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Convex optimization of bioprocesses
Josh A. Taylor, Alain Rapaport, and Denis Dochain

Abstract— We optimize a general model of bioprocesses, which
is nonconvex due to the microbial growth in the biochemical
reactors. We formulate a convex relaxation and give conditions
guaranteeing its exactness in both the transient and steady state
cases. When the growth kinetics are modeled by the Contois or,
under constant biomass, Monod or Powell functions, the relaxation
is a second-order cone program, which can be solved efficiently
at large scales. We implement the model on a numerical example
based on a wastewater treatment system.

Index Terms— Bioprocess; compartmental system; con-
vex relaxation; second-order cone programming; wastewa-
ter treatment.

I. INTRODUCTION

We optimize a model of dynamical bioprocesses consisting of a
set of biochemical reactors interconnected by diffusion and mass
flow. The objectives include minimizing substrate outflow, maximiz-
ing biogas production, and tracking setpoints. Within each reactor,
several microbial reactions convert any number of biotic or abiotic
reactants into biomass and/or products. This setup describes a variety
of physical systems such as wastewater treatment networks, the
production of various chemicals, and compartmental approximations
of bioprocesses in continuous media.

The optimization is nonconvex due to the nonlinear microbial
growth in the reactors. We formulate a convex relaxation and derive
analytical conditions guaranteeing its exactness, which is to say the
relaxed solution also solves the original problem. We focus on the
case when the microbial growth can be represented as a second-order
cone (SOC) constraint, as recently shown in [1] for the Monod [2] and
Contois [3] growth rates. We further show that the Powell function [4]
also admits an SOC representation when the biomass is constant. The
resulting optimization is a second-order cone program (SOCP), which
can be solved at large scales with commercial software.

The most closely related topics to ours are chemical process opti-
mization, control and optimization of wastewater systems, and control
of bioprocesses. Most existing approaches to process optimization [5]
and wastewater [6] do not explicitly model the microbial growth, and
often use either linear programming or general nonlinear solvers.
There have been many applications of nonlinear control [7] and
optimization [8] to bioprocesses, but not convex relaxations or SOCP.

Our main results are generalizations of those in [1], which focused
on the gradostat with a single reaction [9]. Here we allow for any
number of substrates and biomasses, general convex objectives, and
multiple biochemical reactions. Our original theoretical contributions
are as follows.
• In Section III, we formulate convex relaxations for optimizing

the trajectory and steady state solution of a general bioprocess.

Funding is acknowledged from the Natural Sciences and Engineering
Research Council of Canada and the French LabEx NUMEV (Project
ANR-10 LABX-20), incorporated into the I-Site MUSE, which partially
funded the sabbatical of J.A. Taylor at MISTEA lab.

Josh Taylor is with The Edward S. Rogers Sr. Department of
Electrical and Computer Engineering, University of Toronto (e-mail:
josh.taylor@utoronto.ca).

Alain Rapaport is with MISTEA, Univ. Montpellier, INRAE, Institut
Agro, Montpellier, France (e-mail: alain.rapaport@inrae.fr).

Denis Dochain is with The Université Catholique de Louvain, Belgium
(e-mail: denis.dochain@uclouvain.be).

• In Section III-C, we identify an SOC representation of the
relaxed growth constraint when the growth rate is the Powell
function [4], [7] and the biomass is constant.

• In Section IV, we give conditions under which the relaxations
are guaranteed to be exact in both the transient and steady state
cases.

To streamline exposition, the only external inputs to the model
are the influent concentrations, e.g., biochemical oxygen demand
and ammonia. Our main exactness results straightforwardly apply
when the flow rates are also variable, but the resulting bilinearities
make the problem nonconvex. This can be handled using techniques
like disjunctive programming, as in [1], or further convex relaxation,
which we discuss at the end of Section II-E.

We apply our results in two examples. In Section V-A, we show
that our exactness conditions simplify to those in [1] when specialized
to the gradostat. In Section V-B, we optimize the allocation of sewage
to three wastewater treatment plants over two weeks. The relaxation
is exact, and takes roughly twenty minutes to solve using SOCP [10].

II. SETUP

A. Network modeling

The system consists of s well-mixed tanks interconnected by mass
flow and diffusion. We denote the set of tanks S. V ∈ Rs×s is a
diagonal matrix in which Vii is the volume of tank i. Tank i has water
inlet flow rate Qin

i and outlet flow rate Qout
i . We let Qij denote the

flow from tank i to tank j. Let dij denote the diffusion rate between
tanks i and j, where dij = dji. Let C = diag

[
Qin
i

]
,

Mij =

{
Qji, i 6= j

−Qout
i −

∑
k∈S Qik, i = j

,

Lij =

{
dij , i 6= j
−
∑
k∈S dik, i = j

,

and N = M + L. M and L are respectively compartmental
and Laplacian matrices. M is invertible if the network is outflow
connected, which is to say that there is a directed path from every tank
to some tank with outflow [11]. Because L is negative semidefinite,
N is also invertible if M is outflow connected, and potentially even
if M is not outflow connected.

B. Microbial growth

We model the microbial growth in the tanks using the notation of
Section 1.5 of [7]. There are m substrates and biomasses in each
perfectly mixed tank. ξi ∈ Rm+ is the process state vector of tank i ∈
S, which contains the concentrations of the substrates and biomasses,
and ξin

i ∈ Rm+ is the corresponding influent concentration vector.
This model is minimal in that ξ includes intermediary products, e.g.,
substrates produced by one reaction and consumed by another, but
not final products such as the CH4 ultimately produced by anaerobic
digestion.

There are r different types of reactions that convert substrates to
other substrates and biomasses. φi(ξi) ∈ Rr+ is a vector of the
reaction kinetics in tank i. We are interested in the case where
the elements of φi(ξi) are concave functions, and in particular
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representable as SOC constraints. We show how to do this for Monod
and Contois kinetics later in Examples III-A and III-B.

Let κi ∈ Rm×r be the stoichiometric matrix relating the reaction
vector, φi(ξi), to the evolution of the process state in tank i. The
dynamics in tank i ∈ S are

Viiξ̇i = Viiκiφi(ξi)−Qout
i ξi −

∑
j∈S

(Qij + dij)ξi

+Qin
i ξ

in
i +

∑
j∈S

(Qji + dij)ξj .

The following example illustrates ξi and κi.
Example 1 (Two-step anaerobic digestion): There are two sub-

strates, Sai and Sbi , and two biomasses, Xa
i and Xb

i . We let ξi =[
Sai , S

b
i , X

a
i , X

b
i

]>
. Sai is converted to both Xa

i and Sbi at the

rate µa (Sai )Xa
i . Sbi is converted to Xb

i at the rate µb
(
Sbi

)
Xb
i .

Therefore,

φi(ξi) =

[
µa (Sai )Xa

i

µb
(
Sbi

)
Xb
i

]
and κi =


−1 0
1 −1
1 0
0 1

 .
We now write the dynamics in vector form. We suppress subscripts

to represent stacked vectors, i.e., ξ = [ξ1, ..., ξs]
> and φ(ξ) =

[φ1(ξ1), ..., φs(ξs)]
>. Let A ⊗ B denote the Kronecker product of

A and B, Iα ∈ Rα×α the identity matrix, and Â = A ⊗ Im. Let
K be a block diagonal matrix with κ1, ..., κs on its main diagonal.
If κi = κ for all i ∈ S, then K = Is ⊗ κ. The dynamics of the full
system are given in vector form by

V̂ ξ̇ = V̂ Kφ(ξ) + N̂ξ + Ĉξin. (1)

We allow the dynamics to be non-autonomous, in which case N̂ , Ĉ,
and ξin can be time-varying.

C. Discretization in time

To make (1) compatible with finite-dimensional optimization, we
replace the derivatives with a numerical approximation, which we
denote Dn. For example, in the case of the implicit Euler method
with time step ∆, Dn[ξ(·)] = (ξ(n) − ξ(n − 1))/∆. Dn could
also be a more sophisticated approximation such as a Runge-Kutta
scheme [12]. The time periods are indexed n ∈ N = {1, ..., τ}. We
have

V̂Dn[ξ(·)] = V̂ Kφ(ξ(n)) + N̂(n)ξ(n) + Ĉ(n)ξin(n) (2)

for n ∈ N . The initial condition is ξ(0) = ξ0.

D. Objectives

We consider objectives of the form

F(ξ, T ) =
∑
n∈N

Fξ(ξ(n)) + Fφ(T (n)), (3)

where Fξ and Fφ are convex and T (n) = φ(ξ(n)). The following
are examples.
• Minimizing the outflow of substrates,

Fξ(ξ(n)) =
∑
i∈S

Qout
i η>i ξi(n),

where ηi is a vector that selects the entries of ξi(n) correspond-
ing to pollutants.

• The production of biogas in a tank is proportional to the kinetics
that convert substrates to biomass. Let σi ∈ Rm+ be a vector that
is only nonzero for entries of Ti(n) corresponding to biogas

production. Let M⊆ S be the subset of tanks that can capture
biogas from anaerobic digestion. We maximize biogas through
the objective

Fφ(T (n)) = −
∑
i∈M

Viiσ
>
i Ti(n).

• Setpoint tracking,

Fξ(ξ(n)) =
(
ξ(n)− ξ̄

)>
A
(
ξ(n)− ξ̄

)
,

where A � 0 and ξ̄ is a desired operating point.

E. Problem statement

We aim to solve the following optimization problem.

P min
ξ,ξin,T

F(ξ, T ) (4a)

such that T (n) = φ(ξ(n)), n ∈ N (4b)

V̂Dn[ξ(·)] = V̂ KT (n) + N̂(n)ξ(n)

+ Ĉ(n)ξin(n), n ∈ N (4c)(
ξ, ξin, T

)
∈ Ω. (4d)

P models the optimization of a broad range of bioprocesses such as
wastewater treatment. We refer the reader to [7] for broad coverage
of this topic.

A solution of P is a trajectory
(
ξ(n), ξin(n), T (n)

)
, n ∈ N .

The flows and diffusions between tanks, encoded by the matrices
N̂(n) and Ĉ(n), are not decision variables. For this reason constraint
(4c) is linear. The set Ω in (4d) consists of linear constraints such
as the initial condition, total input matter, and maximum substrate
concentrations; several other examples are given in [1]. Note that Ω
can constrain T (·) so as to allow constraints on the growth without
adding nonlinearities. The only nonconvexity is therefore (4b), the
growth constraint; this is the focus of the next two sections.

We note that in many applications, the flow rates are important
decision variables. They are parameters here because our focus is on
incorporating the growth kinetics in a convex fashion. In the case
that the flow rates are variable, (4c) becomes bilinear and hence
nonconvex. There are several ways to handle the bilinearity, including
• McCormick [13] and lift-and-project [14] relaxations;
• disjunctive programming reformulations if the flow variables are

binary, as in [1];
• and finding a local minimum via nonlinear programming, e.g.,

exploiting the biconvex structure with the Alternating Direction
Method of Multipliers [15].

All three of the above techniques are viable because, as described
in the next section, we have a tractable way to represent the growth
constraint, (4b).

III. CONVEX RELAXATION

P is nonconvex because constraint (4b) is a nonlinear equality. One
way around this difficulty is to instead solve a convex relaxation of
P , as in [1]. If all elements of the vector φ(·) are concave functions,
we obtain a convex relaxation by replacing (4b) with the inequality

T (n) ≤ φ(ξ(n)), n ∈ N . (5)

We refer to the resulting optimization as PR. As mentioned earlier,
we are interested in the case where (5) is concave and, ideally,
representable as linear or SOC constraints. Several such examples
are given below. We refer the reader to Appendix 1 of [7] for a
comprehensive list of growth rates.
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A. Contois growth

Suppose that there is a substrate of concentration S, a biomass of
concentration X , and the growth rate is Contois [3]. Then constraint
(5) takes the form

T (n) ≤ µS(n)X(n)

kCX(n) + S(n)
,

where µ and kC are constant parameters. As shown in [1], this is
concave and can be written as the SOC constraint∥∥∥∥∥∥

 µS(n)
kCT (n)
µkCX(n)

∥∥∥∥∥∥ ≤ µkCX(n) + µS(n)− kCT (n). (6)

B. Monod growth with constant biomass

Consider Section III-A, but now suppose that the growth rate is
Monod [2]. Then constraint (5) takes the form

T (n) ≤ µS(n)X(n)

kM + S(n)
.

This constraint is quasiconcave. It becomes concave if we assume
that the biomass in each time period is not an optimization variable,
but an exogenous parameter, i.e., X(n) = X̄(n) for n ∈ N . This
approximation is often valid because the biomass concentration is
typically larger and varies more slowly than the substrate concentra-
tions, and is therefore relatively insensitive to the substrates. In this
case, as shown in [1], it can be written as the SOC constraint∥∥∥∥∥∥
 µS(n)X̄(n)

kMT (n)
µkMX̄(n)

∥∥∥∥∥∥ ≤ µkMX̄(n) + µS(n)X̄(n)− kMT (n). (7)

C. Powell growth with constant biomass

In the case of the Powell growth rate [4], constraint (5) takes the
form

T (n) ≤ µX(n)

2KB

(√
KB + S(n)−

√
KB + S(n)2 − 4KBS(n)

)
,

(8)

where 0 < KB ≤ 1/4, with the upper limit ensuring the square root
is real. The following is an original result.

Theorem 1: If X(n) = X̄(n) for n ∈ N , (8) is equivalent to the
SOC constraint∥∥∥∥∥

[
S(n)− 2KB√
KB − 4K2

B

]∥∥∥∥∥ ≤ S(n) +
√
KB −

2KB
µX̄(n)

T (n). (9)

This can be shown by simplifying (9).

D. Blackman growth with constant biomass

In the case of the Blackman growth rate [16], constraint (5) takes
the form

T (n) ≤
{ µ

KB
S(n)X(n) if S(n) ≤ KB

µX(n) if S(n) > KB
,

where KB > 0. This is a pair of linear constraints if, as above,
X(n) = X̄(n) for n ∈ N .

E. Interactive and non-interactive growth
Suppose the growth of the biomass depends on two rates,

µa(S(n), X(n)) and µb(S(n), X(n)), and the individual
kinetics constraints, Ta(n) ≤ µa(S(n), X(n))X(n) and
Ta(n) ≤ µb(S(n), X(n))X(n), both have SOC representations.
The dependency often takes one of two forms: non-
interactive, min{µa(S(n), X(n)), µb(S(n), X(n))}, which in
ecological modeling is known as Liebig’s Law, and interactive,
µa(S(n), X(n))µb(S(n), X(n)), which is common in models of
bioprocesses.

The non-interactive case is enforced by the two individual kinetics
constraints along with T (n) ≤ Ta(n) and T (n) ≤ T b(n). The
interactive case is in general nonconvex, and does not have an SOC
representation. However, the geometric mean of the growth rates,√
µa(S(n), X(n))µb(S(n), X(n)), does lead to an SOC represen-

tation. It is enforced by the two individual kinetics constraints along
with T (n)2 ≤ Ta(n)T b(n). The latter is hyperbolic, a type of SOC
constraint [10]. We note that if both rates are Monod functions, this
is somewhat similar to the growth rate given in [17], which does not
have a square root.

IV. EXACTNESS

PR is exact if its optimal solution also solves P; this is the ideal
outcome. We can verify exactness by checking whether (5) is satisfied
with equality at the optimal solution. When (5) is not satisfied with
equality, PR might still provide a close approximation of P , but this
is hard to guarantee. While the exactness of a solution can always be
tested, it is also useful to have analytical conditions, even if narrow,
under which the exactness of PR is guaranteed.

For the rest of this section we let

Dn[ξ(·)] = (ξ(n)− ξ(n− 1))/∆,

which corresponds to the implicit Euler step. We assume that the only
constraint specified by Ω in (4d) is an initial condition, ξ(0) = ξ0,
and that ξin(·) is fixed; note that as long as exactness holds for all
feasible values of ξin(·), it holds when ξin(·) is a variable. We also
assume that strong duality holds for PR; this is a mild assumption
that, e.g., holds as long as there is a feasible solution in which ξ(n) >
0 for all n ∈ N .

Let J (ξ(n)) ∈ Rrs×ms denote the Jacobian matrix of φ(·) at
ξ(n). For convenience, we define the following quantities:

Γ(n) =
1

∆

(
V̂ /∆− N̂(n)> − J (ξ(n))>K>V̂

)−1
V̂

=
(
Ims −∆V̂ −1

(
N̂(n)> + J (ξ(n))>K>V̂

))−1
Φ(n) = −∇Fφ(T (n))−∆K>V̂

τ∑
k=n

(
k∏
l=n

Γ(l)

)
V̂ −1

×
(
∇Fξ(ξ(k)) + J (ξ(k))>∇Fφ(T (k))

)
.

Observe that if ∆ is small enough, Γ(n) is positive definite and close
to the identify matrix.

Theorem 2: PR is exact if at an optimal solution, Φ(n) > 0 for
all n ∈ N .

Proof: Let λ(n) ∈ Rms and ρ(n) ∈ Rrs be the respective dual
multipliers of constraints (4c) and (5) for n ∈ N . The Lagrangian of
PR is

L = F(ξ, T ) +
∑
n∈N

ρ(n)> (T (n)− φ(ξ(n)))

+ λ(n)>
(
V̂ (ξ(n− 1)− ξ(n))/∆ + V̂ KT (n)

+N̂(n)ξ(n) + Ĉ(n)ξin(n)
)
.
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Differentiating the Lagrangian by T (n) and ξ(n) and setting it to
zero gives

−ρ(n) = ∇Fφ(T (n)) +K>V̂ λ(n), n ∈ N , (10a)

J (ξ(n))>ρ(n) = ∇Fξ(ξ(n))−
(
V̂ /∆− N̂(n)>

)
λ(n)

+ V̂ λ(n+ 1)/∆, n ∈ N \ τ (10b)

J (ξ(τ))>ρ(τ) = ∇Fξ(ξ(τ))−
(
V̂ /∆− N̂(n)>

)
λ(τ). (10c)

We now solve for ρ(n). Premultiplying (10a) by J (ξ(n))> and
summing with (10b) and (10c) gives

λ(τ) = ∆Γ(τ)V̂ −1
(
∇Fξ(ξ(τ)) + J (ξ(τ))>∇Fφ(T (τ))

)
,

and, for n ∈ N \ τ ,

λ(n) = ∆Γ(n)V̂ −1
(
∇Fξ(ξ(n)) + J (ξ(n))>∇Fφ(T (n))

)
+ Γ(n)λ(n+ 1).

Expanding the recursion yields

λ(n) = ∆

τ∑
k=n

(
k∏
l=n

Γ(l)

)
V̂ −1

×
(
∇Fξ(ξ(k)) + J (ξ(k))>∇Fφ(T (k))

)
.

We now substitute this into (10a) to obtain

ρ(n) = −∇Fφ(T (n))−∆K>V̂
τ∑

k=n

(
k∏
l=n

Γ(l)

)
V̂ −1

×
(
∇Fξ(ξ(k)) + J (ξ(k))>∇Fφ(T (k))

)
= Φ(n).

From here we can see that the conditions of the theorem guarantee
that ρ(n) > 0 for all n ∈ N .

Theorem 2 is of limited immediate use because we must know the
optimal solution of PR to test if Φ(n) > 0. It can however be used
to derive sufficient conditions for exactness that are easy to test. We
now derive two such conditions that do not require knowledge of the
optimal solution.

For the rest of this section, assume that Fξ and Fφ are linear with
gradients fξ ∈ Rms and fφ ∈ Rrs. In this case, we can write

Φ(n) = −∆K>V̂

(
τ∑

k=n

k∏
l=n

Γ(l)

)
V̂ −1fξ−(

Ims + ∆K>V̂
τ∑

k=n

(
k∏
l=n

Γ(l)

)
V̂ −1J (ξ(k))>

)
fφ.

We also assume that each element of the vector of reaction kinetics
has bounded slope, so that all entries of J (ξ(n)), n ∈ N , are
bounded.

Let
Ψ(n) = V̂ −1N̂(n)> + V̂ −1J (ξ(n))>K>V̂ .

The first term of Ψ(n) is negative semidefinite because N(n) is
compartmental [11]. The latter term is bounded by assumption, and
as we will see in the examples, usually negative semidefinite—we
assume that this is the case. We therefore assume that the eigenvalues
of Ψ(n) are in the range [−ψ̄, 0], where ψ̄ > 0 is an upper bound
on the magnitude. We can use the push-through identity to write

Γ(n) = Ims + ∆Ψ(n)(Ims −∆Ψ(n))−1.

The eigenvalues of the second term are in the range [−∆ψ̄, 0], and
the eigenvalues of Γ(n) are in the range of [1−∆ψ̄, 1].

Corollary 1: If fφ = 0 and K>fξ < 0, then there exists a ∆ > 0
for which PR is exact.

Proof: (Sketch) Observe that

k∏
l=n

Γ(l)

is equal to Ims plus terms that are norm-bounded by positive powers
of ∆ψ̄. Similarly,

τ∑
k=n

k∏
l=n

Γ(l)

is equal to (τ − n + 1)Ims plus terms that are norm-bounded by
positive powers of ∆ψ̄. We can make these terms arbitrarily small
by choosing ∆ small. We therefore write

τ∑
k=n

k∏
l=n

Γ(l) ≈ (τ − n+ 1)Ims.

Because fφ = 0, we have that

Φ(n) ≈− (τ − n+ 1)∆K>fξ.

This is strictly positive for all n ∈ N if K>fξ < 0.
Given ψ̄, which is easy to obtain from the system parameters, we

can estimate the maximum value of ∆ that guarantees exactness.
Given that ∆ is small, we need only ensure that Γ(n)K>fξ > 0
and not worry about terms with higher order products of Γ(n). This
will be the case, for example, if we choose ∆ small enough that
the smallest element of the vector K>fξ is greater than the largest
magnitude element of ∆ψ̄K>fξ .

Corollary 2: If fξ = 0 and fφ > 0, then there exists a ∆ > 0 for
which PR is exact.

Proof: (Sketch) Following the same logic as Corollary 1, we
can choose ∆ > 0 such that

Φ(n) ≈

(
Ims −∆K>

τ∑
k=n

J (ξ(k))>
)
fφ. (11)

The second term in the parentheses can be made arbitrarily small by
choosing ∆ to be small. In this case Φ(n) ≈ fφ, which is positive
if fφ > 0.

A shortcoming of Corollaries 1 and 2 is that they can be limited
to short time intervals. This is because if an interval is to remain
constant, the number of time periods, τ , must increase as the step,
∆, decreases, and the approximations in the proofs of the corollaries
do not hold for increasing τ . On the other hand, these are conservative
sufficient conditions. For example, the second term in the parentheses
of (11) will often be positive semidefinite or nearly so. This is because
it is typical for K to be lower triangular with a negative diagonal
and for J (ξ(n)) to be nonnegative and nearly diagonal. We therefore
expect that exactness will sometimes hold for larger ∆ over longer
time intervals.

We view these theoretical results not as a complete characterization
of when exactness is guaranteed, but rather as evidence that PR is
exact for a meaningful set of problems, and as guidance as to how
to identify them. While there are certainly problems of interest for
which their conditions do not hold, PR may nonetheless provide a
useful and sometimes perfect approximation.

A. Steady state
It may be of interest to optimize (1) in steady state, e.g., when the

solution does not change significantly on the timescale of interest, to
find the best operating point, or to reduce the number of variables.
We obtain a steady state optimization by dropping the time index
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and replacing the finite difference in (4c) with zero. The resulting
(relaxed) optimization is:

PRS min
ξ,ξin,T

F(ξ, T ) (12a)

such that T ≤ φ(ξ) (12b)

0 = V̂ KT + N̂ξ + Ĉξin (12c)(
ξ, ξin, T

)
∈ Ω. (12d)

We remark that, in general, a solution to PRS is not guaranteed to
be an equilibrium of (1). One special case in which guarantees do
exist is the gradostat, which we discuss in Example V-A. We refer
the reader to [1] for a brief summary.

Theorem 3: PRS is exact if the network is outflow connected and
at the optimal solution,

0 <

(
Ims +K>V̂

(
N̂>

)−1
J (ξ)>

)−1
×(

K>V̂
(
N̂>

)−1
∇Fξ(ξ)−∇Fφ(T )

)
.

Proof: The Lagrangian of PRS is

L = F(ξ, T ) + ρ> (T − φ(ξ)) + λ>
(
V̂ KT + N̂ξ + Ĉξin

)
.

Differentiating the Lagrangian and setting it to zero gives

0 = ∇Fφ(T ) + ρ+K>V̂ λ

J (ξ)>ρ = ∇Fξ(ξ) + N̂>λ.

We now solve for ρ. N̂ is invertible due to outflow-connectedness.
Then

λ =
(
N̂>

)−1 (
J (ξ)>ρ−∇Fξ(ξ)

)
,

and

0 = ∇Fφ(T ) + ρ+K>V̂
(
N̂>

)−1 (
J (ξ)>ρ−∇Fξ(ξ)

)
.

Solving, we have

ρ =

(
Ims +K>V̂

(
N̂>

)−1
J (ξ)>

)−1
×(

K>V̂
(
N̂>

)−1
∇Fξ(ξ)−∇Fφ(T )

)
.

By complementary slackness, PRS is exact when ρ > 0.
As in the latter part of the previous section, we now assume that
Fξ and Fφ are linear with gradients fξ ∈ Rms and fφ ∈ Rrs.

Corollary 3: Suppose that for all ξ ≥ 0,(
Ims +K>V̂

(
N̂>

)−1
J (ξ)>

)−1
≥ 0,

and

K>V̂
(
N̂>

)−1
fξ − fφ ≥ 0.

If at least one of the inequalities is strict, then PRS is exact.
Like Theorem 3, Corollary 3 depends on the optimal solution, but

to a lesser extent. Whereas Theorem 3 depends on ξ and T through
the objective and J (ξ), Corollary 3 only depends on ξ through J (ξ).
This is more manageable because J (ξ) is often positive and nearly
diagonal. For example, if we assume assume that biomass is constant
and all growth rates are Monod, as in Section III-B, then J (ξ) is
positive on the diagonal and zero elsewhere.

V. EXAMPLES

A. The gradostat

The gradostat is a special case of (1) where in each tank i ∈ S,
a single substrate, Si, is converted to a single type of biomass, Xi.
The conversion occurs at the rate φi(Si, Xi)/y, where y is the yield.
Then ξi = [Si, Xi]

> and κi = [−1/y, 1]>. In [1], several examples
are given in which the gradostat is optimized over time and in steady
state.

Here we first apply Corollary 1 to the gradostat. Suppose
Fξ(ξ(n)) = f>S S(n) + f>XX(n). In this case, Corollary 1 holds
if −fS/y + fX < 0. When dealing with the decontamination of
undesirable substrates, we do not seek to minimize biomass, in which
case fX = 0 and the condition is satisfied if fS > 0.

We now apply Theorem 3 to the gradostat in steady state. Let
JS(ξ) ∈ Rr×s be the Jacobian matrix of φ(ξ) with respect to S,
and let JX(ξ) ∈ Rr×s be the Jacobian matrix of φ(ξ) with respect
to X . PRS is exact if

0 <

(
Is + V

(
N>

)−1 (
−JS(ξ)>/y + JX(ξ)>

))−1
×(

K>V
(
N>

)−1
∇Fξ(ξ)−∇Fφ(T )

)
.

It is straightforward to verify that when Fξ(ξ) = 0, this condition
directly implies Theorem 1 in [1]. Similarly, we obtain Corollary 1
in [1] if we specialize Corollary 3 to the gradostat.

B. Wastewater treatment

In this example, we optimize an idealized wastewater treatment
system consisting of three wastewater treatment plants of the city of
Paris and its suburbs. The model is based on that in [18], [19], which
is based on the Activated Sludge Model no. 1 [20], and the influent
data from the Inf rain 2006 dataset of [21]. We implemented the
model using the parser CVX [22] and the solver Gurobi [23] on a
personal computer from 2014 with a 1.4 GHz dual-core processor.

Sewer networks typically have several valves and pumps for con-
trolling flow rates. Modeling these as actuators would unfortunately
introduce bilinearities, which, while amenable to techniques like
McCormick relaxations [13], are out of our current scope. Here we
instead assume that the flow rates are constant and fixed amounts of
BOD and NH+

4 are to be allocated over the treatment plants in each
time period.

The flow rates are given by Qin
1 = 0.1 m3/s, Qin

2 = 0.4 m3/s,
and Qin

3 = 0.2 m3/s. All tanks have volume 1000 m3. In each plant

i ∈ S, the state vector ξi =

[
ξBOD
i , ξ

NH+
4

i , ξ
NO−

2
i , ξ

NO−
3

i

]>
∈ R4

consists of biochemical oxygen demand, ammonia nitrogen, nitrite,
and nitrate.

The biomass concentrations in each plant and time period are
assumed to be exogenous parameters, and therefore not components
of the process state. This is an admissible assumption in the sense that
the dynamics of the biomass concentration is typically much slower
than that of the other process components, and has a larger amplitude.
As a result of this assumption, it is not necessary to specify biomass
influent concentrations.

In each tank i ∈ S, the elements of the process state have

kinetics φBOD
i , φ

NH+
4

i , φ
NO−

2
i , and φ

NO−
3

i . All assume Monod growth
rates with parameters given in Table I, which comes from Table 1
in [24]. Because the biomass is constant, the growth kinetics can be
represented as SOC constraints in PR. The stochiometric matrix for



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 

Parameter Plant 1 Plant 2 Plant 3
µBOD (1/day) 3.99 2.56 1.93

µNH+
4 0.84 0.83 0.89

µNO−
2 1.68 1.27 0.92

µNO−
3 1.21 1.38 0.85

KBOD (mg/L) 13.67 11.65 14.26

KNH+
4 6.59 14.98 8.53

KNO−
2 2.46 1.15 2.55

KNO−
3 1.40 2.69 4.20

yNH+
4 ,NO−

2 0.28 0.25 0.27

yNO−
2 ,NO−

3 0.68 0.64 0.70

TABLE I
GROWTH FUNCTION PARAMETERS

each plant i ∈ S is

κi =


−1 0 0 0
0 −1 0 0

0 1/y
NH+

4 ,NO−
2

i −1 0

0 0 1/y
NO−

2 ,NO−
3

i −1

 .
We used the implicit Euler method, Dn[ξ(·)] = (ξ(n)−ξ(n−1))/∆,
with the stepsize ∆ = 1, which corresponds to 15 minutes. There
are τ = 1345 time periods, so that the total time is two weeks. The
boundary condition is ξ(0) = ξ(τ). This could represent periodic
operation, or exogenous conditions that are similar from week to
week.

The process state must satisfy ξBOD
i (n) ≤ 150 mg/L and

ξ
NH+

4
i (n) ≤ 60 mg/L for each i ∈ S and n ∈ N . Without these

constraints, most of the substrate would be directed to Plant 1, which
is more efficient than the others. This constraint could represent, for
example, regulatory limits on the pollution released by the plants.

In each time period, fixed quantities of BOD and NH+
4 , ΞBOD(n)

and ΞNH+
4 (n), must be allocated over the treatment plants. These

quantities are based on the Inf rain 2006 dataset of [21], which
covers 1345 15-minute intervals. ΞBOD(·) is set to SS (readily
biodegradable substrate), and ΞNH+

4 (·) to SNH (NH+
4 and NH3 ni-

trogen) in [21]. The allocation is represented by the linear constraints

ΞBOD(n) =

3∑
i=1

Qin
i (n)ξBOD,in

i (n)

ΞNH+
4 (n) =

3∑
i=1

Qin
i (n)ξ

NH+
4 ,in

i (n),

for each n ∈ N . The other influent concentrations are ξ
NO−

2 ,in
i (n) =

3 and ξ
NO−

3 ,in
i (n) = 10 for i ∈ S and n ∈ N .

The plant biomass concentrations are set to X̄i(n) =

100
(

1 + (−1)i sin(10πn/τ)
)

for i ∈ S and n ∈ N . Observe that
this has larger magnitude and varies slower than the other influents.

For each i ∈ S and n ∈ N , the optimization variables are
ξi(n), ξBOD,in

i (n), and ξNH4,in
i (n). The objective is to minimize the

untreated wastewater released by the plants, given by∑
n∈N

∑
i∈S

Qout
i η>i ξi(n),

where we note that Qout
i = Qin

i , and ηi = [2, 2, 0.3, 0.1, 0]>. This
objective was chosen to satisfy Corollary 1. Note, however, that the
result does not fully apply due to the boundary condition, ξ(0) =
ξ(τ), and the upper limit on the process state.

The convex relaxation PR contains 145272 variables (in standard
form) and took 17 minutes to solve. The 18 solver iterations ac-
counted for only four seconds, and the rest of the time was used for
preprocessing. Despite not fully satisfying Corollary 1, the solution
was exact in all time periods.

Figures 1 and 2 respectively show the optimal influent allocation,
ξin(·), and the resulting plant effluent concentrations, ξ(·), between
hours 175 and 275. The slower variation of the biomass dominates
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Fig. 1. ξin(·) from hour 175 to 275. The units are mg/L.

that of the diurnal variation in the Inf rain 2006 dataset, leading
to concentration increases whenever the biomass influent into each
plant is high. There is a spike in ΞBOD(·) and ΞNH+

4 (·) around hour
250. This causes ξBOD

i (·), and ξNH4
i (n) to hit their concentration

limits in Plants 1 and 3. When this happens, the remainder is allocated
to Plant 2, which has little biomass at the time, and hence cannot
transform the substrates as efficiently.

VI. CONCLUSION

We have formulated a convex relaxation for optimizing a broad
class of bioprocesses. We proved that the relaxation is exact under
simple conditions, and implemented it on a wastewater treatment
example with over one hundred thousand variables. We believe that
a wide range of problems can be approached in this manner due to
the generality of the model and the tractability of SOCP.

One direction of future work is dealing with inexactness. Two
options are deriving general convex underestimators to limit the
relaxation gap, as in [1], and finding local minima of the non-relaxed
problem. In particular, the concave-convex procedure [25] is well-
suited to the nonconvexity encountered here and would entail solving
a sequence of SOCPs. We also intend to incorporate new elements
into the model such as biomass death and recirculation, and to apply
the relaxation in other contexts such as enzymes, where Michaelis-
Menten kinetics [26] have the same form as Monod kinetics.
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