (orange dots, y-axis) for 1600 unseen constraints c (x-axis).
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