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Abstract

Motivation: Conventional methods to analyze genomic data do not make use of the interplay between multiple fac-
tors, such as between microRNAs (miRNAs) and the messenger RNA (mRNA) transcripts they regulate, and thereby
often fail to identify the cellular processes that are unique to specific tissues. We developed PUMA (PANDA Using
MicroRNA Associations), a computational tool that uses message passing to integrate a prior network of miRNA tar-
get predictions with target gene co-expression information to model genome-wide gene regulation by miRNAs. We
applied PUMA to 38 tissues from the Genotype-Tissue Expression project, integrating RNA-Seq data with two differ-
ent miRNA target predictions priors, built on predictions from TargetScan and miRanda, respectively. We found that
while target predictions obtained from these two different resources are considerably different, PUMA captures
similar tissue-specific miRNA–target regulatory interactions in the different network models. Furthermore, the
tissue-specific functions of miRNAs we identified based on regulatory profiles (available at: https://kuijjer.shinyapps.
io/puma_gtex/) are highly similar between networks modeled on the two target prediction resources. This indicates
that PUMA consistently captures important tissue-specific miRNA regulatory processes. In addition, using PUMA
we identified miRNAs regulating important tissue-specific processes that, when mutated, may result in disease
development in the same tissue.

Availability and implementation: PUMA is available in Cþþ, MATLAB and Python on GitHub (https://github.com/
kuijjerlab and https://netzoo.github.io/).

Contact: marieke.kuijjer@ncmm.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The regulation of gene expression involves a complicated network
of interacting elements. The biological process of transcription
begins with the binding of transcription factors to specific sequence
motifs upstream of a gene’s transcription initiation site. This induces
conformational changes in the DNA and initiates the assembly of
the RNA polymerase complex, which in turn carries out transcrip-
tion of the gene to a messenger RNA (mRNA). At a post-
transcriptional level, small non-coding RNA molecules such as
microRNAs (miRNAs) can repress mRNA translation and cause
degradation of the mRNA transcript (Williams, 2008). What
emerges is not a single set of interactions, or even a single pathway,
but a complex network of interacting genes and gene products.

Capturing these interactions is critical as we seek to understand how
gene expression is regulated in different tissue environments, and
how this regulation is disrupted in disease.

miRNAs are small non-coding RNAs of �22 bp in length that
can bind to the 30 untranslated region (UTR) of their mRNA targets.
The miRNA–mRNA duplex then associates with Argonaute family
proteins, which recruit factors that induce mRNA degradation and
translational repression (Guo et al., 2010; Ha and Kim, 2014). Most
human protein-coding genes are thought to be regulated by
miRNAs, with over 60% having conserved miRNA binding sites in
their 30 UTR (Friedman et al., 2009). miRNAs are generally thought
to moderately downregulate their target genes, as individual sites
usually reduce protein output by <50% (Bartel, 2009). However,
most mRNAs have multiple miRNA regulatory sites in their UTR
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and miRNAs bound to these sites can act additively (Bartel, 2018).
In addition, miRNAs may bind to many more non-canonical regula-
tory sites and act together, thereby increasing their regulatory poten-
tial (Kim et al., 2016).

Given the large number of miRNAs in the human genome (cur-
rently thought to be �2300; Alles et al., 2019) and because of their
broad regulatory potential, their regulatory profiles are often mod-
eled in gene regulatory networks (Chen et al., 2019). Such networks
have generally been estimated using the inverse correlation between
miRNA and mRNA expression levels. However, this approach has
its limitations, as many different mechanisms modulate miRNA ac-
tivity (Gebert and MacRae, 2019) and RNA transcripts may com-
pete for binding to miRNAs, creating a more complex regulatory
network than can be captured with co-expression patterns alone
(Bosia et al., 2017).

Other methods start with a prior network based on target predic-
tions and then ‘color’, or assign weights to, the network’s nodes
based on miRNA and mRNA expression levels (Dragomir et al.,
2018). However, target predictions are often different from actual
interactions, with many studies reporting positive correlation be-
tween miRNAs and about half of their predicted targets (Wang and
Li, 2009). Furthermore, target prediction remains challenging, and
different algorithms may result in rather different networks of puta-
tive interactions (Riffo-Campos et al., 2016). Moreover, some genes
may be regulated by a miRNA even though they are not predicted as
a target of that miRNA by current prediction algorithms. Such ‘new’
edges cannot be learned if a model only considers known predicted
targets.

Here, we present PUMA, or PANDA Using MicroRNA
Associations, an algorithm that can directly model robust regulatory
edges (including new edges) between miRNAs and their target genes.
PUMA starts with prior knowledge from miRNA target predictions,
and then fine-tunes these predictions by comparing with information
regarding the co-regulation of the miRNAs’ target genes. It leverages
the message passing framework described in our group’s previously
developed algorithm, PANDA (Glass et al., 2013), which models
regulatory interactions between transcription factors and their target
genes by integrating multiple independent sources of data using mes-
sage passing. This method starts with an initial estimate of the paths
of information exchange between regulatory proteins (i.e. transcrip-
tion factors) and their target genes. It then iteratively refines this
prior network by incorporating gene expression and protein–protein
interaction data, which provide information on the regulation of
genes and on cooperative regulation by transcription factors, re-
spectively. This iterative process allows PANDA to both remove po-
tential false positives from the initial target predictions, and to learn
new edges. Since developing PANDA, we have used it to identify dif-
ferences in transcriptional regulation between multiple human tis-
sues (Sonawane et al., 2017), tissues and their cells-of-origin (Lopes-
Ramos et al., 2017), ovarian cancer subtypes (Glass et al., 2015)
and to identify sexual dimorphic gene regulation in colon cancer
(Lopes-Ramos et al., 2018), among others (Glass et al., 2014; Lao
et al., 2015; Vargas et al., 2016; Young et al., 2019).

While PUMA leverages the message passing framework used in
PANDA, we introduced several critical modifications to incorporate
the effects of miRNAs as an additional class of regulators into the
gene regulatory network model. This modified message passing al-
gorithm allows us to effectively integrate miRNA target predictions
(either alone or alongside transcription factor regulatory predic-
tions, see Supplementary Methods) with gene expression levels. To
illustrate PUMA, we applied the algorithm to model miRNA regula-
tory networks for 38 tissues from the Genotype-Tissue Expression
(GTEx) project, integrating miRNA target predictions with gene ex-
pression data for each of the 38 tissues. We built two different col-
lections of networks, each based on a prior obtained from a popular
resource of miRNA target predictions, either TargetScan (Agarwal
et al., 2015) or miRanda (John et al., 2004)—two resources that
have been widely used due to their user-friendliness, maintenance
and options to directly download all target predictions for a given
species (Peterson et al., 2014). We extracted tissue-specific gene
regulation by miRNAs, as well as miRNA functions from these two

collections of networks. We found that PUMA consistently captures
tissue-specific gene regulation by miRNAs, even when using differ-
ent input sources of target predictions. Finally, we provide a new re-
source of tissue-specific functions of miRNAs identified with PUMA
and validate predicted tissue-specific functions in a database of
disease-associated single nucleotide polymorphisms (SNPs) in
miRNA target sites.

2 Materials and methods

2.1 The PUMA algorithm
We developed PUMA, a regulatory network reconstruction method
to model miRNA–target gene interactions. PUMA models these
interactions by integrating a regulatory prior with gene expression
data. It uses an iterative message passing approach to model infor-
mation flow between the different data types, finding ‘agreement’
between data represented by multiple networks. For details on the
PUMA algorithm and on how PUMA learns miRNA–mRNA edges,
please refer to the Supplementary Methods and Figure S1.

2.2 GTEx RNA-Seq data
We downloaded RNA-Seq data from the GTEx project (version 6.0,
phs000424.v6.1, released October 5, 2015) from dbGap (approved
protocol #9112) and used our previously described method YARN
(Paulson et al., 2017) to perform quality control and data normal-
ization. YARN removed samples with sex-misidentification and
merged related sub-tissues, resulting in a dataset of 9435 gene ex-
pression profiles in 38 tissues from 549 individuals. We used default
settings in YARN to perform gene filtering for mRNAs (retaining
genes with >1 CPM in at least 18 samples), but included expression
values for all pre-miRNAs. We then used YARN to perform tissue-
aware normalization using qsmooth (Hicks et al., 2018). For more
information see Supplementary Methods.

2.3 Regulatory network reconstruction
We downloaded miRNA target predictions from TargetScan
(Agarwal et al., 2015) and miRanda (John et al., 2004). We selected
miRNAs and target genes that were present in both datasets, for
which expression levels were available in the GTEx RNA-Seq data
(see Supplementary Methods). We used the MATLAB version of
PUMA to integrate target predictions from TargetScan and
miRanda with gene expression data from each of the 38 GTEx tis-
sues. In total, we modeled 76 gene regulatory networks, two for
each tissue. The reconstructed networks are available on Zenodo
(doi: 10.5281/zenodo.1313768; https://tinyurl.com/puma-gtex).

2.4 Comparison of tissue-specific edges
PUMA returns complete, bipartite networks with edge weights simi-
lar to z-scores. To compare the tissue-specificity of network edges,
we calculated a tissue-specific edge score, which was defined as the
deviation of an edge weight ðwðtÞij Þ between a miRNA (i) and a target
gene (j) in a particular tissue (t) from the median of its weight across
all tissues, using the interquartile range (IQR) (as in Sonawane et al.,
2017):

s
ðtÞ
ij ¼ ðw

ðtÞ
ij �medðwðallÞ

ij ÞÞ=IQRðwðallÞ
ij Þ: (1)

We defined an edge with a specificity score s
ðtÞ
ij > 2 as specific to

tissue t and the multiplicity of an edge as the number of tissues it is
specific to:

mij ¼
X

t

½sðtÞij > 2�: (2)

Similarly, to determine tissue-specific expression levels of
miRNAs, we compared the median expression level ðeðtÞp Þ of a
miRNA (p) in a particular tissue (t) to the median and IQR of its ex-
pression levels across all tissues:
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s
ðtÞ
p ¼ ðmedðeðtÞp Þ �medðeðallÞ

p ÞÞ=IQRðeðallÞ
p Þ: (3)

We assessed the overlap of the initial TargetScan and miRanda
gene regulatory priors with the Jaccard index and with Pearson cor-
relation. We compared tissue-specific edge scores from networks
reconstructed on the two different priors using Pearson correlation.

2.5 Gene set enrichment analysis on miRNA targeting

profiles
For each miRNA in a given tissue, we selected its tissue-specific tar-
geting profile, defined as the tissue-specificity scores of all genes
based on their estimated connection to that miRNA. We ran a pre-
ranked gene set enrichment analyses (GSEA) (Subramanian et al.,
2005) on these profiles to test whether miRNAs specifically target
gene ontology (GO) terms in the different tissues. We ran GSEA for
networks reconstructed on the TargetScan prior, as well as for net-
works reconstructed on the miRanda prior. Thus, in total, we ran
48 868 GSEA analyses. For each miRNA/tissue pair, we calculated
tissue-specific GO term enrichment scores (ESs), which we defined
as the �log10FDR (false discovery rate) from GSEA, multiplied by
the sign of the GSEA ES—those with ES <0 were multiplied by �1,
those with ES >0 were multiplied by 1. We then used Pearson cor-
relation across all 733 tissue-specific GO term ESs for each miRNA/
tissue pair to assess the similarity of tissue-specific regulation of bio-
logical processes by miRNAs.

2.6 Community structure analysis to identify sets of

related tissue/miRNA–GO terms
We selected highly significant (FDR < 0.001) and positively
enriched (ES > 0.65) associations from these analyses and converted
these scores into a binary matrix. We then used fast-greedy commu-
nity detection (Clauset et al., 2004) on this matrix to cluster the data
and to identify communities or network modules that share tissue-
specific regulatory patterns. We used the Jaccard index to compare
nodes (miRNA/tissues and GO terms) that belonged to communities
that included at least five GO terms in either the TargetScan or the
miRanda networks. We used word clouds to visualize the tissue-
specific functions of miRNAs in these communities (see
Supplementary Methods).

3 Results

3.1 Tissue-specific gene regulation by miRNAs
We started by reconstructing miRNA–target gene genome-wide
regulatory networks for a large collection of human tissues. We
downloaded RNA-Seq data for 54 different tissues (including three
different cell types) using Bioconductor package YARN (Paulson
et al., 2017). Within YARN, we performed quality control and nor-
malization of the data, merging tissues with similar expression pro-
files (see Section 2). This resulted in a gene expression dataset that
included 9435 samples across 38 tissues. We limited network recon-
struction to only those genes and miRNAs that were expressed and
which appeared in the TargetScan and miRanda prior, leaving
16 161 genes and 621 miRNAs; these 621 target miRNAs corre-
sponded to 643 regulators in the prior networks (see Supplementary
Methods). We then used PUMA to integrate target gene co-
expression information for each tissue with an initial regulatory net-
work, which we based on miRNA target predictions from either
TargetScan or miRanda. Consequently, our analysis provides two
alternative miRNA-mediated gene regulatory networks for each of
the 38 tissues (tissue networks), one based on the TargetScan prior
and the other alternative based on the miRanda prior. These net-
works consist of nodes—miRNAs and target genes—and edges for
each miRNA–target gene pair that are weighted to represent the
likelihood of an interaction between a miRNA and a target gene.

We tested for tissue-specific edges in these networks. We defined
an edge to be tissue-specific if its weight in a given tissue network
was larger than twice the IQR of its weight across all 38 networks
(see Section 2). We identified a similar number of tissue-specific

miRNA–target gene regulatory edges in the networks modeled on
the two different priors—3.093 million and 3.098 million edges for
networks modeled on the TargetScan and miRanda prior, respect-
ively (see Fig. 1). In addition, the proportion of tissue-specific edges
identified in the different tissues was comparable between the net-
works modeled on the two different priors (Pearson R¼0.92). The
proportion of multiplicities, or the number of tissues in which an
edge is identified as specific, was also similar between the two differ-
ent models.

Even though we identified approximately the same total number
of tissue-specific edges across all tissues, on average we identified a
larger number of tissue-specific edges per tissue in the networks
modeled on the miRanda prior (t-statistic¼7.1, P-
value¼6.5�10�10). However, we found the opposite to be true for
testis—the tissue with the greatest number of tissue-specific edges in
both priors. In testis, we identified a substantially larger number
(1.65 times) of tissue-specific edges in the networks modeled on the
TargetScan prior than in the networks modeled on the miRanda
prior.

We next assessed how similar the edge tissue-specificity scores
were between the networks modeled on the different priors. For
each of the 38 tissues, we calculated the Pearson correlation coeffi-
cient on edge tissue-specificity scores between the tissue network
modeled on the two different priors. We found that, in general,
PUMA networks modeled using different target predictions result in
similar tissue-specificity scores (median Pearson R¼0.63, all P-val-
ues<2.2�10�16, Fig. 2A and Supplementary Fig. S2). This result
was stable in subsampling analyses (see Supplementary Methods
and Fig. S3). For all tissues, except testis, the resulting PUMA tissue
networks modeled on the two different priors were more similar
than the two prior networks (which correlated with R¼0.34). This
means that, even though there may be differences between various
target prediction resources, PUMA helps to fine-tune these predic-
tions into tissue-specific regulatory interactions. We believe that the
anomalous gene expression patterns observed in testis, which has

Fig. 1. Bar plots illustrating the number of edges modeled on the TargetScan and

miRanda priors. The number of elements identified as specific in each tissue is

shown to the right of each bar. Tissues are ordered by the average number of tissue-

specific edges. Mult.: the edge multiplicity, or the total number of tissues an edge is

specific to
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been described previously (Sonawane et al., 2017), may, at least in
part, be caused by differential targeting by miRNAs.

We then examined the similarity between tissue-specificity scores
for miRNA–target gene interactions that were predicted by both
TargetScan and miRanda (435 550 ‘canonical’ interactions), interac-
tions that were neither predicted in TargetScan nor in miRanda
(8 466 524 ‘non-canonical’ interactions) and edges that were pre-
dicted interactions in one of the priors but not in the other
(1 489 449 ‘different’, or inconsistent interactions, see also
Supplementary Fig. S4). We used Pearson correlation to evaluate the
similarity of these different types of edges. We found that, in gen-
eral, tissue-specificity levels of edges that were canonical in both pri-
ors were most reproducible, followed by edges that were non-
canonical in both priors. As expected, miRNA–target gene

interactions that were canonical in only one of the two priors were
less similar compared to edges that were canonical or non-canonical
in both priors. However, for those edges the median similarity was
still R¼0.58 (Fig. 2B). All Pearson correlations were significant,
with P-values <2.2�10�16. This indicates that PUMA can capture
consistencies in miRNA–target gene regulation, even when there are
inconsistencies between different target prediction resources. It also
highlights the strength of modeling miRNA–target gene interactions
with PUMA.

3.2 Tissue-specific miRNA targeting patterns
To better understand tissue-specific functions of miRNAs, we ran
pre-ranked gene set enrichment analysis on the tissue-specific target-
ing profile of each miRNA in each of the 38 tissues. We did this
both for the collection of tissue networks modeled using the
TargetScan and for networks modeled using the miRanda priors (see
Section 2). We calculated the tissue-specific targeting scores of all
733 available GO terms and investigated whether tissue-specific
regulation of biological processes by miRNAs was similar in the two
different collections of networks. Most (87.6%) of the miRNA/tis-
sue pairs had a significant (FDR < 0.05) positive Pearson correlation
coefficient, with a median Pearson R of 0.66 (see Fig. 3 for the corre-
lations between all GSEA scores and Supplementary Fig. S5 for the
correlations separated by tissue).

As a negative control, we computed the correlation of miRNA–
GO term GSEA scores between different tissues, for the miRanda
and TargetScan-generated networks separately. The resulting correl-
ation coefficients were centered around zero, with median Pearson
R ¼ �0:002 for the miRanda networks and R ¼ �0:001 for the
TargetScan networks, respectively (Supplementary Fig. S6). GSEA
scores for miRNA/tissue pairs obtained from the two different col-
lections of networks were significantly more correlated than the
negative control (two-group Wilcoxon signed-rank test P-value
<2.2�10�16). These results confirm that, even though we used dif-
ferent target predictions as input for PUMA, the actual tissue-
specific regulatory functions we obtain from analyzing these net-
works are highly similar.

We tested whether similar miRNA/tissue pairs, as identified in
both models, control similar biological functions. To do this, we
selected highly significant miRNA/tissue–GO term associations

Fig. 2. (A) Tissue-specificity score similarity—measured using Pearson correlation coefficient (Pearson R)—for each of the 38 miRNA gene regulatory tissue networks modeled

on TargetScan and miRanda priors, compared to the number of samples available for each tissue. TargetScan and miRanda priors correlate with R¼ 0.34. Tissue abbreviations

are explained in Supplementary Table S1. (B) Boxplots depicting the distribution of edge similarity for all edges, edges that are canonical in both priors, edges that are non-ca-

nonical in both priors and edges that are different between the TargetScan and miRanda priors (see Supplementary Fig. S4 for a Venn diagram). Boxplots represent the median

and IQR, with whiskers extending out from the box to 1.5� the IQR

Fig. 3. Pearson correlation distribution between the GSEA scores obtained from the

24 434 tissue-specific miRNA targeting profiles computed on TargetScan and the

24 434 profiles computed on the miRanda prior. The bulk of miRNAs have correlat-

ing GO term scores in networks modeled using different miRNA priors
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(FDR < 0.001, ES > 0.65), and performed community structure
analyses on these sets of associations to identify shared tissue-specific
targeting patterns of miRNAs across the tissues (see Section 2). We
identified 67 communities (e.g. sets of GO terms grouped together with
miRNA/tissue pairs) in the regulatory associations identified in PUMA

networks modeled on the TargetScan prior and 64 communities in
those identified in PUMA networks modeled on the miRanda prior.
The overall modularity of these community structures was 0.76 and
0.77, respectively (see Fig. 4A and B).

Fig. 4. (A and B) Heatmaps depicting communities of significantly targeted GO terms (FDR < 0.001, ES > 0.65) based on GSEA analyses on all possible miRNA/tissue pairs

for the networks modeled on the TargetScan (A) and the miRanda (B) prior. (C) Similarity (measured with Jaccard index) of miRNA/tissue–GO term associations in the subset

of communities that target at least five GO terms identified in networks modeled using the TargetScan or miRanda prior. Each community is labeled with a number from 1 to

9 and prefix ‘C’. (D) Word clouds depicting communities targeting at least five GO terms. Community pairs with the highest Jaccard index are shown. We omitted TargetScan

community 8 and miRanda community 9 as they each mapped to communities that corresponded to another community (6 and 1, respectively) with a higher Jaccard index

Modeling miRNA regulatory networks 4769



In both collections of PUMA tissue networks, nine communities
were associated with at least five GO terms. For each of these com-
munities, we calculated the Jaccard index between the two different
sets of miRNA/tissue–GO term associations to evaluate the overlap
in miRNA/tissue pairs and GO terms associated with the community
(Fig. 4C). As can be seen from this figure, the communities have
relatively high node overlap, indicating that similar processes are
identified as regulated in a tissue-specific manner by similar sets of
miRNAs in both analyses. We used word clouds to visualize the bio-
logical processes that were associated with these communities,
which allowed us to further explore these similarities. Figure 4D
shows that similar biological processes are identified as regulated by
miRNAs in a tissue-specific manner in these communities. These in-
clude processes involved in the immune system, mitochondrial res-
piration, translation initiation, chromosome segregation,
intracellular signaling, protein transport and muscle contraction.

Importantly, we can identify these communities of similarly
regulated biological processes in networks modeled using different
prior target predictions. This indicates that PUMA’s message passing
framework allows us to discover patterns of tissue-specific regula-
tion by miRNAs, even though there may be inconsistencies in the
initial target predictions that we used as prior input in PUMA.

3.3 A resource of tissue-specific miRNA functions
We compiled a resource of miRNAs that regulate biological proc-
esses in a tissue-specific manner. To do this, we took the union of
miRNA/tissues significantly regulating GO terms in the TargetScan
and the miRanda networks (8992 miRNA/tissue–GO terms in total).
We then subsetted this list to only those miRNA/tissues for which
the tissue-specific targeting profiles correlated with R >0.8 (2085
miRNA/tissue–GO terms). This list of significant tissue-specific
functions of miRNAs contained 423 regulator miRNAs, 37 tissues
(no consistent tissue-specific regulation was identified for tibial
nerve) and 174 GO terms. This resource can be accessed at https://
kuijjer.shinyapps.io/puma_gtex/.

We assessed over-representation of miRNAs, GO terms and tis-
sues in this resource of significant interactions (Fig. 5A–C). Twenty-
one miRNAs were over-represented ð> medianþ 2 � IQRÞ in regu-
lating multiple tissue-specific processes (Fig. 5A). MIR517C and
MIR1468 were the two miRNAs with the highest number of associ-
ations of tissue-specific regulation of biological processes (Fig. 5A).
MIR517C was associated with immune system processes in tibial ar-
tery and thyroid, with ‘regulation of neurogenesis’ and ‘regulated se-
cretory pathway’ in ‘brain other’ (which is composed of multiple
brain regions), with synapse-associated processes and ‘extracellular
structure organization and biogenesis’ in skeletal muscle, with
sperm-associated pathways in testis and with ‘ovulation cycle’ and
ectoderm-associated pathways in vagina (Fig. 5D–E). This miRNA
has been detected in maternal plasma. It was also recently described
to be overexpressed in parathyroid carcinoma (Hu et al., 2018) and
to inhibit autophagy and epithelial-to-mesenchymal transition in
glioblastoma, a malignant brain cancer (Lu et al., 2015), indicating
that deregulation of the expression of this miRNA in tissues in
which it regulates tissue-specific processes may lead to cancer.

MIR1468 was associated with ‘sperm motility’ in testis, with
many immune system processes in thyroid and with ‘double-strand
break repair’ and chromatin-associated processes in whole blood.
This miRNA has been implicated in different cancer types (Daniel
et al., 2017; Niu et al., 2012) and the latter pathway may indicate a
potential mechanism for this. In fact, MIR1468 was recently shown
to promote tumor progression by activating PPAR-c-mediated Akt
signaling in hepatocellular carcinoma (Liu et al., 2018).

Twenty-two processes were more often targeted in a tissue-
specific manner by miRNAs in more tissues than expected by
chance. Most of these processes play a role in respiration and metab-
olism, immune response and protein translation (Fig. 5B), indicating
that miRNAs play an important role in regulating these pathways in
a tissue-specific manner in multiple tissues.

Seven tissues received significantly more tissue-specific gene
regulation by miRNAs compared to all tissues (Fig. 5C). Tissues
receiving most tissue-specific gene regulation by miRNAs include

heart left ventricle, adipose visceral and heart atrial appendage. We
do not know why these tissues have a higher amount of tissue-
specific gene regulation by miRNAs. It may be that these tissues are
more highly differentiated than others because of the specialized
functions they carry out, and so the elevated miRNA activity
represses extraneous functions. This could be a potential new area
for research.

3.4 miRNAs regulating tissue-specific processes are not

differentially expressed
We wanted to evaluate whether tissue-specific regulation by
miRNAs was caused by tissue-specific expression of those miRNAs.
We identified 423 (66%) miRNAs that regulate biological processes
in a tissue-specific manner. These regulator miRNAs were associ-
ated with 309 different miRNA genes (see Supplementary Methods).
We compared the expression levels of these 309 miRNAs with those
of the remaining 312 miRNAs in the expression data, and found
that miRNAs regulating biological processes in a tissue-specific
manner have overall higher expression levels across all samples
(two-sided Wilcoxon rank sum test statistic¼4.35�1012, P-
value¼2.2�10�16).

However, when comparing the tissue-specificity scores of these
miRNAs in the tissue in which they regulate biological processes, we
did not identify any associations. The mean tissue-specificity score
[difference in median expression in tissue-of-interest compared to
overall median expression, divided by the IQR, see Equation (3)] of
these miRNAs was 0.022 ðrange� 0:820 to 6:811Þ, indicating that
these miRNAs were not specifically expressed in the tissue they
regulate. While none of the miRNAs met our threshold of tissue-
specific underexpression, six miRNAs had tissue-specificity scores
larger than 2, suggesting tissue-specific overexpression of these
miRNAs. These included MIR142-3P regulating the ‘insulin recep-
tor signaling pathway’ in spleen, MIR1909 regulating ‘coenzyme
biosynthetic process’ in testis, MIR200B regulating ‘aerobic respir-
ation’ and ‘cellular respiration’ in pancreas and ‘regulation of
muscle contraction’ in prostate, MIR203 regulating ‘translational
initiation’ in esophagus mucosa, MIR208A regulating ‘activation of
immune response’, ‘adaptive immune response’, ‘humoral immune
response’ and ‘synaptogenesis’ in heart atrial appendage and
MIR632 regulating ‘spermatid differentiation’ in testis.

These findings are in line with our previous results in transcrip-
tional regulatory networks, in which we identified no clear associ-
ation between a transcription factor’s expression level and its tissue-
specific regulation of biological processes (Sonawane et al., 2017).
They are also consistent with our previous finding that modeling
transcriptional gene regulatory networks are able to identify bio-
logically relevant differences in regulatory processes even in situa-
tions where there is little or no differential expression (Lopes-Ramos
et al., 2018). Importantly, our results indicate that analysis of
miRNA–mRNA co-expression networks, while potentially inform-
ative in identifying co-regulation of miRNA and mRNA expression
levels, may miss miRNAs that are not differentially expressed, but
that do regulate their targets in a tissue- or disease-specific manner.
As we have shown here, such miRNAs can be identified using
PUMA.

3.5 miRNA functions correspond to disease-associated

SNPs
To further validate our findings, we integrated the tissue-specificity
scores with miRdSNP, a database of SNPs in the 30 UTR of human
genes (Bruno et al., 2012). To do this, we downloaded the miRdSNP
database, converted and matched miRNA names, and intersected
miRNAs and target genes present in miRdSNP with those present in
our regulatory networks. We then matched diseases listed in
miRdSNP to GTEx tissues (manual curation, see Supplementary
Table S2). This left us with 24 GTEx tissues for which miRNA–tar-
get gene associations with disease were available (a total of 591
miRdSNP associations).

For each of these miRNA–target gene associations, we obtained
the miRNA’s top predicted tissue-specific function from our Shiny
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app (settings �log10ðFDRÞ > 0:8, highest ES). Significant predic-
tions were available for 537/591 associations. We wanted to investi-
gate if these predicted miRNA functions corresponded to the
functions of the associated target genes from miRdSNP. To do this,
we used a similarity metric to compare the set of GO terms the tar-
get gene matched to with those GO terms matching to genes associ-
ated with the predicted miRNA’s function (see Supplementary
Methods). This information was available for 387 of the

associations (not all target genes from miRdSNP were available in
the MSigDb GO term signature file).

We found that the predicted tissue-specific function of the
miRNA overlapped with the functions of its target gene from
miRdSNP in 334/387 (86%) cases. For example, the pathway with
the highest level of tissue-specific regulation by MIR429 in coronary
artery was ‘endothelial cell migration’. The gene associated with the
disease edge from miRdSNP was VEGFA, which encodes for a

Fig. 5. Over-represented miRNAs (A), GO terms (B) and tissues (C) in the database of significant tissue-specific functions of miRNAs. (D) Visual representation of the signifi-

cant tissue-specific regulatory functions of miRNAs present in the Shiny database. Node color illustrates tissues (peach), GO terms (cyan) and miRNAs (magenta). Node size

corresponds to the node’s degree. MIR517C—the miRNA with the largest over-representation in tissue-specific connections—is highlighted in black. (E) Significant tissue-spe-

cific connections made by MIR517C. Gen.: generation; Pos.: positive; Reg.: regulation.
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receptor important in angiogenesis. MIR140-5p specifically regu-
lates ‘acute inflammatory response’ in sigmoid colon. This miRNA
was associated with disease SNPs in TLR4, a receptor involved in
innate immunity. In ovary, MIR429 specifically targets ‘G1 phase of
mitotic cell cycle’ and was associated with SNPs in CDK2, a cell div-
ision gene. MIR1197 specifically targets ‘icosanoid metabolic pro-
cess’ in pancreas and had disease-associated SNPs in ADIPOR2, a
gene involved in glucose and lipid metabolism. All disease-
associated edges are listed in Supplementary Table S3.

These results indicate that the tissue-specific functions of
miRNAs predicted using PUMA are important for maintaining tis-
sue homeostasis, and that disrupting miRNA–target gene edges in
the regulatory network can perturb these processes, thereby influ-
encing disease. This highlights the importance of modeling genome-
wide miRNA–target gene regulatory networks in human tissues.

4 Discussion

In this article, we describe PUMA, a new method to model gene
regulation by miRNAs. PUMA integrates target gene co-expression
information with initial target predictions, which can be obtained
from (but are not limited to) resources such as TargetScan or
miRanda. We applied PUMA to a large-scale RNA-Seq dataset from
GTEx to identify tissue-specific regulatory patterns of miRNAs. We
modeled two different collections of tissue networks by integrating
gene expression data from GTEx with two prior datasets—target
predictions from TargetScan and miRanda, two of the most widely
used miRNA target prediction resources. We found that tissue-
specific gene regulation by miRNAs was reproducible for most tis-
sues, except for testis. Potentially, the aberrant gene expression pat-
tern in testis is, at least in part, caused by differential regulation by
miRNAs. While tissue-specificity of gene regulation was reprodu-
cible for different types of edges, it was highest for edges that were
predicted in both priors, indicating that compendium-like
approaches using the intersection of different miRNA target predic-
tion resources as prior data for network modeling could result in
more accurate results. Further evaluation would be needed to deter-
mine whether combining target prediction resources would help the
accuracy of PUMA. While this is beyond the scope of this study, it
could be a future extension of the method.

We performed high-throughput GSEA on the tissue-specific tar-
geting profiles of each of the miRNAs to characterize tissue-specific
regulation of biological processes. We found that tissue-specific
regulation of biological processes by miRNAs was highly similar in
the networks modeled on different priors. We highlighted biological
processes that were regulated in a tissue-specific manner (by differ-
ent sets of miRNAs) in multiple tissues (Fig. 4). The processes we
identified play a role in the immune system, mitochondrial respir-
ation, translation initiation, chromosome segregation, intracellular
signaling, protein transport and muscle contraction. In addition, we
identified miRNAs and tissues for which we found an over-
representation of tissue-specific regulation. The most enriched
tissue-specific pathways contained genes that were associated with
tissue-specific disease-risk SNPs in their 30 UTR. This highlights the
strength of using PUMA networks to identify disease-related genes.

Another strength of PUMA is that it does not use correlations be-
tween miRNA expression levels and their target genes to model gene
regulation. One of the reasons for not implementing correlation be-
tween regulators and their targets as an input in PUMA is that we
have previously observed that a regulator’s expression level is often
not associated with its regulatory potential (Sonawane et al., 2017),
possibly due to combinatorial regulation of the target genes by mul-
tiple factors. The analysis presented in the current study again
strengthens this. We believe that, while a miRNA needs to be
expressed in order to regulate a target gene, the regulatory patterns
of an miRNA are complex and depend not only on the miRNA’s ex-
pression level, but also on the entire collection of miRNAs that are
available in a cell (Memczak et al., 2013), as well as on the complete
set of target mRNA transcripts that are expressed.

A good strategy to integrate PUMA networks with miRNA ex-
pression data is to overlay the network nodes with miRNA and

target gene mRNA expression levels after the edges have been esti-
mated with PUMA. This way, one would first identify tissue- or
disease-specific edges, and then assess whether these are connected
to highly or differentially expressed miRNAs. In fact, we recently
used a similar approach to identify tumor suppressor genes downre-
gulated by a cluster of non-coding elements, which had been associ-
ated with patient outcome in osteosarcoma (Hill et al., 2017).

A limitation of PUMA is that, like other network reconstruction
algorithms, it requires a large number of transcriptomic samples to
model an accurate gene regulatory network, but does so only by
averaging over a population. As a result, regulatory signals specific
to subpopulations might be lost and between-group comparisons are
reduced to comparisons of average edge weights. One could instead
model single-sample networks by using PUMA in conjunction with
our mathematical tool LIONESS. LIONESS uses linear interpolation
to extract networks for individual samples from an aggregate net-
work model and has been shown to reconstruct reproducible net-
works on datasets with as few as 20 samples (Kuijjer et al., 2019).
Using PUMA with LIONESS to extract single-sample networks
would allow us to perform more robust statistical tests of differences
between biological states and might allow identification of new
miRNA-based disease subtypes and identify miRNAs that have a
subtype-specific regulatory effect.

Gene regulation is a complex process involving multiple factors,
including both transcription factors and miRNAs. Understanding
these regulatory processes, and how they change between pheno-
types, helps elucidating the network changes that occur between
health and disease. Identifying genes that are differentially regulated,
but not necessarily differentially expressed, can help us to under-
stand the likely potential that a given biological state has to respond
to changes, including drug treatment or disease progression.
Although there have been many attempts to model gene regulation
by transcription factors, few methods have tackled miRNA
regulation.

PUMA models gene regulation by miRNAs in a principled way
by incorporating our understanding of the regulatory processes that
control gene transcript levels. In applying PUMA to a wide variety
of tissues, we find patterns of miRNA regulation associated with a
variety of tissue-specific processes. As such, PUMA provides the first
robust computational method for modeling complex patterns of
regulation involving miRNAs. Its implementation is freely available
in open-source code, allowing the method to be broadly applied to
the analysis of other phenotypes and disease states.

Acknowledgements

We would like to thank all members of the Quackenbush laboratory helpful

discussions.

Author contributions

Conceptualization: M.L.K, J.Q. and K.G.; methodology: M.L.K. and K.G.;

software: M.L.K., A.M. and K.G.; formal analysis: M.L.K.; investigation:

M.L.K., M.F. and K.G.; resources: M.L.K. and J.Q.; data curation: M.L.K.;

writing—original draft: M.L.K.; writing—review & editing: M.L.K., M.F.,

A.M., J.Q. and K.G.; visualization: M.L.K. and K.G.; supervision: J.Q.; fund-

ing acquisition: M.L.K., J.Q. and K.G.

Funding

M.L.K. was supported by a Charles A. King Trust Postdoctoral Research

Fellowship Program; Sara Elisabeth O’Brien Trust; Bank of America; N.A.;

co-Trustees and by grants from the Norwegian Research Council; Helse Sør-

Øst and the University of Oslo through the Centre for Molecular Medicine

Norway (NCMM). M.F. was supported by the project Investment for the fu-

ture AMAIZING ANR-10-BTBR-01 (ANR-PIA AMAIZING). J.Q. was sup-

ported by a grant from the US National Cancer Institute [R35CA220523].

K.G. was supported by a grant from the National Institutes of Health

[K25HL133599].

Conflict of Interest: none declared.

4772 M.L.Kuijjer et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa571#supplementary-data


References

Agarwal,V. et al. (2015) Predicting effective microRNA target sites in mam-

malian mRNAs. eLife, 4, e05005.

Alles,J. et al. (2019) An estimate of the total number of true human miRNAs.

Nucleic Acids Res., 47, 3353–3364.

Bartel,D.P. (2009) MicroRNAs: target recognition and regulatory functions.

Cell, 136, 215–233.

Bartel,D.P. (2018) Metazoan microRNAs. Cell, 173, 20–51.

Bosia,C. et al. (2017) RNAs competing for microRNAs mutually influence

their fluctuations in a highly non-linear microRNA-dependent manner in

single cells. Genome Biol., 18, 37.

Bruno,A.E. et al. (2012) miRdSNP: a database of disease-associated SNPs and

microRNA target sites on 3’UTRs of human genes. BMC Genomics, 13, 44.

Clauset,A. et al. (2004) Finding community structure in very large networks.

Phys. Rev. E, 70, 066111.

Chen,X. et al. (2019) MicroRNAs and complex diseases: from experimental

results to computational models. Brief. Bioinform., 20, 515–539.

Daniel,R. et al. (2017) A panel of microRNAs as diagnostic biomarkers for the

identification of prostate cancer. Int. J. Mol. Sci., 18, 1281.

Dragomir,M. et al. (2018) Using microRNA networks to understand cancer.

Int. J. Mol. Sci., 19, 1871.

Friedman,R.C. et al. (2009) Most mammalian mRNAs are conserved targets

of microRNAs. Genome Res., 19, 92–105.

Gebert,L.F. and MacRae,I.J. (2019) Regulation of microRNA function in ani-

mals. Nat. Rev. Mol. Cell. Biol., 20, 21–37.

Glass,K. et al. (2013) Passing messages between biological networks to refine

predicted interactions. PLoS One, 8, e64832.

Glass,K. et al. (2014) Sexually-dimorphic targeting of functionally-related

genes in COPD. BMC Syst. Biol., 8, 118.

Glass,K. et al. (2015) A network model for angiogenesis in ovarian cancer.

BMC Bioinformatics, 16, 115.

Guo,H. et al. (2010) Mammalian microRNAs predominantly act to decrease

target mRNA levels. Nature, 466, 835–840.

Ha,M. and Kim,V.N. (2014) Regulation of microRNA biogenesis. Nat. Rev.

Mol. Cell Biol., 15, 509–524.

Hicks,S.C. et al. (2018) Smooth quantile normalization. Biostatistics, 19,

185–198.

Hill,K.E. et al. (2017) An imprinted non-coding genomic cluster at 14q32

defines clinically relevant molecular subtypes in osteosarcoma across mul-

tiple independent datasets. J. Hematol. Oncol., 10, 107.

Hu,Y. et al. (2018) Verification of candidate microRNA markers for parathy-

roid carcinoma. Endocrine, 60, 246–254.

John,B. et al. (2004) Human microRNA targets. PLoS Biol., 2, e363.

Kim,D. et al. (2016) General rules for functional microRNA targeting. Nat.

Genet., 48, 1517–1526.

Kuijjer,M.L. et al. (2019) Estimating sample-specific regulatory networks.

iScience, 14, 226–240.

Lao,T. et al. (2015) Haploinsufficiency of Hedgehog interacting protein causes

increased emphysema induced by cigarette smoke through network rewir-

ing. Genome Med., 7, 12.

Liu,Z. et al. (2018) MicroRNA-1468 promotes tumor progression by activat-

ing PPAR-c-mediated AKT signaling in human hepatocellular carcinoma. J.

Exp. Clin. Cancer Res., 37, 49.

Lopes-Ramos,C.M. et al. (2017) Regulatory network changes between cell

lines and their tissues of origin. BMC Genomics, 18, 723.

Lopes-Ramos,C.M. et al. (2018) Gene regulatory network analysis identifies

sex-linked differences in colon cancer drug metabolism. Cancer Res., 78,

5538–5547.

Lu,Y. et al. (2015) MIR517C inhibits autophagy and the

epithelial-to-mesenchymal (-like) transition phenotype in human glioblast-

oma through KPNA2-dependent disruption of TP53 nuclear translocation.

Autophagy, 11, 2213–2232.

Memczak,S. et al. (2013) Circular RNAs are a large class of animal RNAs

with regulatory potency. Nature, 495, 333–338.

Niu,N. et al. (2012) Genetic association with overall survival of

taxane-treated lung cancer patients-a genome-wide association study in

human lymphoblastoid cell lines followed by a clinical association study.

BMC Cancer, 12, 422.

Paulson,J.N. et al. (2017) Tissue-aware RNA-Seq processing and normaliza-

tion for heterogeneous and sparse data. BMC Bioinformatics, 18, 437.

Peterson,S.M. et al. (2014) Common features of microRNA target prediction

tools. Front. Genet., 5, 23.
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