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Abstract: Unexpected climatic conditions or extreme climatic events in vineyards are a worldwide
problem that requires accurate spatial and temporal monitoring. Satellite-based remote sensing is an
important source of data to assess this challenge in a climate-change context. This paper provides
a first insight into the capacity of a multiway analysis method applied to Sentinel-2 time series to
assess heatwave impacts in vineyards at a regional scale. Multi-way partial least squares (N-PLS)
regression was used as a supervised technique to predict the intensity of damage caused to vineyards
by the heatwave phenomenon that impacted the vineyards in the south of France in 2019. The model
was developed based on available ground truth data of yield losses for 107 vineyard blocks in the
Languedoc-Roussillon region and multispectral time-series predictor data for the period May to
August 2019. The model showed a performance accuracy (R2) of 0.56 in the calibration set and of
0.66 in the validation set, with a standard error of cross-validation in the calibration set of 12.4%
and a standard error of the prediction of yield losses in the validation set of 10.7. The model was
applied at a regional scale on 4978 vineyard blocks to predict yield losses using spectral and temporal
attributes. The prediction of the yield loss due to heat stress at a regional scale was related to the
spatial pattern of maximum temperatures recorded during the extreme weather event. This relation
was confirmed by a chi-square test (p < 5%). The introduction of N-PLS insights into the analysis
enables the characterisation of heat stress responses in vineyards and the identification of spectro-
temporal profiles relevant for understanding the effects of heatwaves on vine blocks at a regional
scale.

Keywords: unfold methods; N-PLS; heat stress; water relations; remote sensing

1. Introduction

Grapevine (Vitis vinifera L.) is widely recognised as one of the most important crops in
Europe [1]. Growing evidence of the significant impact of climate change on viticulture
is driving new and underexplored research aiming at monitoring and understanding its
incidence on vine cultivation. The two factors most frequently addressed in reflections
on the possible effects of climate change (CC) on viticulture are thermal and hydrological
conditions [1]. Both of these effects have an impact on vine development and fruit com-
position, determining yields and the quality of grapes, and thus of the wine produced [2].
The most measurable effect of CC is that the steady increase in temperature leads to a rise
in radiation and in the frequency and severity of more extreme weather events, such as
heatwaves [1].

According to Laroche et al. [2], the climate of the Mediterranean region until the
end of the 1990s was defined by wet winters and warm summers, with balanced rainfall.
However, since 2000, low rainfall and increased evapotranspiration have defined the
growing period of the vineyards (April–June), intensified by the increasing occurrence of
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heatwaves at key phenological stages of the vine. Prolonged periods of unusually high
temperatures are likely to affect the yield and quality of the vines [3]. In June 2019, an
exceptional heatwave episode hit the south of France, causing severe and irreversible
damage in vineyards. Persistent temperatures above 35 ◦C during the growing season
drastically affect the plant response and heat acclimatisation mechanisms are activated [4].
By affecting the photosynthesis rate [3,5] and intensifying drought stress [6], heat stress has
a considerable influence on the physiology and yield of grapevines [7]. Since fluctuations
in environmental conditions, and especially ambient temperature [4], strongly influence
plant growth and plant developmental processes, it is crucial to capture the dynamics
of vine growth over time, especially at critical growth stages. Therefore, time series of
multispectral images may constitute a relevant tool to assess the incidence and the spatial
footprint of a heatwave at a large scale (e.g., the scale of a production basin, region, etc.).

Remote sensing techniques are largely used in agriculture, focusing on traits or features
of the agricultural systems that vary in space and time. Based on high-quality multi-
temporal and multi-spectral images captured by Earth observation satellites, satellite
remote sensing has a great potential to address the challenges of CC due to its ability to
provide timely and comprehensive information at different scales and for different actors [8].
Due to the increasing availability of remotely sensed data, e.g., the multispectral Sentinel-2
satellites provides revisits every 5 days, global coverage of Earth’s land surface makes large-
scale analysis possible [9]. Benefiting from convenient spatial resolutions at different scales
(plot, production basin, appellation, region, etc.), satellite data allows the development
of tools and methods that account both for the continuous spatio-temporal reality of a
phenomenon, such as a heatwave, and the spectro-temporal dynamics of the development
of a specific crop, such as vines. In the field of viticulture, information from 13 spectral
bands (from visible to shortwave infrared), on vine conditions obtained by Sentinel-2 over
time provides a detailed time series of data on the physiological and physical properties of
the vine [10]. According to Filella et al. [11], the reflectance spectrum changes depending on
growing conditions and the time of measurement relative to the stage of crop development.
Therefore, remotely sensed multispectral images have a particularly important potential to
quantify the effects of extreme events in the context of global climate change, at different
spatial scales (e.g., plot and region), on grapevine yield.

Different approaches to assess the impact of extreme weather events on major crops
can be found in the remote sensing literature [12]. However, the publications dealing with
heatwaves in viticulture with remote sensing are sparse [3]. Stress conditions due to fluctu-
ations in ambient temperature certainly affect the physiological behaviour of the grapevine,
and thus the spectral response of the canopy at various wavelengths [13]. Although the
current knowledge on the physiological dynamics regulating the responses of grapevines
to heatwaves appears to be well established [4,7,14], large research gaps still exist in the as-
sessment of the effects of heat stress using spectral features and environmental parameters.
Cogato et al. [3] proposed a relevant approach based on Sentinel-2 time-series data that
highlights the most suitable spectral regions and VIs for heat stress detection. However,
such an approach does not take into account the spatio-temporal extent of the phenomenon
or the spectral-temporal extent of the cultivation, as is the case with multivariate methods.
Moreover, such an approach presents the risk of creating uncertainty about the possible
effects of the heatwave timing and limiting knowledge about the phenomenon in question.
Furthermore, challenges remain for modelling the effects of extreme weather events in agri-
culture without overlearning. Regarding the assessment of CC at different scales, quality
field data are scarce and difficult to homogenise, so the number of samples available to
study the phenomenon is often limited. This is a paradoxical phenomenon, considering
that observational data from remote sensing have never been so numerous (increased
data volume and high data variability) [15], while ground reference data, particularly in
operational contexts, remain sparse.

The research presented here aimed to evaluate the incidence of a climate event, such
as a heatwave, on vine cultivation at the plot level and its extent at the regional scale. The
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specific objectives of this work were to: (i) propose an adaptable systemic multidimensional
methodology able to consider the spectral and temporal dimensions intrinsic to cultivation;
(ii) design, calibrate and validate a model to predict yield losses based on spectral-temporal
information derived from time series of remote sensing images; and (iii) study and assess
the quality and uncertainty of this predictive model when used at the regional scale.

2. Materials and Methods
2.1. Study Area

The study area corresponded to a large vine growing region, the Languedoc-Roussillon
(LR), extending over almost 27,400 km2 in the south of France (Figure 1). The LR vineyards,
united under the same administrative label but with their own characteristics, cover four
French administrative sectors: Gard (A), Hérault (B), Aude (C) and Pyrénées-Orientales (D)
(Figure 1). It encompasses a large diversity of varieties, training systems, etc. [16].
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Figure 1. Location of the study area in Southern France for the four administrative sectors: Gard (A),
Hérault (B), Aude (C) and Pyrénées-Orientales (D).

The climate, typically Mediterranean, is characterised by hot and dry summers, with
sparse summer rainfall and mild winters. The regional level presents a large variability in
pedo-climatic conditions [16]; however, soils typically share common characteristics: low
fertility, high stoniness, good drainage, absence of a limiting horizon to ensure deep rooting
and limited water holding capacity.

2.1.1. Heatwave Stress Characteristics

In June 2019, the LR wine-growing area experienced a heatwave characterised by a
hot wind, blowing from the north-east to the south-west, with temperatures reaching 45 ◦C
(Figure 2). The extreme weather episode occurred between 25 June and 8 July 2019, of which
28 June was the most critical day. Given that vine growth in Mediterranean conditions
is still occurring, although slowing, in the middle of the season, extreme environmental
fluctuations that occur during this period at very rapid time scales will limit the evaporative
cooling of the leaves and induce symptoms that can even lead to wilting of the leaves [17].
Extremely high-temperature regimes, characteristic of a heatwave, affect the biochemical
and physiological processes necessary for the optimal development of the vine, especially
for early ripening varieties [1].
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Figure 2. Maximum monthly temperatures recorded from 2009 to 2019 over the Languedoc-Roussillon
region, France, highlighting a peak corresponding to the extreme weather event that occurred in
June 2019. The vertical black dashed line highlights the month of the heatwave. Source: Historique
Météo-France.

It should be noted that the heatwave did not affect the whole region equally, as shown
in Figure 3. The northern part of the region (sectors A and B) was the most strongly affected.
Indeed, sector B presented the highest maximal temperature (>44 ◦C), with a strong spatial
variability, since these high temperatures did not affect the eastern part. Sector D was
only severely impacted on the western part, and section C was almost unaffected by high
temperatures. Note that Figure 3 only presents the main trend of the heatwave. It may hide
some local (short range) phenomena due to factors that may locally mitigate or amplify the
temperature effect experienced by vineyard blocks, such as elevation, the presence of forest
and the aspect of the topography.
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2.1.2. Ground Truth Data

The ground truth data were selected from 107 non-irrigated vineyard blocks in the
northern part of the LR region (Figure 4a). They all showed some effects related to the
heatwave, such as stalled development, leaf burn and leaf drop [18]. The severity of
this effect was assessed by winegrowers and advisors on each of the 107 vineyard blocks
several weeks after the event through an estimation of percentage of yield loss. Figure 4b
summarises the distribution of the 107 blocks in relation to yield loss. Note that the
ground truth data concerned only sectors A and B, which were the most impacted by high
temperatures during the heatwave. No vineyard blocks were sampled over sectors C and
D, despite the potential impact of the heatwave on both of these sectors. However, this
unbalanced spatial distribution of the blocks leads to a representative dataset with a large
diversity of observed yield loss values (Figure 4b).
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2.2. Remote Sensing Data
Data Acquisition and Processing

Satellite images were selected via the Google Earth Engine (GEE) platform, which
provides Sentinel-2 L2A (Sentinel-2A and Sentinel-2B) products. Sentinel-2 satellites, with
a revisit frequency of 10 days (5 days with the twin satellites (A/B) together), provide
13 spectral bands from visible (Vis) and near-infrared (NIR) to shortwave infrared (SWIR)
regions of the spectrum, with a spatial resolution of 10, 20 and 60 m (Table 1) [18]. Twelve
spectral bands (among the 13 available from Sentinel-2 satellites) were used in this study
(Table 1). Spectral band 10 at 1380 nm was not used as it was designed for the detection
of visible and sub-visible cirrus clouds and corresponds to a band of high atmospheric
absorption [19].

Table 1. Spectral bands for the Sentinel-2 satellite considered by the analysis.

Sentinel-2 Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

Band 1–Aerosol 442.7 21 60
Band 2–Blue 492.4 66 10

Band 3–Green 559.8 36 10
Band 4–Red 664.6 31 10

Band 5–Vegetation Red Edge 704.1 15 20
Band 6–Vegetation Red Edge 740.5 15 20
Band 7–Vegetation Red Edge 782.8 20 20



Agronomy 2022, 12, 563 6 of 18

Table 1. Cont.

Sentinel-2 Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

Band 8–NIR 832.8 106 10
Band 8A–Vegetation Red Edge 864.1 21 20

Band 9–VNIR 945.1 20 60
Band 11–SWIR 1613.1 91 20
Band 12–SWIR 2202.4 175 20

The time period considered for the study was from May to August 2019, which was
the most relevant period to monitor vine growth vegetation in this region [20]. Only images
containing the study vineyards (Section 2.1.2) from 13th May to 20th August 2019 were
selected and processed via Google Earth Engine (GEE) [18]. Blocks’ boundaries were
extracted from the graphical parcel register of France (RPG). According to the highest
spatial resolution of Sentinel-2, to avoid mixed pixels, a 10 m inner buffer was imposed
over the boundary of each block before average pixel values were computed within the
inner boundary for each block, each date and each waveband [18]. For the chosen period,
25 images should have been potentially available over each block, but following the cloud
detection algorithm for Sentinel-2 imagery proposed by Hollstein et al. [19], the number of
available images was 11 on average, with a range from 7 to 16 images depending on the
location of the different blocks [18].

2.3. Modelling
2.3.1. N-Way Partial Least Squares

In this work, data corresponded to a three-way array X = || Xi,j,k | whose dimensions
involved the individuals (I), i.e., the vine blocks, as a first dimension, the second dimension
corresponded to time (J) and the third dimension corresponded to mean reflectance at each
wavelength (K). Therefore, as shown in Figure 5, data were organised in a three-way array
of independent variables X (I × J × K) derived from the remotely sensed data (Section 2.2)
and a response vector y of size (I × 1) corresponding to the ground truth data (Figure 4a).

N-PLS regression, as an extension of the classical partial least squares (PLS) method,
was chosen to analyse the data. As proposed by Hansen et al. [21], it is an interesting
method to relate a N-way array to a dependent variable. It identifies all latent information
from (X), which maximises the covariance between X and y while keeping information
provided by each dimension of X [22]. In this study, the 3-PLS1 regression method [23] was
used to best relate X with y while keeping information provided by the spectral and the
temporal dimensions.
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2.3.2. Data Array Construction

The dataset was characterised by the observations of the 12 spectral bands averaged
over each of the 107 blocks for all available satellite images, between 13 May and 20 August,
in 2019 [18]. However, the number of images per block varied according to the local
atmospheric conditions over each block for each acquisition date. As a result, all potential
Sentinel-2 images were not necessarily available at each date. To overcome this issue, an
interpolation was performed to obtain a continuous data cube. The interpolation at a date
t was done wavelength by wavelength, by a convolution of the chronology measured
with a Gaussian filter [24] in order to have a consistent time step dimension (J) [18]. The
parameters involved in the interpolation setting were optimised by cross-validation of
2 blocks repeated 5 times of a N-PLS between cube X and vector y. Parameter optimisation
was achieved with a Gaussian filter having width (P) = 30 and date interval (N) = 15 [18].

At the end of the interpolation step, the dataset was meaningfully arranged in a three-
way array X of dimensionality 107 (samples, I) × 7 (times, J) × 12 (wavelengths, K) and
a vector y (107), corresponding to the yield loss rates from 107 blocks estimated by the
winegrowers and advisors.

2.3.3. Model Calibration and Prediction

Calibration and validation subsets were created to build and evaluate the model.
Considering the distribution of the samples from the dependent variable (Figure 4b), a
calibration set (3/4) and a validation set (1/4) were defined as follows to ensure that the
two sets had the same final distribution [18]:

(1) The vector y was sorted in ascending order.
(2) After sorting, every fourth individual was placed in the validation set and the others

were kept in the calibration set.

A cross-validation of 2 blocks repeated 10 times of a N-PLS between the X cube
and the y vector from the calibration set was performed. The joint analysis of the Root
Mean Square Error of Calibration (RMSEC) and the Root Mean Square Error of Cross-
Validation (RMSECV), as proposed by Goodarzi et al. [25], was used to determine the
optimal number of latent variables (LVs) in the regression model. On the basis of this joint
analysis, 5 meaningful latent variables were kept for the model [18].

The prediction performance of the model was quantified on the validation subset (data
not used for the model calibration) by the standard determination coefficient R2, the bias
and the standard errors.

2.3.4. Model Application at Regional Scale

In order to assess the potential of the approach in identifying the spatial footprint of
the heatwave phenomenon at the regional scale, the calibrated N-PLS model was applied
to 4978 vineyard blocks spread over the whole LR region (Figure 6). These vineyard blocks
corresponded to all data available from the RPG.
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For the implementation of the N-PLS model, the same steps were followed as for X
data array construction (Section 2.3.2.). The model with the 5 latent variables (Section 2.3.3.)
was therefore applied to a significant three-way array X2 of dimensionality 4978 (samples,
I) × 7 (times, J) × 12 (wavelengths, K). The model application provided an estimation of
the yield loss over the 4978 vineyard blocks.

Figure 7 summarises the implementation and the workflow scheme of the N-PLS
model calibration, in addition to its validation and its application at the regional scale.
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2.3.5. Validation at the Regional Scale

Yield loss estimations at the regional scale were interpolated following a classical
kriging process (Section 2.4). Estimations were analysed both qualitatively from visual
comparison with the maximum temperature record map of the 28 June 2019 (Figure 3),
and quantitatively, based on the occurrence of predicted yield loss values with respect to
the maximum temperature recorded over the block. As validation, a chi-square test of
independence [26] was used to verify the dependency between both information sources at
the regional scale. The H0 hypothesis was that yield loss estimation was independent of
maximal temperature recorded during the heatwave event. H0 was rejected for p-values of
0.05 (p < 0.05).

Both estimated yield loss and temperature values are continuous variables. In order
to account for inaccuracy and short-range variability, both variables were converted into
classes to carry out the test. For yield loss estimations, the width of the classes was defined
from the data distribution at the regional scale, i.e., it was based on the distribution of
predicted values [27]. For the temperature values, a theoretical criterion was applied.
Fraga et al. [7] stated that during critical periods of vine development, e.g., in the growth
period, if the air temperature reaches a threshold above 35 ◦C, a limitation of photosynthesis
is to be expected, leading to a decrease in productivity. Therefore, it was decided to set a
threshold temperature at 35 ◦C and to establish two classes above and two classes below
this threshold. The widths of the 4 classes were determined by (1) the temperature threshold
and (2) the minimum and maximum temperature recorded on the 28th June 2019.

2.3.6. Model Interpretation

As for the classical partial least squares (PLS) method, the three-way PLS model
aims at finding new components called latent variables (LVs), which best relate data X
(samples × time × wavelengths) to y (ground truth data) [22]. Compared to classical
PLS, the three-way PLS allows the information supported either by the time dimension or
the spectral dimension to be kept and analysed properly. The weight vectors of each LV
correspond to a spectral and temporal profile, providing evidence on the spectral bands
and their dynamics over time that may best explain the yield losses. The most relevant
LVs (i.e., those that best explained yield loss) were then selected and analysed to identify
known information supporting the model performance, in addition to new complementary
knowledge provided by the time series of images to characterise the heatwave. The
standard error of prediction (SEP) [28] was used to determine the LVs to be analysed.

In addition to the LV weight vectors, the score of each of the 4978 blocks was calculated
for each LV. The score value of a block shows its relation to the spectro-temporal profile
defined by the LV. Then, 3 cases were considered:

• if the temporal-spectral profile of a block followed the same signature as the one
created from the weight vectors (temporal and spectral bands) of a LV, the score value
was positive;

• if the temporal-spectral profile of the sample (vineyard block) followed the inverse
signature to the one created from the weight vectors (temporal and spectral bands) of
the LV, the score value was negative; and

• if the temporal-spectral profile of the sample (vineyard block) followed a different
signature to the one created from the weight vectors (temporal and spectral bands) of
the LV, the score value was close to zero.

2.4. Mapping and Spatial Analysis

Maps were obtained using point kriging interpolation. Kriging was performed with
the GeoFis 1.0 software [29], which was used for: (1) the modelling of semivariograms and
calculations of their featured parameters, C0 (nugget effect), C1 (sill) and r (range), and
(2) the kriging interpolation. The latter was performed on a grid of regularly spaced points
1000 m apart within the geographical boundary of the LR region.
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Semivariogram features were also used to compute the Cambardella Index (Ic) [30]
(Equation (1)):

Ic =
C0

C0 + C1
(1)

where C0 is the nugget effect and C1 is the sill of the semivariogram model. The Cam-
bardella Index was considered here to quantify how the data were organised spatially over
the LR region. The common following thresholds were then used: (1) Ic less than or equal
to 25%, the distribution is considered strongly spatially organised; (2) for Ic between 25 and
75%, the distribution is considered moderately spatially organised and; (3) if Ic is higher
than 75%, the distribution is considered weakly spatially organised [30,31].

3. Results
3.1. Quality of the N-PLS Model

The performance and quality of the N-PLS model with five latent variables are pre-
sented for the calibration set (Figure 8a) and validation set (Figure 8b) in terms of R2, bias
and standard error of prediction of yield losses. The N-PLS model showed a performance
accuracy (R2) of 0.56 in the calibration set and of 0.66 in the validation set, with a standard
error of cross-validation in the calibration set of 12.4% and a standard error of prediction of
losses in the validation set of 10.7% [18]. A standard error of 10.7% over the prediction set
(Figure 8b) was consistent with the accuracy level of the ground truth data, which gave the
yield loss in 25% classes (Section 2.1.2).

These results prove the relevance of multispectral satellite time series to assess the
incidence of a heatwave on grape vine loss when combined with the N-PLS. However,
this model was only validated on a small number of vineyard blocks spread over a small
representative part of the region. The next sections aim at verifying whether the model
derived from this small dataset could be applied to the whole regional level in order to
verify its ability to highlight heatwave footprint at this scale.
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3.2. Yield Loss Prediction at the Regional Level

Figure 9 shows the distribution of the yield loss prediction when the N-PLS model
calibrated with the 107 vineyard blocks is applied to 4978 vineyard blocks of the region.
From the mean (µ) and the standard deviation (σ) values of the distribution, four classes of
yield loss were defined as follows: predictions between 0 and 15% yield loss represented a
low impact (a), predictions between 15 and 27% of losses represented a moderate impact
(b), predictions between 27 and 40% of losses represented a high impact (c), and predictions
> 40% represented a severe impact of heat stress (d).
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Figure 9. Histogram of the prediction of yield loss for the 4978 vineyard blocks. The vertical orange
dashed lines highlight the mean (µ) and the thresholds corresponding to µ ± σ (σ standing for the
standard deviation). The 4 classes from a to d defined on these thresholds were linked to the degree
of impact of the heatwave, with a being the class with the lowest impact and d the class with the
highest impact.

Figure 10 shows the kriged map of the yield loss prediction at the regional scale. The
kriging was performed with a Gaussian semivariogram model, with a nugget effect (C0)
of 122, a sill (C1) of 175 and a range of 140 km. The Cambardella index (Ic) resulting from
this semivariogram was 41%, which highlighted a (moderate) spatial organisation of yield
loss predictions, i.e., 41% of the variability exhibited a spatial structure while the remaining
variability (59%) was stochastic in nature.
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The kriged map (Figure 10) shows large spatial patterns that are more or less related
to patterns observed on the maximal temperature map (Figure 3). Indeed, it highlights
two main zones, one in the northern part (A and B) corresponding to a high yield loss in
the majority of the area, and the second in the southern part (C and D), with a lower yield
loss. This main trend was clearly in relation with the maximal temperature map (Figure 3),
which exhibited the same patterns. The kriged map also exhibited local patterns showing
some local variations in yield loss. This was clear for sectors B and C, where smaller zones
of yield loss were clearly highlighted.

In order to validate the qualitative observations made from the kriged map, a quantita-
tive analysis of the results was proposed. Given the difficulty of obtaining reliable ground
truth data at this scale, the proposed validation was based on the analysis of a contingency
table between the yield loss classes with classes of maximum temperature observed on the
day of the heatwave (Table 2). The same classes of yield losses were considered as for the
kriged map.

Table 2. Contingency table cross-referencing the yield loss prediction classes with the maximum
temperature classes recorded on 28th June 2019.

(30–32.5 ◦C) (32.5–35 ◦C) (35–40 ◦C) (40–45 ◦C)

Low impact: (0–15%) 333 0 0 0
Moderate impact: (15–27%) 417 552 0 0

High impact: (27–40%) 0 1289 704 0
Severe Impact: (40–80%) 0 0 749 934

Table 2 shows a clear relationship between the variables, and this relationship was
clearly positive, i.e., the number of blocks impacted by the heatwave increased with the
maximal temperature at the regional scale. The H0 hypothesis (independence of data
distribution within the contingency table) tested with a classical chi-square test was rejected
(p-value < 0.01). Therefore, classes of estimated yield losses were significantly related to the
heatwave at the regional scale.

Note that the results obtained are very specific. The model did not estimate a signifi-
cant loss of yield when the recorded maximum temperatures were relatively low (<32.5 ◦C).
On the contrary, when the recorded maximum temperatures were very high (>40 ◦C) the
model estimated very high yield losses. Table 2 also highlights some inaccuracy between
yield loss classes; for example, the 32.5–35 ◦C temperature class can lead to moderate and
large predicted yield losses. This observation should be considered in the light of the defini-
tion of the classes, which were only roughly defined on the basis of the overall distribution
of the data and which would certainly merit from adjustment according to the zone of the
region, or according to the grape varieties, training systems, management practices, etc. It
should certainly be considered in the light of the important nugget effect, which may be
explained by a high inter-block variability (grape variety, block aspect, micro-topography,
etc.) when working at this scale.

These results demonstrated the relevance of the model (derived from N-PLS) when
applied at the regional level to predict yield losses associated with the heatwave of
28 June 2019. Based on these insights, the kriged map presented in Figure 10 may represent
a relevant spatial footprint of the heatwave impact of grape yield losses at the regional level.

3.3. Insights of Time Series and Spectral Analysis of the N-PLS Model

Table 3 shows the standard error of prediction (SEP) of yield loss for each LV derived
from the N-PLS. [32]. LV3 and LV4 were the LVs that best predicted the yield loss (lowest
SEPs). Therefore, the next section focuses on studying, first, the LV4 that presented the
lowest SEP (−0.04), and, in a second step, the LV3 that showed the second lowest SEP
(−1.06). The LV4 and LV3 were analysed thereafter regarding their relevance towards the
yield loss estimation.
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Table 3. Standard error of prediction (SEP) for each of the five latent variables derived from the
N-PLS model on the calibration set.

LV1 LV2 LV3 LV4 LV5

1.52 1.20 −1.06 −0.04 −1.81

Figure 11a presents the weight vectors of LV4 as a spectro-temporal profile, i.e., for each
date. The weight vectors can be viewed as the bands that most impact the vine response in
relation to the heatwave. It showed several interesting patterns: (1) for reflectance between
800 and 1000 nm, high weights were observed at the beginning of the season (May),
whereas low (negative) weights were observed right after the heatwave (5 July), and the
weights decreased again until the end of July and then increased until end of August; (2) for
reflectance between 1600 and 2200 nm, the opposite trend was observed, with low weights
(negative) at the beginning of the season and high weights after the heatwave (5 July), and
the highest weights were observed a few weeks (20 July) after the heatwave. Reflectances
between 750 and 1350 nm are known to be strongly related to leaf structure [33], whereas
reflectances between 1350 and 2200 nm are strongly linked to water absorption [34]. Both
of these ranges of reflectance were strongly impacted from immediately after, until three
weeks after, the heatwave. Therefore, the spectro-temporal profile of LV4 summarised
the dynamic of the incidence of the heatwave on the vineyards’ canopy. The LV4 weights
showed that this may result in a drastic change in canopy structure partly due to a change
in water content a few weeks after the event. Note that LV4 weights also highlighted the
slow recovery of the canopy after 20th July for these wavebands.
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in yellow.

The score values (Figure 11b), represented the agreement between the LV4 weights
and the spectro-temporal profiles of each block. The score map obtained after kriging
describes the spatial organisation of the blocks that present: (i) similar spectro-temporal
profile (score > 0); (ii) opposite spectro-temporal profile (score < 0); and (iii) no related
spectral-profile (score ~ 0). The score map for LV4 was supposed to highlight blocks that
were directly impacted (or not) by the heatwave. The spatial organisation of the scores was
confirmed by the semivariogram model, which showed (Table 4) that around 50% of the
variability was explained by a spatial phenomenon (Ic = 48%). The spatial patterns were
strongly related with the maximal temperature recorded on 28th June, showing that the
blocks of the northern part of the region were in agreement with the LV4 spectro-temporal
profile. Note also that, for other sectors, patterns were less related to the main trend of
the heatwave. Blocks with a score > 0 underwent a drastic change in canopy structure,
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partly due to change in water content a few weeks after the heatwave. Patterns of strongly
impacted blocks can also be seen in sectors B and C. Note, however, that for sectors other
than sector A, the patterns were less related to the main trend of the heatwave.

Table 4. Semivariogram parameter descriptors and spatial variability index for score values A1

(Range), C0 (Nugget), C1 (Sill) and Ic: Cambardella Index.

Latent Variables Semivariogram Model Range (Km) C0 C1 Ic (%)

Scores LV3 Spherical 17 0.011 0.019 29

Scores LV4 Gaussian 27 0.003 0.004 48

LV3 showed an unusual trend with regard to the common evolution of the vine canopy
over the season (Figure 12a). It had the highest weights (positive or negative) at the end of
the season, from the July, and especially in August, when growth has usually stopped and
canopy reflectance should be relatively stable (until senescence onset). These high weights
corresponded to (1) the 664 nm reflectance (negative weights), (2) reflectances between
800 and 1000 nm (positive weights), and (3) to a lesser extent, reflectances between 1600 and
2200 nm (negative weights). They corresponded respectively to (i) the visible spectrum
(400–700 nm), which is affected mostly by photosynthetic pigments content (chlorophyll
and carotenoids), (ii) leaf and canopy structure (750–1350 nm) and (iii) water content
(1350–2200 nm) [35]. The highest ranges of reflectance (positive or negative) reached their
maximum long after the heatwave episode (between 20th July and 19th August). Thus,
LV3 weights may represent vines that were strongly affected by the extreme weather
episode and that recovered their photosynthetic capacity of part of their leaf canopy later
in the season [36].
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The score map for LV3 (Figure 12b) was expected to highlight, on the one hand, blocks
showing biomass growth after the heatwave (score > 0) and, on the other hand, blocks
showing the opposite phenomenon (score < 0), i.e., an increase in photosynthetically active
biomass in spring (before the heatwave) and a stabilisation or even a decrease in August
(which should correspond to the expected behaviour of vines in normal conditions). The
spatial organisation of the scores was confirmed by the semivariogram model used to krige
the scores (Table 4), with around 70% of the variability explained by a spatial phenomenon
(Ic = 29%). The spatial patterns showed a distinct north–south difference in the LR region,



Agronomy 2022, 12, 563 15 of 18

which again corresponded to the maximum temperature patterns recorded on 28th June
2019, and thus to the vineyard blocks most affected by the extreme event.

4. Discussions

This study demonstrated the potential of temporal series of multispectral remote
sensing images to discriminate and characterise the impact of a heatwave on vineyards at a
regional scale. It also demonstrated that the high dimensionality (temporal and spectral)
of the data required adopting a systemic methodology that accounted simultaneously for
the spectral and temporal characteristics of the considered data. The N-PLS (3-PLS1 in
our case) may be considered as a relevant approach to handle such problems. It allowed
the spectral and temporal dimension of the data to be considered simultaneously in order:
(i) to calibrate a model of prediction and (ii) to keep information captured by the spectral
and the temporal dimensions through latent variables, which provided insights into the
changes undergone by vine canopy.

The approach, although calibrated on a few fields, was successfully applied at the
regional level, showing the robustness of the methodology and its ability to map the spatial
footprint of the heatwave that affected the south of France in 2019.

It is essential to place the results presented in this paper within the reality for many
environmental and agricultural studies where the ground truthing remains weak and
hard to manage. The N-PLS model shows the interest in successfully dealing with a
low number of ground truth samples (in this case, 107 yield loss observations for grape
fields). Nevertheless, it should be noted that the N-PLS model here was still specific to the
learning base used for the calibration. Specifically, the model accounted for the timing of the
heatwave that the dataset, used for the calibration, had undergone. The direct application of
the model to other vintages or to other regions should then not be considered. Despite this
limitation, the approach allowed the identification of spectral changes in canopy reflectance
that may be the signature of an early summer heatwave. This signature can be applied,
with expert set up, to other case studies in order to identify potential heatwave effects when
no ground truth data are available. Another limitation is that the model integrated the
whole season dynamic (from May to August). As a result, it is not suitable to be used as a
monitoring model to identify and spatialise the heatwave effects in real time or even a few
days after the event.

Although this study focused on the assessment of grapevine heat stress at the regional
level, the generation of potential knowledge from a multispectral time series with the
intention of understanding the phenomenon in question (i.e., a heatwave), was achieved
through the N-PLS approach. Previous studies have shown significant abilities to assess
the effects of heatwaves [3,13] by evaluating the physiological and spectral responses of
grapevines. Notwithstanding this, the adoption of a PLS-multiway analysis presents the
advantage of accounting for changes in the spectral responses over time. Indeed, the two
latent variables most representative of yield loss in the model (SEP values of −1.06 for
LV3 and −0.04 for LV4) provided knowledge regarding heat stress in vineyards by means
of weight and score values. LV4 defined the spectral response of the vineyards to thermal
stress, marking a clear temporal evolution where all the spectral information was affected,
thus reversing the “theoretical” vegetation profile. LV3 reported on the period after the
heatwave. In this case, the spectro-temporal profile of LV3 generated insights related to
the unusual vegetation growth observed in mid-August. A possible explanation for the
late recovery of greenness could be the experience of the vineyards after the heatwave,
as the north was the area most affected by the extreme climatic episode. However, the
interpretation of the other LVs in relation to the heatwave remains more challenging.
Indeed, the N-PLS aimed to extract LVs that best explained the output variable. For that
purpose, it may generate LVs that first model general trends to better extract specific
phenomena. As a result, the first LVs may be more related to the evolution of a “standard”
vegetation canopy signature in viticulture. The analysis of LVs as proposed in this study
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remains difficult and requires further understanding of both the N-PLS approach and the
phenomena under study.

The validation of the model at the regional scale was performed based on the maximal
temperature observed on 28 June 2019. The use of only maximum temperature is a relatively
simple approach for a very complex phenomenon. There is still some debate about how the
impact of a heatwave on vineyards should be assessed and which factors need to be taken
into account, such as the onset dates, the duration of the heatwaves [7], and humidity and
the resulting vapor pressure deficits [37]. Similarly, summarising the effect of a heatwave
to a yield loss, as was done in this study, is certainly reductive. Other response variables
(vigour, chlorophyll content, etc.) would certainly have been interesting to consider and
more directly related to remote sensing variables. However, from an operational point of
view, yield loss was an integrative response of the vine plant and, moreover, important
for the wine industry. Nonetheless, the statistical analysis of the relationship between the
maximum temperature recorded on 28 June 2019 and yield loss predictions (p-value ≤ 0.001)
showed that the model may have captured the main trend of the heatwave impact on yield
at the regional scale.

At this regional level of analysis, it is unclear whether the small spatial patterns
observed in Figure 10, on sectors B and C, are indeed local variations of the impact of
the heatwave on the vine. Given the strong spatial structure observed, the results may
support this hypothesis. Indeed, spatially structured environmental factors, such as soil
type, elevation, aspect, etc. can explain local variations in heatwave characteristics (du-
ration, maximum temperature, etc.), which would explain the local variations observed
in predicted yield losses. It would be interesting to validate this hypothesis because, if it
proves to be correct, the use of image time series associated with a fine mapping of meteoro-
logical conditions may be a powerful tool to better characterise the effect of meteorological
conditions during a heatwave.

At the regional scale, a high nugget effect was observed, indicating that a significant
proportion of the variance remained independent of spatially organised factors or was
explained by very short-range phenomena. Other factors undoubtedly affected the change
in spectral response of the vine canopy, such as the variety, the training systems and the
management practices. For the record, the LR region presents a wide variety of rootstocks,
cultivars and clones, in addition to different soil characteristics and training systems. Since
the model was applied without considering these factors, they may explain the strong
variability that was observed at very short ranges from one field to another. It is difficult
to know if these factors affected the spectral response of the canopy or if they locally
mitigated/amplified the effect of the heatwave as it was observed from remote sensing
or both. This interrogation promotes interesting questions to study the potential of the
temporal series of multispectral images to better study how field characteristics may drive
the response to heatwaves [4,38].

The applied multidirectional approach (N-PLS) presented here represents a specific
case of viticulture for the heatwave of 28 June 2019 in LR. In general, though, it is a type
of approach that can be effective in characterising and assessing the impact of extreme
weather events that suddenly affect the spectral response of the vine canopy, e.g., hail
and frost, with a distinct, disrupted temporal evolution. However, its application to more
gradual phenomena, such as progressive changes in water status or nutritional problems,
may be less adapted as changes in plant characteristics may be less obvious.

5. Conclusions

This study demonstrated how, with a proper dimensionality reduction algorithm
such as the N-PLS, a time series of multispectral images can provide an estimation of the
impact of a heatwave on vineyard blocks at a regional level. The methodology proved to
be relevant to provide the spatial footprint of the heatwave through its evolution over time
by means of the observed response of spectral information.
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The relationship between the percentage yield losses and the maximal temperature
recorded on 28 June 2019 at the regional scale was shown. Insights into the phenomena
explaining canopy responses were provided from the spectro-temporal signatures of the
latent variables, showing the potential of the approach to provide knowledge on canopy
changes during such an event. The main limitation of the proposed methodology was its
necessary calibration on the spectral temporal signature of the event under study. This
prevented any application of the calibrated model to other heatwaves whose timing would
be different.

The proposed methodology is potentially transferable to other phenomena that evolve
over time and, in particular, to any sudden climatic event that may affect the growth
dynamics and leaf composition of the vine canopy (frost, hail, plagues to some extent, etc.).
However, the approach seems less suitable for more gradual phenomena, such as plant
water status, as the temporal evolution is less evident.

Further research is needed to identify and characterise the effects of factors affecting
the specificity of the spectral temporal response of vine canopy towards a heatwave. This
should provide a new methodology to better analyse incidences of heatwaves on canopy
responses at a large scale, and the potential mitigating or amplifying effects, such as
microclimate, topography, training systems and variety.
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