Root distributions and traits in a semi-arid agroforestry parkland dominated by Faidherbia albida: potential impacts on soil C and nutrients stocks?

Lorène Siegwart, Isabelle Bertrand, Christophe Jourdan

To cite this version:
Lorène Siegwart, Isabelle Bertrand, Christophe Jourdan. Root distributions and traits in a semi-arid agroforestry parkland dominated by Faidherbia albida: potential impacts on soil C and nutrients stocks?. 5th World Congress on Agroforestry, Jul 2022, Quebec, Canada. hal-03638065

HAL Id: hal-03638065
https://hal.inrae.fr/hal-03638065
Submitted on 6 Jul 2022
Root distributions and traits in a semi-arid agroforestry parkland dominated by *Faidherbia albida*: potential impacts on soil C and nutrient stocks?

Siegwart Lorène¹, Bertrand Isabelle¹, Jourdan Christophe¹,²
¹UMR Eco&Sols, Univ Montpellier, CIRAD, INRAE,IRD, Montpellier SupAgro, Montpellier, France
²CIRAD, UMR Eco&Sols, F-34398 Montpellier, France
lorente.siegwart@supagro.fr

The **objectives** of this study were:
- to assess the tree and crop root distribution and traits down to 150 cm deep in a Sub-Saharan agroforestry parkland dominated by *Faidherbia albida* in Senegal
- to quantify the contribution of tree and crop root-derived C inputs to soil C stocks along the soil profile

Root biomass density was measured by manual sorting from a large volume of soil (1m² x soil layer). Root mapping was assessed by counting the root impacts. Roots were sampled for functional traits and chemical composition analysis.

Methods

Experimental set-up of the pits (1 m * 1 m * 2 m deep):
- 2 locations (under the tree and far (+30m) from the trunk)
- x 5 soil layers (0-10, 10-30, 30-50, 50-100, 100-150 cm)
- x 2 plant species (tree and annual crop)
- x 2 rotations (2020: pearl millet and 2021: groundnut)
- x 3 replicated trees

Results

Deep tree roots with low biomass density vs. shallow crop roots with high biomass density p-value = 6.31×10^{-3}

→ **complementarity theory for associated plants** (Van Noordwijk et al. 1996)

At 30cm deep, tree roots were found at +30m from the trunk, in higher quantity than under the tree p-value = 3.88×10^{-3}

→ **compromise** of the tree between water acquisition in deeper soil layers during the dry season (Fig. 3) and nutrient acquisition in topsoil during the wet season → plasticity of the perennial root system (Zanetti et al., 2015)

Highlights

- Tree fine roots found at +30m of the trunk at 30 cm of depth: attesting the compromise between water and nutrient acquisition
- 96% and 83% of the tree root C inputs are located below 100cm of depth under and far from the tree, respectively
- From the topsoil to the water table, the tree fine roots contribute to 27% (under) and 18% (far from tree) of the total annual root-derived C inputs to soil

Acknowledgments
The authors thank Ibou Diouf (Sob, Senegal) for technical support in root observations and Patricia Moulin (LAMA/IESOL, Senegal) for conducting all soil analyses, and Aline Personne, Nancy Rakotondrazafy and Didier Arnal from Eco&Sols for helping with the root processing and analyses.