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Abstract

Spatiotemporal variations of natural selection may influence the evolution of various
features of organisms such as local adaptation or specialisation. This article develops
a method for inferring how selection varies between locations and between generations
from phenotypic data. It is assumed that generations are non-overlapping and that
individuals reproduce by selfing or asexually. A quantitative genetics model taking
account of the effects of stabilising natural selection, the environment and mutation
on phenotypic means and variances is developed. Explicit results on the evolution of
populations are derived and used to develop a Bayesian inference method. The latter
is applied to simulated data and to data from a wheat participatory plant breeding
programme. It has some ability to infer evolutionary parameters, but estimates may be
sensitive to prior distributions, for example when phenotypic time series are short and
when environmental effects are large. In such cases, sensitivity to prior distributions
may be reported or more data may be collected.
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1. Introduction

Selection is the process by which favourable types become more frequent in succes-
sive generations (Barton et al., 2007, p. 457). Selective pressures may vary in space
and in time (Lande and Shannon, 1996; Papäıx et al., 2011; Troth et al., 2018; Gar-
nault et al., 2019) and these variations may influence the evolution of various features
of organisms, for example local adaptation (Kawecki and Ebert, 2004; Débarre et al.,
2013; David et al., 2017), specialisation (Poisot et al., 2011), dispersal (Friedenberg,
2003) or phenotypic heterogeneity (Sasaki and Ellner, 1995; Ackermann, 2015). Thus,
these variations are involved in numerous practical issues, for example they may gener-
ate biological diversity in particular when considering divergent selection in subdivided
populations (Dobzhansky, 1973; Kocher, 2004; Enjalbert et al., 2011), they may allow
some genotypes to better develop in some environments (Rhoné et al., 2008; Gautier
et al., 2009; Pariaud et al., 2009; Fabre et al., 2015; Ropars et al., 2016) or they may
be involved in the emergence of resistances to pesticides and drugs (Papäıx et al., 2011;
REX Consortium, 2013; Garnault et al., 2019). Natural selection has a strong impact
on the management and breeding of crop species for instance in crop diversity con-
servation. In in situ conservation approaches, defined in the International Treaty on
Plant Genetic Resources for Food and Agriculture (ITPGRFA 2009) as ”the conser-
vation of ecosystems and natural habitats and the maintenance and recovery of viable
populations of species in their natural surroundings and, in the case of domesticated
or cultivated plant species, in the surroundings where they have developed their dis-
tinctive properties”, populations of wild or domesticated species are grown over time
in environments submitted to all evolutionary forces including natural selection (Rhoné
et al., 2008; Enjalbert et al., 2011). Such populations evolve and may adapt to chang-
ing climatic conditions, emerging diseases and agricultural practices depending on the
type, strength and direction of selection. Based on this principle, different strategies
have been proposed focusing on the conservation and renewing of crop genetic diversity
(dynamic management, Enjalbert et al., 2011) or on the improvement of the population
(evolutionary plant breeding, Suneson, 1956). More recently, decentralised participatory
breeding approaches have developed to produce populations adapted to local contexts
and practices with low input requirements in traditional or industrialised agricultural
contexts (Sperling et al., 2001; Ceccarelli et al., 2001; Dawson et al., 2011). Charac-
terisation of selective pressures on these populations is important to anticipate their
evolution and optimise their management.

Selection can be inferred in various ways, in particular using retrospective methods
(Barton et al., 2007, Chap. 19; Lefèvre et al., 2016, p. 665). This approach consists
in measuring quantitative traits on individuals sampled in a population at several time
points. Phenotypic evolution is then modelled taking account of selection and param-
eters are estimated by fitting the model to the data. For example such methods have
been used to quantify selection for Darwin’s finches (Grant and Grant, 1995). Unlike
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prospective methods, they do not require measures of fitness components (Lande and
Arnold, 1983; Barton et al., 2007, p. 525).

The main retrospective method that has been used is based on the breeder’s equation
(Lande, 1976; Grant and Grant, 1995; Gillespie, 1998, Chap. 5). It assumes that genetic
variance is constant, but this assumption may not be satisfied in practice (McGuigan,
2006). A few quantitative genetics models allowing genetic variance to evolve have been
developed (Cavalli-Sforza and Feldman, 1976; Débarre et al., 2014; Lande and Porcher,
2015). However they are not simple because multiple effects may affect traits besides
selection, in particular environmental effects, mutation or drift. As a result they are not
easy to fit to data. Few statistical methods have been developed to fit such evolutionary
models to phenotypic time series.

This article considers populations evolving in several locations. The objective is
to develop a Bayesian retrospective method for inferring how selective pressures vary
between locations and between generations. For the sake of simplicity, our study is
restricted to organisms with non-overlapping generations that reproduce by selfing or
asexually, for example autogamous annual plants. Individuals are characterised by a
single trait that evolves under the effect of natural selection and mutation. As the
model we want to use is not available in the literature, we develop our own model
(Section 2). Model parameters are estimated using a Bayesian framework (Section 3).
This method is assessed using simulated data (Section 4) and is applied to data from a
wheat participatory plant breeding programme (Section 5).

2. Model

2.1. Notations and assumptions

We consider populations located in several sites and model their phenotypic evolu-
tion under the effect of mutation and selection. Selective pressures may vary between
locations and between generations. Locations are indexed by i ∈ {1, . . . , I}. Popula-
tions are assumed to be nested within locations and are indexed by (i, j), j ∈ {1, . . . , Ji}.
Populations are assumed to be isolated and large enough that demographic stochasticity
(or drift) can be neglected.

The life cycle is divided into a reproduction phase and a growth one (Fig. 1). For the
sake of clarity, reproduction is divided into a birth phase and a mutation one, although
this distinction is only formal. Generations are non-overlapping, are indexed by t ∈ N
and start after reproduction. Thus, an offspring of an adult of generation t belongs to
generation t+1 after the mutation phase but still belongs to generation t after the birth
phase.

In the following, the symbols µ, σ2 and τ 2 are often used to denote the expectation,
variance and inverse of the variance of a random variable respectively, using subscripts
reminding the random variable, dropping unnecessary subscripts and avoiding double
subscripts. For example the expectation of Zijtk is denoted by µZijt rather than by µZijtk

,
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if it depends on i, j and t and if it does not depend on k. We let p(X = x) denote the
value of the density of the random variable X at point x. We use the common notation
N (µ, σ2) for the normal distribution with mean µ and variance σ2.

2.2. Phenotype

Adults are characterised by an adaptive trait Z ∈ R affecting fitness. This trait is
assumed to be the sum of genetic and environmental effects (Gillespie, 1998, p. 105; Bar-
ton et al., 2017). Consider an adult individual sampled in population (i, j) at generation
t. Its trait Zijt is assumed to be equal to

Zijt = Gijt + Ait +Bijt + Cijt.

In this equation, Gijt represents a random genetic effect. Ait represents an environmental
effect that is common to all the individuals of location i. Bijt is an environmental effect
that is common to all the individuals of population (i, j) and that is peculiar to this
population. The effects Ait and Bijt can be regarded as fixed parameters, for which we
will assume a prior distribution in Section 3. Cijt represents a local environmental effect
that is peculiar to the individual and that is assumed to be normally distributed:

Cijt ∼ N (0, σ2
Cijt).

Note that the variance σ2
Cijt is assumed to depend on the population and the generation.

The effects Gijt and Cijt are assumed to be independent, thus, the expectation µZijt and
variance σ2

Zijt of Zijt satisfy

µZijt = µGijt + Ait +Bijt, σ2
Zijt = σ2

Gijt + σ2
Cijt. (1)

2.3. Birth

During the birth phase, adults produce offsprings and die. Individuals are assumed
to reproduce asexually or by selfing. Fecundity is assumed to have a normal shape
(Cavalli-Sforza and Feldman, 1976; Johnson and Barton, 2005; Zhang and Hill, 2005).
Thus, an adult with phenotype z ∈ R in location i at generation t gives birth to Fit(z)
offsprings, where Fit(z) satisfies

Fit(z) ∝ exp
(
−τ 2Fi (z − µFit)2/2

)
,

µFit = θi + εit, εit ∼ N (0, σ2
ε).

This fecundity function leads to a stabilising selection toward the optimal phenotype µFit
with a strength quantified by τFi. Optimal phenotypes fluctuate randomly around θi,
which represents the mean optimal phenotype over generations for location i (Sasaki and
Ellner, 1995; Scheiner, 2014). Note that Fit is a deterministic function of the parental
phenotype given εit and that populations in a given location are assumed to undergo
the same selective pressures. Selective pressures are allowed to vary spatially, since τFi
and µFit depend on i, and temporally, since µFit depends on t.

4



Gijt

Observations t

?

-
Birth

µFit, τFi

G′ijt

Mutation
- G?

ij(t+1)

σM

-
Growth

Ai(t+1), Bij(t+1)

Cij(t+1)

Gij(t+1)

Observations t+ 1

?

Figure 1: Life cycle diagram, observation times and genetic composition for population j of location i.
The life cycle is decomposed into birth, mutation and growth phases. The population is observed when
individuals are adults. Individuals are characterised by an adaptive trait that has a genetic component.
The random variable Gijt is the genetic effect of an adult sampled in the population at generation t.
The random variables G′ijt and G?

ij(t+1) are the genetic effects before and after mutation respectively
of an offspring sampled in the population at the end of generation t. Selection favours individuals with
trait values close to µFit with a strength of τFi. Mutation effects with standard deviation σM increase
genetic variance. Environmental effects Ai(t+1), Bij(t+1) and Cij(t+1) occur during growth.

2.4. Mutation and growth

After birth, offspring genetic effects are modified by mutation. Their distribution
after mutation is assumed to be normal around their value before mutation with variance
σ2
M . During growth, individuals undergo environmental effects, express their phenotype

and are assumed to survive with the same probability. Thus, the survival probability
does not influence the evolution of populations.

2.5. Genetic evolution

The distribution of genetic effects evolves under the effect of selection and mutation
(Fig. 1). For t ∈ N, i ∈ {1, . . . , I} and j ∈ {1, . . . , Ji}, consider an adult sampled in
population (i, j) at generation t with genetic effect Gijt and trait Zijt. Likewise consider
an offspring sampled independently in the population at the end of generation t after
birth and let G′ijt denote its genetic effect. Individuals are assumed to be homozygous
or haploid and to transmit their genetic effects to their offsprings but not their environ-
mental effects. Thus, for gijt ∈ R, the probability density of genetic effects after birth
satisfies

p(G′ijt = gijt) =

∫
R Fit(zijt) p(Zijt = zijt, Gijt = gijt) dzijt∫

R

∫
R Fit(zijt) p(Zijt = zijt, Gijt = gijt) dzijt dgijt

,

=
wit(gijt) p(Gijt = gijt)∫

Rwit(gijt) p(Gijt = gijt) dgijt
, (2)

where wit(gijt) =
∫
R Fit(zijt) p(Zijt = zijt |Gijt = gijt) dzijt and p(Zijt = zijt |Gijt = gijt)

denotes the density of Zijt given {Gijt = gijt}.
For gij(t+1) ∈ R, the density of genetic effects after mutation writes

p(G?
ij(t+1) = gij(t+1)) =

∫
R
p(G?

ij(t+1) = gij(t+1) |G′ijt = gijt) p(G
′
ijt = gijt) dgijt,
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where G?
ij(t+1) is the genetic effect after mutation of the sampled offspring, with dis-

tribution N (gijt, σ
2
M) given {G′ijt = gijt}. The distribution of genetic effects does not

change during growth.
If the initial distribution of genetic effects in the adult population is normal:

Gij0 ∼ N (µGij0, σ
2
Gij0),

then the distributions of genetic effects among adults in the following generations remain
normal (Supplementary material A):

∀t ∈ N, Gij(t+1) ∼ N (µGij(t+1), σ
2
Gij(t+1)), (3)

where µGij(t+1) and σ2
Gij(t+1) satisfy the following recursions:

µGij(t+1) =
τ 2Gijt µGijt + τ 2Sijt (µFit − Ait −Bijt)

τ 2Gijt + τ 2Sijt
, (4)

τ 2Gij(t+1) =
(τ 2Gijt + τ 2Sijt) τ

2
M

τ 2Gijt + τ 2Sijt + τ 2M
, (5)

τ 2Sijt =
τ 2Cijt τ

2
Fi

τ 2Cijt + τ 2Fi
,

where τ 2Gijt = σ−2Gijt, τ
2
M = σ−2M , τSijt is the overall selection efficiency and τ 2Cijt = σ−2Cijt.

Overall selection efficiency increases with selection strength τFi and decreases with en-
vironmental variance σ2

Cijt. Genetic variance σ2
Gij(t+1) decreases with selection efficiency

τSijt and increases with mutation variance σ2
M . In the recursions above, it is assumed

that τGij0 > 0 and τM > 0, so that the ratios are well defined. However we allow τFi to
be equal to 0, which corresponds to the case when evolution is neutral.

3. Bayesian inference

3.1. Observations

Our objective is to estimate model parameters from phenotypic data. For t ∈
{0, . . . , T}, i ∈ {1, . . . , I} and j ∈ {1, . . . , Ji}, Kijt > 1 adults are sampled indepen-
dently in population (i, j) at generation t and their trait is measured (Fig. 1). Measure-
ment errors are not confounded with local environmental effects since they do not affect
trait values and do not interact with selection. However it is difficult to distinguish
them from genetic and environmental effects without replicating measurements on some
individuals. Thus, measurement errors are here neglected.

For k ∈ {1, . . . , Kijt}, the observation Zijtk for individual k follows a normal distri-
bution:

Zijtk ∼ N (µZijt, σ
2
Zijt),

where the expressions for µZijt and σ2
Zijt result from (1), (4) and (5).
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3.2. Prior distribution

A possible joint prior distribution of model parameters is composed of the following
independent distributions. Vague normal prior distributions are placed on mean optimal
phenotypes and initial genetic means:

θi ∼ N (αθ, β
2
θ ), µGij0 ∼ N (αG, β

2
G),

where the parameters of these distributions are known constants.
Vague prior distributions on standard deviations are usually specified as half-Student

or half-normal distributions (Gelman, 2006). Thus, vague half-normal prior distributions
are placed on the standard deviations of mutation effects and of the effects affecting
optimal phenotypes:

σM ∼ N+(0, γ2M), σε ∼ N+(0, γ2ε ),

where γM and γε are known constants andN+(µ, σ2) is the normal distribution restricted
to positive values with parameters µ and σ.

Hierarchical distributions are placed on between-population environmental effects
(Robert, 2007, p. 460):

Ait ∼ N (0, σ2
A), σA ∼ N+(0, γ2A),

Bijt ∼ N (0, σ2
B), σB ∼ N+(0, γ2B),

where γA and γB are known constants. Such hierarchical distributions shrink estimates
(Robert, 2007, p. 472).

The prior distributions of selection strengths are chosen to allow these parameters
to take low values when evolution is neutral and large values when selection is present.
Assuming that selection strengths follow vague log-normal distributions does not seem
satisfactory in the neutral case since ln(τFi) → −∞ when τFi → 0. Thus, half-normal
prior distributions are placed on selection strengths:

τFi ∼ N+(0, γ2F ),

which place a substantial mass on low values. Thus, a large estimate of τFi in an analysis
will be due to the data rather than the prior distribution. However, our analyses showed
that posterior distributions could be sensitive to the value of γF used. Thus, rather than
considering γF as a known constant, it is considered as an unknown parameter that is
estimated from the data (Gelman, 2006). It is written as

γF = ω/σ̃Z ,

where σ̃Z is a prior value for the overall phenotypic standard deviation, which takes
account of all possible sources of variation, and ω is an unknown parameter that is
assumed to follow a vague half-normal prior distribution:

ω ∼ N+(0, γ2ω),
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where γω is a known constant.
As only the phenotypic variances are observed, the standard deviations of local envi-

ronmental effects may be difficult to separate from the genetic standard deviations. As
these parameters are numerous, a hierarchical distribution is placed on these parameters
to facilitate their estimation:

ln(σCijt) ∼ N (ln(ρi), γ
2
C),

ρi ∼ N+(0, κ2), γC ∼ N+(0, η2),

where κ and η are known constants and ρi is the median of σCijt. This prior distribu-
tion shrinks the estimates of σCijt toward ρi, thereby providing more robust estimates
(Robert, 2007, p. 472).

Likewise as only the phenotypic variances are observed, the initial genetic standard
deviations may be difficult to estimate. Thus, these parameters are not assumed to
follow vague prior distributions but are assumed to be approximately proportional to
the medians of the standard deviations of local environmental effects:

σGij0 ∼ N+(λ ρi, γ
2
G),

where λ is a known constant and γG is a known constant with a moderate value. For
example when λ is fixed to one, initial genetic standard deviations and environmental
ones are assumed to have similar orders of magnitude. An example of set of prior
distributions is given in Supplementary material E.

3.3. Posterior distribution

In the Bayesian framework, the prior distribution is updated into a posterior distri-
bution, that writes (Robert, 2007, p. 22)

p(φ | y) =
p(φ) p(y |φ)

p(y)
,

where φ denotes the vector of model parameters, y the vector of observations, p(φ)
the prior distribution of φ, p(y |φ) the likelihood and p(y) the marginal distribution of
y. This posterior distribution cannot be calculated explicitly for our model but it can
be estimated using Markov Chain and Monte Carlo (MCMC) methods. Such methods
simulate values of φ according to a Markov chain that converges in distribution to
p(φ | y) (Robert, 2007, p. 302). MCMC methods are here implemented using the R

package rjags (Plummer, 2016; R Core Team, 2018). Details on our implementation of
MCMC methods are given in Supplementary material B and a script showing how to
implement the methods in R is given in Supplementary material C.
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4. Simulation study

4.1. Data

The ability of the developed method to infer evolutionary parameters in heteroge-
neous environments was assessed using simulations. Data were simulated for experimen-
tal set-ups similar to that of the wheat application (Section 5). There were T consecutive
generations and 10 locations, with 10 populations per location. At each generation, 20
individuals were sampled in each population and their trait was measured. Data were
simulated for two quantitative traits using the model of Section 2. For the first (respec-
tively second) trait, parameter values were similar to those of spike weight (respectively
plant height) (Section 5). The initial genetic means were equal to

µGij0 = µG0 − δ, j = 1, . . . , 5,

µGij0 = µG0 + δ, j = 6, . . . , 10,

for i = 1, . . . , 10.
Four experimental set-ups, defined by the combinations of two two-level factors, were

considered. The first factor quantified the amount of information provided by the set-up,
so that the data were either weakly informative or informative. Set-ups providing more
information had more generations, smaller between-population environmental variances
and a larger δ value. Specifically, parameter values were equal to T = 4, σA = 0.4,
σB = 0.3, γC = 0.2, δ = 0.3 for the weakly informative set-up and trait 1, to T = 6,
σA = 0.2, σB = 0.2, γC = 0.1, δ = 0.6 for the informative set-up and trait 1, to T = 4,
σA = 100, σB = 50, γC = 0.2, δ = 100 for the weakly informative set-up and trait 2, and
to T = 6, σA = 30, σB = 30, γC = 0.1, δ = 200 for the informative set-up and trait 2.
The second factor indicated whether selection was absent or present. When selection was
present, τFi = 1 (respectively τFi = 0.003) for trait 1 (respectively trait 2) and selective
pressures varied both spatially and temporally. In particular, mean optimal phenotypes
depended on the location: θi = µG0 −∆, i = 1, . . . , 5, θi = µG0 + ∆, i = 6, . . . , 10. The
parameter values used in the simulations are given in Supplementary material D. For
each combination of parameter values, four data sets were simulated independently.

4.2. Analysis

The data were analysed using the model of Sections 2 and 3 with γω = 0.2. Mutation
effects were assumed to be a priori smaller than environmental effects (Lynch, 1988;
Houle et al., 1996; Johnson and Barton, 2005), since γM had a smaller value than γA, γB
and κ (Supplementary material D). Likewise, γε had a smaller value than γA, γB and κ to
help to separate temporal variations of optimal phenotypes from environmental effects.
Parameter λ was fixed to 1. The values of the other parameters of prior distributions
are given in Supplementary material D.

The sensitivity of posterior distributions to variations of γω values was investigated.
To reduce computing time, the posterior means for γω = 0.1 and γω = 0.3 were estimated
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using importance sampling and the posterior distribution for γω = 0.2 as proposal
distribution (Carlin and Louis, 2008, p. 182).

The main evolutionary parameters were estimated: selection strengths and mean
optimal phenotypes, that characterised spatial variations of selective pressures; σε, that
characterised temporal variations of selective pressures; mutation standard deviation.
Differences between estimates and true parameter values were quantified using the av-
erage absolute error (aae). For example, for selection strengths, experimental set-up s
and a given value of γω, aae was equal to

aae(s, γω) =
1

4

4∑
r=1

(
1

10

10∑
i=1

|τ̂Fi(s, r, γω)− τFi(s)|

)
,

where s = 1, . . . , 4, τFi(s) was selection strength for location i and set-up s and
τ̂Fi(s, r, γω) was the posterior mean of this parameter for set-up s, replication r and
parameter value γω.

4.3. Results

The estimates of selection strengths and mutation standard deviation showed lower
errors and were less sensitive to variations of prior distributions for informative set-ups
than for weakly informative set-ups (Figs. 2 and 3; Figs. D.1 and D.3 in Supplementary
material D). For weakly informative set-ups, these estimates both increased with γω,
presumably because an increase in selection strengths, that reduced within-population
diversities, was counterbalanced by an increase in mutation standard deviation, that
increased within-population diversities, in order to give within-population diversities
consistent with the data.

Estimation errors were rather large for mean optimal phenotypes (Figs. 2 and 3;
Figs. D.2 and D.4 in Supplementary material D) and for σε and trait 2 (Fig. 3). The
95% Highest Posterior Density (HPD) credible intervals of σε were rather wide, for
example this interval was equal to [0.000,0.304] (respectively [0.143,99.412]) for trait 1
(respectively trait 2), the informative set-up with selection, replicate 1 and γω = 0.2.

5. Application to wheat data

5.1. Data

A participatory plant breeding programme on bread wheat was set up in France
by farmers and facilitators from the Réseau Semences Paysannes1 and researchers from
INRA (GQE - le Moulon) to develop heterogeneous populations adapted to farmers’ local
conditions, practices and objectives (Dawson et al., 2011). Some of these populations
were exchanged among farmers. They then evolved several years in the same farms in

1www.semencespaysannes.org
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Figure 2: Analysis of simulated data: sensitivity analysis for trait 1, selection strengths (a), mean
optimal phenotypes (b), σε (c) and σM (d). The quality of estimates is quantified by average absolute
error (aae). �: Weakly informative set-up without selection; •: Informative set-up without selection;
N: Weakly informative set-up with selection; �: Informative set-up with selection. Estimation errors
for mean optimal phenotypes and σε are relevant in the presence of selection only.
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Figure 3: Analysis of simulated data: sensitivity analysis for trait 2, selection strengths (a), mean
optimal phenotypes (b), σε (c) and σM (d). The quality of estimates is quantified by average absolute
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Variable Number of
populations farms years trials observations

Spike weight 106 12 3.5 48 14172
Plant height 86 7 4.3 37 12352

Table 1: Wheat data. The number of years corresponds to the mean number of consecutive years a
population is sown in a farm, while a trial is defined as a farm x year combination.

field trials and sometimes underwent farmers’ mass selection. Whenever populations
were cultivated on-farm, some characters such as plant height, spike length and spike
weight were measured on several individuals per population (10 to 50).

The data used for this analysis consisted of a subset of the data gathered since the
beginning of the project in 2006 (Tab. 1). Two variables were analysed: spike weight
and plant height. The populations selected (i) evolved for at least three years in a
given farm, (ii) were measured for at least three consecutive years, (iii) had at least 10
observations per year and (iv) were not subjected to mass selection. We studied the
selective pressures undergone by these populations grown in different environments and
the influence of natural selection on their evolution. In this application, locations were
farms, trials were farm x year combinations and on average populations were sown and
measured for 3.5 and 4.3 consecutive years for spike weight and plant height respectively.
Measurement errors, that were neglected in our model, were likely to be smaller for spike
weight than for plant height, since the former was measured in the laboratory while the
latter was measured in the field. More information on the data collected in each farm
is given in Supplementary material E.

5.2. Analysis

As wheat is an autogamous annual plant, the data were analysed using the model
of Section 2 and the prior distributions given in Supplementary material E. As in the
simulation study, γM and γε had a smaller value than γA, γB and κ, and λ was fixed to
1. Parameter γω took two possible values, γω = 0.1 or γω = 0.4, in order to study the
influence of this parameter on posterior distributions.

5.3. Results

Selection strengths and mean optimal phenotypes. The posterior distributions of τFi
and θi were sensitive to changes in γω values for both variables (Figs. 4 and 5). For spike
weight, the HPD credible intervals of selection strengths contained values close to 0 for
all the locations when γω = 0.1 (Fig. 4, a), so that the presence of selection was not
significant. On the contrary when γω = 0.4, the presence of selection was significant in 4
locations (Fig. 4, b). The significant estimate of selection strength in location 5 could be
a false positive since there were only 6 populations observed for 3 years in this location
(Supplementary material E). The posterior medians of mean optimal phenotypes were
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Figure 4: Analysis of wheat data: selection strengths and mean optimal phenotypes for spike weight.
Estimates (•) and 95% HPD credible intervals (solid lines) of selection strengths in 12 locations for
γω = 0.1 (a) and γω = 0.4 (b). Sample location means (×), estimates (•) and 95% HPD credible
intervals (solid lines) of mean optimal phenotypes in the same locations for γω = 0.1 (c) and γω = 0.4
(d). Results are in g for mean optimal phenotypes and in g−1 for selection strengths.

close to 2 when γω = 0.1, while they ranged from 1.320 to 2.199 and tended to be smaller
than sample means when γω = 0.4 (Fig. 4, c and d). For plant height, the presence of
selection was not significant for both values of γω, but estimates of selection strengths
and mean optimal phenotypes varied with this parameter (Fig. 5).

Environmental and mutation standard deviations. When γω = 0.1, the credible
intervals of σA, σB and ρi did not contain values close to 0 (Fig. 6). The estimates of
σA were larger than those of σB. The estimates of ρi appeared more variable between
locations for spike weight than for plant height. The posterior median of σM was equal
to 0.033 (respectively 0.132) when γω = 0.1 (respectively γω = 0.4) for spike weight. It
was equal to 21.316 (respectively 22.705) when γω = 0.1 (respectively γω = 0.4) for plant
height. The credible intervals of σε were rather wide for both values of γω. The 95%
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Figure 5: Analysis of wheat data: selection strengths and mean optimal phenotypes for plant height.
Estimates (•) and 95% HPD credible intervals (solid lines) of selection strengths in 7 locations for
γω = 0.1 (a) and γω = 0.4 (b). Sample location means (×), estimates (•) and 95% HPD credible
intervals (solid lines) of mean optimal phenotypes in the same locations for γω = 0.1 (c) and γω = 0.4
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Figure 6: Analysis of wheat data: environmental and mutation standard deviations. Estimates (•) and
95% HPD credible intervals (solid lines) for spike weight (in g, a) and plant height (in mm, b). In these
analyses, γω = 0.1.

credible interval of γC was equal to [0.341,0.434] (respectively [0.334,0.441]) for spike
weight (respectively plant height) and γω = 0.1, and thus did not contain values close
to 0. Thus, the standard deviations of local environmental effects varied between years
and populations, in agreement with observed phenotypic standard deviations (Fig. 7, b
and d).

Population means and standard deviations. Estimates of population phenotypic
means and standard deviations were consistent with observed values (Fig. 7). Genetic
means and standard deviations tended to evolve toward equilibrium values (Cavalli-
Sforza and Feldman, 1976; Johnson and Barton, 2005; Zhang and Hill, 2005).

6. Discussion

Selection. This article develops a quantitative genetics model involving selection.
Here fecundity is assumed to have a normal shape so that selection favours an interme-
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Figure 7: Analysis of wheat data: population means and standard deviations. Sample phenotypic means
(�), estimated phenotypic means (N) and estimated genetic means (•) for a population of location 2
and spike weight (a). Estimated phenotypic (respectively genetic) means are the posterior medians of
µZijt (respectively µGijt). Sample phenotypic standard deviations (�), estimated phenotypic standard
deviations (N) and estimated genetic standard deviations (•) for the same population and spike weight
(b). Estimated phenotypic (respectively genetic) standard deviations are the posterior medians of σZijt

(respectively σGijt). Sample phenotypic means (�), estimated phenotypic means (N) and estimated
genetic means (•) for a population of location 5 and plant height (c). Sample phenotypic standard
deviations (�), estimated phenotypic standard deviations (N) and estimated genetic standard deviations
(•) for the same population and plant height (d). In these analyses, γω = 0.1. Results are in g
(respectively mm) for spike weight (respectively plant height).
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diate trait value. This type of selection appears common in nature (Kingsolver et al.,
2001) and leads to explicit formulae for the distribution of observations, which simpli-
fies the implementation of statistical methods. Fecundity may also be modelled using
a quadratic function (Débarre et al., 2014). This model takes account not only of sta-
bilising selection but also of directional selection, which favours extreme trait values in
one direction, and of diversifying selection, which favours extreme trait values. However
it assumes that selection is weak and that genetic effects have a normal distribution at
each generation. On the contrary, the model with a normal fecundity function does not
assume that selection is weak and assumes that genetic effects have a normal distribu-
tion at the first generation only. This is why we here restricted ourselves to a normal
fecundity function.

Selection on a trait may be real or apparent (Johnson and Barton, 2005; Zhang
and Hill, 2005; Barton et al., 2007, p. 526). Selection is real when fitness differences
are caused by the trait of interest and apparent when the trait of interest is neutral
but evolves under the effect of the selection acting on correlated traits. Our model
is univariate and is not able to distinguish between real or apparent selections. The
targets of selection could be better studied by measuring many traits and by developing
multivariate models allowing for the correlations between traits (Lande and Arnold,
1983; Troth et al., 2018). However this approach can hardly measure all the traits that
are under real selection.

In principle, selection may affect both fecundity and survival. Here it is assumed to
affect fecundity only to adapt the model to the available data. As our data are collected
on adults, they provide more information on the selective pressures occurring during
reproduction than during growth. In addition it is difficult to separate the selective
pressures occurring during these phases using a single observation time per generation.

In the simulation study, estimates tend to be less sensitive to prior distributions when
the data are more informative. Posterior distributions combine a prior information with
the information brought by the data. Thus, they may be sensitive to changes in prior
distributions when the data provide little information. This is the case in the wheat
application, so that it is difficult to infer how selection varies between farms and between
years. This is presumably because phenotypic time series are short and perturbed by
large environmental effects. It is recommended to carry out a sensitivity analysis to
prior distributions. If the results are sensitive to prior distributions, one may report this
sensitivity and conclude that the available data do not allow to estimate parameters
precisely. Alternatively, additional information may be introduced in the analysis by
collecting more data (Carlin and Louis, 2008, p. 181).

For the sake of simplicity, the significance of estimated selection strengths are here
assessed by examining if HPD credible intervals contain low values. Testing if these
parameters vanish formally is difficult because zero is the boundary of the parameter
space (Müller et al., 2013; Baey et al., 2019). More work is needed to provide rigorous
tests of selection strengths.
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Environmental effects. In our model, environmental effects are decomposed into
between- and within-population effects, with standard deviations σA, σB and σCijt.
Both effects appear present in the wheat application. The standard deviation of local
effects σCijt is allowed to vary between generations to take account of environmental
stochasticity (Caswell, 2001, Chap. 14). In the wheat application, this stochasticity
could be due to variations in climatic conditions, soil fertility or farming practices over
years.

Model assumptions. Our model assumes that populations are isolated and that
individuals reproduce by selfing or asexually and are homozygous or haploid. These
assumptions are partly justified in our application since wheat plants mainly reproduce
by selfing, but not fully however since new genotypes may appear in populations because
plants are not fully homozygous, because plants reproduce by a mixture of self fertili-
sation and outcrossing and because of seed dispersal. Thus, our estimates of mutation
effects could capture various diversifying effects besides mutation. The selfing assump-
tion could be relaxed by using the model developed by Cavalli-Sforza and Feldman
(1976), which is based on outcrossing.

This article considers large populations and neglects demographic stochasticity, thus
the developed method should be applied to small populations with caution. Populations
are not very large in the wheat application, so that demographic stochasticity should
be present. However its influence on the estimation of selection parameters should be
limited since locations hold several populations. Evaluating the relative importances
of evolutionary forces remains an open issue in evolutionary biology (Wright, 1931;
Lande, 1976; Barton et al., 2007, Chap. 19). Our model allows to investigate the rela-
tive importances of selection and mutation but not those of selection and demographic
stochasticity.
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