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Abstract

Mathematical and numerical models are increasingly used in microbial ecology to model the
fate of microbial communities in their ecosystem. These models allow to connect in a mechanistic
framework species-level informations, such as the microbial genomes, with macro-scale features, such
as species spatial distributions or metabolite gradients. Numerous models are built upon species-
level metabolic models that predict the metabolic behaviour of a microbe by solving an optimization
problem knowing its genome and its nutritional environment. However, screening the community
dynamics with these metabolic models implies to solve such an optimization problem by species at
each time step, leading to a significant computational load further increased by several orders of
magnitude when spatial dimensions are added.

In this paper, we propose a statistical framework based on Reproducing Kernel Hilbert Space
(RKHS) metamodels that are used to provide fast approximations of the original metabolic model.
The metamodel can replace the optimization step in the system dynamics, providing comparable
outputs at a much lower computational cost. We will first build a system dynamics model of a
simplified gut microbiota composed of a unique commensal bacterial strain in interaction with the
host and challenged by a Salmonella infection. Then, the machine learning method will be intro-
duced, and particularly the ANOVA-RKHS that will be exploited to achieve variable selection and
model parsimony. A training dataset will be constructed with the original system dynamics model
and hyper-parameters will be carefully chosen to provide fast and accurate approximations of the
original model. Finally, the accuracy of the trained metamodels will be assessed, in particular by
comparing the system dynamics outputs when the original model is replaced by its metamodel.
The metamodel allows an overall relative error of 4.71% but reducing the computational load by a
speed-up factor higher than 45, while correctly reproducing the complex behaviour occurring during
Salmonella infection. These results provide a proof-of-concept of the potentiality of machine learning
methods to give fast approximations of metabolic model outputs and pave the way towards PDE-
based spatio-temporal models of microbial communities and host-microbiota-pathogen interactions.

1 Introduction

Modelling in microbial ecology. Microbial ecology focuses on the study of microbial communities,
called microbiota, interacting with their environment and regulated by the microbiota host [31, 5]. The
gut microbiota is such a symbiotic ecosystem composed of a community of hundreds of microbial species
living in the large intestine lumen, referred to as the commensals, and regulated by the epithelial cells
of the host colon. The main drivers of the microbiota dynamics are the metabolism of each microbial
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species, the interactions between micro-organisms and their spatio-temporal interactions with the host.
In the specific case of a pathogenic infection, a new player disturbs the system and tries to shift the
microbial environment from an healthy homeostasis favourable to the commensals towards a dysbiotic
situation favourable to the pathogen, enabling its colonization [26, 3]. The concept of pathobiome has
been introduced [34] as an analysis framework to describe the specific interactions between the commensal
microbiota, the host and the pathogen leading to pathogenic infection.

Mathematical and numerical models of the gut microbiota have been recognized as suitable tools
for providing mechanistic interpretations of biological observations, predicting the evolution of these
ecosystems, for example in pathological situations, or defining controlling actions to lead them towards
a targeted state [36, 15, 35, 20]. Mathematical models in microbial ecology are population dynamics
models describing the microbial population growth, i.e. their metabolism, microbe-microbe interactions
and interactions with their environment, in particular the available nutrients.

FBA framework to model microbial metabolism. A classical modelling framework to represent
the microbial metabolism is Flux Balance Analysis (FBA) [23, 28]. FBA relies on metabolic models
inferred from microorganism genome: the genes are annotated to identify the biochemical reactions they
code for and the whole set of reactions is combined into a genome-scale metabolic network connecting
the substrate metabolites the microorganism is able to metabolize to the synthesized biomass and end-
products produced by the microbe.

Namely, if we note (mi)16i6Nm the set of the Nm metabolites that can be found in a micro-organism,
and (rj)16j6Nr the set of the Nr reactions coded in the genome, then mass conservation equations can
be written on the internal concentration of the metabolites :

∂t[mi] =
∑

j∈R(mi)

θmi,jνj (1)

In this equation, R(mi) is the subset of reactions involving the metabolite mi, θmi,j is the stoichio-
metric coefficient of the metabolite mi in the reaction j (negative for consumption reaction, and positive
for production reaction) and νj is the reaction flux, i.e. the quantity of metabolite involved in the reac-
tion by time and microbial biomass units (the flux unit is mmol.h−1.g−1). In FBA models, an additional
fictitious biochemical reaction is considered: the biomass reaction rb. This reaction connects the biomass
precursors to the biomass b with the chemical equation∑

i∈M(b)

θmi,rbmi → b

where θmi,rb is the stoichiometric coefficient of metabolite mi in the biomass reaction rb and M(b) is the
subset of metabolites mi that constitute the biomass, i.e. the metabolites needed by the microorganism
for growth (to duplicate the genomic material, the metabolism machinery, the cellular membrane, etc...).
The biomass reaction flux νb is then the amount of microbial biomass produced by time and biomass
unit, with unit (g.h−1.g−1 by convention, or h−1).

The FBA models aim to predict this growth rate νb while observing biological constraints such as
the mass conservation equations (1). To achieve this prediction, the FBA framework makes important
simplifying assumptions: 1) Steady-state assumption. All internal metabolites are assumed to be at
steady-state in the cell, so that the mass conservation equation (1) reduces to a linear system on the flux
vector ν := (νj)16j6Nr ,

A · ν = 0

where A is the reaction matrix, i.e. the matrix of dimension Nm×Nr with Aij := θmi,j the stoichiometric
coefficient of metabolite i in the reaction j, gathering the whole set of conservation equations for the
metabolites and reactions involved in the metabolic network; 2) Biomass maximization. The microbes
are assumed to be instantaneously maximizing the biomass production in a given nutritional context;
3) Flux constraints. Every flux are constrained by intrinsic limits, related for example to metabolite
transporter capacities, or known enzymatic efficiency. These limits are noted cmin and cmax so that
cmin ≤ ν ≤ cmax.

Hence, the biomass production and all the metabolic fluxes in the microbial machinery can be pre-
dicted with the constrained optimization FBA problem
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find ν∗ ∈ RNr , such that ν∗ := arg max
ν ∈ RNr
A · ν = 0

cmin ≤ ν ≤ cmax

νb (2)

This problem searches for the optimal growth rate obtained by the system under mass-balance and
flux constraints. Mathematically speaking, this optimization problem is linear and can be solved using
linear programming: very efficient solvers exist for such a problem, even for high dimensional problems
like this one, where Nr is classically around several thousands. A classical FBA toolbox is the Cobra
toolbox (in Matlab environment) [11] or its python equivalent Cobrapy [9].

Nutritional environment described as constraints on uptake fluxes. Important FBA model
parameters are constraints on substrate flux from the extracellular compartment into the intracellular
compartment, i.e. the first reactions of the metabolic network, enabling nutrients to enter the microbial
cell. These constraints represent the possible uptake for the microorganism, hence representing a proxy
of the microbe nutritional environment, i.e. the available nutrients for the microbial species to activate
its metabolism.

The uptake reactions are exchange reactions, i.e. reactions at the interface between the intra and
extracellular media. Indeed, by construction, exchange reactions are reactions

mi −→mi

between the extracellular pool mi, i.e. the nutritional environment, and the intracellular pool mi of the
corresponding metabolite.

If we note c
(up)
s the upper bound on the uptake fluxes νup of the Nup metabolites in the extra-cellular

environment, c
(up)
s ≤ νup ≤ 0, we get a mapping Fs between c

(up)
s and the FBA solution for the bacterial

strain s

Fs : RN
up

−→ RNr (3)

c(up)s 7→ ν∗ (4)

where ν∗ is the FBA solution with the constraints c
(up)
s for the strain s. This mapping allows to tune

the uptake constraints to adapt the FBA prediction to a specific nutritional environment context. We
note that by convention, uptake fluxes are negative due to the exchange reaction orientation.

Biological context of Salmonella infection. This project will focus on the colonization of the gut
microbiota by an enteric pathogen, Salmonella Thyphimurium, which uses a very complex mechanism
to invade the gut.

Healthy gut. The environment of a healthy gut is anaerobic: the commensal micro-organisms are
then specialized microbes relying on anaerobic metabolism to grow without oxygen. Actually, a main
part of the gut microbiota are strictly anaerobic, meaning that oxygen is harmful to them. With this
anaerobic metabolism, the commensal microbiota consumes fibre-derivated sugars (e.g.. glucose and
galactose) and produces short-chain fatty acids (SCFA) – mainly butyrate, acetate and propionate –
that are absorbed by the host for its own metabolism. The main energetic source for the intestinal cells
is butyrate, which is metabolized together with the oxygen carried to the intestine by the blood system.
A virtuous cycle is then set up (see Figure 1a): the commensal microbiota produces butyrate that is
metabolized by the host with oxygen; consequently, this oxygen does not diffuse to the lumen ensuring
hypoxia and a favorable habitat for the butyrate-producing anaerobes. Salmonella is not very efficient in
an anaerobic environment: the pathogen will have to hack this regulation mechanism, in order to create
a favorable niche and permitting the invasion of the gut. [3, 26]

Colonized gut. When arrived at the gut lumen, the pathogen releases a virulence factor (sipA)
that triggers an inflammation in the epithelial cells (see Figure 1b). The host cells produce neutrophils,
these immune cells are sent into the gut lumen where they trap any bacteria they encounter (pathogenic
bacteria but also SCFA-producing symbionts). Then, the production of butyrate decreases, and this
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metabolite is no longer available for the epithelial cells: the oxygen reaching the cells is no longer me-
tabolized and starts flowing in the gut lumen. This oxygen will be harmful for the butyrate-producing
anaerobes, which initiates a vicious circle. The oxygen will also oxydize nutrients present in the gut,
providing very efficient energetic sources for the pathogen alone, allowing it to take over from the com-
mensal bacteria. Namely, galactose, glucose and thiosulfate will be oxydized into galactarate, glucarate
end tetrathionate. In the meantime, inflammation induces the production of nitric oxyde, which is oxy-
dated in nitrate, also very favorable for the pathogen [3, 26]. Figures sketching these mechanisms can
be found in Fig. (1a-1b).

Outline of the paper. This paper aims to couple a metabolic model describing the microbial metabolism
to a ordinary differential equation (ODE) description of the gut environment in order to represent the
infection of an enteric pathogen: Salmonella enterica Typhimurium. The metabolic model will be the
source function of population dynamics equations modelling the microbial density and the nutritional
environment. Classical metabolic models being based on an optimization problem, numerical issues can
arise when solving system dynamics: an optimization problem must be solved at each time step (and each
space step for spacialized models), leading to intractable computations. We then want to substitute the
optimization problem by an approximate model, built with a Reproducing Kernel Hilbert Space (RKHS)
metamodeling method. The RKHS metamodel is a machine learning approach: an approximation of the
model image is built from the model evaluation in a sample of the state space (i.e. a learning database).
This metamodel will be used to predict the model response for new points outside the learning database,
with a faster computation than the original optimization problem.

First, we will introduce a population dynamics model of Salmonella infection with the host response in
2. Then, we will introduce essential mathematical results for RKHS metamodeling in 3. The population
dynamic model will be used to produce a learning database to train the metamodel in 4. Next, the
hyperparameter of the learning method will be selected in 5 in order to provide a good trade-off between
prediction accuracy and computation speed. Finally, the RKHS metamodel will be derived with the
selected hyperparameters and its accuracy will be assessed in 6.

2 Population dynamics model of Salmonella infection, includ-
ing host inflammatory response

We will first build a population dynamics model of Salmonella infection. The commensal microbiota
will be represented by a unique strain of butyrate-producing bacteria: Faecalibacterium Prauznitzii. This
bacteria belongs to one of the dominant genera in the gut microbiota, and is widely studied in the context
of probiotic development [19].

State variables. The model will be a compartment model: a first compartment describes the gut
lumen while the second stands for the epithelial cells. The luminal compartment describes the dynamics
of the bacteria Sth and Fprau, for Salmonella enterica Typhimurium and Faecalibacterium prauznitsii
populations, nl, the luminal neutrophils, and ml a vector containing all the metabolites concentrations of
interest in the luminal compartment that describe the nutritional environment. Vector ml is indexed by
i ∈ {Gal,Gluc,NO,GalO,GlucO,NO3, thio, tet, O2, but} standing for, respectively, luminal galactose,
glucose, nitric oxyde, galactarate (i.e. oxydized galactose), glucarate (i.e. oxydized glucose), nitrate,
thiosulfate, tetrationate (i.e. oxidized thiosulfate), oxygen and butyrate. The epithelial compartment
has 4 state variables: ne, NOe, O2e and bute representing neutrophils, nitric oxide, oxygen and butyrate,
respectively. The vector me indexed by {NO,O2, but} will gather the epithelial metabolites.

Luminal compartment. The gut lumen is modelled as an open system, meaning that matter flows
through it. A working hypothesis is that the volume of the gut lumen is preserved at all times, meaning
that a volume entering the gut must be balanced by a volume going out, thus the gut lumen can be
modelled as a reactor [10]. The rate of change of the concentration of a component inside the gut lumen
depends then on the difference between the input and output flow [21]. More precisely , let s be the
concentration of a component of interest, then Qin and Qout be the volumetric input and output flow,
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Figure 1: Simplified illustrations recapitulating the biological regulation in an healthy gut, and S. Ty-
phimurium colonization mechanisms.
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sin the concentration of the incoming flow, and V the reactor volume.

∂ts =
Qinsin −Qouts

V
+ biological and chemical reactions

+ transport to epithelial compartment.

Particularly, under the constant volume hypothesis Qin = Qout = Q. Define D := Q
V as the dilution

rate, which is the inverse of the hydraulic retention time. Then we can write Qinsin−Qouts
V = (sin − s)D.

Recall from equation (4) that Fs(c(up)s ) maps the upper bound of consumption to the uptake rates of
metabolites for s ∈ {Sth, Fprau}. To couple Eq. (4) to the state equation, a relation between the state
variable and the consumption upper bound cup is needed. We then define

c(up)m = max

{
ml,m

Ldt(Sth1Sth(m) + Fprau1Fprau(m)) + ε
, Sm

}
(5)

where ml,m is the substrate metabolite m of the luminal metabolites ml, Ldt is a characteristic consump-
tion time, 1s(m) is an indicator function indicating whether the bacteria s metabolizes the substrate m,
ε is a small regularization parameter and Sm is the maximal substrate uptake when the metabolite m is

at saturation in the media. As the upper bound c
(up)
s now depends on vector ml and bacterial densities,

we will simply denote Fs(ml, Sth, Fprau) the uptake rates of metabolites for species s. Note that this
vector also includes the biomass production rate, denoted by Fs,1(ml, Sth, Fprau). Analogously, vector
Fs,ml(ml, Sth, Fprau) is assembled from the uptake rates of metabolites in ml. Finally, we introduce the
diag(·) operator, which maps a vector of size n to the corresponding diagonal matrix of size n.

∂tSth = (FSth,1(ml, Sth, Fprau)− ρnl −DSth)Sth (6)

∂tFprau =

(
FFprau,1(ml, Sth, Fprau)− ρnl − α

O2l

KO2 +O2l

−DFprau

)
Fprau (7)

∂tnl = γn(ne − nl)− dnnl −Dnl (8)

∂tml = D(min −ml) + FSth,ml(ml, Sth, Fprau)Sth + FFprau,ml(ml, Sth, Fprau)Fprau

+ βmlO2l + diag(γ)Tr(me,ml) (9)

where FSth (resp. FFprau) is the FBA metabolic model of the pathogen (resp. the commensal). The

parameter ρ represents the trapping by the neutrophils nl. The term α
O2l

KO2
+O2l

models the deleterious

effect of the oxygen level O2 on the obligate anaerobe Fprau, with a Michaelis-Menten dynamics using
tuning parameters α and KO2

. The term γn(ne − nl) represents the transfer process from the epithelial
compartment. The term dnmn is the death rate of neutrophils. No entry of bacteria takes place.

In equation (9), the first term describes the metabolite inflow, with min a vector containing the
concentration in the small intestine of component ml. The terms FSth,m(ml)Sth + FFprau,m(ml)Fprau
correspond to the consumption or production of metabolites due to the bacterial metabolism. The term
βmlO2l corresponds to the oxidation reactions, where β is a diagonal matrix with entries only in the index
corresponding to the reduced-oxidized pairs, each reduced-oxidized pair have the same coefficient, but
with opposite sign, thus ensuring mass conservation. The term diag(γ)Tr(me,ml) shows the transport
process to the epithelial compartment. We have for the transfer coefficient γ:

diag(γ)Tr(me,ml)i =

{
γ(me,i −ml,i) if i ∈ NO,O2, but

0 otherwise

A system dynamics driven by a FBA metabolic model such as equations (6) to (9) is termed a
dynamic-FBA or dFBA [18].
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Epithelial compartment The 4 state variables of the epithelial compartment have the following
dynamics

∂tne = Cbut,nne

(
ne − Ln

bute
Kbut + bute

)
(Ln − ne)− dnne + γn(nm − ne) + V F (Sth) (10)

∂tNOe = Cbut,NONOe

(
NOe − LNO

bute
Kbut + bute

)
(LNO −NOe)− dNONOe

+ γNO(NOl −NOe) + V F (Sth) (11)

∂tO2e = −λbutbuteO2e − dO2
O2e + LO2

+ γ(O2l −O2e) (12)

∂tbute = −λbutbuteO2e + γbut(butm − bute) (13)

The term Cbut,nne

(
ne − Ln

mνe,but
Kν+mνe,but

)
(Ln − ne) in equation (10) (and the analogue term in eq.

(11)) is a bistable term with stable steady-state 0 and Ln, the threshold separating the attraction areas

being Ln
mνe,but

Kν+mνe,but
. The threshold

me,but
K+me,but

tends to 1 when butyrate is abundant and drops to zero

when butyrate level drops, pulling the state variable towards 0 or Ln when ne exceeds this threshold.
The term V F (Sth) is a Heaviside function in order to simulate the virulence factor that Salmonella
secrets triggering neutrophils and the nitric oxide production. The terms dnne, dNONOe, and dO2O2e in
equations (10), (11), and (12), respectively, represent death terms. Terms γn(nm − ne) in equation (10)
(and all its analogues in other equations) model the transport process towards the luminal compartment,
which couple these equations to Eq. (6)-(9). Finally terms λbutbuteO2e in both equations (12) and (13)
model the epithelial cell metabolism mainly based on butyrate oxydation.

The model is solved with custom python scripts (see sec. A in the Annexe). The FBA models are
taken from the literature: the Sth model is taken from [25] as provided by Cobrapy [9] while the Fprau
model is taken from [30]. The parameter values can be found in Table A.1. The system is supplemented
with initial conditions Y0 that can be found in Table A.2. The system was simulated in absence of
Salmonella for 40 hours, time at which a pulse of Salmonella is added and models the initial invasion.

In Figure 2 a simulation of the system can be found. The abundance of Sth, Fprau, and neutrophils is
first plotted (Fig. 2.a). Notice how the infection takes place at hour 40 and produces a spike of neutrophils
in both the luminal (Fig. 2.a, dark green curve) and epithelial compartment (Fig. 2.e, dark green). After
the immune response led by neutrophils we can observe the decline of Fprau and the rise of Sth achieving
colonization. Plots Fig. 2.b, Fig. 2.c and Fig. 2.d show the metabolite concentrations in time in the
luminal compartment. Butyrate starts decreasing after Sth infection (Fig. 2.b, orange) because of the
drop of Fprau, and eventually the media becomes completely aerobic after hour 60 (Fig. 2.b, blue). This
can be explained by observing Fig. 2.e which illustrates how in the epithelial compartment the decreasing
levels of butyrate allow oxygen to accumulate and flow into the luminal compartment (blue), as shown
in Fig. 2.f (blue) plotting the flow between compartments, i.e. γ(me −ml). The same can be observed
for nitric oxide (Fig. 2.f, green) which starts flowing into the luminal compartment from the beginning
of the infection. The growth of Sth exhibits two phases (Fig. 2.a, red): a first phase is mainly fueled
by the depletion of thiosulfate (Fig. 2.c, purple), while the second is more based on the consumption
of oxidized molecules, allowed by the flow of oxygen, and nitrate coming from the oxidation of NO.
We note that oxygen actually recycles the end product of the metabolism of the oxydized molecules,
maintaining the favourable niche for Salmonella. We can see that the dynamical system renders all the
qualitative behaviour of Sth infection as described in the literature (see Fig. 1b).

In the remainder, we will use the notation

Y ode = (Sth, Fprau, nl,ml, ne, NOe, O2e , bute)

to designate the vectorial state variable of the whole dynamical system.

3 Mathematical framework for the RKHS metamodel

In this section, we present our statistical framework which is a non-linear gaussian regression problem and
the Hoeffding decomposition of a L2 function in 3.1. Then we introduce some mathematical generalities
on RKHS metamodels as a general non-parametric non-linear regression problem that will be discretized
using the Representer theorem in 3.2 to achieve numerical resolution. Then, we build specific ANOVA-
RKHS defined as the direct sum of carefully chosen RKHS subspaces in 3.3 ensuring that the Hoeffding
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Figure 2: dFBA model of Salmonella infection. The output of the dFBA model of Salmonella
infection is plotted. The fate of the different model components is displayed in the luminal and epithelial
compartments. Butyrate and oxygen flows between epithelial and luminal compartments is also plotted.

8



decomposition of the projection of a square-integrable function on the ANOVA-RKHS will be the sum of
the projection of the function on its subspaces. Finally, we will set up the numerical inference problem
in our framework, that will be regularized by a group-lasso penalty, allowing for variable selection in 3.4.

We aim to introduce in this section important results for the global understanding of the method-
ological framework that we use. These results are however classical, and we do not provide their proof
that can be found in the corresponding references.

3.1 Metamodeling and Hoeffding decomposition

Let us set up the context of metamodeling for metabolic models. Let us consider X a Nup-dimensional
random vector of possible metabolic constraints for the FBA model inputs with known distribution
PX = P1 × · · · × PNup on X and let us construct

Ys = Fs(X)

where Ys is a Nr-dimensional vector and s is an index designating the bacterial strain related to the
FBA model. In this paper, we will consider real-valued meta-models. For a given 1 ≤ j ≤ Nr and a
given strain s, building the meta-model mj of the real-valued function Fs,j amounts to solve in a given
functional space H ⊂ L2(PX), the non-parametric Gaussian regression model [13]

Ys
j = mj(X) + σε (14)

where ε ∼ N (0, 1) is independent of (X) and the variance σ2 is unknown.
When the input variables X are independent, and since mj ∈ L2(PX), the classical Hoeffding-Sobol

decomposition holds [32, 33]. The functions mj can be decomposed with its ANOVA functional expansion

mj(x) = mj,0 +
∑
p∈P

mj,p(xp)

where p is a multi-index and P the set of parts of {1, · · · , Nup}. The functions mp are centered and
orthogonal in L2(PX), so that the variance of mj can be decomposed with

V ar(mj(x)) =
∑
p∈P

V ar(mj,p(xp)).

The Hoeffding decomposition is used to separate principal effects (the function mj,p that involve one
unique input variable xi) from variable interactions (the functions mj,p with |p| > 1, i.e. involving more
than one input component). The Hoeffding decomposition is widely used for sensitivity analysis, since
Sobol index directly derives from it, or for variable selection: the relative contribution of the functions
mj,p in the Hoeffding decomposition allows to neglect the less contributive terms which can lead to
discard some input variables if all the functions they are involved in are neglected.

3.2 Generalities on RKHS metamodel

Let X be a compact subset of RNup . A definite symmetric kernel is a function

k : X × X −→ R
(x, x′) 7→ k(x, x′)

such that, for all N ∈ N and x1, · · · , xN ∈ XN , the Gramm matrix (k)i,j = k(xi, xj) is symmetric
definite positive.

The Moore–Aronszajn’s theorem ensures a bijective mapping between the space of definite-positive
matrix and specific Hilbert spaces termed as Reproducing Kernel Hilbert spaces (or RKHS).

Theorem 1 (Moore–Aronszajn [1]). Setting k : X × X → R a symmetric definite positive kernel, there
exists a unique Hilbert space Hk of real-valued functions on X

Hk :=

{
f : X → R|f(·) =

∞∑
i=1

βik(·, zi), βi ∈ R, zi ∈ X , ‖f‖Hk <∞

}

9



endowed with the scalar product〈 ∞∑
i=1

βik(·, zi),
∞∑
j=1

αjk(·, yj)

〉
Hk

=

∞∑
i=1

∞∑
j=1

βiαjk(yj , zi)

where ‖·‖Hk is the norm induced by 〈·, ·〉Hk . The kernel k is termed the Reproducing kernel of the RKHS
Hk.

Reciprocally, if H is a Hilbert space of functions f : X → R endowed with its inner product noted
〈·, ·〉H, and if ∀x ∈ X the functional f 7→ f(x) is continuous onH, thenH is a RKHS [6]. The reproducing
kernel ofH can be exhibited according to the Riesz theorem: ∃! kx ∈ H such that ∀x ∈ X ,∀f ∈ H, f(x) =
〈f, kx〉H. The reproducing kernel k is then defined as

k : X × X −→ R
(x, x′) 7→ kx′(x) = 〈kx, kx′〉H

and we have by construction the reproducing property

f(x) = 〈f, k(·, x)〉H.

The RKHS framework is very powerful to approximate solutions of the non-linear regression problem
14 on the basis of Nobs-samples (Ys

j,i,Xi), i = 1, · · · , Nobs in the RKHS Hk. Namely, we will address
the problem of finding

m∗j := arg min
mj∈Hk

1

Nobs

Nobs∑
i=1

(Ys
j,i −mj(Xi))

2 + g(‖mj‖Hk) (15)

where g is a strictly increasing function allowing to regularize the regression problem. As Hk is a
functional space of a priori infinite dimension, this problem must be discretized to be solved. In the
RKHS framework, the Representer theorem reduces this problem to a Nobs-dimensional minimization

Theorem 2 (Representer Theorem [29]). Any function mj ∈ Hk minimizing equation (15) admits a
representation of the form

mj(·) =

Nobs∑
i=1

αik(·,Xi)

so that problem (15) can be replaced by finding

α∗ := arg min
α∈RNobs

1

Nobs

Nobs∑
i=1

Ys
j,i −

Nobs∑
j=1

αjk(Xj ,Xi)

2

+ g


Nobs∑

i=1

Nobs∑
j=1

αiαjk(Xj ,Xi)

1/2
 (16)

or, in vectorial form

α∗ := arg min
α∈RNobs

1

Nobs
‖Ys

j −K · α‖2F + g
((
αtKα

)1/2)
(17)

where K is the Gram matrix obtained with the kernel k and (Xi)i=1,··· ,Nobs .

3.3 ANOVA-RKHS

In the context of metabolic modelling, vectors Nup X can be of high dimension: we then adopt a variable
selection framework introduced in [13] and based on a very specific RKHS introduced in [8], the ANOVA-
RKHS. The ANOVA-RKHS H is built as a direct sum of sub-RKHS Hp so that a given function f ∈ H
will have for Hoeffding decomposition its decomposition on the subspaces Hp.

Let us note X = X1 × · · · × XNup . For each coordinate a ∈ {1, · · · , Nup}, a kernel ka and its
corresponding RKHS Ha are chosen on Xa, with the additional properties: 1) ka is Pa × Pa mesurable
on Xa ×Xa and 2) EPa

√
ka(Xa, Xa) <∞.

The RKHS Ha can be decomposed as Ha = H0a

⊥
⊕ H1a where

10



H0a := {fa ∈ Ha,EPa(fa(Xa)) = 0}, H1a := {fa ∈ Ha, fa(Xa) = C}

the kernel associated to the RKHS H0a being defined as follows [4]:

k0a(Xa, X
′
a) = ka(Xa, X

′
a)− EU∼Pa [ka(Xa, U)]EU∼Pa [ka(X ′a, U)]

E(U,V )∼Pa⊗Pa [ka(U, V )]
.

The ANOVA kernel is finally defined by

k(X,X ′) =

(
Nup∏
a=1

(1 + k0a(Xa, X
′
a))

)
= 1 +

∑
p∈P

kp(Xp, X
′
p) (18)

with kp(Xp, X
′
p) =

∏
a∈p k0a(Xa, X

′
a). The corresponding RKHS is finally

H =

(
Nup∏
a=1

1
⊥
⊕ H0a

)
= 1 +

∑
p∈P
Hp (19)

where Hp is the RKHS associated to kp. Let us now take any function f in the ANOVA-RKHS H. We
get by the reproducing property and linearity

f(x) = 〈f, k(x, .)〉H = f0 +
∑
p∈P

fp(x), with fp(x) = 〈f, kp(xp, .)〉H (20)

As the functions fp are centered and uncorrelated by construction, this decomposition is also the Hoeffd-
ing decomposition of f . This setting will be used for variable selection: in the following, the numerical
problem will be set up, with a group-lasso regularization that will select the important variables and
variables interactions.

3.4 Discretization of the regression problem and metamodel construction

From the representer theorem 2 and the ANOVA-RKHS reproducing property in eq. (20), we can state
the following finite dimension parametric regression problem: for a given 1 6 j 6 Nr and a given
bacterial strain s, find

θ̂s0,j , (θ̂
s
p,j)p∈P := arg min

θs0,j ∈ R
θsp,j ∈ RNobs ,∀p ∈ P

‖Ys
j − (θs0,j1 +

∑
p∈P

Kpθ
s
p,j)‖22 + G(W, θsp,j) (21)

with Kp ∈ RNobs×Nobs the Gram matrix such that (Kp j1,j2)1≤j1,j2≤Nobs = kp(c
j1 , cj2), the value of the

kernel kp evaluated at constraint points cj1 and cj2 . In this equation, the norm ‖ · ‖2 is the classical l2

norm: ‖x‖2 =
(∑

i=1,··· ,Nobs x
2
i

)1/2
. The term G is a regularization term that writes:

G(W, θsp,j) = Nobsµ
∑
p∈P
‖Wθsp,j‖2

with µ an hyperparameter and W some weight matrix.

If the weight matrix is W = K
1/2
p , then ‖Wθsp,j‖2 = ‖fp‖Hp . If the weight matrix is W = 1√

n
Kp,

then ‖Wθsp,j‖2 = ‖fp‖ where ‖ · ‖ is the empiric l2 norm. Ones can also opt for a composite criteria such

as the ridge group sparse criteria
√
Nobsγ

∑
p∈P ‖Kpθ

s
p‖2 +Nobsµ

∑
p∈P ‖K

1/2
p θsp‖2 as introduced in [13]

(formula 17). In this exploratory study, we set W = Id.
This estimation problem is a Nobs × |P|+ 1-dimensional optimization problem, which can be numer-

ically expensive if Nup and Nobs are large. The problem can be reduced by considering interactions up
to a certain order. However, the minimization problem is done off-line once for all. Then, the function
Fs,j can be approximated in a new point c̃(up) in the input parameter space by F̂s,j(c̃(up)) defined with
the explicit formula

F̂s,j(c̃(up)) := θ̂s0,j +
∑
p∈P

Fp(c̃
(up)) · θ̂sp,j (22)

11



where Fp(c̃
(up)) is the Nobs dimensional vector

Fp(c̃
(up)) :=

(
kp(Xi, c̃

(up))
)
16i6Nobs

i.e., the evaluation of the kp kernel at c̃(up) and the Nobs learning set points Xi. This analytical formula
is fast to compute: it has the complexity of a dot product once kp are evaluated. In practice, we will use
Matern kernels for kernels ka, a ∈ {1, · · · , Nup}.

4 Learning database definition

The assembling of the learning database is linked to the question of sampling the feature space of
the RKHS method, which has dimension Nup = 9 in our application. Building a uniform sampling
of a nine-dimensional hypercube necessitates a high number of points to cover all the volume of the
hypercube. To mitigate the number of samples in the learning database, we adopt a supervised strategy:
we compute Nsim = 60 repetitions of the ODE system (6)-(13) with random initial conditions sampled in
uniform distributions (cf Table B.3 for parameter values), multiplied for the metabolites of the luminal
compartment by a Bernoulli distribution simulating their presence/absence.

From these Nsim = 60 replicates, we performed a time sampling of the state variables ml(i∆t),
Sth(i∆t) and Fprau(i∆t), i = 1, · · · , Nt from which we computed the corresponding FBA constraints
using formula (5) to get X1 after duplicate removal. The matrix X1 only contains constraints that have
been observed during the time course of the system dynamics. To enrich the database around these
orbits, we then perturbed X1 with a multiplicative Gaussian noise (σ = 0.1), and filtered samples with
resulting all negative constraints (i.e. substrate uptake) to get X2. The concatenation Xlarge of X1 and
X2 leads to a database of Nobs = 47942 samples. We subsampled Xlarge by uniformly picking up 1000
samples and randomly took 1000/(Nsub∗2) additional samples in the first and last decile of each columns
of Xlarge to enrich the database in the distribution limits, which are specifically important for metabolic
modelling. We then finally obtained a learning database X with Nobs = 2000 samples. Model outputs
Y Fprau and Y Sth were assembled for each species with the FBA model. The resulting distributions in X
and Xlarge can be seen in B.8.

5 Hyperparameters selection

We now are ready to learn the metamodel, i.e. to solve (21) in order to find the parameters θ providing
the best trade-off between Y reconstruction and RKHS subspace selection.

5.1 Selection of the group-lasso weight µ

For each species s = Sth, FPrau and model output j, we solve the problem (21) for

µ ∈ {0.0, .001, .01, .05, 0.075, .1, 0.15, .2, .3, .4, .5, .75, 1.0, 1.5}

and a subsample of Nobs = 400 observations of X and Ys and compute the loss Lµ,s,j , i.e. the relative
reconstruction error on a testing set (Xtest,Y

s
test) of Nobs = 300 unseen points of X

Lµ,s,j =
‖Ys

test,j − Ŷs
test,j|µ‖2

‖Ys
test‖2

where Ŷs
test,j|µ = F̂s,j|µ(Xtest).

We display in Figures 3 and 4 the respective resulting lasso-paths for Fprau and Sth. Namely, we

compute for each µ, species s and output j the norm npµ,s,j = ‖θ̂sp,j|µ‖2 for p ∈ P, where second order
interactions only are considered in P. For increasing µ, the group-lasso penalty becomes preponderant,
turning off the parameters corresponding to the RKHS subspace p carrying the lower part of signal
variance. In the meantime, the loss tends to increase when a group of θ is discarded, since the signal is
approximated in lower-dimensional subspaces. We are then seeking, for each output j, for the parameter
µ providing the best trade-off between signal reconstruction and reduced number of selected groups p,
synonym of reduced computational load and speed-up.

For Fprau, we first observe that the lasso path are very similar for the substrates (glucose and
galactose), indicating that these sugars have a comparable fate in the FBA model and similar influence
on butyrate production. To predict the growth, both sugars and their interaction are needed to achieve
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Figure 3: Lasso path for Fprau. For each metamodel, the lasso path is displayed: the relative con-
tribution of the different blocks is plotted for several values of the group lasso penalty µ, together with
the loss function value. For increasing µ, the group carrying less information vanish, indicating that the
remaining groups support the main part of the signal. Dashed dark gray lines indicate order 2 interac-
tions involving the displayed compound. Dashed light gray lines indicate order 2 interactions that do
not involve the displayed compound (i.e. involving other compounds).

correct predictions: the loss curve shows sharp increases when a group is dropped off. Due to the reduced
number of substrates for Fprau (Nup = 2), all groups are kept for the four model outputs (see Table C.4
for selected µ).

For Sth, input interactions are more complex. We first observe that O2 intake is always preponderant
for all model outputs, which is expected for this bacteria able to respire in aerobic environment. Again,
glucose and galactose lasso paths are very similar, such as glucarate and galactarate (their oxidated ver-
sion). For these oxidated sugars, the loss increase is very limited when groups are dropped-off, indicating
that the two groups that are kept (O2 and galactarate) are enough for a correct signal reconstruction.
The same kind of observation is made for nitric oxyde, thiosulfate and tetrathionate. We next can see
that O2 and nitrate are badly reconstructed, even with the whole set of subspaces (more than 30% loss).
Finally, for Sth growth rate, we keep several groups of inputs, including O2, thiosulfate, tetrathionate,
glucarate and their interactions (see Table C.4 for selected µ).

5.2 Selection of the number of functional basis

For given regularization parameters µ, different numbers of functional basis can be involved in the
approximation, i.e. according to the Representer theorem 2 different numbers of samples included in
the learning set. Again, a trade-off between reconstruction accuracy and computation speed is expected,
since more functional basis enlarges the discretized functional space where the optimum is searched in
eq. (17), allowing for better approximation, but at the cost of additional computations during each
metamodel evaluation in (22).

For the µ previously selected, we then performed additional metamodel learnings for varying Nobs ∈
{50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700}. We then computed nrep = 5 repetitions of the ODE
system (6)-(13), for random initial conditions sampled with the same procedure than for the learning set
construction (see Sec. 4), and for the FBA model or its metamodel approximation in eq. (6) to (9). The
L2 relative reconstruction error between the dFBA solutions Y odeFBA and their metamodel approximations
Y odemm|Nobs is plotted in Fig. 5, together with the computation speed-up, i.e. the computation time ratio
using the metamodel in place of the FBA model.

We can observe that the best trade-off between speed-up and reconstruction error is obtained for 500
functional basis. A higher number of basis increases the number of numerical operations and degrades
the computation time while a lower number worsens the reconstruction error. More counter-intuitively,

13



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

v
||

v||
2

O2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
||

v||
2

galactarate

O2
nitric_oxide
glucose
galactose
thiosulfate
galactarate
glucarate
nitrate
tetrathionate
Order2_inter
Order2_other

loss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

v
||

v||
2

nitric_oxide

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
||

v||
2

glucarate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

v
||

v||
2

glucose

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

v
||

v||
2

nitrate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

v
||

v||
2

galactose

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
||

v||
2

tetrathionate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
||

v||
2

thiosulfate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

v
||

v||
2

Styphi

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

10
2

10
1

10
0

Te
st

 L
os

s

Figure 4: Lasso path for Sth. For each metamodel, the lasso path is displayed: the relative contribution
of the different blocks is plotted for several values of the group lasso penalty µ, together with the loss
function value. For increasing µ, the group carrying less information vanish, indicating that the remaining
groups support the main part of the signal. Dashed dark gray lines indicate order 2 interactions involving
the displayed compound. Dashed light gray lines indicate order 2 interactions that do not involve the
displayed compound (i.e. involving other compounds).
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the speed-up is decreased for low numbers of functional basis (Nobs ≤ 100). This is due to a higher
number of blocks p ∈ P that are conserved when the number of observation in the learning basis (i.e.
the number of functional basis in the RKHS) is reduced: the block-lasso penalty tends to conserve a
higher number of blocks to preserve the data reconstruction, which is mechanically decreased for lower
numbers of samples in the learning set.

6 Validation of the selected RKHS metamodel

The accuracy of the selected RKHS metamodel is first assessed by testing the metamodel with the
corresponding FBA model on ntest = 1500 unseen points (Fig. 6a and 6b). We can see that the large
majority of points lie in the vicinity of the line y = x, providing excellent R2 scores, with minimal value
of 0.912 for the worst reconstructed compound (nitrate for Sth).The worst approximation are mainly
located near the boundaries of the domain, specially for Fprau. When looking at the FBA models
responses for varying substrate constraints (Fig. C.9a and C.9b), we can see that the model is quasi-
linear for sugar consumption for Fprau, but the behaviour is more complex for Sth, in particular for sugar
consumption: sugar FBA uptake (y-axis) can vanish whereas glucose or galactose remain in the media
(non-null constraints, x-axis) indicating metabolic switches. This behaviour is correctly predicted by the
metamodel.

We then assess the metamodel approximation by comparing the ODE simulations with the FBA
(plain lines) and the metamodel (dashed lines, Figure 7). Some limited discrepancies can be observed.
In Fig. 7.a, Salmonella approximation accuracy is reduced in the second phase of growth, when Sth takes
benefit of the micro-aerobic environment. In the same plot around hour 60, the metamodel is slightly off
for Fprau, inducing a slight lag for butyrate production around T = 60 (Fig. 7.b, orange curves) which
is reflected in the epithelial densities (Fig. 7.e, orange) and trans-epithelial flow (plot 6, orange).

For metabolites, the time courses are particularly well reconstructed, except for glucose after T = 70h
which goes awry, reflecting that there was little glucose consumption predicted by the metamodel, whereas
in the original system it was completely consumed. Thiosulfate and tetrathionate are slightly off as well
which might be linked with the oxygen lag observed in Fig. 7.e and f (blue lines). Less oxygen goes
into the luminal compartment during the lag and the formation of tetrathionate by the oxidation of
thiosulfate becomes impaired. This mechanism should be observed for other reduced-oxidized pairs,
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F̂(c) (x-axis) for 1600 unseen constraints c. The r2 score is indicated for each output
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Figure 7: DFBA and metamodel approximation. The dFBA model is plotted (plain lines) together
with its metamodel approximation, i.e. the model output where the FBA model is replaced by its
metamodel (dashed lines).
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however since they are less abundant the effect might be attenuated.
Altogether, the behaviour of the metamodel is satisfactory in reproducing the dFBA system: it

produces an overall reconstruction error ‖Y ode − Ŷ ode‖2/‖Y ode‖2 of 4, 71% and it accurately renders all
different phases of Sth infection as observed in Fig. 2, such as Fprau and consecutive butyrate drop-off,
O2 and NO flows between epithelial and luminal compartments and the resulting two-phase growth of
Sth. The metamodel furthermore allows computation speed-up by 45, which is a considerable gain.

7 Discussion

Machine learning for accelerated computations of metabolic models. An increasing number
of studies [2, 17, 7] address the problem of modelling a community of micro-organisms by concatenating
strain-level genome-scale metabolic models. If this strategy is well-established for well-mixed commu-
nities when one unique metabolic model can render the metabolic behaviour of the whole population
of a specific strain discarding any spatial heterogeneities, it faces computational difficulties in contexts
with important spatial structures: the metabolic model must be repeated at each spatial step, increasing
linearly the computational load with the number of cells in the spatial mesh. This observation grounds
the need for numerical accelerations of the metabolic model evaluations.

In this study, we adapted a machine learning method to the context of metabolic models, approx-
imating the metabolic model output at reduced computational costs. We provided a proof-of-concept
showing that RKHS-based metamodels are able to capture some non-linear effects exhibited by metabolic
models (see Fig. C.9b), so that replacing the FBA metabolic model by its metamodels only marginally
impacts the time-course of a system dynamics involving a metabolic model ( Fig. 7).

The deployment of the RKHS method necessitates a careful selection of hyperparameters that strongly
impacts the trade-off between accuracy and computation load. The block-lasso regularization penalty
mitigates the number of blocks needed to provide accurate model reconstruction, which reduces the
number of numerical operations during metamodel evaluation, thus speeding-up the overall computations.
Likewise, the number of samples in the learning database is directly linked to the number of functional
basis approximating each ANOVA-RKHS subspaces: if a higher number of observations increases the
accuracy, it mechanically degrades the computation time. This tuning directly depends on the learning
database and must be reproduced when the learning set is changed.

Learning dataset construction. Metamodeling is specific in the framework of machine learning in
that the learning dataset is not imposed to the user: the user keeps the hand on the assembly of the
learning dataset. Ones can then search for sound experimental planning by placing the points of the
learning set in strategic areas of the state space. One ’agnostic’ approach consists in sampling uniformly
hypercubes of the input space: after defining upper and lower bounds on the inputs, uniform sampling
methods such as Latin Hypercube Sampling (LHS) or fast99 methods [24, 12, 27] can be deployed which
provides suitable property for sensitivity analysis and computation of descriptive index such as Sobol
Index. We opted for a more ’supervised’ approach by sampling the feature space around time trajectories
of the ODE system we want to approximate: several time integrations are performed based on random
initial conditions which allows to compute FBA model inputs through eq. (5) that samples the feature
space. The learning database was further enriched by randomly sampling around these trajectories, and
by oversampling the borders of the hypercube (see fig. B.8).

Other strategies could be explored, by defining a generative statistical model of the points around the
ODE trajectories. For example, ones could simulate these point clouds with copulas, by coupling uniform
sampling of hypercubes with simulations of the empirical marginals of the observed points during the
ODE time course.

Why using ANOVA-RKHS in our approach. In this study, we opted for a specific RKHS method,
based on ANOVA-RKHS. Unlike classical RKHS metamodel that approximates the model in a unique
functional space through the Representer theroem 2, the ANOVA-RKHS method provides a theoretical
metamodel the decomposition of which corresponds to its Hoeffding decomposition. The metamodel
approximation with a penalized least square method enables the selection of the main effects and their
interactions, leading to a more parsimonious metamodel. If this strategy is more complex from mathe-
matical and computational points of view, it allows reducing the dimension of the input space by selecting
the input variables that most influence the output variability. Besides the biological interpretations that
can be done based on this input-output interactions or the Sobol index that are directly given by the

18



ANOVA-RKHS method, variable selection also provides a better trade-off between reconstruction accu-
racy and computation load. Indeed, the fixed number of samples in the learning dataset is more likely
to cover the feature space with reduced dimensions. In our context, the feature space has 9 dimensions
for Sth, and we could provide accurate predictions with 500 points. Working directly with classical
9-dimensional RKHS might have necessitated a higher number of training samples to provide the same
accuracy. On the contrary, 500 points provides a good sampling of 1 or 2-dimensional feature spaces
as observed in the fp of eq. (20). Benchmarking ANOVA-RKHS with other RKHS and other machine
learning methods is kept as a perspective for this work.

Additionally, ANOVA-RKHS could be compared or enriched with other functional spaces. In particu-
lar, as the response curves of the metabolic models are quite regular except near the origin (see Figs. C.9a
and C.9a), other approximation methods could be investigated, such as polynomial regression models.
This kind of models could provide faster evaluations by compensating a lower number of functional basis
by higher priors on the response shape. Again, variable selection approaches could speed up metamodel
evaluation on unseen points.

Exploring other regularization penalties. In eq. (17), we selected a classical group lasso penalty
to regularize the optimization problem. This penalty could be problematic in practice since it does
not involve the ANOVA-RKHS norm, which is the norm that theoretically ensures the existence of a
solution through the Representer theorem 2. However, these difficulties did not occur in the context of
the computations presented here. Other regularizations were explored in [14, 13] and could be introduced
in the future in our package. However, computing the ANOVA-RKHS norm involves the computation of
the square root of large (N2

obs) dense matrices (as many matrices as card(P)), which can be expensive
in computational time and memory, specially if high-order interactions are considered in the Hoeffding
decomposition. Hence, dimension reduction techniques or active learning could be coupled with the
ANOVA-RKHS method to select at the same time input variables (with the ridge-group-sparse penalty
introduced in [13]) and the most informative samples in the testing test.

8 Conclusion

In this study, we provided a proof-of-concept of the potentiality of machine learning methods to provide
fast approximations of metabolic model outputs: these metamodels could replace FBA models in large
systems biology models necessitating a massive number of FBA computations such as spatio-temporal
models of microbial communities. We leveraged existing metamodeling methods (ANOVA-RKHS), pro-
vided strategies for the assembling of the testing dataset, set a framework for hyperparameter selection
and assessed the accuracy of the metamodel. Replacing the original FBA models by their metamodel in
an ODE system dynamics model of Salmonella infection in an healthy gut accelerated the computations
by 45 with a relative error of about 5%. This result makes reachable PDE models of microbial commu-
nities involving genome-scale metabolic models such as FBA models, by approximating them with their
metamodel.
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[26] Fabian Rivera-Chávez and Andreas J Bäumler. “The pyromaniac inside you: Salmonella metabolism
in the host gut”. In: Annual review of microbiology 69 (2015), pp. 31–48.

[27] Andrea Saltelli, Stefano Tarantola, and KP-S Chan. “A quantitative model-independent method
for global sensitivity analysis of model output”. In: Technometrics 41.1 (1999), pp. 39–56.

[28] Jan Schellenberger et al. “Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2. 0”. In: Nature protocols 6.9 (2011), p. 1290.

[29] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. “A generalized representer theorem”. In:
International conference on computational learning theory. Springer. 2001, pp. 416–426.

[30] Ibrahim E El-Semman et al. “Genome-scale metabolic reconstructions of Bifidobacterium adoles-
centis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction”. In: BMC systems
biology 8.1 (2014), pp. 1–11.

[31] Jean-Christophe Simon et al. “Host-microbiota interactions: from holobiont theory to analysis”.
In: Microbiome 7.1 (2019), pp. 1–5.

[32] Il’ya Meerovich Sobol’. “On sensitivity estimation for nonlinear mathematical models”. In: Matem-
aticheskoe modelirovanie 2.1 (1990), pp. 112–118.

[33] Aad W Van der Vaart. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

[34] Muriel Vayssier-Taussat et al. “Shifting the paradigm from pathogens to pathobiome: new concepts
in the light of meta-omics”. In: Frontiers in cellular and infection microbiology 4 (2014), p. 29.
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A model parameters and code availability

The system dynamics (6)-(13) is parametrized with the coefficients included in Table A.1 and initial
conditions as indicated in Table A.2. The python code used for ODE system computation, and RKHS
learning is available at https://gitlab.inria.fr/slimmest/cemracs results.git together with a tutorial on a
toy model.

The FBA models are taken from the literature: the Sth model is taken from [25] as provided by
Cobrapy [9]. Metabolite names were modified to match with [22]. The Fprau model is taken from [30].
The metabolite IDs were also changed to keep consistent with the Sth model. Import reactions were
further modified for consistency: all sugar exchange reactions of the original model were knock-out, and
import reactions were allowed for sugars known to be metabolized by Fprau in the gut as described in
[16].

B Learning database distribution

In this section, we indicate the parameters used for uniform sampling of the initial conditions of the 60
repetitions of the ODE system in the learning database definition in Table B.3. We then present the
distribution of the whole database (60 repetitions that are sampled in time, and enriched with perturbed
inputs observed during ODEs, see section 4), and after sub-selection and enrichment near the boundaries
in Fig. B.8.

C Model and metamodel responses

We present in this section the value of the regularization parameter µ and the metamodel response for
selected µ compared with the FBA model response for a testing database of unseen points in Fig. C.9a
and C.9b.
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Parameter Description Units Value [reference]
ρ Death rate by unit of neutrophils [1/day] 0.3
α Maximum rate of oxygen’s noxious effect

on Fprau
[1/day] 0.2

Ks Half saturation constant of oxygen’s nox-
ious effect on Fprau

[mmol/l] 0.1

γO2 Transfer coefficient of oxygen between
compartments

[1/day] 1

γNO Transfer coefficient of nitric oxide between
compartments

[1/day] 1

γbut Transfer coefficient of butyrate between
compartments

[1/day] 1 [21]

γN Transfer coefficient of neutrophils between
compartments

[1/day] 1

βs s ∈ {Gal,Gluc, thio,NO} Coefficient for the rate of oxidation [day · mmol/l] −1 10
Ds s{Gal,Gluc, thio} Influx of molecules to the luminal com-

partment
[mmol/l]/[day] 1/24

dn death rate of neutrophils [1/day] 0.01
dNO degradation rate of NOe in cells [1/day] 0.01
dO2

degradation rate of O2e in cells [1/day] 0.01
dbut degradation rate of butyrate in cells [1/day] 0.01
Kbut Half-saturation for the inhibition by bu-

tyrate
[mmol/l] 1.5

LN Source term of neutrophils in epithelium [g/l] 0.1
LNO Source term of nitric oxide in epithelium [mmol/l] 0.01
LO2

Source term of oxygen in epithelium [mmol/l] 1

Table A.1: Values from literature are scarce. Most parameters were fitted manually and measuring their
actual value is beyond the scope of this work. The work of Muñoz et al. [21] fitted some parameters such
as the exchange rate for butyrate in the colon, so it was assumed as the value of the transfer coefficient
of other products. Note particularly that parameter D represents the inverse of the hydraulic retention
rate, which for a gut should be approximately 24 hours.

Parameter Description Units Value [reference]
Fprau Faecalibacterium prauznitsii [g/l] 1.56 · 10−2

Sth Salmonella enterica Typhimurium [g/l] 0 at t = 0 and 8.64 · 10−3 at t = 40h
ml,O2

Luminal oxygen [mmol/l] 0
ml,Gal Luminal galactose [mmol/l] 7.6 · 10−3

ml,GalO Luminal galactarate [mmol/l] 4.91 · 10−2

ml,Gluc Luminal glucose [mmol/l] 2.00 · 10−2

ml,GlucO Luminal glucarate [mmol/l] 4.02 · 10−2

ml,NO Luminal nitric oxide [mmol/l] 2.45 · 10−2

ml,NO3
Luminal nitrate [mmol/l] 3.10 · 10−2

ml,thio Luminal thiosulfate [mmol/l] 0
ml,tet Luminal tetrathionate [mmol/l] 2.19 · 10−2

ml,but Luminal butyrate [mmol/l] 0
nl Luminal neutrophils [mmol/l] 0
ne Epithelial neutrophils [mmol/l] 0
me,NO Epithelial nitric oxide [mmol/l] 0
me,O2 Epithelial O2 [mmol/l] 0
me,but Epithelial butyrate [mmol/l] 0

Table A.2: Initial conditions. Initial conditions have been sampled randomly as described in Sec. 4.
The resulting sampling is given here that were used in Fig. 2 and 7.
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State variable lower bound upper bound Bernouilli parameter
Fprau 0 0.02 -
Sth 0 0.02 -
ml,O2

0.001 0.05 0.85
ml,Gal 0.001 0.05 0.85
ml,GalO 0.001 0.05 0.85
ml,Gluc 0.001 0.05 0.85
ml,GlucO 0.001 0.05 0.85
ml,NO 0.001 0.05 0.85
ml,NO3

0.001 0.05 0.85
ml,thio 0.001 0.05 0.85
ml,tet 0.001 0.05 0.85
ml,but 0.001 0.05 0.85
nl 0 0 -
ne 0 0 -
me,NO 0 0 -
me,O2 0 0 -
me,but 0 0 -

Table B.3: Parameter of the random functions describing the intial conditions of the 60
repetitions of the ODEs computed for the learning database. The lower and upper bounds of
the uniform distributions are indicated, together with the Bernouilli parameter that models the pres-
ence/absence of the metabolite at t = 0 when relevant.
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Table C.4: Selected regularization parameter µ. Selected hyperparameter µ that tunes the group-
lasso penalty is indicated for each species (raws) and each model output (columns). This parameter
provides the best trade-off between signal reconstruction and reduced number of RKHS subspace that
are kept for reconstruction.
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Figure B.8: Marginal distributions in the learning database. We display for each column
1 6 c 6 Nup of the database Xlarge its marginal distribution (plain lines) together with the marginal
distribution of X (dashed lines) obtained after subsampling and enrichment near the boundaries of
Xlarge. As expected, the main modes of Xlarge are conserved in X, while points in the first and last
deciles (near the boundaries) are over-represented in X.
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Figure C.9: Model response. The FBA model value F(c) (blue dots) is plotted with its metamodel
approximation F̂(c) (orange dots, y-axis) for 1600 unseen constraints c (x-axis).
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