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Both targeted and untargeted mass spectrometry-based metabolomics approaches are
used to understand the metabolic processes taking place in various organisms, from
prokaryotes, plants, fungi to animals and humans. Untargeted approaches allow to detect
as many metabolites as possible at once, identify unexpected metabolic changes, and
characterize novel metabolites in biological samples. However, the identification of
metabolites and the biological interpretation of such large and complex datasets
remain challenging. One approach to address these challenges is considering that
metabolites are connected through informative relationships. Such relationships can be
formalized as networks, where the nodes correspond to the metabolites or features (when
there is no or only partial identification), and edges connect nodes if the corresponding
metabolites are related. Several networks can be built from a single dataset (or a list of
metabolites), where each network represents different relationships, such as statistical
(correlated metabolites), biochemical (known or putative substrates and products of
reactions), or chemical (structural similarities, ontological relations). Once these
networks are built, they can subsequently be mined using algorithms from network (or
graph) theory to gain insights into metabolism. For instance, we can connect metabolites
based on prior knowledge on enzymatic reactions, then provide suggestions for potential
metabolite identifications, or detect clusters of co-regulated metabolites. In this review, we
first aim at settling a nomenclature and formalism to avoid confusion when referring to
different networks used in the field of metabolomics. Then, we present the state of the art of
network-based methods for mass spectrometry-based metabolomics data analysis, as
well as future developments expected in this area. We cover the use of networks
applications using biochemical reactions, mass spectrometry features, chemical
structural similarities, and correlations between metabolites. We also describe the
application of knowledge networks such as metabolic reaction networks. Finally, we
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discuss the possibility of combining different networks to analyze and interpret them
simultaneously.

Keywords: metabolic network, untargeted metabolomics, graph-based analysis, knowledge network, experimental
network, metabolism, systems biology

INTRODUCTION

Metabolomics research is based on various opportunities to
uncover the metabolites contained in biological samples. To
characterize and quantify metabolites in biological samples,
different types of metabolite separation techniques - such as
Liquid Chromatography (LC), Gas Chromatography (GC),
Capillary Electrophoresis (CE), or Ion Mobility (IM)–are
coupled to a Mass-Spectrometry (MS) system. High-
performance mass spectrometry systems generate increasingly
complex datasets. Two major approaches are used in
metabolomics: targeted methods look for a pre-selected list (or
class) of metabolites, and untargeted metabolomics covers as
many metabolites as possible (Schrimpe-Rutledge et al., 2016).
However, in untargeted metabolomics research, processing,
analyzing, and interpreting the complex datasets that are
generated are major challenges. Nuclear Magnetic Resonance
(NMR) techniques are also used in metabolomics (Emwas et al.,
2019), but most of the network and graph methods covered here
are rather focused on MS-based metabolomics. As multiple
network constructions approaches presented here are relying
on the specificity of data generated by MS (e.g., fragmentation
or adducts).

The analysis of untargeted metabolomics datasets is frequently
limited by the ability to annotate and identify metabolites at a
large scale (hundreds or thousands of metabolites). Data
interpretation is often reductionist and limited to a few
specific metabolic processes or metabolites, found to be

statistically significantly associated with a phenotype of
interest. This implies that a potentially large part of the
detected metabolites will be ignored if they appear not
statistically significant to the question at hand. Importantly,
the recent use of network and graph-based methods to analyze
metabolomics data opened the possibility of metabolomics data
systematic analysis (Kell and Goodacre, 2014; Perez De Souza
et al., 2020).

There are two major types of networks used with
metabolomics data: knowledge and experimental (Figure 1).
Knowledge networks are generated from biochemical or
biological knowledge and allow interpreting metabolomics data
in the context of prior biological knowledge, such as metabolic
pathways and enzymatic reactions. For instance, a metabolic
network is a knowledge network, where metabolites and their
known biochemical conversions are represented as nodes and
edges, respectively. On the other hand, experimental networks are
generated from the metabolomics data itself, based on
relationships between possible or identified metabolites in the
data (e.g., spectral similarity, or correlation). Notably, both types
of networks (i.e., knowledge and experimental) can be used with
advanced statistical methods, graph analysis, and data analysis
approaches to study the interconnected data.

The words “network” and “graph” are often used
interchangeably, and preferred terms depend on fields and
traditions. We will refer to the curated lists of biochemical
reactions and their participants (e.g., substrate, products,
enzymes, and genes) as “metabolic networks” (following

FIGURE 1 | Graphical Abstract. In this review we will be presenting two major types of networks and graphs used to analyze and interpret metabolomics data,
knowledge networks and experimental networks.
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current usage). We will refer as “metabolic graphs” the different
entity-relationship structures that can be derived from such
biochemical reaction lists to perform topological analysis (such
as compound graphs and reaction graph), to avoid the ambiguity
with their source material.

Metabolism consists of enzymatic and non-enzymatic
reactions converting metabolites to produce energy
(catabolism), build up biomass (anabolism), or respond to
external stimuli. Metabolism is often seen as functional
modules conserved across organisms. Examples of such
functional modules are the central carbon metabolism, which
is highly conserved, and the secondary (AKA specialized)
metabolism, which differs vastly among organisms.
Furthermore, co-metabolism in communities (such as
microbiomes) increases metabolic capacities and leads to a
very high diversity of metabolites. In this context, the
unilateral interpretation of metabolomics data may hide
complex systemic changes spanning across several pathways.
This is especially the case with metabolic chart representations
that are designed to focus on knowledge-based biochemical
pathways and ignore the interconnections between pathways.
Additionally, the lack of consensus on the partitioning of
metabolic pathways or modules from one database to another
can lead to major discrepancies in the analysis (Stobbe et al., 2012;
Altman et al., 2013). Instead, it is possible to represent the
metabolism as a network of metabolites connected by specific
or promiscuous enzymatic and non-enzymatic reactions.
Importantly, in such a network, we can also represent
interconnections between metabolites which may look
unrelated but that are connected via different pathways.
Genome-Scale Metabolic Networks (GSMNs) are designed to
represent this information based on genomics knowledge,
providing a systemic view of the metabolism. Nevertheless,
GSMNs are based on metabolism knowledge coming from
genome annotation, which prevents the integration of many
metabolites since there are gaps in knowledge (e.g., secondary
metabolism) (Frainay et al., 2018). These gaps require us to
expand those metabolic networks using experimental data
from metabolomics experiments.

UntargetedMS data, either based on direct infusion or coupled
to different types of separation techniques (e.g., LC, GC, CE, or
IM), is characterized by features for which wemeasured the mass-
to-charge ratio (m/z value with a mass accuracy of just a few ppm,
depending on the instrumentation), the abundance (either a peak
intensity or a peak area), an additional separation index
(retention or migration time, mobility, or collisional cross-
section value), and the associated fragmentation pattern, if
collected. Based on these data, metabolites can be annotated or
identified with different confidence levels, according to the
Metabolomics Standard Initiative (MSI) (Fiehn et al., 2007;
Sumner et al., 2007; Schymanski et al., 2014). The highest level
of confidence (i.e., level 1) is achieved by a matching in at least
two independent and orthogonal data (e.g., mass spectrum and
retention time/index) between the metabolite feature and its
authentic reference standard, both of which must be analyzed
under identical conditions. This identification level is often only
possible for metabolites for which reference standards are

available in the respective laboratory. Indeed, recent work has
shown that only a small part of the metabolites found in
metabolic networks of different organisms is covered by at
least one reference spectrum (Frainay et al., 2018). Lower-
confidence annotations (i.e., levels 2 and 3) can be achieved by
matching the metabolite feature with spectral libraries or using
in-silico tools, such as MetFrag (Ruttkies et al., 2019) or CSI:
FingerID (Dührkop et al., 2015), among others (Misra and van
der Hooft, 2016; Spicer et al., 2017; Misra, 2021). Assessing the
structural similarity relationship via spectral similarity has
proven to be a powerful tool to guide annotation of unknown
metabolites (Wang et al., 2016), since chances of having
structurally homologous metabolites detected in parallel are
high. However, metabolites are generally not detected as
isolated entities, but as part of larger sets of metabolites of the
same chemical classes.

Here, we will describe the current state of the art in terms of
networks and graphs usage for metabolomics, detailing their
characteristics and applications. We will first focus on
experimental networks (such as those based on mass
differences, adducts and features, structure similarities, and
correlation), which are generated from metabolomics data.
Notably, experimental networks have been used to annotate
and identify metabolites (Loos and Singer, 2017; Schmid et al.,
2021), as well as to better understand biochemical
relationships between metabolites (Schollée et al., 2017;
Naake and Fernie, 2019). We will also describe knowledge
networks (such as ontology-based networks (Dührkop et al.,
2020) and GSMNs), which are increasingly used to interpret
metabolomics data (Kell and Goodacre, 2014; Frainay and
Jourdan, 2017) and to annotate metabolites (Silva et al., 2014;
Schmid et al., 2021). While each network (experimental or
knowledge-based) covers a specific aspect of the studied
biology, there are benefits in integrating them. For instance,
experimental networks can help in filling the gaps in current
knowledge-based networks by mapping the nodes in the
knowledge-based network (i.e., metabolites) with the
corresponding nodes in the experimental networks
(i.e., features) and identifying missing metabolites.
Importantly, knowledge-based networks provide a biological
context to help interpret and analyze experimental networks.
To emphasize this, we finish this review by presenting
combined networks analysis approaches, such as multi-layer
networks applied to the field of metabolomics.

EXPERIMENTAL NETWORKS

Experimental networks are directly derived from the acquired
untargeted metabolomics data. Depending on the type of
network, either MS1, MS2, or MSn data is used. Each network
tackles a different aspect of the compounds “metabolic
relatedness”, with specific assumptions and shortcomings,
which we will describe in the following sections. We will
discuss how mass differences, adducts and features, structure
similarities and correlation data can be used to build different
experimental networks.
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It is important to highlight that experimental networks
complement each other to decipher the metabolic relationships
between compounds. As two faces of the same coin, spectral
similarity networks can suggest substrate-product links from
expected global chemical similarity (Figure 2C); while mass
difference networks represent the substrate-product links
from characteristic differences due to local chemical
structure changes (Figure 2A). Extra evidence of the
existence of such substrate-product links can come from
correlation networks, which reveal possible causal
relationships between the changes in the metabolites’
abundances (Figure 2D). Finally, the adduct and feature
networks can increase the confidence in metabolites’

annotations in the networks, based on characteristic
patterns, associated to individual compounds in mass
spectrometry (Figure 2B).

Mass Difference Networks

The biochemical transformations are characterized by the gain or
loss of atoms, which lead to changes in the metabolites’molecular
formula and, therefore, variations in the exact mass of pairs of
molecules connected by a reaction. These changes can be
measured in MS-based metabolomics as differences between
pairs of m/z values (Figure 2A) to generate a mass difference
network (Table 1).

FIGURE 2 |Metabolomics-based experimental networks. (A)Mass difference networks: the biochemical transformations entail gains and/or losses of atoms that
lead to changes in the metabolites’ molecular formula and, therefore, changes in the exact mass of molecules connected via a reaction. Here, the biochemical
transformation by a phosphatase causes the loss of a phosphate group (HPO3), leading to a mass difference of 79.966 between the substrate metabolite (Molecule (B)
and the product metabolite (Molecule A). (B) Adduct and feature networks: metabolites have multiple possible adducts and features associated with them. Each
detected adduct, isotopologue, and ion-source fragments can be represented as nodes. Adducts (e.g., M + H) are connected to corresponding or potential metabolites.
Similarly, the isotopologues of an adduct are linked to the associated adduct nodes (e.g., 13C isotopologue of M + H). Finally, ion-source fragments (here in-source
fragment 1) with their associated adducts and isotopologues can be linked to the corresponding node metabolite. (C) Structure similarity networks: the structural
similarity between metabolites detected by MS methods can be observed and calculated based on their MS/MS spectra. The fragmentation patterns will be similar for
two metabolites with a shared core structure (represented as circles, squares, and polygons), but a difference due to a chemical reaction (i.e., the residue represented by
the red rectangle). The calculated similarity (i.e., 0.85) between two MS2 spectra is the weight of the edge linking the corresponding metabolite pair. (D) Correlation
networks: the correlation between the abundances of twometabolites can be calculated and used as a weight for the edge (i.e., 0.88 or −0.69) between twometabolites’
node (i.e., betweenmolecules A and B, or betweenmolecules B and C). The correlation levels considered as non-significant (i.e., 0.18) can be ignored and excluded from
the correlation network (i.e., the edge between molecules A and C).
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The mass difference approach can be used with known
biotransformations and their corresponding mass differences
to find potential biochemical reactions explaining the
difference between m/z values (Breitling et al., 2006; Tziotis
et al., 2011). Therefore, in a mass difference network, the
features with their corresponding m/z values are represented
as nodes, and the mass differences between pairs of m/z values
that match a pre-defined transformation as edges (Figure 2A).
Potential transformations can be derived frommetabolic reaction
databases, such as KEGG, MetaNetX, MetExplore, etc. (Jeffryes
et al., 2015; Hadadi et al., 2016; Kanehisa et al., 2017; Cottret et al.,
2018; Ebastien Moretti et al., 2021). If seed formulae (e.g., from
identified metabolites) are available, information on known
biochemical transformations can also be used to calculate
molecular formulae, by propagating the difference formulae
within the network. By comparing the frequency of certain
mass differences between different conditions, conclusions on
potential biochemical responses can be drawn (Moritz et al.,
2016). However, this approach requires a priori hypothesis on
data to generate an appropriate transformation list. Notably,
features connected by a mass difference that is not included in
the transformation list will not be connected in the mass
difference network. Moreover, if metabolites from a reaction
series are not detected by the instrument, there will be gaps
(missing nodes) in the reconstructed network. For certain
instances, this can be overcome, e.g., by combining several
mass differences into one corresponding to multiple
biotransformations. For example, gaps in the network for
series of alkyl chains (CnH2n+1) can be filled by adding C2H4

to the transformation list to cover for two times CH2 or by adding
C4H8 to cover two times C2H4.

Another approach frequently used is to include all mass
differences between all pairs of features, to generate mass
difference networks. The result is a fully connected graph
where all features are connected to each other, and their
edges represent their mass differences. It is challenging to
find meaningful network motifs in such a graph, since even
non-biochemically related features would still be connected by
an edge, with the sole purpose of holding the mass difference
attribute. One solution to reduce irrelevant links is to filter out
edges connecting features with low intensity/concentration
correlation. It is also possible to filter edges following a
specific Retention Time (RT) trend. For example, there is a
predictable RT and mass difference between products and
substrates of a specific reaction, which can be propagated
from a known metabolite in the network to neighboring

metabolites. This approach can result in the discovery of
new biochemical transformations unbiased, as it does not
use biotransformation-based mass differences (Morreel
et al., 2014). However, the interpretation of the results
might become complicated, as it represents a combination
of several losses and gains of atoms. As an example, in the
transamination reaction, transamination of pyruvate (C3H4O3

to alanine (C3H7NO2 is accompanied by the gain of one
nitrogen and three hydrogens (NH3 = 17.03) and the loss of
one oxygen (O = 15.99), yielding to a net mass difference of
1.0316, from which no meaningful formula can be calculated.

There are different tools for the generation of mass difference
networks. The tool mzGroupAnalyzer can generate a mass
difference network based on an input list of transformations
atom differences, it allows visualization of the metabolites
elements composition with a van Krevelen diagram (based on
H/C and O/C ratios) to identify patterns of structural similarity
between compounds (Doerfler et al., 2014). MetaNetter is a
Cytoscape plugin that performs ab initio prediction of mass
difference networks from high-resolution data, such as
Orbitrap or Fourier transform ion cyclotron resonance mass
spectrometer (FT-ICR-MS) (Jourdan et al., 2008; Burgess
et al., 2017). MetNet is an R package that represents one of
the most prominent tools to generate mass difference networks
based on pre-defined transformations lists; in combination with
other types of information (such as RT shifts or correlations)
(Naake and Fernie, 2019). The inclusion of such
additional information reduces the connection degree between
features, as it constrains the creation of edges between
nodes with a threshold of correlations and/or with specific RT
shifts.

Adducts and Features Networks
Mass differences do not only occur due to biological
transformations between metabolites, but might also appear
due to different physicochemical effects when introducing the
metabolites to the MS. These “non-biological”mass differences
can be represented in adducts and feature networks (Table 2).
The relationships between features are used for grouping and
deconvoluting the detected m/z signals, as in the R package
CAMERA (Kuhl et al., 2012). Analysis of mass differences is
greatly enhanced using chromatographic separation, as the RT
windows help to separate metabolites features. Isotopes,
adducts, as well as in-source fragments of the same
metabolite show (theoretically perfect) co-elution. A
particular example of co-elution is the annotation of [M +

TABLE 1 | Description of the key characteristics of mass difference networks.

Mass difference networks’ main characteristics

Nodes Features, low level annotations (m/z + RT)
Edges Putative substrate-product relationships from biochemical transformations’ characteristic patterns
Main Hypothesis Many biochemical reactions involve functional group transfer, yielding a characteristic mass shift. Feature pairs with mass

differences matching those patterns might be involved in a reaction transferring the corresponding group
Limitations The mass differences between a pair of features may correspond to an existing reaction, but it can happen that these two

features do not correspond to a real biotransformation between the corresponding metabolites, leading to spurious edges
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H]+ and [M-H2O + H]+, while [M-H2O + H]+ normally co-
elutes with [M + H]+, metabolites that differ in H2O in their
formulas have different chemical structures and therefore
different RTs.

In-source fragmentation (ISF) is a common phenomenon that
occurs in Electrospray ionization (ESI). ISF is the dissociation of a
molecule that occurs within the ionization source of the mass
spectrometer. During ESI, molecules gain additional internal
energy that is released, resulting in the fragmentation of the
molecule. This fragmentation generates additional precursor ions
that can lead to false positive annotations of molecular features
(Gathungu et al., 2018). There are several tools that can help with
the identification of ISF of the samemetabolite, e.g., CliqueMS, an
R package that groups co-eluting features, based on similarity
networks (Senan et al., 2019). Another recently developed R
package that recognizes in-source fragments is ISFrag. ISFrag
checks for co-elution, presence of the in-source fragment in
the precursor MS2 spectra, and spectral similarity (Guo et al.,
2021).

Ion identity networking is used to generate a network based on
the relationships between ion species linked to the same
compound as well as structurally similar compounds, which
enhances compound annotation (Nothias et al., 2020). The
detected ion-source fragments and their associated adducts
and isotopologues can be represented in the network as nodes
with edges linking them to their associated metabolite nodes
(Figure 2B).

Certain mass differences might be found in a consecutive
manner, e.g., CH2 or C2H4 for a homologous series, through an
increase in an acyl chain length. Longer acyl chains lead to a
higher RT in Reverse-Phase (RP) chromatography. Loos and
Singer developed functionalities for the identification of
homologous series by detecting series of mass differences
following a given RT trend (Loos and Singer, 2017).

Structure Similarity Networks
Typically, molecules connected via biochemical reactions are
chemically similar since they often share common
substructures. This resemblance can be expressed by chemical
similarity measures, such as the Tanimoto similarity (Bender and
Glen, 2004; Bajusz et al., 2015). It is important to note that
similarity measures can only be calculated between identified
compounds, since they require chemical structures as input
(Table 3).

In untargeted metabolomics, the MS2 fragmentation data is
mostly generated using Data-Dependent Acquisition (DDA),
which results in the fragmentation of the most abundant
features. Fragmentation data can be used to infer (to a certain
degree) structural similarity. Consequently, chemically similar
compounds are likely to show at least partially similar
fragmentation patterns. Note that the spectral differences can
be both varying fragment masses and neutral loss differences.
Molecules that have a shared core structure (e.g., an aglycon) can
have differences due to the chemical reaction (e.g., additions of
glycosyl groups) linked by the similarity of their MS2 spectra.
Additionally, metabolites within the same compound class also
show similar fragmentation patterns, even if they are not
connected via biochemical reactions. An example is the
fragmentation of glycerolipids, such as di- and tri-
acylglycerols, which show characteristic neutral losses of fatty
acid chains (Murphy et al., 2007).

Spectral similarity networks connect MS2 spectra of features or
metabolites that show spectral similarity values above a certain
threshold (Figure 2C). Therefore, finding metabolites within the
same compound class or a similar one connected by biochemical
reactions.

Different algorithms have been developed to use spectral
similarity (based on different metrics, such as cosine or
modified cosine similarities) to construct molecular similarity

TABLE 2 | Description of the key characteristics of adducts and features networks.

Adducts and features networks’ main characteristics

Nodes Features, intermediate level annotations (m/z + RT + adduct information)
Edges Putative relationships between features, such as adducts of a metabolite, in-source fragments of a metabolite, or

isotopologues of an adduct
Main Hypothesis Same as mass difference networks, but with more detailed description using RT separation and characteristic patterns

associated to adducts ions formation, ion-source fragmentations, and isotope patterns
Limitations The mass differences between two features can correspond to a chemical relationship between two features (e.g.,

isotopologues or adducts), but these features correspond to the same metabolite

TABLE 3 | Description of the key characteristics of structure similarity and MS/MS networks.

Structure similarity networks’ main characteristics

Nodes Features, high level annotations (m/z + RT + MS2)
Edges Calculated similarity between two MS/MS spectra of two fragmented adducts
Main Hypothesis Reactions tend to involve substrate-products pairs with high structural similarity. Thus, detected compounds with high

structural similarity might be substrate/product of the same reaction
Limitations Many compounds with structural similarity are not involved in the same reactions or pathways, which yields to false positives

Depending on the methods and instruments, not every feature corresponding to a metabolite will be fragmented
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networks, as a proxy for structural similarity (Demuth et al., 2004;
Aguilar-Mogas et al., 2017). The first application of molecular
similarity networks was proposed by Watrous et al. Their
similarity measure was based on a modified cosine score,
which considers the mass difference between precursor masses.
The mass differences between the precursor masses are applied to
the fragments in the MS2 spectra, leading to a match of fragment
peaks, either directly within a specific mass error or matching the
mass plus the differences of the precursor masses. However, such
spectral similarity networking only works on MS2 spectra and
merges all spectra from the same precursor m/z, ignoring the fact
that different isomers might elute at different RTs (Watrous et al.,
2012).

In DDA, the intensities of the fragments are often not
representative of a feature abundance in different samples
since the measurement of an MSn spectrum is, in most cases,
not triggered at the apex of a chromatographic peak. Feature-
based molecular networking uses the abundance of the MS1

feature (peak area or intensity), its RT, and the corresponding
MS2 spectra as input and therefore allows the differentiation of
isomeric structures based on chromatography (Nothias et al.,
2020). In the resulting networks, abundances can be used as an
added criterion for data analysis, revealing potential biological
links. However, in such networks, different adducts from a single
compound might end up in separated sub-networks, based on
highly similar fragmentation of adducts. Ion identity networking
has been introduced to combine these sub-networks to group
those adducts by combining molecular networking and MS1

adduct detection algorithms, such as feature grouping and
shape correlation (Schmid et al., 2021). This approach can also
incorporate features into the network that have been identified as
adducts but lack MS2 information.

The most prominent tool-set used for molecular networking
has been developed by the Global Natural Product Social

Molecular Networking (GNPS; http://gnps.ucsd.edu)
community (Wang et al., 2016). GNPS is an open-access
platform that allows storing and analyzing MS2 data, including
molecular network generation using a modified cosine score and
spectral library matching, followed by possible online
visualizations.

Another example for generating molecular networks based on
spectral similarity is MetGem, which utilizes the t-distributed
stochastic neighbor embedding (t-SNE) algorithm to visualize the
cosine scores calculated in the GNPS molecular networks. The
t-SNE eases the interpretation of the molecular network by
clustering together compounds that show high cosine scores,
which eases the interpretation of the molecular network (Olivon
et al., 2018).

There are different metrics to calculate spectral similarity.
Indeed, cosine and modified cosine score might not often be the
optimal choice for the construction of similarity networks. For
example, compounds that show the same fragmentation pattern
(i.e., the same neutral loss) but differ in the observed m/z show
low cosine scores. It has been shown that Spec2Vec, a recently
developed Python package that calculates spectral similarities
based on fragmental relationships between large datasets, shows
better overall performance than cosine-based scores, which were
originally developed for matching fragmentation-rich electron
ionization (EI) spectra (Huber et al., 2021).

Another approach to estimate spectral similarities is the use of
hypothetical neutral loss spectra. An algorithm called core
structure-based search (CSS) has been developed to calculate
the spectral similarity between the mass difference between pairs
of fragments ions. The CSS algorithm showed good performance
in finding structurally relevant similarities (Xing et al., 2020). MS2

data and its analysis are crucial for accessing the chemical
structure of unknown metabolites. It has been shown that the
combination of different bioinformatic tools further enhances

FIGURE 3 | Representation of knowledge as networks. (A) Genome-scale metabolic networks: reconstructed from different sources of knowledge, such as from
the enzymes identified in the annotated genome of the organism under study, the metabolic reactions databases, and/or biochemical knowledge and literature. The
knownmetabolic reactions in an organism are the basis to generate a genome-scale metabolic network, where the metabolites are represented as nodes that are linked
by (directed or undirected) edges, which represent the reactions converting the metabolites. (B) Chemical ontology networks: structure of relationships
represented as a semantic network, where the nodes represent chemicals or chemical classes as “concepts”, bearing all their properties and definition, and that are
connected by class membership.
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annotation success, which is of great importance, especially in
untargeted metabolomics (Schmid et al., 2021).

Correlation and Association Networks
Metabolites that are connected in metabolic pathways often show
co-dependency, which can be seen by their orchestrated
concentration (i.e., abundance) changes. So, the metabolites’
concentrations are correlated between metabolites that are
associated or co-regulated within metabolic pathways (Rosato
et al., 2018). Correlations of untargeted LC-MS metabolomics
data are calculated by pairwise comparison of the peak intensity
of all features, which results in a correlation adjacencymatrix. In a
correlation network, two metabolites are linked if their
correlation value reaches a given (user-defined) threshold,
which is considered as a significant correlation level (Table 4).

Most commonly, Pearson correlation is used to calculate
correlations. However, due to tight metabolic control and the
presence of long reaction sequences, standard Pearson correlation
typically yields to highly connected and dense networks, which
are hard to analyze and interpret. Gaussian graphical modeling
uses partial instead of full correlation, and corrects for indirect
correlation (i.e., when two metabolites are correlated just because
they are both correlated with a third one). Therefore, using
Gaussian graph modeling, only direct correlations can be
found, which in turn allows us to construct meaningful
networks containing potential direct reaction partners
(Krumsiek et al., 2011). Benedetti et al. further compared the
networks obtained using Pearson correlation, exact partial
correlation, and partial correlation determined by GeneNet
(Benedetti et al., 2020). They observed a dense network with
an increased number of edges at increasing sample size for the
Pearson correlation, whereas the partial correlation network
(established with GeneNet) remained more stable.
Furthermore, the statistical cut-off filter used to define the
correlation threshold was more stable at varying the sample
size using GeneNet than Pearson or partial correlations.

Another approach to statistically create metabolic networks is
the weighted correlation network analysis, also known as
weighted gene co-expression network analysis (WGCNA). In
contrast to canonical correlation network analysis, the edges
(which represent the correlation coefficients between features)
are weighted by an exponent, such that the distribution of the
weighted coefficients follows a power-law distribution,
i.e., WGCNA assumes a priori a scale-free topology of the
underlying network (Zhang and Horvath, 2005; Langfelder
and Horvath, 2008). Nevertheless, to the best of our

knowledge, it has not been proved yet if the statistical
associations of the metabolites (or the subset acquired by GC-
and LC-MS-based technologies) underlie such a scale-free
topology.

WGCNA was originally applied to transcriptomics data, but it
has also been recently employed for network generation using
metabolomics data from human and human microbiome
(Osterhoff et al., 2014; Pedersen and Sofia, 2018; Vernocchi
et al., 2020; Murga-Garrido et al., 2021; Petersen et al., 2021),
animal (Wu et al., 2021), and plants (DiLeo et al., 2011). (Samal
and Martin, 2011).

KNOWLEDGE REPRESENTATION AS
NETWORKS
Genome-Scale Metabolic Networks and
Graphs
Genome-Scale Metabolic Networks (GSMNs) are based on the
current knowledge of the metabolism of a given organism (e.g.,
human metabolic network Human 1 with 13,417 reactions and
4,164 metabolites) (Robinson et al., 2020). They are usually
drafted from genome annotations and reaction databases,
before manual curation by domain experts, using available
literature and simulation results (Table 5). They encompass
the gene–reaction–metabolite information with the matrix
associating metabolites to reactions, and the association of
reactions to their corresponding genes and enzymes (Thiele
and Palsson, 2010) (Figure 3A). GSMNs are frequently used
to simulate metabolic fluxes via constrained-based metabolic
modeling (Becker et al., 2007; O’Brien et al., 2015).
Nonetheless, we will focus here on the use of GSMNs as
graphs, which we will refer to as Genome-Scale Metabolic
Graphs (GSMGs). Different graphs (directed or undirected)
can be derived from GSMNs (Lacroix et al., 2008). For
instance, reaction graphs represent the reactions as nodes, and
two reactions are connected by an edge if the product of the first
reaction is the substrate of the second one. On the other hand, the
nodes of a compound graph represent metabolites that are
connected by edges if they are substrates and products of the
same biochemical transformation. Graph-based analysis methods
can be applied to GSMGs to study both the metabolism and
metabolomics data (Lacroix et al., 2008; Cottret and Jourdan,
2010; Frainay and Jourdan, 2017). For instance, path searches in
GSMGs have been used to infer metabolic pathways connecting
metabolites of interest. While supplanted by flux methods for

TABLE 4 | Description of the key characteristics of correlation and association networks.

Correlation and association networks’ main characteristics

Nodes Features (intensity), low-level annotations (m/z)
Edges Correlation between the abundances of two metabolites
Main Hypothesis Metabolic processes imply metabolites’ abundance that depends on other metabolites’ abundance. Thus, metabolites with

correlated abundance might be metabolically related
Limitations The correlation or association between two metabolites (or features) does not systematically represent a metabolic

relationship (e.g., substrate-product) or interdependence (e.g., co-regulation). Thus, correlation does not necessarily imply
causal, biological, or chemical relationships
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such goals, path searches are still used for metabolomics data
clustering and visualization (Liggi and Griffin, 2017; del Mar
Amador et al., 2018). While GSMG analysis has been mainly
focused on path search, graph theory encompasses a vast range of
applications. Centrality analysis, for example, aiming at
identifying key nodes in a graph, is quite popular for
regulation and protein interaction network analysis, and has
been applied a few times to metabolic networks as well (Faust
et al., 2010; Bánky et al., 2013; Frainay et al., 2019). Beyond
metabolomics data analysis, graph-based metrics have been used
more to characterize and compare whole metabolic networks (Ma
and Zeng, 2003; Mazurie et al., 2010).

It is important to note that GSMNs do not cover all the
metabolic products identified by metabolomics analysis,
suggesting the absence of metabolic reactions and metabolites
in the networks, as previously shown with the human GSMN
(Frainay et al., 2018). This is a well-known problem as the
GSMNs are biased by a reconstruction based on available
genome annotations and knowledge of enzymatic reactions
(Thiele et al., 2014; Pan and Reed, 2018). In consequence,
gaps in the metabolic pathways are not always filled, as such
gaps may also be due to enzymatic promiscuity and underground
metabolisms (Notebaart et al., 2014; Pan and Reed, 2018).

The format in which GSMNs are stored can impact the graph
structure and therefore the analysis of the graph, which is
inconvenient. GSMNs are mainly shared in SBML format,
which is an exchange format for computational models (not
restricted to biochemical reactions) in biology (Hucka et al.,
2003). SBML is mainly oriented towards quantitative models,
which is why it has become the main support for GSMNs, given
the popularity of GSMNs application for flux analysis. Building a
network from a file in SBML format implies that the nodes
correspond to a particular “species”. It should be noted that
the species nodes can represent other biological entities than
metabolites (such as proteins, generic degradation products or
even the whole “biomass”). Furthermore, due to the GSMNs
being tailored for flux modeling, the species actually represent
pools of available biological entities at a given time and location.
Consequently, SBML tends to represent the same metabolite as
multiple species (“pool”) in different compartments, with a
specific quantity that will be used for flux simulations. While
SBML standard allows linking the species describing the same
metabolites since version 2, in practice, those links are rarely
defined. This leads to “duplicated” compartment-specific
metabolites in many GSMNs, which differ from experimental
networks in general, as compartment location is rarely available

for metabolomics data. An alternative to SBML to represent
metabolism knowledge is the BioPAX standard (Demir et al.,
2010), oriented towards a semantic description of biological
processes for indexing, sharing, and integration purposes,
rather than quantitative modeling (Strömbäck and Lambrix,
2005). A network built from a BioPAX standard will have
nodes that correspond to resources that describe biological
entities, which are described using ontology vocabulary and
linked to multiple information. However, BioPAX standard is
mainly used at the individual pathway-level rather than the
genome-scale level. Both exchange formats (SBML and
BioPAX) represent knowledge about metabolism through
lists of biochemical reactions, referencing metabolites as
substrates or products (Strömbäck and Lambrix, 2005). A
direct network translation would lead to a “bipartite
metabolic graph”, where both reactions and compounds are
explicitly represented as nodes. Compounds are thus never
directly connected by an edge, but always through a reaction
node, which differs from the structure of experimental
networks, where related compounds are directly linked
by edges.

Chemical Ontology Networks
Chemical ontologies aim at providing a structured and
formalized representation of chemical concepts. By describing
an explicit structure of relationships among compounds, it can
easily be represented as a semantic network that can be processed
(Table 6).

One of the main differences with the other presented networks
is that, in chemical ontologies, the links do not represent (or
suggest) biochemical/metabolic relationships that involve the
transformation of one node into another. Rather, they
represent subsumption relations between chemical compounds
and broader chemical classes. For example, the ChEBI ontology
links the node “paracetamol” to “carboxamide” and “phenols”,
and each class back to higher classes, such as organic aromatic
compounds (see Figure 3B). These graphs are directed acyclic
graphs since they are organized hierarchically, are directed, and
do not contain cycles. Importantly, in an ontology, molecules can
belong to multiple parent classes. The compounds typically found
in experimental networks lie as terminal nodes, and the rest of the
nodes represent chemical classes. It is also mostly the case for
GSMNs, but it is not rare to find nodes corresponding to classes
(e.g., “a fatty acid”) (Poupin et al., 2020). Chemical ontologies can
also integrate other kinds of relationships directly linking
molecules, such as tautomers or conjugates (which can create

TABLE 5 | Description of the key characteristics of genome-scale metabolic networks and graphs.

Main characteristics of genome-scale metabolic networks and graphs

Nodes A “pool” of compounds (not restricted to small molecules)
Edges Substrate-product relationships from known reactions
Main Hypothesis Using genome annotation, reaction databases, and manual/semi-auto curation to generate a model of an organism’s

metabolism
Limitations There are gaps in the knowledge or predicted metabolic reactions in organisms, which creates an incomplete network of the

metabolism
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cycles in the networks). The ChEBI ontology also links chemical
compounds and classes to other concepts: their chemical/
biological “roles” (e.g., emulsifier or neurotransmitter)
(Degtyarenko et al., 2007). It is important to note that the
class hierarchy of chemical ontologies is built manually by
domain expert consortia, and the annotation of chemical
instances to classes is either done manually or automatically if
a class definition can be expressed as a set of formal rules.

Graphs built from ontologies allow detecting related
compounds through their belonging to a shared class.
Moreover, beyond finding “sibling” compounds, a graph
distance between terminal nodes through their most precise
common class can be computed to quantify relatedness
between any pair of compounds. Such distances based on the
ontology’s graph structure are a common form of semantic
similarity, which found many applications in functional
ontologies, such as the Gene Ontology (GO) (Ashburner et al.,
2000).

Some specific tools allow fetching the chemical classification of
a compound, which can then be used to generate the chemical
ontology network of each compound. For example, ClassyFire
allows to automatically assign chemical classification based on the
compound’s structure (e.g., SMILES), using the ChemOnt
ontology (Feldman et al., 2005; Djoumbou Feunang et al.,
2016). Another tool, CANOPUS, can predict the chemical
class based on MS2 data using ClassyFire and the ChemOnt
ontology (Dührkop et al., 2020).

COMBINING NETWORKS ANALYSIS AND
MULTI-LAYER NETWORKS

Each of the previously presented networks (both knowledge-
based and experimental) represents a different aspect of
metabolism. The combination of two or more of such
networks brings more comprehensive and informative analysis
than a single network, by bringing different angles to the data and
combining specific advantages of each network.

For instance, to improve annotations of metabolite features,
spectral similarity networks can be combined with different
information, such as chemical ontologies or mass difference
networks. ChemRICH, for example, is a chemical similarity
enrichment analysis that uses Tanimoto chemical similarity
and ontologies to associate the metabolic structures from the
similarity network with possible metabolic classes in the
ontologies network (Barupal and Oliver, 2017). The main
benefit of ChemRICH, as compared to classical pathway

mapping, is a higher coverage because missing compounds in
chemical ontologies can be mapped. Another tool developed to
improve metabolite annotation is MolNetEnhancer, which
combines molecular networks with chemical ontologies
generated by ClassyFire and results from diverse in-silico
annotation tools (Ernst et al., 2019). MolNetEnhancer shows
great improvement in annotations, even without a prior library
match in GNPS. FT-BLAST is a tool that uses fragmentation trees
and their comparison to compounds in databases to annotate
unknown compounds.

A fragmentation tree illustrates the fragmentation pattern of a
compound by representing the molecular formulae of the
fragments as nodes, and the neutral losses as edges (Rasche
et al., 2012). Note that the in-silico annotation tool CSI:
FingerID is also based on fragmentation trees (Dührkop et al.,
2015). Moreover, iMet deals with the issue of metabolite
annotations that were not present in any database. It uses the
spectral similarity and the mass difference of the unknown
compounds, and the metabolites present in the databases, in
order to find putative neighbor metabolites that show high
similarity and that are connected by chemical transformations
(Aguilar-Mogas et al., 2017). This way, mass difference networks
can be greatly enhanced by combining them with other
approaches, such as correlation or spectral similarity networks
(Aguilar-Mogas et al., 2017).

To further improve annotation, correlations between the
concentration (i.e., abundance) of metabolites that are
spectrally similar can be included to analyze metabolomics
data. Indeed, it is very likely that, besides having a high
spectral similarity, the concentration of metabolites that are
connected via biochemical reactions also have a high
correlation. Gaquerel et al. utilize in-source fragmentation
patterns and correlation networks to improve MetFrag
annotation results (Gaquerel et al., 2013). The combination of
correlation networks with other metabolic networks can bring
new insights into the metabolomics data. For example, Quell et al.
demonstrated the potential of combining correlation networks
(using Gaussian graphical modeling) with GSMNs and
metabolite-gene association networks (derived from genome-
wide association studies) to identify unknown metabolites
from cohort studies (Quell et al., 2017). However, correlations
and associations, in general, emerge due to different mechanisms,
so the interpretation is not always straightforward (Steuer, 2006).
For example, many associations between metabolite levels (e.g.,
strong correlations) do not happen between metabolites that are
neighbors in the GSMN or that are directly involved in the same
metabolic pathways. Analyzing and interpreting the association

TABLE 6 | Description of the key characteristics of knowledge networks and graphs.

Main characteristics of knowledge networks and graphs

Nodes Chemical compounds and chemical classes
Edges Class membership (subsumption) and other optional semantic relations
Main Hypothesis Knowledge can be organized and represented as a network/graph by manual curation from domain experts and semi-

automatic class assignments
Limitations Ontologies representing the same things might still differ and can be mapped to different concepts
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and correlation networks alongside complementary networks,
such as GSMNs, help reduce spurious associations by using the
biological knowledge incorporated in GSMNs (Benedetti et al.,
2020).

GSMNs can help annotate untargeted metabolomics datasets,
as the metabolites and their relationships via metabolic reactions
can be analyzed to enhance metabolites’ annotations based on
the biochemical context (Silva et al., 2014). First, metabolites
(and potentially their structures) present in a GSMN
represent a knowledge base of the metabolome/lipidome
of a given organism. It must be noted that, in the past,
GSMNs often lacked detailed structural curation
and chemical identifiers, and metabolite names are often
rather arbitrary. However, different improvements were
suggested and are slowly adopted by the GSMN
community (Witting, 2020).

Here, untargeted metabolomics data could be used to help to
improve the GSMNs by identifying missing metabolites and
filling missing metabolic pathways. For example, metabolites

predicted from the WormJam GSMN have been compared
against detected metabolites in the nematode Caenorhabditis
elegans (C. elegans) in different studies (Salzer and Witting,
2021). Interestingly, the overlap of detected and predicted
metabolites was rather modest (less than 40%). Plenty of
metabolites beyond the consensus model were found, and
structural similarity (based on chemical similarity using
Tanimoto distances) has been suggested as an option to
identify structurally related molecules (Witting et al., 2018).

Combining experimental network methods with biochemical
knowledge-based networks can open new avenues. For example,
the recently published tool LINEX allows to analyze lipidomics
data by combining lipid metabolic reactions networks analysis
with correlation networks (Köhler et al., 2021). With this method,
Kohler et al. interpreted the lipidomics correlation networks in
the context of biochemical reactions and found new insights on
lipid metabolism in three previously published datasets (Köhler
et al., 2021). In the same context, MetDNA usesMS/MS similarity
networks and metabolic reaction networks. When two

FIGURE 4 | Multi-layer networks principle. Every network (either knowledge-based or experimental) is an independent layer. Common nodes (i.e., identified
metabolites) are connected to themselves across the different layers by inter-layer edges. The set of nodes is common in the experimental layers, but we omitted some
nodes for the sake of simplicity. The edges of the individual layers and between them can be used, for example, to identify potential metabolite annotations (Example I)
and metabolic reactions (Example II). Multi-layer networks allow preserving the topology and organization of each individual network. In Example I, features 3 and 4
were identified as metabolites C and D, respectively. In both experimental layers, these two features are connected with each other and with feature 5. Similarly, in the
knowledge-based layer, metabolites C and D are connected with each other and with metabolite E. Therefore, it is likely that feature 5 corresponds to metabolite E. In the
same way, features 1 and 2, identified as metabolites A and B, respectively, are connected to each other in the experimental layers but not in the knowledge-based one.
In Example II, the metabolite A and B are separated by a mass difference corresponding to known biotransformation (e.g., a phosphatase as in Figure 2A) in the layer 1
and are connected by a high structural similarity in layer 2. This represents a potential novel metabolic reaction occurring between metabolites A and B in layer 3.
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metabolites are connected by a reaction in the metabolic reaction
network (i.e., when they are neighbor nodes), it is likely that they
also show high similarity in the MS/MS similarity network, which
can be used to weight their annotation confidence (Shen et al.,
2019). By providing a controlled vocabulary, chemical ontologies,
such as ChEBI or ChemOnt (Feldman et al., 2005; Degtyarenko
et al., 2007), also contribute to the ease of interoperability between
networks and data, notably by being frequently referenced in
GSMNs and used in many chemical libraries. The controlled
vocabulary combined with the distances between the nodes in the
ontology offer a useful opportunity for handling partial
identification of metabolites in metabolomics data (e.g., in case
of lipids (PC(32:1)), since they allow to map such data onto
metabolic pathways, using ontology from one specific compound
(as identified in the data) to a more generic class (as annotated in
the network) (Poupin et al., 2020).

Another approach to combine networks and analyze them
could be to construct multi-layer networks. Multi-layer networks
are particularly interesting as they allow viewing the metabolism
from different but complementary perspectives (one per layer)
while keeping the individual features (such as the topology) of
each layer (Figure 4). Multi-layer networks are a useful approach
to bring together multiple networks and interlink information
across network types, for example between experimental and
knowledge networks. As shown in Figure 4, the links between
identified metabolites (i.e., nodes with interlayer edges between
the experimental layers and the knowledge-based layer,
represented as dotted lines) can be used to identify unknown
features (Figure 4, Example I) or to identify a potential novel
metabolic reaction (Figure 4, Example II). Multi-layer networks
methods are already applied to multi-omics data (Hammoud and
Kramer, 2020; Malek et al., 2020), but would benefit
metabolomics data analysis by integrating metabolomics
experimental and knowledge-based networks.

CONCLUSIONS AND FUTUREDIRECTIONS

Fundamentally, metabolites are the small molecules that are the
components of the metabolism. Metabolites are consumed or
produced via metabolic reactions mostly driven by biomolecules,
such as proteins and genes. In order to study the metabolism and
to have a global overview, we can represent the reactions as a
network. Current knowledge of metabolism and chemical
compounds can be used to generate genome-scale metabolic
networks (Figure 3A) and ontology-based networks
(Figure 3B), respectively.

In addition, we can generate other types of networks using
experimental data. Indeed, metabolomics data capture different
aspects and properties of the chemical compounds that constitute
the metabolism. In this review, we described the most common
networks that can be built based on the interactions and

relationships between the measured compounds. We divided
the experimental networks into four types: mass difference
networks (Figure 2A), adduct and feature networks
(Figure 2B), structure and MS/MS similarity networks
(Figure 2C), and correlation networks (Figure 2D). The
capabilities of those networks to represent the relationships
between components are used to annotate and identify
metabolites in untargeted MS-based metabolomics data.

In the end, each of the networks described here is useful for
specific aspects of metabolomics data analysis and/or
interpretation, but they also have limitations. Hence,
integrating different networks into multi-layer networks holds
great promise to combine all the information and derive new
biological insights (Figure 4). Particularly, the combination of
knowledge-based networks with experimental networks would
help to use prior metabolic or chemical knowledge to improve the
metabolites’ identification and interpretation in biologically
relevant contexts.

In the future, with improved metabolite coverage, annotation,
and identification, the combination of networks will enable new
data analytical approaches. We therefore think that the
development of approaches and algorithms for the analysis of
metabolomics multi-layer networks will be at the center stage and
will gain more and more attention. The multi-layer networks’
approach goes beyond mere metabolomics data and will allow
integrating multiple omic data (as independent layers), including
metabolomics. This will finally enable the analysis of metabolism
with a systems biology approach.
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